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THESIS ABSTRACT

NAME: Muhammad Ali Qureshi

TITLE OF STUDY:  Objective Assessment of Quality of Experience for Diverse
Image Processing Applications

MAJOR FIELD: Electrical Engineering

DATE OF DEGREE: November 2016

Digital tmages and videos are becoming a vital source of information for Quality
of Ezperience (QoE) and different multimedia related applications during recent
years. Unfortunately, images and videos are likely to undergo various types of
manipulations during different image processing operations. These manipulations
affect the visual quality of images and videos. Image quality is evaluated either
subjectively (done by humans) or objectively (using mathematical techniques). Ob-
jective measures are used for automatic monitoring of image/video quality, opti-
mizing the control parameters in different image processing systems and algorithms
(e.g., enhancement, restoration, inpainting, etc.). The formulation of objective
Image Quality Assessment (IQA) problems is, however, very challenging. The

task for No Reference (NR) IQA becomes even more challenging due to the un-
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availability of the original image. Here, we present new frameworks for objective
assessment of QoF for digital image degradations due to different types of manip-
ulations including enhancement, distortions, and tampering.

In this work, we present a fast blind IQA metric for the images subjected to
different degradations and a blind metric to quantify Blur distortion in color im-
ages with excellent results. Furthermore, we also develop a quantitative measure
that can be used to detect some unpredictable side effects of Contrast Enhancement
(CE) process. We also introduce new measures based on multi-metric fusions for
Contrast Enhancement Fvaluation (CEE). The study is the first of its kind, as
performance of CE algorithms is extensively discussed in the literature but the per-
formance of the CEE measures themselves is not well explained to date. Finally,
we conduct a critical study of existing measures developed for IQA of inpainting
applications, which can help researchers to benchmark new inpainting algorithms.
In summary, the thesis provides a suite of new algorithms for evaluating different
types of manipulations including distortions, enhancement, and image inpaint-

mg.
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CHAPTER 1

INTRODUCTION

1.1 Background

With the rapid growth of Internet and advent of advanced image/video acquisi-
tion devices, digital images and videos are becoming an indispensable source of
information for our daily living, our quality of experience, and the different social
and economic aspects of society. Unfortunately, in practical applications, most
images/videos data are subject to visual quality distortions during data acqui-
sition, lossy compression, pre-processing (e.g. tone mapping, gamma correction,
etc.), transmission errors due to a noisy communication channel, and diverse post-
processing operations. Some of the distortions may even appear while securing
the information in images/videos (e.g., watermarking, stegnography, etc.) [3].
During image acquisition from digital cameras, blurring artifacts may be in-
troduced due to incorrect lens focus and noise may be added due to the shutter
opening for a long time. Other blurring artifacts are caused by the movement
of the camera and/or the object during image acquisition. Similarly, the space
required to store raw images and videos is large, these image and videos undergo
a compression process such as JPEG or JPEG2000, hence compression artifacts,

i.e., blocking due to JPEG, blurring, and ringing due to JPEG2000, are intro-



duced. The different types of distortions affect the quality of images in a variety
of ways. These distortions severely degrade image quality, which results in inac-
curate perceptual judgment. As such, the provision of excellent quality of service
to end users continues to be a major challenge to network service providers.

The question arises, how to assess consistently, the quality of a given image?
The classical pixel-based measures like Mean Squared Error (MSE) and Peak Sig-
nal to Noise Ratio (PSNR), mostly used as quality indices, are unable to correlate
well with the perceptual visual quality of images/videos. International Telecom-
munication Union (ITU) defines QoE as: “Overall acceptability of an application
or service as perceived subjectively by the end users” [14]. Because of the above,
the focus has now shifted from measuring accuracy in multimedia delivery to the
provision of best-perceived multimedia quality to the end users. This prompted a
major interest among researchers in developing robust IQA techniques (subjective
and objective).

Subjective methods, as the name implies, involve humans in assessing image
quality. Human observers provide the most realistic opinion on image quality,
and the ratings are considered most reliable and accurate for perceived quality
in a well-controlled environment and for a large number of observers. The spec-
ifications related to the methodology for subjective experiments are provided in
ITU-R-BT.500-13 recommendations [15]. However, these methods are difficult to
conduct, they are environment dependent, expensive, time-consuming, and not
applicable for real-time applications [16]. For this reason, among others, we have
witnessed during the last decade the growing interest, among academics, consumer
electronics, IT industry, and in digital cinema etc., in developing automated or
objective assessment techniques of image quality.

Objective IQA methods use mathematical techniques to extract and use char-

acteristics features from the original and the distorted images and to use these



features in quantifying image quality. The objective methods, depending upon
the availability of the original image, are grouped into Full Reference (FR), Re-
duced Reference (RR), and NR methods. In FR methods, the original image is
required in addition to the processed image (e.g., distorted, enhanced, compressed,
inpainted, etc.) and hence are not suitable for real-time applications, where the
original image is usually not available. Whereas, there is no need for the original
image in NR quality prediction methods. However, the original image information
is partially required in the form of some extracted features in RR methods, which
are seen as a compromise between FR and NR methods. Therefore, both RR and
NR methods are the representative candidates for quality assessment of digital
images for real-time applications.

The aim of objective quality assessment techniques is to predict perceived
image quality, the way a human observer perceives it. While this field is still
evolving, novel and better methods continue to emerge. It is also important to
make the best use of these tools in real-world applications. In recent years, IQA
has grown into a very active research sub-discipline under image processing.

The primary applications of image/video quality assessment techniques in-

clude:

e The monitoring and adjustment of image/video quality in real-time broad-

cast for delivering best quality image and video transmission.

e Benchmarking different sensing and acquisition technologies as well as in
optimizing different image processing systems and algorithms for a particular

task (e.g., image denoising, restoration, enhancement, inpainting, etc.).

e Parameter settings and optimization of different image processing systems

and algorithms, etc..

The notion of visual information fidelity or image quality is highly related to



the way humans perceive distortions that may affect the quality of the observed
image. Therefore, the IQA dilemma, in its traditional sense, has been long con-
sidered as a distortion estimation problem [17]. This, of course, is an important
problem as it is desirable to have ready to use techniques to evaluate quality of the
images subject to distortions or artifacts that may result from processing, lossy
compression, or transmission. On the other hand, very few studies have been car-
ried on the performance evaluation of image enhancement methods (better quality
images rather than distorted images). Indeed, performing a quantitative evalu-
ation of image quality improvement methods is a very challenging task. This is
due to the absence of any objective measures able to account for some high-level
vision tasks and their interaction with low-level image analysis when assessing
perceptual quality in image enhancement [18]. This is also due to the difficulty in
determining the most appropriate visual features to be used in the design of an
overall image enhancement quality measure. Therefore, subjective evaluation is
still the most reliable approach to assess the quality of enhanced images.
Enhancing image contrast is of major interest in many applications ranging
from medical imaging [19], remote sensing [20], underwater imaging [21], defogging
[22], ete. A plethora of CE methods has been proposed in the literature, and very
few CE evaluations measures exist in this area. Moreover, there is no study
to test the reliability of these measures themselves. Given the importance of
CE in different applications, there is a need to investigate the performance of
these measures in terms of robustness and consistency with human judgment.
Moreover, there is no dedicated database for contrast-enhanced images so far.
The existing contrast-processed databases contain images where the quality of
processed images degraded due to the contrast manipulation. The conventional
IQA metrics originally designed to quantify distortions are not well adapted for

CE evaluation.



Similarly, image inpainting which is considered as a type of image tampering
has also received considerable attention in different areas like the restoration of old
and damaged documents, computational photography, etc. [3]. Image inpainting
is a particular type of copy-move forgery used to restore missing or removing
missing pixels or pixel regions in an image/video to make it as close as possible
to the original or a given target image. Although a lot of research has been
carried in introducing robust inpainting algorithms, limited efforts have been put
in developing metrics for image inpainting quality evaluation. Among different
types of distortions, most commonly observed distortions are the blur around
edges and the contours in the restoration of large regions with missing pixels. The
curved edges are also not restored. The quality evaluation of inpainted images
is also important, with a limited research work has been carried in this regards.
The ultimate choice is the subjective evaluation by human observers, which is
time-consuming, complex, and challenging. In inpainting applications, usually the
reference image is not available. Therefore, it is becoming even hard to develop
NR inpainting quality evaluation metrics.

The objective IQA for different applications is the main focus of this thesis. In
particular, we provide a comprehensive study of different IQA metrics for distor-
tions, enhancement, and inpainting applications, complementing the limitations
of existing work in the literature. The work covers IQA for distortions, enhance-
ment, and a newly field inpainting. A number of contributions have been made

under each of these categories.

1.2 Research Objectives

NR-IQA continues to be a very challenging problem due to the unavailability of

original image information in various applications. The overall robustness of a



given NR-IQA algorithm depends primarily on the selected set of features and
the way these are exploited for a particular IQA application. Currently, most of
the metrics are based on quality of distortions. Here, we focus on the metrics
mostly used to cover distortions, enhancement, and tampering (inpainting). More

specifically, the main objectives of the thesis are:

e To propose a fast and simple NR-IQA metric to quantify different distor-

tions.

e To propose an NR metric for blur prediction using color information for

natural images.

e To develop a quantitative measure that could be used to detect and control
some unpredictable side effects of image enhancement processes such as over-

shooting or halo effects.

e To develop a new database dedicated to CE images for performance analysis

of CEE measures rather than CE methods.

e To provide a comprehensive statistical analysis of the data collected from

subjective experiments on the above mentioned database.

e To perform a detailed analysis of the state-of-the-art CEE measures in
terms of correlation with the subjective evaluation over the above-mentioned

database as well as other publicly available CE databases.

e To propose a new metric for CEE and test it on the newly introduced CEE

database.

e To perform a critical analysis of existing state-of-the-art image inpainting

quality assessment measures.



1.3 Major Contributions

The main contributions of the thesis are:

Development of a fast NR-IQA metric using texture moments and a machine

learning approach [23].

Development of an NR-IQA metric to quantify blur in natural images using

tensors [24].

Development of an NR metric based on mutual information to quantify
global image contrast and to detect and control unpredictable side effects of

CE [25, 26].

Development and testing of a new database dedicated to contrast evaluation
techniques. The quality rankings of enhanced images processed by different
state-of-the-art CE algorithms were obtained from a psychophysical experi-

mental setup [27].

A detailed performance analysis of existing state-of-the-art CEE measures

correlated to the human perception.

Development of a new measure based on the multi-metric fusion of CEE

measures strongly correlated with subjective human evaluation.

A critical review of Image Inpainting Quality Assessment (IIQA) techniques

and the introduction of a new metric for IIQA.



1.4 Thesis Organization

The rest of the thesis is structured as follows:

Chapter 2 provides details of objective quality assessment of digital images
degraded with different artifacts, discussion on subjective experiments, summary
of public image quality databases, evaluation measures and detailed descriptions
of the proposed NR quality metrics.

Chapter 3 covers the quality evaluation of CE methods in general. It starts
with the literature review of existing state-of-the-art CE evaluation measures,
discussion on existing contrast manipulated databases. The proposed dedicated
CE database and CE evaluation metric are discussed in detail.

Chapter 4 includes a critical review of the existing state-of-the-art IIQA met-
rics. It covers the literature review of image inpainting methods and quality
assessment metrics. The strengths and shortcomings of existing IIQA metrics
are highlighted and new guidelines for the development of new IIQA metric are
provided.

Finally, we conclude the thesis in Chapter 5 and provide a discussion on future

research perspectives.



CHAPTER 2

IMAGE QUALITY
ASSESSMENT (IQA) FOR
DEGRADATION EVALUATION

2.1 Introduction

Digital images and videos are becoming an essential part of our quality of experi-
ence and provide a source of information for various social and economic aspects
of society. Over a simple one minute internet time, more than 3 million videos
are viewed on Youtube, over 500,000 photos are posted online, and more than
20 million messages are exchanged on WhatsApp, many of which containing im-
ages. Unfortunately, with this substantial amount of internet traffic and the lack
of control of content, the quality of images and videos posted suffers the most.
Human vision is considered the best apparatus for perceiving and assessing im-
age/video quality. Current research efforts aim at developing algorithms that try
objectively to mimic the Human Visual System (HVS). Traditionally, image/video
quality assessment methods have been grouped under two broad classes: Subjec-

tive and Objective methods (see Figure 2.1). Under each of the classes, a number



‘ Image Quality Assessment methods

‘ Subjective methods ’ ‘ Objective methods ’

‘ Full-Reference ’ ‘ Reduced-Reference ’ ‘ No-Reference

Figure 2.1: Classification of IQA methods

of approaches have been developed. These are discussed in more details further.

2.2 Subjective IQA Methods

Subjective methods involve human judgment of perceived quality, hence are con-
sidered as more reliable methods for real life applications. The most widely used
recommendations are the ITU-R-BT.500.13 [28], which provide detailed explana-
tions of materials, methods, and environment used in experimental testing. The
ITU-R-BT.500.13 also provides discussion on statistical analysis of raw data col-
lected from the subjective experiments. The subjective experiments are direct
methods in which different subjects (observers) rate the quality of a given image.
These methods need careful design considerations, well-controlled environment,
and involve at least 15 observers to be meaningful [28]. However, these are time-
consuming and cannot be used for real-time applications. They are generally
used in the benchmarking of different objective image quality evaluation mea-
sures. Subjective methods can be further grouped based on the basis of rating
and ranking [16]. In rating-based methods, participants assign a score to each
stimulus presented to them either on an interval scale (0 — 100) or categorical

scale (Excellent, Good, Fair, Bad, and Very Bad). Based on the display of the
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original image along with the test image, these methods are further classified
into Single Stimulus (SS) and Double Stimulus (DS). So we have Absolute Cat-
egory Rating (ACR) where only a single image is rated on a scale of discrete
levels (e.g., 5—level scale), Double Category Rating (DCR) where both original
and test images are displayed simultaneously and observers rate the test image
on a discrete degradation scale based on the perceived quality as compared to
the original image. The DCR methods are also called Double-Stimulus Impair-
ment Scale (DSIS). Similarly, interval-based rating methods are also grouped into
Single-Stimulus Continuous Quality Evaluation (SSCQE) and Double-Stimulus
Continuous Quality Scale (DSCQS). In SSCQE, only a test image is shown to
the observers and they are asked to rate the image quality using a slider over
a continuous scale. Whereas in DSCQS, both original and test images are dis-
played in random order and the observers are unaware of the original image and
they are asked to rate the quality of both images on a continuous scale. Between
the category and interval rating based methods, the main problem in the inter-
val (continuous) rating scales, is that people have their own perceptual judgment
scales in their mind, hence it is very difficult to obtain an unbiased rating if the
number of points on the scale is very large.

The ranking-based methods can be grouped into rank order-based methods
and Pairwise Comparison (PC)-based methods. In rank order-based methods,
different stimuli are displayed at once and the observers are asked to rank those
according to their perceived quality judgement. This protocol is time-efficient;
however, it is sometimes difficult to differentiate among the stimuli, particularly
when the number of stimuli is more than three or four and the differences among
the stimuli are also very small. Whereas, in PC-based methods, the stimuli are
presented to the observers in pairs, and the observers choose whether stimuli A

is better than stimuli B or vice versa, or both stimuli are alike. In this case, each
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stimulus is compared with the other. The PC-based methods are simple because
only one stimulus is compared with the other, and they are effective when the
differences between the stimuli are very small compared to the rank-order or
rating based methods.

The pairwise ranking raw data can be statistically analyzed in terms of coef-
ficients of transitivity and consistency to sort out the bad participants as well as
pathological stimuli [29]. Moreover, the pairwise ranking data can also be easily
converted to rating scores. The PC ranking data can further be extended for more
stimulus and images. However, since each stimulus is compared in pairwise man-
ner with the others, the number of comparisons increases with the stimulus. For
M stimuli (or methods in our case), the maximum number of pairwise compar-

A;) = w An overview of different subjective methodologies

isons becomes (
used in IQA applications is shown in Figure 2.2. Note that in both rating and
ranking based subjective experiments, the aggregated scores from all observers
are considered as the overall ratings or ranking scores for each image.

Subjective methods are directly based on human visual perception, which
makes them the most appropriate choice for image/video quality assessment; how-
ever, they exhibit a number of limitations. Human perception is dependent upon
observers' mood, viewing distances, fatigue, and lighting conditions. These meth-
ods are also difficult to design, expensive, time consuming, and not recommended
for real-time applications [30]. For this reason, significant research efforts have
been made to develop objective IQA, metrics which correlate well with the rating
obtained from human observers. In Section 2.5, we will discuss in details different
objectives IQA metrics. Before that, we will give an overview of different subjec-

tive image quality databases and various performance evaluation measures used

to validate the objective metrics.
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Figure 2.2: Classes of subjective methodologies used for quality assessment

2.3 IQA Databases

With the increased growth of research activities in IQA, it was important to
introduce benchmarking IQA ground truth databases to be used for testing the
different IQA metrics. They are also useful in the development of new metrics.
Currently, many publicly available IQA databases along with the subject ratings
are available. However, most of these are dedicated to IQA for degradation in

image quality [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. A brief description of

these databases is given below.
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Laboratory for Image and Video Engineering (LIVE) Database [31]:
The database contains 29 original images, 779 processed images which are dis-
torted with six distortions up to five levels. The distortions include compression
artifacts (JPEG and JPEG2000), blurring, white Gaussian noise, and fast fad-
ing. The quality ratings are provided as Difference Mean Opinion Score (DMOS)

scores in the range (0 — 100).

Categorical Subjective Image Quality (CSIQ) Database [33]: The
database was developed at Oklahoma State University, USA, and consists of 30
reference images and 866 distorted. Each original image is distorted using six
different types of distortions with four to five distortion levels. The distortions
are JPEG and JPEG2000 compression, Gaussian blurring, global contrast decre-
ments, additive white and pink Gaussian noises. The ratings are given as DMOS

scores on the scale (0 — 1).

Tampere Image Database 2008 (TID2008) [32]: The database was de-
veloped at Tampere University of Technology, Finland. It contains 25 reference
images, 1700 distorted images, and 17 distortions with four levels. The different
distortions include noise distortions of various types (additive Gaussian, masked,
spatially correlated, high frequency, impulse, and non-eccentricity pattern noise),
Gaussian blur, image denoising, compression artifacts (JPEG, JPEG2000), trans-
mission errors in compression (JPEG, JPEG2000), contrast artifacts, intensity
shift, and variable intensity distortion at block level. The subjective experiments
were carried out in three different countries both in the lab and using the internet.

The quality ratings are given as Mean Opinion Score (MOS) scores in the range

(0—9).
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Tampere Image Database 2013 (TID2013) [38]: The database is an exten-
sion of the TID2008 and is the largest image quality database consisting of totally
3000 distorted images, 25 reference images, 24 different types of distortions and
five distortion levels. The quality ratings are given as MOS scores in the range

(0.2 —7.3).

Image and Video Communication (IVC) Database [34]: The database
consists of 10 reference images and 185 distorted images. The distorted images
are created with four different types of degradations at five levels. The distor-
tions include blurring, compression (JPEG and JPEG2000), and Local Adaptive
Resolution (LAR) coding. The subjective ratings are given as MOS scores in the

range (1 —5).

Media Information and Communication Technology (MICT) Database
[37]: The database was developed by the University of Toyama, Japan. It con-
sists of 14 original images and 168 distorted images. The database is limited
to compression and communication artifacts and contains images distorted with
JPEG and JPEG2000 compression. The ratings are provided as of MOS scores in
the range (1 —5).

Colourlab Image Database: Image Quality (CID:1Q) [39]: This database
is a recently developed one dedicated for IQA for distortions. The subjective ex-
periments were performed in five different countries both in the laboratory envi-
ronment and through the internet. The images in the database are distorted by
compression artifacts (JPEG and JPEG2000), blurring, Poisson noise, and two

gamut mapping methods.

15



Wireless Imaging Quality (WIQ) Database [35, 36]: This database con-
sists of seven reference images and 80 distorted images, in grayscale and JPEG

format. The artifacts are due to the simulated wireless channel. The ratings are

provided as DMOS in the range (0 — 100).

Cornell-A57 Database: The database consists of only three gray-scale origi-
nal images and 54 distorted images. The six different types of artifacts are due to:
additive white Gaussian noise, Gaussian blurring, quantization of 5-level wavelet
high-frequency coefficients, additive white Gaussian noise, JPEG compression,
and two JPEG2000 compression artifacts due to compression without visual fre-
quency weighting and quantization based on dynamic contrast. The subjective

ratings are provided as DMOS scores in the range (0 — 1).

Camera Image Database (CID2013) [40]: This is a new database consisting
of 480 real images captured by 79 cameras in six image groups. The database was
evaluated by 188 observers.

A comprehensive summary of the above-mentioned databases including the
number of original and distorted images, distortion types, levels of distortions,

description of subjective experiments, and rating scores, is presented in Table 2.1.

2.4 Performance Evaluation Measures

With the diversity in the approaches used in measuring quality of images or image
distortions come across the challenge that of normalizing the scores to a certain
standard range. An important phenomenon to be considered in this mapping
is the non-linearlity characteristics of human subjective scores. To account for
these non-linearities in the subjective scores due to human opinions, the predicted

objective scores need to be scaled using a nonlinear mapping function. A 5-
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parameter non-linear logistic fitting function is generally used as was discussed
in details in [42]. The fitted objective scores, after nonlinear mapping, along
with the subjective ratings (MOS/DMOS), are utilized for the estimation of few
performance evaluation measures. The 5-parameter non-linear logistic function

generally used is given as follows:

1 1

q=75 [§—W} + Ba + Bs (2.1)

where ¢ represents the fitted objective score after non-linear mapping, = is the
calculated objective quality score, and [ for k = 1,2,3,4,5 are the fitting pa-
rameters. These parameters are computed by minimizing the MSE between the
subjective scores (MOS/DMOS) and the fitted values.

The Video Quality Expert Group (VQEG) [43] recommended some measures
to validate the performance of objective image quality metrics. A brief description

of commonly used performance evaluation measures is now given:

a. Pearson Linear Correlation Coefficient (PLCC) is used to measure
the prediction accuracy (i.e. the ability to predict the subjective score with low
error). It determines the strength of linear regression between the subjective
scores (MOS/DMOS) and the objective scores after performing nonlinear regres-
sion analysis on the subjective scores. Its value ranges from —1 to +1 and it is

calculated as:

VI s -2 TN (0 - )2

where s; is the i'" subjective score, q, is the predicted objective score (after non-

linear regression analysis) for the i'® image/video, § and @ are the averages of

subjective and objective scores, respectively, for the whole database, and N is the
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total number of images (or videos).

b. Spearman Rank Order Correlation Coefficient (SROCC) is used to
measure the prediction monotonicity between metric scores and subjective scores
(i.e., the degree to which the predicted scores agree with the relative magnitudes
of subjective scores). The subjective scores, s, and the objective scores, x, are
sorted and converted into their ranks and SROCC is calculated using Eq. (2.3).
Since ranks are used in calculating the SROCC and the relative distance between
the data points is ignored, the resulting score is independent of the non-linear
mapping. Its value ranges from —1 to +1. The SROCC values close to +1
indicate that objective scores are in strong agreement with human perception, —1
means perfect disagreement and 0 means no correlation exists. The SROCC is

computed as follows:
65N, d?
SROCC =1- ==Lt 2.3
N(N2—-1) (2:3)
where d; is the difference between the ranks of i*" image subjective and objective

Scores.

c. Kendall Rank Order Correlation Coefficient (KROCC) is a non-

parametric rank correlation metric and is calculated as:

2(N. — Ny)

(2.4)

where N, and Ny are the numbers of concordant and discordant pairs, respectively,

in the list.
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d. Root Mean Squared Error (RMSE) is used to measure the overall

performance of the IQA metric and is calculated as .

N

RMSE — % S (51— q)? (2.5)

=1

The objective scores after non-linear regression analysis are used in the calcu-
lation of the RMSE and PLCC.

In short, the evaluation metrics SROCC and KROCC are used to measure the
prediction monotonicity whereas PLCC and RMSE assess the prediction accuracy
of the objective quality assessment methods. Large values of SROCC, KROCC,
and PLCC, while small values RMSE correspond to close relationship between
the objective scores and the subjective ratings indicating the power of different

objective IQA metrics.

2.5 Objective IQA Methods

With the above definitions and frameworks, we are moving to discuss the different
approaches that have been proposed in the literature to measure image quality. As
outlined earlier, objective methods, overcome the drawbacks of subjective methods
by using mathematical techniques for extracting and using characteristic features
from the reference and /or distorted images/videos. These features are then used to
quantify quality. Objective quality assessment methods aim to predict perceived
image/video quality score with high level of correlation with the subjective scores
given by human subjects, which are the ultimate users in most image processing
applications. Depending upon the availability of a reference image/video (i.e. an
image/video with perfect quality), the objective methods can be grouped into FR,

RR, and NR methods (see Figure 2.1). In FR methods, the reference image/video
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is required in addition to the distorted image/video while there is no need for
the reference image/video to predict the quality of a distorted image/video in NR
methods. The reference image/video information is partially needed in the form
of some extracted features in RR methods, which is seen as a compromise between
FR and NR methods [44].

In recent years, more efforts have been put in developing IQA metrics that
consider the different properties of the HVS. FR algorithms have attracted the
most attention over the last decade. The reader can check the following references
for FR-IQA algorithms [45, 46, 18]. Figure 2.4 shows the block diagram for a
typical FR-IQA system model. FR-IQA methods are applicable in different off-
line (stored) multimedia applications and IQA of this type is considered as almost
a solved problem. We will see later that the biggest challenge resides in assessing

quality when only the distorted image is available.

2.5.1 Full-Reference IQA Methods

In early research, the most widely used IQA methods compute visual quality by
measuring pixel distortion, e.g., the MSE and the PSNR [47]. In pixel-based
methods, the reference and the distorted images are compared on a pixel-by-pixel
basis. The MSE is estimated as follows:
1 SN o
MSE = m;;[lr(m) —1a(, )] (2.6)

where I, I; are the reference and the distorted images respectively.

2552 2
PSNR (dB) = 10log,, (M5—S5E) = 201log, (\/%ZE) (2.7)

The main advantages of PSNR and MSE are simplicity, ease in implementa-

tion, and clear physical meanings. However, such pixel-based methods were widely
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criticized, for not correlating well with human visual perception. In Figure 2.3,

we show a number of images affected by different types/levels of distortions but

exhibiting the same value of the MSE.

WEE=215 MSSIM=0.671 MSE=225, MS5IM=0.658 WMSE=225, MS5IM=0.723

Figure 2.3: Example of distorted images with similar MSE

FR-IQA methods have also been developed using image structure information.
The most widely used FR metric is the Structural SIMilarity (SSIM). The SSIM
assumes that natural images are highly structured, and the HVS perception is
sensitive to structural distortions. Structural methods are based on comparing
the structures of reference and distorted images and the structural degradation
is considered as the quality score for the distorted image. In the SSIM [48], 3
types of similarities i.e. contrast similarity, structural similarity, and luminance
similarity, are calculated in the spatial domain for overlapping blocks with one
pixel overlap and using a sliding window approach. The product of these three

similarities gives a local similarity map. The three components i.e., luminance
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similarity, contrast similarity, and structural similarity are calculated using the

following expressions:

10 y) = 3 (28)
c(x,y) = gfﬁ’—ﬁ (2.9)
s(x,y) = (:”;y—ﬁ’ (2.10)
and finally, the SSIM is computed as:
SSIM(x,y) = [1(x, y)]"[c(x. ¥)][s(x, y)]" (2.11)

where fiz, iy, 04,04, 04y are the mean, standard deviation and covariance between
overlapping blocks of images x and y. The constants C;, Cy, and C3 are used to
avoid instability (for zero denominator). The overall quality score is obtained by

averaging the local similarity scores over N blocks:

N
1 .
SSIM = — ;:1: SSIM(4) (2.12)

The SSIM popularity is mainly due to its simplicity and computational effi-
ciency. Other variations of the SSIM include the MS-SSIM [49] using a multi-scale
approach, the CW-SSIM [50] using complex wavelets, and the DW-SSIM [51] us-
ing discrete wavelets, etc. The major problem with the SSIM is that it does not
perform well on blurred images. To solve this problem, a number of gradient-
based approaches were introduced considering the fact that edges contain most of
the image structure information.

Among the most popular gradient based structural FR-IQA methods is the
Feature Similarity Index Metric (FSIM) [52] is the popular one. It uses the Phase

Congruency (PC) and the Gradient Magnitude (GM) as low-level features for full
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reference objective assessment of image quality. The motivation was that percep-
tual image quality depends on salient low-level features (image phase information)
and these low level features change with distortions. Phase congruency is shown
to be invariant to contrast changes, however HVS perception is highly dependent
upon image contrast. To overcome this problem, image gradient (using the Scharr
gradient operator) is used to capture the contrast as well as structure changes due
to distortion. The phase congruency similarity map and gradient similarity map
are computed as:
2.PC,(i).PCq(7) + Cy

Secl) = 5620 + PC2() 1 O (2.13)

Sa(i) = 2.G.(1).Gq(7) + Cy
¢ G2(i) + G2(i) + C2

(2.14)

where ¢ represents pixel location and G,, G4 are the gradients of the reference and
the distorted image.
The local similarity map due to both phase congruency and gradient is ob-

tained by multiplying both terms:
S(i) = Src(i)-Sa(i) (2.15)

The phase congruency value at each image location represents the importance
of visual perceivable difference and used as weight in computing the overall quality

score. The weights are calculated as:
PCy (i) = max(PC, (i), PCq(7)) (2.16)

and finally the FSIM is given as:

1 S(3i).PCy (i)

FSIM — 2= -
2= PO ()

(2.17)
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Another structure-based FR-IQA method is the Visual Saliency Index (VSI)
[53] based on features calculated from visual saliency information of the reference
and distorted images. Features based on image gradient map (using Scharr gradi-
ent operator) are also calculated, as visual saliency map is invariant to contrast.
The local similarity map is obtained by multiplying both visual saliency map and
image gradient map.

Recently, Xue et al. proposed the Gradient Magnitude Similarity Deviation
(GMSD) [54] for FR-IQA using only the image gradient information (using the
Prewitt gradient operator) to capture contrast and structural changes in image
pixels occurring due to different distortions.

From the above mentioned methods, it is obvious that most of the FR-IQA
assessment metrics are calculated in two steps. First, a local image similar-
ity /dissimilarity quality map is obtained. The local quality map reflects the local
quality of each image block in the distorted image. Then, an overall quality score
for a given image is computed from these local maps in an all-important pooling
stage. Among different pooling strategies, average pooling is the most widely used
to obtain the overall score [48]. The main disadvantage of average pooling is that
equal weights are assigned to all pixels. However, different distortions can affect
different areas in an image based on the salient information and can give vary-
ing annoyance level (produced due to distortion). Moreover, edge pixels can give
more visual information than pixels in smooth areas. Hence, HVS has different
response in different areas/locations of an image while this phenomenon is totally
ignored in average pooling. To overcome this problem, weighted averaging is used.
In FSIM [52], the phase congruency value at each location in an image is used to
weight the local quality score, while in VSI [53] local saliency map is used as a
weighting factor for the local quality map to get overall score.

A new pooling strategy was discussed in the GMSD [54]. The standard de-
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viation of local quality map is used as overall quality score for an image. The
idea is that natural image contain different local structures. The degradations
occur in these local structures due to different distortions, are not the same. In
JPEG and JPEG2000, for example, the most prominent distortions are blocking,
blurring and ringing. Blurring is prominently visible in textured areas rather than
flat areas in an image. Blocking causes high quality degradations in smooth ar-
eas compared to textured areas. The global variation of image local quality (i.e.
standard deviation of local quality map) is the best candidate for overall qual-
ity score for an image degraded due to multiple distortions. The different types
of pooling strategies proposed for estimating the overall quality score from local
quality scores are summarized in Table 2.2, where s represents local quality score
at each pixel location, and N is total number of image pixels.

Before leaving the subject of FR-IQA techniques, it is worth noting that liter-
ature in this topic is very extensive. For this reason, we focused here on relevant
and most common approaches. The reader is encouraged to refer to the following
review /survey papers for more details [45, 46, 18].

In summary, FR-IQA methods are applicable in different off-line (stored) mul-
timedia applications and IQA of this type is considered as almost a solved problem.
We will see later that the biggest challenge resides in assessing quality when only

the distorted image is available.

2.5.2 Reduced-Reference IQA Methods

In most practical applications, the reference image is not available. However, some
of the reference image/video information may be available in the form of some
extracted features [44]. Such scenario is called Reduced Reference IQA. Applica-
tions of RR-IQA techniques include real-time broadcast, tracking degradations in

image quality to control the streaming resources, etc. Figure 2.5 shows the block
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Table 2.2: Different pooling strategies used to compute the
overall quality score

Pooling Quality score (Q) Examples  Remarks
strategy
N
averaging > g; SSIM [48]  Easy to compute. HVS percep-
=1 tion at different areas on an im-
age is not well considered.
N
_Z qiw;
weighting = FSIM [52], HVS perception is based on vi-
X wi VSI [53] sual salient information, results
are more correlated to subjec-
tive scores
N
standard ~ > (i —7)>  GMSD [54] Effective for image degraded
deviation =1 due to multiple distortions

~ q; represents local quality score at index i in local quality map.
~ w; represents weight for the local quality score at index i
~ N represents total number of points in local quality map.

diagram for a typical RR-IQA system model.

In this figure, a reference image is sent to the receiver via a communication

channel. The features are extracted from the reference image at the sender side

and transmitted to the receiver through an ancillary channel. The reference image

experiences distortion in the encoding stage as well as in the transmission channel.

At the receiver, features are extracted from the distorted image similar to the

Reference
Image

Encoder

Communication
Network

Decoder

Distorted
Image

FR—IQA
Metric

Figure 2.4: Block diagram of a typical FR-IQA system model
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Figure 2.5: Block diagram of a typical RR-IQA system model
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Figure 2.6: Block diagram of a typical NR-IQA system model

sender side. The features from both reference image and distorted image are used
to estimate the overall quality score for the distorted image.

Wang et al. in [55] mentioned that for RR-IQA, the features should be per-
ceptually relevant and sensitive to various distortions. They proposed a RR-IQA
method based on the steerable pyramid wavelet transform and the natural scene
statistics model. The image quality is estimated using Kullback-Leibler diver-
gence between the marginal probability distributions of the wavelet coefficients
from the reference and the distorted images.

In [56], Gao et al. proposed a framework for RR-IQA to mimic the HVS using
multi-scale geometric analysis (MGA), Contrast Sensitivity Function (CSF), and
the Webers law of Just Noticeable Difference (JND). In [57], Xue et al. proposed
a RR-IQA algorithm based on modeling the subband coefficients using steerable

pyramid transformations. The strongest coefficient edge-map corresponding to
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the image gradient is built at each scale. The histogram of the SCM (Strongest
Coefficient Map) is modeled with a Weibull distribution. The shape parameters of
the Weibull distribution at different scales are used as RR features. The final qual-
ity score is calculated as a summation of geometric mean of absolute deviations
and relative deviations of the reference and distorted image features.

In [58], Chetouani et al. proposed neural network based RR-IQA method.
The statistical features are extracted in the wavelet domain from both reference
and distorted images. The reference and distorted images are transformed using
a 3-level wavelet decomposition. The edge-map for both the reference and the

degraded image at each decomposition level is created as follows:

Edge-Map(i) = \/LH(i)? + HL(4)2 + HH(:)2 (2.18)

where LH, HL and HH are the horizontal, vertical and diagonal details subbands of
an image at each decomposition level. For a 3-level wavelet decomposition, three
edge-maps are created for each reference and distorted image. The mean and
standard deviations are calculated from each edge-map for both the reference and
the distorted image giving a total of 12 features (6 each for reference and distorted
image). These features along with DMOS, are used for training a neural network.
The trained model is then used as quality prediction of distorted images. The
RR-IQA methods are the most appropriate choice for predicting quality closest to
human subjective score compared to NR-IQA but they are limited for only those

applications which require the reference image (in some form).

2.5.3 No-Reference IQA Methods

Even though both FR- and RR-IQA algorithms correlate well with subjective

scores, NR-IQA is a more practical and challenging due to the unavailability of
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reference image. Note that, often reference images are not available, e.g., tele-
vision transmission; and hence NR-IQA is desirable, despite its computationally
challenging nature. Figure 2.6 shows the block diagram for a typical NR-IQA
system model. NR-IQA algorithms can be grouped into a) Distortion specific,
b) Machine learning based, and c) Natural Scene Statistics (NSS) based. These

categories are display in Figure 2.7.

A. Distortion-Specific based NR-IQA Techniques:

Distortion specific NR-IQA can only predict image quality with a certain type for
distortion by extracting distortion aware features and hence have a limited scope
[44].

The methods for blurriness detection, for example, are classified as spatial,
transform, and hybrid methods. The spatial methods are further divided into edge
based and non-edge based methods. Marziliano et al. [59] estimated blurriness
effects based on average edge widths. Ong et al. [60] estimated blurriness effects
based on edge widths in both the edge direction and its gradient direction. Among
non-edge based spatial domain methods, Wee et al. in [61] estimated sharpness
based on the largest eigenvalues of the covariance matrix of the image pixels. Zhu
et al. in [62] estimated sharpness based on the Singular Value Decomposition
(SVD) of the local image-gradient matrix. These metrics were also shown to
perform well in the presence of noise.

Among the transform domain methods, Marichal et al. [63] estimated blur-
ring effects based on the histogram of nonzero Discrete Cosine Transform (DCT)
coefficients for 8 x 8 blocks. Similarly, Caviedes et al. [64] estimated sharpness
based on the kurtosis of the DCT coefficients computed for 8 x 8 block centered
at edge pixels. The overall blur estimate is computed as average of local kurtosis.

The problem with edge-based blur estimation methods is that they fail in case
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of highly blurred images. To overcome this problem, Chetouani et al. in [65]
proposed a metric for blur estimation without using the image edge information.
The blur index is computed from the frequency domain radial analysis applied to
both distorted image and its filtered version. While Vu and Chandler [66] esti-
mated sharpness based on the weighted average of the log energies of the DWT
subbands.

Among the hybrid methods, Vu and Chandler [66] estimated sharpness effects
based on a combination of spectral and spatial measures. The spectral measure
uses the slope of the local magnitude spectrum, and the spatial measure uses the
local total variation of pixel values; these two measures were then combined using
a weighted geometric mean to generate an image sharpness map, which averaged
into a scalar indicating overall perceived sharpness.

In NR-IQA for JPEG compression artifacts, the general approach involves
measuring edge strength at block boundaries, and then using this measure to esti-
mate the visibility of the blocking, often based on masking. The image quality is
then determined based on this estimate of perceived blockiness. These algorithms
consider blocking as the most significant artifact originating from the compression
process, so they first extract features to characterize the relative magnitudes of
blocking artifacts.

In [67], Wang et al. proposed an efficient metric for blockiness distortion due
to JPEG compression. They used the average absolute differences across the block
boundaries and within block boundaries to estimate the blocking in JPEG images.

For JPEG2000 compression artifacts, the general approach involves measur-
ing the amount of blurring or edge-spread by using edge-detection techniques.
Other methods have also been developed based on natural-scene statistics. In
[68], Sheikh et al. proposed to use the wavelet subband probabilities. The fea-

tures extracted from these probabilities are used to estimate quality score using a
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nonlinear fitting function. Zhang et al. [69] used kurtosis of the DCT coefficients
as features for no-reference quality assessment of JPEG 2000 compressed images.
The authors demonstrated the effectiveness of the metric in terms of parameter-
free operations and computational efficiency. Other approaches can be found in

[45, 46, 18].

B. Non-Distortion specific NR-IQA methods:

To handle all types of distortions, these algorithms are divided into machine learn-

ing based and natural scene statistics based.

B1. Machine Learning based NR-IQA Techniques: The algorithms be-
longing to this class, use machine learning based approaches for no-reference image
quality assessment. Machine learning methods are powerful mathematical tools
for solving prediction problems and provide good approximations of functional re-
lationship between known sets of input and output data. This helps in predicting
image quality scores that are close to that of the HVS. In [70], Tong et al. used
a machine learning approach for NR-IQA based on neural network. The network
was trained for both high-quality and low-quality image classes and binary clas-
sification was used to predict the quality of the distorted image by estimating the
probability, the distorted image belongs to these two classes.

In [71], Tang et al. used low-level texture and natural scene statistics features
based on complex wavelet transform for NR image quality assessment (LBIQ).
These features are used for training three different regression networks and a final
quality score is calculated as a weighted combination of quality estimation from
the three regression models.

In [72], Li et al. presented a NR image quality assessment algorithm using a

Generalized Regression Neural Network (GRNN). The mean and entropy of the
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phase congruency map, and the entropy and gradient of the distorted image are
used as features. The final quality score is calculated by approximating the func-
tional relationship between these features and subjective scores using the GRNN.
In [73], Ye et al. presented the CBIQ-I and CBIQ-II algorithms based on visual
codebooks. The Gabor features are extracted from local image blocks to form
the codebooks. The quantized features are then used to estimate image quality
via either an example-based regression or support-vector regression. Further im-
provement in CBIQ-II was discussed by Ye et al. in [74], by using features from
unsupervised learning instead of Gabor features which are shown to be effective

across different distortions.

B2. Natural Scene Statistics based NR-IQA Techniques: NSS-based
approaches assume that natural scenes possess certain statistical properties and
that the presence of distortion will affect these properties. In this category, the
perceptual relevant features are used to estimate the quality of the distorted image.
In these methods, a two stage classification/regression network is generally used
for quality prediction. In the classification stage, the distortions are characterized,
and in the regression stage, the features along with the DMOS scores of training
images are used to train the regression network.

In [75], Moorthy et al. presented the BIQI algorithm to estimate image quality
using statistical features from a 9/7 Discrete Wavelet Transformation. The wavelet
subband coefficients are modeled by Generalized Gaussian distribution, and mean
and variance of the distribution are used as features. A feature vector of 18 x 1,
is created using (3 scales x 3 orientations x 2 parameters). The same features
are then used in the classification stage to characterize the distortion, and then
in regression stage to estimate image quality.

To improve the performance of BIQI [75], Moorthy and Bovik in [76], presented
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the DIIVINE algorithm for NR-IQA using statistical features extracted from dif-
ferent subband coefficients using a steerable pyramid transformation across 2
scales and 6 orientations. A feature vector of dimensions 88 x 1 was used for
quality prediction using classification followed by a regression stage.

In [77, 78], Saad et al. proposed a no-reference IQA technique called BLind Im-
age Integrity Notator using DCT Statistics (BLIINDS). Its two variants BLIINDS-
I and BLIINDS-II use DCT statistics. In both BLIINDS-I and BLIINDS-II, the
DCT is calculated for image blocks of 17 x 17. The DCT contrast and DCT-based
structural features are extracted for each DCT image block. The DCT contrast is
the average of the ratio of the non-DC DCT coefficient magnitudes in the image
block normalized by the DC coefficient of that block. The DCT-based structure
features are based on the kurtosis and anisotropy of each DCT block. The per-
formance of BLIINDS-I is improved in BLIINDS-II using a generalized statistical
model of local DCT coefficients and the model parameters are used as features
to estimate image quality. The problem with these metrics is that they do not
perform well for JPEG and FF (fast fading) distortions in the LIVE2 dataset.

In [79], Mittal et al. presented the BRISQUE algorithm, for real-time NR
image quality assessment using spatial domain image statistics. 18 features are
extracted for each of 2 image scales and total 36 features are used for distortion
classification followed by regression to predict image quality.

In [80], He et al. proposed a blind IQA metric based on sparse representation
of NSS features calculated from 4-level details subband coefficients. The NSS
features are mean, variance and entropy of the wavelet subbands at different
scales.

Instead of using transform domain features, Xue et al. in [81], proposed a NR
image quality assessment method based on joint statistics of contrast features i.e.

Gradient Magnitude (GM) and Laplacian Of Gaussian (LOG). The results are
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comparable to other state of art NR-IQA methods.

NSS based NR-IQA algorithms work only with natural images; as under such
distortions, images appear to be unnatural. However, modeling of natural images
is a difficult task and does not apply to a good percent of images commonly used
in practice.

Another approach for image quality assessment using the NR-IQA metrics was
discussed by Chetouani et al. in [82]. The distortions were classified using Linear
Discriminant Analysis (LDA) and FR-IQA metrics were used as features. Finally
the quality is estimated using the most appropriate IQA metric.

A number of surveys have been carried by different researchers, some insight
into the advantages and disadvantages of different techniques can be found in [45,
46, 18]. We have made two contributions towards objective quality assessment of

image degradations. These are discussed in more details in the following sections.

2.6 A Fast No-Reference IQA Metric using
Law’s Texture Moments

In this work, a computationally efficient NR-IQA algorithm is proposed that uses
basic filtering operations in spatial domain. The features are calculated using
Laws’ filters proven to be efficient in texture analysis followed by range filtering.
The overall quality score of an image is predicted using a simple GRNN (GRNN
was shown in earlier work to provide better results than the traditional neural
network). Laws filtered images are created by separable masks, which are easy to
implement. Range filtering is an example of local filtering requiring few compu-
tations. The GRNN provides fast learning and smooth prediction. The proposed
algorithm has low computational complexity, making it suitable for real-time ap-

plications. The performance of the proposed technique is confirmed, using the
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LIVE 2 IQA database [31]. The proposed approach is shown to provide excellent
results that are robust across different distortions, and is computationally less

expensive than most existing techniques.

2.6.1 The Proposed Technique

Different types of distortions disturb the edges and contrast of images in different
ways. To capture this fact, we propose to start with a feature extraction stage
involving features that are perceptually-motivated. This stage is followed by a
machine learning stage to predict an image quality score. The overall structure of
the proposed technique is displayed in Fig. 2.8, and the details, of each individual

block, are discussed below.

Training phase
Gray scale | Laws’ Range .
conversion | filtering filtering Y
- GRNN
} Feature extraction o
Training
Subjective DMOS
||
Regression
Model
Testing phase n'
Gray scale J Laws’ Range o
conversion | filtering filtering Prediction
Feature extraction

Predicted score

Figure 2.8: Experimental setup block diagram for the proposed method

(A) Feature Extraction The extraction of representative features plays an
important role in texture analysis and pattern recognition problems. Texture
plays an important role in human visual perception, as such the features need
to be perceptually motivated for robust IQA. In [83], it was suggested that the
preprocessing stage in HVS resembles band-pass filters. Furthermore, human

visual perception is based on contrast rather than absolute intensity levels, so the
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Table 2.3: Twenty-Five possible 2D Laws’ masks

L5L5 L5ES L5S5 L5W5 L5R5
E5LS E5ES5 E555 E5W5 E5RS
S5HL5 SHED 5555 S5W5H SHR5
W5L5 W5ES W5S5 W5W5H W5HRH
RA5L5 R5ES R5S5 R5W5 R5R5

1 4 6 4 1 -1 4 -6 -4 -1

4 16 24 16 4 -2 -8 —-12 -8 -2

6 24 36 24 6 0 0 0 0 0

4 16 24 16 4 +2 +8 +12 +8 +2

1 4 6 4 1 +1 +4 +6 +4 +1

(a) (b)
Figure 2.9: Example of Laws’ filter masks (a) L5L5 (b) E5L5

change in the minimum and maximum pixel values is also important. Under these
observations, we opted to extract our perceptual features from the Laws’ filtered
images, followed by a range filtering stage.

(A1) Laws’ Texture Moments: Laws, in [83], proposed 5 zero-summing (ex-
cept L5) 1-D filter masks corresponding to the different local spatial textural fea-
tures of images for the level, edge, spot, ripple and wave texture information. The
five 1-D masks are L5 = [1,4,6,4, 1], E5 = [-1,-2,0,2,1], S5=[-1,0,2,0,—1],
R5 =[1,-4,6,—4,1] and W5 = [—1,2,0,—2,1]. From these 1-D masks, 25 2-D
filter masks can be generated by convolving vertical 1-D filter masks with hori-
zontal 1-D filter masks (see Table 2.3). Each filter mask is capable of extracting
particular geometric information from the texture image (edges, lines, and spots).
For example the L5FE5 filter mask is used to capture vertical edges while E5L5 is
used for extracting horizontal edge information.

(A2) Range Filtering: The original range filter was proposed, by Bailey
et al. [84], to calculate the spatial intensity changes and to highlight edges in

images. In range filtering, each pixel in an image is replaced by the difference of
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Figure 2.10: Examples of Laws filtering process

200 300

(a) V5L5 (b) E5L5

Figure 2.11: Example of range filtering on Laws filtered images

the maximum and minimum value of pixel intensities within a local neighborhood
(window). Fig. 2.11 shows some examples of range filtering performed on some
Law’s filtered images. A significant enhancement of image edges is obtained.
The idea is to apply a sequence of filters on the image and for each filtered
image, features are calculated. For the k™ filter mask of size 5 x 5, the filtered
image Lj is obtained by convolving the original image I with the filter mask hy.
Fig. 2.10 shows an example of applying some Laws’ filter masks on an image

from the dataset. Based on the above, for each image in the dataset, 25 filtered
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Figure 2.12: Feature extraction stage for the proposed NR-IQA metric

images are created by convolving it with 25 different Laws’ masks. These masks
are used to capture the occurrence of lines, points and edges within the image
texture. Since masks are separable, their realtime implementation is simple and
fast. The k" feature, fy, is calculated by taking the average of the local range
filtered images Rj. Fig. 2.12 shows the block diagram of the feature extraction
stage.

(B) Generalized Regression Neural Network: In addition to the extrac-
tion of perceptually motivated features, an efficient feature fusion algorithm is
also important in predicting a single quality score. Among different existing ap-
proaches, we have adopted, here, the GRNN, given its robust performance, its
dynamic network structure, and simplicity. The GRNN was proposed by Spetcht
[85] and is a type of probabilistic neural network that requires few training sam-
ples for effective learning, in comparison with the conventional Back Propagation
Neural Network (BPNN). The probability density function used in GRNN is the

Gaussian Distribution. Each training sample, X;, is used as the mean of a Normal
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Distribution:

% _ >y Yiexp(—(X = X;)" (X - X;) /20

V) = S o X - X)X X,)/20° (2.19)

where X represents a given input, X; is a training vector, Y is the predicted
value, n is the number of training samples (observations), and ¢ is a smoothing
parameter.

A schematic diagram of the GRNN-IQA architecture is shown in Fig. 2.13.
It consists of 4 layers, i.e input, hidden (pattern), summation, and output. The
feature vector is applied to the input layer. The number of inputs is equal to
the number of features. The number of neurons in the hidden (pattern) layer
is equal to the input training vectors (samples). The input features are used
with a Gaussian pdf (probability density function) in each pattern unit, then, the
relationship between the input and the response of the pattern layer is stored in
the unit. The summation layer has two units. Both units compute the weighted
sum of the output of pattern layer units. For the first unit, the weight is set to Y;
and constitutes the numerator of Equation (2.19), while in the second unit, the
weight is unity and represents the denominator of Equation (2.19). The output
layer computes the quotient of the two outputs from the summation layer, and
results in Y (X), the prediction, Y, of conditioned upon X.

Compared to the conventional neural network model, the GRNN is non-
iterative and can learn from training data in one-pass. Its advantages are: simple

architecture, few training parameters, fast training and, excellent stability.

2.6.2 Performance Evaluation

The experiments are performed on a well known publicly available database [31].

The experimental procedure for the proposed technique is summarized in Fig.
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Figure 2.13: Schematic diagram of GRNN for image quality assessment

2.8. First, every image, I, in the database, is convolved with the 25 different
Laws’ filter masks to yield 25 filtered images. Then, for each filtered image, range
filtering is applied to make the image details more prominent. Finally, the mean
value of each range filtered image is calculated and a feature vector of dimension
25 x 1 is created for each distorted image. In order to have consistent results, the
set of images belonging to 29 subjects in the LIVE 2 database are divided into
five groups. (see Table 2.4). Then, 5-Fold cross validation is used to avoid bias in
the regression process. The training is performed on four groups, and tested on
the remaining group. The process is repeated such that each time a unique group

is selected for testing, and the remaining four groups are used in training.

Table 2.4: Database Groups used for the Experiments

Dataset Image Categories
G1 Sailing1, bikes, dancers, house, paintedhouse, statue
G2 Lighthouse2, rapids, womanhat, churchandcapitol, building?2
G3 Monarch, parrots, sailing2, ocean, studentsculpt, carnivaldols
G4 Cemetry, manfishing, coinsinfo, sailing4, lighthouse, caps
GbH Plane, stream, buildings, woman, flowersonih35, sailing3
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2.6.3 Experimental Results

The performance of the proposed NR-IQA method is tested for each distortion as
well as a combination of all distortions in the LIVE 2 database. The performance
evaluation metric selected is the SROCC which is used to measure the monotonic-
ity between the subjective and objective scores. The results are summarized in
Table 2.5. From the results, it is clear that the proposed technique is efficient
for the images distorted with Gaussian blur, JPEG 2000, fast fading and white
noise. The algorithm fails with JPEG, as our algorithm is not based on transform
domain analysis. The regression plot of the predicted objective score and subjec-
tive DMOS for each distortion is also shown in Fig. 2.14. In order to benchmark
the proposed method, the experimental results are compared with the traditional
GRNN algorithm [72], which is also an NR-IQA using the same database. From
the comparison, it is clear that the proposed method using Laws texture features,
outperforms the GRNN [72] on all distortions except for JPEG distortion. The
results were also compared with another NR-IQA algorithm; the BIQI [75], and
again the proposed method outperforms on all distortions except for JPEG distor-
tion. The main advantage of the algorithm is its simplicity, as only basic masking
operations are required for feature extraction and can be efficiently implemented

in hardware for real-time applications.

2.6.4 Discussions

To show the low complexity of the proposed algorithm, the overall computational
efficiency of the proposed algorithm is compared with that of the NR BIQI[75],
GRNN|[72], BRISQUE[79], DITVINE]] and BLIINDS-II[78] algorithms. The run-
time of each algorithm to compute the quality score for a single image of resolution
768 x 512 in the LIVE database is calculated. The procedure is repeated 100 times

and the average is shown in Table 2.6. The tests are performed on an Intel Core-i5
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Table 2.5: SROCC for different algorithms and DMOS

Method GBLUR JPEG J2K FF WN
Proposed Gl 0.942 0.737 0.707 0.595 0.979
G2 0.915 0.884 0.739 0.872 0.964

G3 0.972 0.898 0.889 0.899 0.971

G4 0.887 0.809 0.854 0.806 0.987

G5 0.911 0.957 0.930 0.545 0.971
Avg. 0.942 0.857 0.864 0.763 0.974

GRNN [72] 0.833 0.872 0.816 0.735 0.979
BIQI[75] 0.846 0.891 0.799 0.707 0.951
ICA 0.9061 0.6465 0.8200 0.8164 0.9768
BLIINDS|78] 0.957 0.839 0.922 0.750 0.973

processor at 2.50 GHz, 4GB RAM, Windows 7 (64-bit). From Table 2.6, it is quite
evident that the proposed algorithm outperforms all other algorithms. Thus the

proposed algorithm is well suited for real-time blind IQA applications.

Table 2.6: Computational Complexity of different NR-IQA algorithms

Method Time (seconds) per image
GRNN [72] 0.23
BIQI[75] 18.4
BRISQUE[79] 0.45
BLIINDS-11[78] 45.53
DIIVINE[76] 27.35
Proposed Algorithm 0.11

In this work, a fast NR image quality assessment method is proposed. Since
human visual perception corresponds to bandpass filters, the Laws’ filter masks
are used to extract different bandpass filtered images. The results are highly
correlated with human perceptions for the images distorted with white noise and
Gaussian blur. Compared to the traditional approaches, the proposed method is
recommended for NR-IQA due to its fast learning and low computational load.
The proposed technique is simple to implement as the feature extraction stage is

based only on basic convolution operations, and can be efficiently implemented in
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Figure 2.14: Regression plots between DMOS and predicted score for different
distortions in LIVE 2 dataset.

hardware making it very suitable for real-time multimedia applications.

Another NR-IQA metric is also proposed to quantify Blur in color images.
The reason for selecting blur distortions for our work is that it is considered as an
important component in the spectrum of distortions. In the following section, we

will discuss this metric in more details.

2.7 A No-Reference Blur Metric for Color Im-
ages using Higher Order Singular Values

During different processing stages, various artifacts are introduced in digital im-
ages. The blur is most commonly observed distortion among these artifacts, which
is due to the limitations of acquisition equipment (i.e., out-of focus camera lens,

low-lighting conditions, relative movement etc.) and different processing stages
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before final viewing by the user. More importantly, blur also affects the edge
information which is considered as a key factor to human perception of quality.
In FR scenario, the blur assessment is a simple task. However, in no-reference
case, the task of distortion assessment becomes a more challenging one. In the
literature, different methods have been developed for blind blur assessment of
digital images. In [86], Ferzli et al. discussed an image sharpness/blur assessment
technique based on the concept of Just Noticeable Blur (JNB). They determine
the probability of blurriness required around the edge before it can be perceived or
noticeable by the HVS. By using the same concept of JNB [86], Narvekar et al. [87]
proposed a NR image sharpness metric based on the Cumulative Probability of
Blur Detection (CPBD) at an edge. In [65], Chetouani et al. proposed an approach
for no reference blur estimation based on Radial Spectral Energy (RSE) analysis.
The NR blur metric was computed by adding the blur to an image and measuring
its impact using the radial energy analysis in the frequency domain. There also
exist some methods for quality assessment of digital images based on signal energy
analysis using transform domain such as SVD. Among these, Shnayderman et al.
[88] were the first to use SVD for FR image quality assessment. The reference and
distorted images were divided into non-overlapping blocks and singular values for
the corresponding blocks were calculated. The mean distance between the singular
values of the reference and the distorted image blocks were used for quantifying
quality. For NR-IQA using SVD, Sang et al. [89] demonstrated that the singular
values of an image when plotted against their indices follow an exponentially
decreasing curve with the degree of the exponent varying with the amount of
blur. The same authors in [90] also proposed a blind blur assessment metric
based on blur similarity by following the same idea in [65]. The blurred images
were re-blurred with a Gaussian kernel of size 11 x 11. The similarity between

the singular values of the distorted image and re-blurred image was used as a blur
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index.

The methods discussed earlier as well as other state-of-the-art existing IQA
techniques are mostly based on either the luminance component of a color image,
or use separate color channels followed by pooling of the results to get the final
quality score. For an RGB color image, there exists a strong correlation among
the Red, Green, and Blue color components. Different distortions may influence
different color components and disturb the correlation among them as well. The
loss of color due to the different types of degradations substantially affects human
perception. Moreover, the perception of blur is also different for Red, Green, and
Blue color components. The reason is that the blur is directly related to the focus
and in turn it depends on the wavelength of the incoming light (i.e., color). Indeed
the focal length of the lens is related to the refractive index which varies with the
wavelength of the color.

Therefore, it is inappropriate to completely ignore the correlation among the
color components in IQA. The idea is to search for representations where the
inter-channel correlation can be exploited in order to capture the effect of blur on
the three channels. Wang et. al. [91] proposed the use of three color channels for
FR quality assessment using SVD of Quaternion matrix. The Quaternion matrix
was generated by taking the local variance of Red, Green, and Blue channels as
imaginary part and the luminance component as the real part. The overall quality
score was derived by computing the distance in singular values of image blocks in
the reference and the distorted images.

Motivated by the superior performance of SVD for the luminance component
of images in NR-IQA [90, 89], we introduce here a new framework for IQA of color
images using the so-called higher order singular values. We propose to use tensor
analysis to fully represent the correlation among different color components. Ten-

sors are used to represent high dimensional data and to extract useful information
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from high dimensions rather than from the 2D matrices [92, 1]. The Higher Or-
der Singular Value Decomposition (HOSVD) is an efficient tensor decomposition
technique [92]. It has been widely used in different image processing applications
including color restoration [93] and denoising [94]. Cheng et al. [95] used tensors
for the first time for FR quality assessment of color images. Here in this work, we
extend for the first time, introduce a new framework for using tensors for blind
blur assessment from color images using HOSVD. We consider a given RGB color
image as a tensor and compute the higher order singular values from its unfold-
ings. We provide, some mathematical background of SVD, and tensors in the next

section, followed by our proposed algorithm.

2.7.1 Mathematical Background

SVD decomposition of 2D Images A 2D gray scale image, A € RM*V satis-

fying some regularity conditions, can be decomposed using SVD as:

A =UxVv?T (2.20)

where U € RMXM g the matrix of left singular vectors, V.€ R¥*¥ igs the right
singular matrix, and ¥ € R™*¥ is the rectangular diagonal matrix of singular
values arranged in descending order. The singular values vector can be extracted
as d = diag(X) = [01,09,--- ,0,] for i = 1,2,--- | r, r being the rank of A. The
U and V give structural information along the rows and columns of A while the
d represents the luminance or energy information of A.

In [89], Sang et al. showed that the singular values computed from the lumi-
nance component of natural images when plotted against their indices, follow an
exponential decay. The exponent coefficient of the decay varies with the amount

or degree of blur present in the image. In [89], the authors provide the derivations
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to quantify the quality scores from the singular values. For the sake of complete-
ness, we briefly outline these steps again to show how the exponent coefficient is
calculated which is then used as a quality score.

As mentioned previously, the SVD values of a given image decrease exponen-
tially with increasing blur. The inverse power function or exponential can be

expressed as:

y=x“ (2.21)

where « is the exponent coefficient.

By taking the natural logarithm of both sides of (2.21), we get:

In (i) = aln(x) (2.22)

Let w = In(x) and z = In (%), we get

Z=aw (2.23)

which is a linear equation in terms of the coefficient . We can solve for o using

a Least Squares approach, i.e., minimizing mean square error:

minz e; = mo%n Z(zk — awy)? (2.24)
k=1 k=1

The optimal value of «, is obtained by taking the derivative of (2.24) w.r.t «,

and setting it to zero:

s S In(dy) In(k)
= =1 (2.25)

o =

kilwkwk kil In(k) In(k)

where dj represents the singular value at index k for an image.
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Preliminaries on Tensors and HOSVD While SVD is well suited to an-
alyze 2D matrices, it cannot be used directly with higher dimension arrays. For
such arrays, the concept of SVD has been extended using tensor theory. To for-
mally define a tensor, let A € RIV}2XXIN he an N** order tensor having N indices
where I, I5, - - - , Iy are the upper limits of each dimension. Therefore, we can say
that a scalar is a zero-order tensor denoted by lowercase italic letters (e.g., a), a
vector is a 1%%-order tensor denoted by lowercase bold letters (e.g., a), a matrix is a
2"d_order tensor denoted by capital bold letters (e.g., A), and matrices with more
than two dimensions are higher-order tensors represented by calligraphy letter
(A). Here, we propose to represent a given RGB color image as a 3"%-order tensor
A € RIx2xIs having 3 indices, where I;, I, and I3 represent height, width, and
number of color channels (i.e., 3 for Red, Green and Blue).

The tensors can be decomposed into fibers (modes) and slices by fixing all
indices except for one and two respectively. Each index in a tensor is called
mode, and upper limit of indices in each mode is called mode dimension. For
2D matrix, columns and rows are mode-1 and mode-2 fibers respectively. The
3reorder tensor (an RGB image) has 3 modes (column, row and tube fibers) and
dimension of each mode is I; (height), I (width), and I3 (3 for color channels)
corresponding to @.;,i,, @5, and a;,4,. respectively. The mode-1 (columns) and
mode-2 (rows) represent spatial information while mode-3 is used to represent
color channels. The sub-tensors can be defined by fixing one or two indices of a
3rd-order tensor.

For different applications, tensors are often transformed into 2D matrices.
The rearranging of elements of a tensor into a 2D matrix is known as unfolding
or matricization. For a 3"%-order tensor (an RGB image) A, a 2D matrix or slice
is obtained by fixing one of the three indices. A frontal slice is obtained by fixing

the 3" index i3, and denoted as A..;,. Fixing the 2"¢ index, we get the lateral (or
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Figure 2.15: An example of 3"%-order tensor and Mode-n fibers [1]

vertical) slice A ,., and fixing the 1% index, we get the horizontal slice A;,... In
this way, the mode,) unfolding of an RGB image is a matrix A, € R ien I
For illustration, mode,) unfolding or slices of a 3"%-order tensor are shown in Fig.
2.16. The HOSVD is the SVD of each of the tensor modal unfoldings [92]. For a

tensor A, it is defined as:

UlA,) =%, V] for 1<n<d (2.26)

where UL and Ul are unitary matrices, the matrix 3, contains the singular

values of A, on the diagonal, and d represents the size of a tensor.

2.7.2 The Proposed Technique

We first decompose the color image into three unfoldings and compute the higher

order singular values for each unfolding. Confirming previous results, we observed

o1



—_—0
L Unfolding

L1,

(a) Frontal slices A () € Riz2xIil3

7

—_0
1 Unfolding

LI

(b) Lateral slices Ay € RI1x 1213

V ) L

L
I Unfolding

(d) Mode y) unfolding of a color
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the exponential decay of the singular values. Fig. 2.17 shows two images with
different degrees of blur and the plots of higher order singular values for the orig-
inal image and its five blurred versions, from the TID2013 database. From the
plots, we clearly notice that the degree of the exponent varies with the degree of
blur. The correlation between the degree of blur and the decay parameter is even
stronger than the case of the luminance alone as considered in previous work and
will be shown in our experiments. Throughout all the experiments, we observed
a higher correlation between the subjective score and the blur metric computed
using HOSVD of mode(z) unfolding. The reason is that mode(s) unfolding contains
more spatial and inter-channel correlations than other modes. Therefore, we per-
form HOSVD only on mode(y) unfolding. The proposed technique is summarized
here:

Step 1: For an RGB image, perform matrix unfoldings, A ) € R1*/2/s

Step 2: Take HOSVD of unfolding A). Ap = UPEAVET where @ is
a diagonal matrix with higher order singular values corresponding to modey)
unfolding of the color image.

Step 3: Compute the blur metric using (2.25).

2.7.3 Experimental Results

We carried our experiments on four publicly available and commonly used image
quality databases i.e., CSIQ [33], LIVE2 [31], TID2013 [38], and the newly avail-
able database CID:IQ [39]. Since the method deals with blur assessment in color
images, we only used the blur distorted images from these databases for the ex-
periments. The performance was evaluated using the SROCC, the PLCC, and the
RMSE. High values of SROCC and PLCC and low values of RMSE correspond
to close relationship of the objective scores to the subjective ratings.

A 5-parameter logistic fitting function [42] is used for the calculation of PLCC
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and RMSE to account for the non-linearity in the subjective scores due to human

opinions. The fitting function we used here is:

1 B 1
2 1+exp(Ba(q — Bs))

Q(q) = 5 + Ba(q) + Bs (2.27)

where () represents the fitted objective score after non-linear mapping, ¢ is the
calculated objective quality score, and [ for k = 1,2,3,4,5 are fitting parame-
ters. These parameters are calculated by minimizing the mean-squared error be-
tween the subjective scores and the fitted values. The predicted objective scores
(after non-linear mapping) and subjective scores (MOS/DMOS) for the blurred
images as well as the original images from the CSIQ, LIVE, TID2013 and CIDIQ
databases are shown in scatter plots in Figure 2.18. In these plots, the objec-
tive scores are kept on x-axis while y-axis represents MOS values for the blurred
images represented as plus symbols (+).

We have compared our results to different state-of-the-art NR-IQA techniques
that are related to blind blur assessment. The results of SROCC, PLCC, and
RMSE for different databases are shown in Table 2.7. The proposed metric gives
better performance for three of the four databases. For the LIVE2 database, the
proposed metric has also consistent performance except for [90], where the re-
sults are very much comparable. From the weighted average, it is also evident
that the proposed metric achieves the best overall performance in terms of pre-
diction accuracy and monotonicity at the cost of slight increase in computational

complexity.
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Table 2.8: Results for different color spaces on CSIQ database

Color Space SROCC PLCC RMSE
RGB 0.9334 0.9543 0.0894
CIELab 0.9321 0.9537 0.0899
YChCr 0.9321 0.9554 0.0884

To further assess the performance of our metric using tensors, we also used
two other color spaces shown to rely on weakly correlated components, namely
the CIELab and YCbCr color spaces. The results we obtained were consistent
across different color spaces whether these rely on strongly or weakly correlated
components. To save space, we report in Table 2.8, our results for the CSIQ
database comparing RGB, CIELab, and YCbCr color spaces. We note again that

the results are consistent across different color spaces.

2.7.4 Discussions

A novel methodology for quantifying blurring effects in color images using the
concept of higher order singular values is proposed. The spatial and inter-channel
correlations, in the color image, are exploited using tensors to quantify the amount
of blur more efficiently and consistently rather than using the traditional lumi-
nance component only or the individual color channels in existing techniques. A
color image is considered as a 3"%-order tensor and decomposed into a superset of
2D matrices or so-called unfoldings. The higher order singular values are calcu-
lated for these unfoldings using conventional SVD. SVD is a mathematical concept
used to decompose 2D matrices (or images) into a sequence of three transforma-
tions (two rotations and one scaling). The scaling is used to quantify the amount
of variability of the given 2D data in the two main directions. We show in the
proposed work that the extracted higher order singular values consistently follow

an exponentially decreasing curve. Moreover, we show that the degree of such
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Figure 2.18: Regression plots between subjective and predicted scores for blur

distortion in databases (a) CSIQ (b) LIVE2 (c) TID2013 (d) CID:1Q

exponential decay varies closely with the amount of blur a given image is sub-
ject to. Our experimental results, performed on different public IQA databases,
validated the power and consistency of the proposed metric across different color
spaces compared to state-of-the-art no-reference blur assessment metrics. The
proposed technique could be embedded in camera sensors to provide photo after
blur removal and could be use used in multimedia applications for best quality of
experience delivery of videos to the end users. It is expected to create new research

opportunities for researchers in the field of IQA and multimedia industry.
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2.8 Summary

The notion of visual image quality is highly related to the way humans perceive
distortions that may affect the quality of the observed image. The IQA dilemma,
has been long considered as a distortion estimation problem. On the other hand,
very few studies have been carried on the performance evaluation of image en-
hancement methods (better quality images rather than distorted images). Look-
ing at the challenging nature of CEE in different applications, we have made some
contributions under this category and these are discussed in details in the next

Chapter.
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CHAPTER 3

IQA FOR ENHANCEMENT
EVALUATION

3.1 Introduction

Enhancing image contrast is of major interest in many applications ranging from
medical imaging [19], remote sensing [20], underwater imaging [21], defogging
[22], etc. A plethora of CE methods has been proposed in the literature, and
it becomes rather difficult to provide a comprehensive and complete survey of
published work in this area. On the other hand, very few studies have been done on
the performance evaluation of image enhancement methods (better quality images
rather than distorted images). Indeed, performing a quantitative evaluation of
image quality enhancement methods is a very challenging task. This is due to the
absence of any objective measures able to account for some high-level vision tasks
and their interaction with low-level image analysis when assessing the perceptual
quality of image enhancement [18]. This is also due to the difficulty in determining
the most appropriate visual features to be used in the design of an overall image
enhancement quality measure. Therefore, subjective evaluation is still the most

reliable approach to assess the quality of enhanced images. Moreover, there is
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no study to test the reliability of objective CEE measures themselves. Given
the importance of CE in different applications, there is a need to investigate the
performance of these measures in terms of robustness and consistency with human

judgment.

3.2 Related Work

3.2.1 Existing Contrast Enhancement Databases

One of the first studies on CEE has been proposed in [96]. However, it was only
restricted to images containing two classes of pixels (i.e., one object on a uniform
background or many similar objects on a uniform background). The CE evaluation
was based on the bimodality analysis of the gray-level distribution. Thereafter,
some simple and interesting CEE measures have been proposed in [97, 98, 99,
100]. These measures are not inspired by the classical approaches of IQA. The
proposed measures are based on the computation of a global index derived from
some local measures related to contrast. These are inspired originally by Michelson
and Weber-Fechner contrast measures. These measures are based on min-max
operations that make them more noise sensitive. The authors proposed some
improvements to overcome these limitations by using entropy of local contrast, or
by introducing logarithmic arithmetic operations inspired by the non-linear HVS
response. In the study conducted in [97, 98, 99, 100], no complete subjective
experiments were performed, and the performance analysis was only based on the
perceptual judgment of output images. Moreover, the tests were conducted on a
limited set of images (very often grayscale images), and the measures were not
evaluated on any dedicated database but only on few images from the TID2013
database that has been built for traditional IQA purpose [38]. Furthermore, the

statistical analysis of these measures and comparison with some representative
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CE methods were also missing.

In contrast, Damon et al. [101], proposed another study based on a database
containing processed images obtained by changing color, saturation, brightness,
sharpness, and their combinations. The subjective evaluation was performed to
assess the quality of processed images. The use of classical IQA approaches in a
reverse order was proposed, i.e., the given image (enhanced image) is considered
as the reference and the original image as the distorted one. It has also been
reported that the Visual Information Fidelity (VIF) [102] measure offers better
performance as compared to many of the classical IQA measures. The authors
in [101] improved the results by proposing a more efficient measure combining
contrast, sharpness, and color in an empirical manner.

Following the approach of Damon et al. [101], another study of contrast change
evaluation was discussed in [103] using a database consisting of 15 original and
633 enhanced images. The global contrast of images is modified using non-linear
mapping functions. The conventional IQA measures designed for degradations
assessment were then used to assess the quality of the processed images from the
database. For this purpose, a RR metric was derived combining the entropy of
phase congruency image and other higher-order statistics of local features com-
puted from the histogram of the observed image. However, the enhancement
evaluation methods based on conventional IQA approach are not appropriate for
CE measure evaluation. Indeed, for example, the approach followed by Damon
et al. [101] is not convincing and could produce contradicting results. Indeed, an
image with good perceptual quality, in the sense of traditional FR-IQA context,
is considered as very similar to the original one. For example, it would correspond
to a SSIM value near one, which does not serve the objective of CE. Whereas, in
the context of CE, the objective is not to process the image so as to make it as

close as possible to the original image.
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Another recent study, by Fang et al. [104] on quality assessment of contrast
distorted images was carried using the natural scene statistics model. The contrast
problem is considered only in terms of distortion.

Besides these works, predicting visual quality of enhanced images for different
applications has also been investigated in some interesting studies [105, 40, 106,
107,108, 39]. Ledda et al. [105] proposed a database for only subjective evaluation
of six tone mapping methods. The PC was performed in a subjective experiment
to rank these methods in accordance with the perceived quality. But the authors
did not perform CEE performance analysis. Virtanen et al. [40] provided another
database related to tone-mapping applications. It contains images degraded with
different types of distortions and images with variation of contrast due to gamut
mapping. The main objective of the database was to validate the performance
of existing IQA metrics designed mainly for degraded images. Another similar
database was also proposed in [39] to evaluate gamut mapping, blurring, and
other distortions.

In addition to the above, Chen et al. [108] developed a database for CEE of
images in bad visibility (i.e., haze, underwater, and low light environment). The
images were enhanced through different dehazing methods and the performance
of various enhancement algorithms was discussed. In this work, the original and
pair of enhanced images were shown on the same screen to allow the observer to
compare the enhanced images with respect to the original image.

Another less studied application, namely image retargeting quality assessment,
has been addressed in [106, 107]. Here, subjective and objective quality evalua-
tion of retargeted images was performed using dedicated databases. In [106], the
authors provided a database containing images by different retargeting methods.
The subjective quality of the retargeted images was measured in terms of rank

in a pairwise subjective experiment, and the performance of different retarget-
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ing evaluation measures were assessed in terms of correlation analysis. Similarly,
Ma et al. [107] also carried out the same study except, instead of ranking, they
provided the rating scores on a different proposed database. To summarize the re-
lated works carried to date, we provide, in Table 3.5 and 3.6, our own perspective

on the main contributions made in this field of research.

3.2.2 Contrast Enhancement Evaluation Measures (CEE)

The improvement in image quality after CE can be evaluated using a multitude
of objective measures. Although, we can see a lot of research efforts towards
the development of CE algorithms, the objective CEE measures are limited and
specific to different applications. The CE evaluation is different from conventional
IQA. The reason is that in conventional IQA, the image which is similar to the
original is considered as of good quality, and the similarity decreases with the
increase in degradation. It is worth noticing that when using classical IQA, like
SSIM, which is FR metric for quality assessment of degraded images, its value is
close to one, when there is no distortion in an image and its value is less than one in
the case of a degraded image. However, in the case of CE, we start from an input
image and try to improve its quality. This processing is expected to produce more
visible structures and the obtained images are rather different from the original
one. If we use the SSIM for the contrast enhanced image, it will give value less
than one, which does not correspond to an image of good quality. It has been
observed that only the VIF measure [102], which is based on classical FR-IQA
approach, yields interesting results. Indeed, the VIF produces a value less than
one for the degraded images and greater than one for the case of enhancement.
Damon et al. [101], proposed that, to assess the quality of enhanced images,
one can use the given image (enhanced image) as the reference and the original

image as the distorted one and apply conventional IQAs. Whereas, in the case of
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NR-IQA, the CEE measures are derived from the given image. Some measures
like sharpness, blurriness, SVD based measures, details visibility map, after CE
could be used to derive NR-CE quality measures. Recently, Fang et al. [104]
used natural scene statistics to quantify the quality of contrast-enhanced images
by looking the enhancement process as degradation process and apply the con-
ventional IQA for the contrast distorted images in classical IQA databases. But
in general, it is not applicable to CE applications.

In this section, we provide a brief overview of the measures used in our study.
For the sake of completeness, we also provide the mathematical expressions for
the measures as well. Based on the availability of the original image, we can
group these measures into two broad classes, i.e., FR and NR measures (see
Fig. 3.1). Moreover, based on the methodology used, we have also categorized
these measures into Statistics-based, Gradient/Energy-based, and HVS-inspired
CE evaluations (see Fig. 3.2). These measures are usually derived from grayscale
images. For color images, the luminance component is used for contrast assess-
ment. In this work, we adopt some state-of-the-art measures and our aim is to
investigate how well these measures are consistent with the human judgment of
quality. These measures are computed using only the luminance component of
images. The mathematical expressions for the CEE measures are also provided in
Tables 3.2, 3.3, and 3.4. To be consistent with the use of variables in the math-
ematical expressions of CEE measures, we list the description of each variable in
Table 3.1. In the following, we start with a brief description of each category of

CEE measures.
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Statistics based CEE Measures

Absolute Mean Brightness Error (AMBE): 1t is used to evaluate how much
original brightness is preserved in the enhanced image [109]. It is calculated
as the deviation of the mean intensity of the enhanced image from that of
the original image. For CE, it is desirable that the original brightness of an
image is to be preserved. The lower value of AMBE means that the enhanced
image has good brightness preservation. Here, brightness preservation does not
mean that the image natural look (quality) also preserves. Either a very low

value or the highest value of AMBE also indicates poor performance in case of CE.

Root Mean Square Contrast (RMSC): It is a pixel-based NR metric [110]. It
gives high values for the images containing a major bright portion (e.g., sky, sea,
etc.). High values of RMSC correspond to image with better contrast. However,
it is not considered as an effective measure of CE since its value also increases

with the appearance of some undesirable artifacts and noise amplification.

Reduced-reference Image Quality Metric for Contrast change (RIQMC): 1t is a
RR metric used to quantify image contrast and naturalness [103]. It combines the
entropy of phase congruency image, and four statistical features computed from
image histogram (i.e., mean, variance, skewness, and kurtosis). The first order
statistical feature, Fi, is computed by penalizing very large and very small mean

values using the Gaussian kernel and is defined as follows:
E(1.) — pu\2
Fy =exp [— (M) ] (3.1)

where p and 3 determine the mean and shape of the Gaussian kernel.

The context-free contrast feature, F5, defined as a function of variance com-
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Table 3.1: Notations used for CEE measures.

Notation Description

I, original image

1. enhanced image

H image height (rows)

w image width (columns)

b block size

i, ] pixel indices

L number of gray levels

I image pixel value at index (i, )

I mean pixel value in an image

c constant (¢ = 0.0001) to avoid division by zero
E() statistical expectation

B,Bs number of blocks along rows and columns

puted from the image histogram is expressed as follows:

Fy = Elp(I.)*] — Elp(L)]* (3.2)

where p(I.) represents the histogram of an enhanced image.
Similarly, the higher-order statistical features, i.e., skewness, F3 and kurtosis,

Fy, are computed as follows:

B E[[e — E(Ie)]3
Fy ) (3.3)
_ E[Ie - E(]e)]4 o
Fy 04(16) 3 (3.4)

where o is the standard deviation of the gray-levels in the image.
The similarity feature, Fy, defined as the difference between the entropy of

phase congruency of enhanced image and original image:

Fs = Hpc(1.) — Hpe(1,) (3.5)
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where Hpc(.) represents the entropy of phase congruency image.
Finally, the RIQMC is computed as a linear combination of the five features

using the following expression.

5
RIQMC = Y " w;F; (3.6)

i=1
where the weights, w;, for7 = 0,1, --- , 4, represent the contribution of each feature

in the final contrast metric.
The RIQMC fusion depends on the weights, but they are not provided in the
text. Through experiments, we have observed that with increasing the contrast

(improvement in quality), the RIQMC value decreases.

Visual Information Fidelity (VIF): 1t is a FR quality metric used to quantify
the loss of original image information due to processing or transmission of the
given image. The original and test images are decomposed into different subbands
and the mutual information to be perceived by HVS from these subbands is
calculated for both images. The measure is expressed as the fraction of original
image information that can be perceived by HVS from the test image. VIF
measures can be used as a quality metric for both degraded and enhanced images
[102]. Its values are equal to, less than, and greater than one for the original,

degraded, and enhanced images respectively.

Discrete Entropy (DE): Tt measures the amount of information or randomness
of gray-levels in an image [111]. It is well known that the increase in contrast
highlights the subtle details in an image and results in an increase in entropy
value. It is a global measure based on the overall histogram of an image and fails

to consider the local details and spatial correlations among the pixels. The higher
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values of DE correspond to image with more details visibility amplification and

is considered as image with good quality.

Mutual Information based Contrast Measure (MICM): It is a NR metric used
to quantify the global image contrast and to detect and control the side effects of
CE in few neighborhood-based methods [25]. It is based on mutual information
derived from the joint probability mass function of a gray level co-occurrence

matrix and is given by:

L L
MICM = 33 p,; log, (p—ﬂ> (3.7)

== Pa(i)py(7)
where p;; is the joint probability mass function of the luminance channel, whereas
p and p, represent the marginal probabilities calculated along the rows and
columns of co-occurrence matrix respectively. It is better than 1% order entropy,
we take into consideration the spatial correlation among the pixels using the gray
level co-occurrence matrix. It is simple to compute, however, it does not provide

information about image unnaturalness.

Lightness Order Error (LOE): It measures the naturalness preservation in the
enhanced imaged based on estimating the lightness order error between the orig-
inal image and enhanced image [112]. The lightness of an RGB image, I¢, is
obtained by taking the maximum of the three color components.

Lij = I 3.8
i = ax 1] (3:8)

where r, g, and b represent the red, green, and blue color components in an RGB
image.

The relative order difference of the lightness between the original image and
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its enhanced version is calculated as follows:

M N
RD;; =Y (UL, Ly,) © U(LS, LS,) (3.9)
z=1 y=1
1 fora>b
U(a,b) = (3.10)
0 otherwise

where U(a, b) is a unit step function and @ is exclusive-or operator.
The final LOE measure is calculated as:
1 W H
LOFE = — RD;; 3.11
(W x H) Z Z ! (3:11)

=1 j=1

In the original implementation, the downsampled version of both images was
used to reduce the computational complexity with the downsampling ratio of
r =50/ min(H,W).

Since the relative order of lightness represents the light source directions and
the brightness variations, the naturalness of an enhanced image is related to the
relative order of lightness in different local areas. Small values of LOE indicate
that the naturalness is well preserved in an enhanced image in comparison with
the original image. The authors claimed that metric well provides naturalness

information. However, naturalness is a complex property and is difficult to define.

Gradient /Energy-based CEE Measures

The following measures are based on either local signal activity or energy as
measured through the gradient operator or the spectral energy distribution. In-
deed, any increase/decrease of the contrast inevitably affects the pixel intensity
gradient and the spectral energy distribution in the spatial-frequency domain.

Image Enhancement Metric (IEM): 1t is a FR metric proposed by Jaya et al.
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[113] and is calculated by subdividing an image into non-overlapping blocks. The
ratio of the sum of absolute values of differences of the center pixel from its eight
neighbors in all blocks of the enhanced image and the corresponding blocks in
the original image represents the IEM value. The absolute intensity differences
between a pixel and its neighbors corresponding to the reference and enhanced
images are used to account for the change in contrast and sharpness. Typical
values for the image blocks are 3 x 3 or 5 x 5. For identical images, IEM is equal
to one. The values of IEM greater than one means image contrast and sharpness

are increased.

Edge Content (EC): Tt is a blind objective measure based on the local gradient
of the image intensity [114]. In its expression, AT (.) represents the gradient
magnitude of the pixel value computed from the Sobel edge operator. Higher
values of EC correspond to images with more contrast. The overall EC value

for a complete image is calculated by averaging the local EC values for each block.

Radial Spectral Energy (RSE): 1t is based on radial spectral energy analysis
developed for blind image sharpness assessment [65]. It is based on the idea
that the effect of adding a certain amount of blur to a given image depends on
the original quality of this image. In other words, a contrasted image is more
sensitive to blur effect than a less contrasted image. The enhancement measure
is computed as the variation of the radial spectrum due to contrast enhancement.
The radial energy on the original image and its contrasted version are calculated

as follows:

Ep,(w) = = Y |T(w,0)| (3.12)
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Ep,(w) = %Z | Ze(w, Ok)| (3.13)

k

where Z (.) is the Fourier transform of the image signal I (.) at a particular radial
k

frequency w and in 6 direction, 0, = % and w = \/(u®+ v?) where u,v are

spatial frequencies, and K is total number of directions.

Then the blur index is computed as:

RSE = log ( > " |Eg, (w) — B, (@\) (3.14)

max

where wy,q, is the maximum radial frequency within the image and can be calcu-
lated as Wpar = /U2, + V2., Where U, and vy, are the maximum values of
spatial frequencies u and v. The log(.) is used in the expression to make the mea-
sure non-linear in accordance with HVS response. An increase of RSE corresponds

to Increase in contrast.

HVS-Inspired CEE Measures

Some simple CEE measures have been proposed in [97, 98, 99, 100, 115]. These
approaches are not inspired by the traditional IQA measures as suggested by
[101]. The proposed measures are based on the computation of a global index
derived from some local measures related to contrast and gradient. These CEE
measures are mainly inspired by the Michelson and Weber-Fechner contrast
measures which are not really adapted to natural scenes. These measures have
been evaluated on a limited set of images processed by some CE methods.
However, these studies do not provide a comprehensive analysis of the validity
of these measures on various images and different CE methods. The main CEE

measures of this class are now briefly discussed.
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Measure of Enhancement (EME): The EME was proposed by Agaian et al.
[97] and is a NR metric based on a contrast measure using the pixel value
dynamic range (min-max values) within a block. The image is first divided into
non-overlapping blocks of the same size (say 8 x 8). The EME value is computed
based on the minimum and maximum pixel values in each block, respectively.
The overall measure is computed by averaging the local EME values for image
blocks. Since log of ratios of maximum and minimum intensities within each
block can be written as difference, EME may represent signal dynamic range of

the image. EME increases with the increase in image contrast.

Measure of Enhancement by Entropy (EMEE): The EMEE measures the
entropy in the local contrast as defined in [98]. It also increases with the increase
in image contrast. The use of entropy is motivated by the fact that any small
variation in the contrast would convey additional amount of information on

the spatial content of the image. This consequently would affect the entropy value.

Absolute Measure of Enhancement (AME): Similarly to EME, the AME [99],
is also a block-based logarithmic Michelson contrast based measure. The AME

decreases with the increase in image contrast.

Absolute Measure of Enhancement by Entropy (AMEE): The AMEE measures
the entropy in the local Michelson contrast of an image as defined in [99]. It
increases with the increase in contrast. The reason for using the entropy is also

the same as for EMEE measure.

Second Derivative like MFEasurement (SDME): This measure is based on the

fact that the local contrast is highly related to the local variations of the signal
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[100]. This could be captured by any derivative operator, here, a pseudo-second
order derivative operator is used. It is also a block-based measure with default
block size either 3 x 3 or 5 x 5. The authors claimed that this measure is less noise
sensitive than the other similar measures based on only min-max operations. It

decreases with an increase in image contrast.

Root Mean FEnhancement (RME): It incorporates both RMS contrast and
properties of HVS [98]. It measures the relative RMS contrast in the log domain.
It is calculated by subdividing an image into non-overlapping blocks (say 3 x 3
or 5 x 5). For low contrast images, RME value is small, whereas it is large for

high contrast images.

It is also worth noting that the goal of CEE measures should not be limited
to quality assessment but also to provide a quantitative measure that could be
used to control some unpredictable after-effects due to CE. The side effects due
to CE are color mismatch, color bleeding, saturation, overshooting, halo effects,
blocking/ringing artifacts amplification, and other undesirable effects. The exist-
ing CEE measures either increase or decrease with the increase in contrast and
none of the measures could predict the side effects due to CE. In this regard, we
proposed a NR metric based on mutual information computed from gray level co-
occurrence matrix to show how this measure may help in evaluating the artifacts

in CE processes. The details of this work are provided in the next section.
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Table 3.2: The expressions of the Statistics-based CEE measures

CEE measures expressions Type
AMBE[109] = |E (I,) — E(I.)| FR
Z IM(éN’k|ﬁN’k)
VIF[lOQ] _ kesubbands _ — FR
Z [M(CN,k|EN,k)
ke subbands
1 W H )
RMSC[110] = | ——— ([ . f) NR
M=\ =12 Z j
255
[111] Z p(z)log, p(z NR

- IM(CN”“\FN”“) and I;(CN*|EN®), represents the mutual information that can be
extracted from a particular wavelet subband k in the original (F) and test (E) images
respectively, C represents the wavelet coefficients.

~ p(x) represents the normalized image histogram.

3.3 A New No-Reference CEE Measure based
on Mutual Information

Contrast enhancement in its broad sense is considered as a process by which some
characteristics of the image signal are highlighted. The objectives of image en-
hancement differ and depend on the considered applications. From the point of
view of purely signal processing perspective, enhancing contrast signal may pro-
duce interesting results but in the same time it may generate some undesirable
effects from the perceptual image quality aspects. Indeed, for example global
approaches, such as histogram based CE methods [116, 117], may produce satura-
tion in some dark and bright zones and consequently reduce the visibility of some
details. Neighborhood or local based methods have been developed to overcome
the limitation of global methods [118, 119]. However, local analysis based meth-
ods may also produce noise amplification, overshooting, color mismatch, blocking

effect accentuation, and other undesirable effects [120, 121]. Therefore, looking
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Table 3.3: The expressions of the Gradient-based CEE measures

CEE measures expressions Type
EC[114] = N
[ e W R
=1 j=1

RSE[65] :log< > |Eg, () —ERE(W)D NR
Bi By
DI

IEM[113] = = FR
SIS Y-y
i=1 j=1 n=1

1 m‘””, IZ’}“" and 77" are the maximum, minimum, and center pixel intensity within

the block (i, 7), respectively.
~ n represents pixel neighborhood index
~ Egr, and EpR, represents Radial Spectral Energy of reference and enhanced image
respectively, w is the radial frequency.
for some strategies to control the image CE is really very useful in many applica-
tions. One of the most challenging problem is then not only to develop objective
measure for CEE but also and more importantly to control the effects of CE on
the perceptual quality of images. This control process should be consistent with
the subjective appreciation of the treated images. Some simple CEE measures
have been proposed in the literature [109, 114, 122, 97, 123, 98]. But to our best
knowledge there are very few works dedicated to the development of measures
that could be used to control the side effects of CE. The intent of our work is to
propose a new framework for quantifying the side effects of some CE methods and
especially local based methods which has been proven more efficient than global
ones. Here we limit the study to two representative methods of neighborhood-
based approaches, namely Adaptive Edge-based Contrast Enhancement (AEBCE)
method [124] and a new unsharpening method introduced in this chapter for the

first time which we termed Extended Unsharpening Method (EUM). The frame-

work introduced here is based on mutual information concept [125]. The idea
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Table 3.4: The expressions of the HVS-Inspired CEE measures

CEE measures expressions Type
1 B Ba Imaa:
EME[97 201 (—> NR
7= leBQZZ M\ e
1 31 Bo ]’ma:v @ Jmaz
EMEE|[98 —2 | In|—+— NR
[ } B1 X B2 ZZ (Imzn —|—C) n (]Zjnm —f-C)
1 Bl Bz Imax ]mm
AME[99 201 —) NR
99— leBng (e
B B 6% .
1 2 ]ma:p Imzn ]mam [mzn
AMEE|99] = In [ 22— NR
[ ] Bl % B2 g Z <[ma$ + Imzn> n ([.".wx n [;;””)
By 32
[maz _ 2]0671 _|_ [mzn
DME|1 201n |2 N
SDME00] = 5 =75, 32 ZZ R Ty I T a
B1
lo Ieem —
g |l — Iy NR

RME[98] =
[ Bl X BQ Z 1Og|Icen+[b|

-, IZ”” and IS are the maximum, minimum, and center pixel intensity within

t_he block (4, 7), respectively.
~ I, is the average pixel value within the block centered at index (i, j)

of using information-based measure is dictated by the fact that any process that

tends to enhance image contrast would inherently change the spatial dependency

relations between pixels and therefore global and local spatial information con-

tained in the image. It is shown through this study that, this information based

framework opens a new promising approach for quantifying and controlling the

CE side effects such as over-shooting or halo effects, by blindly determining the

critical point where over enhancement starts. The proposed framework is briefly

introduced and illustrated on some real color images of various contents. The

new mutual information measure is analyzed on the two mentioned CE methods

AEBCE and EUM.
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3.3.1 Preliminaries
The Co-occurrence matrix

The proposed metric is based on the grey-level co-occurrence matrix [126]. This
is motivated by the fact that the co-occurrence matrix has been widely used in
image analysis and especially for texture analysis and classification [127]. From
the co-occurrence matrix, we compute the contrast, joint entropy and the mutual
information for the Luminance component of color images in CIELAB space.

The proposed metric derived from information theory will be used for tracking
image quality enhancement. We show that the variations of pixel intensity distri-
bution are well visible on the co-occurrence matrix as shown in Figure 3.3 where
we consider a typical case of local CE and blurring effect on natural images. We
observe that the width of ellipse in the 2D histogram plot of the co-occurrence
matrix changes with enhancement. For a blurred image, the ellipse width is thin-
ner compared to the original image, and increases when the image contrast is
increased as shown in Figure 3.3 (e) and (f) respectively.

For the sake of completeness, we recall in the following some basic notions
used in this section. Let [I } be an image of size H x W, i.e. where each pixel
(x,y) can take values I(x,y) in the range [O,K — 1], where K = 256, for 8-bit
per pixel. The co-occurrence matrix [C’}, is computed by examining all the pair
of pixels in the image situated at a given distance and direction. The element of

this matrix is defined as follows:

Cij (r,0) =Y > d(x,y) (3.15)

z=1 y=1
where

1 if [(z,y)=iand I(z+ Az,y+ Ay) = j
(e, y) = (3.16)

0 otherwise
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(d) (e) (f)

Figure 3.3: Effects of CE and blur on the co-occurrence matrix (a) Original image
(b) Gaussian blurred image (c) Contrast enhanced image. (d)-(f) 2D histograms
of co-occurrence matrices for images (a)-(c) respectively.

r? = (Az? + Ay?), 0 = tan™! (ﬁ—g), and Cj; represents the frequency of oc-
currences of the gray level j adjacent to gray-level ¢ in 6 direction and at distance
r.

In what follows, we will omit the parameters  and 6. So, for a given direction

and distance, the second order probability mass function could be estimated as:

[Piﬂ = Koik-1 (3.17)
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Adaptive Edge-based Contrast Enhancement (AEBCE)

It is based on local CE using edge information [124]. For a given image, I, the

local contrast in a window of size w X w centered at pixel location (k, 1) is defined

as follows:
Iy —E
Kl = Wi = Bl —kl‘ (3.18)
|1 + Egl
= 1,J)Ewgy
PR L — (3.19)
>, Py
(1,3) €W

where E}; is the mean edge-gray value computed over the local window, and
®;; represents edge value of pixel (7,7), computed from any gradient operator
(e.g. Sobel, Prewitt etc.). The image contrast is then increased by applying any

increasing and bounded to [0, 1} function on the local contrast such as:

Ch, = T (Cr) such that 0 < Gy, <1 and C,; > Ciy (3.20)

The new image pixel value is computed as follows:

, Kl ;g’fl if Iy < Ey
I, = o (3.21)
By i C’fl otherwise

For color images, the CE is applied to each color component. The edge based
CE method closely resembles human visual perception. However, caution must
be taken to avoid over enhancement or other unstable effects such us halo or noise
amplification. For automatic CE, it is desirable to find an optimal point where the
saturation starts to appear as halo effects near the edges. The proposed metric

effectively determines this optimal point for best contrast.
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Extended Unsharpening Method (EUM)

The unsharp masking method is used to increase the contrast of images. Here,
we extend this method and use binomial smoothing filter instead of average filter.
The reason for using the binomial filter is that it preserves the spatial coherence
between pixels and the contours better than the box filter which tends to produce
contrast inversion in high frequency components or edges. But the problem with
this approach is that it is more sensitive to noise. For our experiments, we fixed the
mask size to be 3 x 3 and generated different contrast images for y =1,2---  20.
For color images, the unsharp masking is applied on the luminance component
in CIELAB color space and then converted back to RGB color space. Given an
image I, its smoothed version Ig,.0n 1S computed by using a lowpass filter as

follows:

Ismooth(xﬂy) = (I * h)(I,y) (322>

Here h is the impulse response associated with the binomial filter. A mask for

3 x 3 binomial filter is as follows:

1 21
h= 2t (3.23)
=16 2 4 2 .
1 21
Iusm(w7 y) = smooth(xa ?J) + ’)/(I(l‘, y) - IsmOOth(x7 y)) (324)

The unsharp masking is applied only to Luminance component of color images

in CIELAB color space.
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3.3.2 The Proposed Technique

The proposed measure is based on the 2"? order statistics computed from the gray-
level co-occurrence matrix. In the preprocessing stage, we convert the color image
from RGB to the perceptual color space CIELAB. Only the luminance component
is then processed and analyzed. In order to capture the spatial correlation between
neighboring pixels, the joint probability mass function is calculated from the co-
occurrence matrix of the luminance component. It could be noticed that a co-
occurrence matrix with dispersed values reveals the richness of the image details,
while a concentrated co-occurrence matrix along the diagonal corresponds to low
contrasted image. Therefore, the use of the co-occurrence matrix for evaluating
the overall contrast of an image is relevant.

For a given color image, the co-occurrence matrix associated with the lumi-
nance channel is computed for distances d = 1,2 and two orthogonal directions.
The second order probability function is derived from the co-occurrence as defined
in (3.17).

We compute the joint entropy from the image co-occurrence matrix using

(3.25):

)

H=-Y" sz‘j log; (pij) (3.25)

where p;; is the joint probability mass function of the luminance channel.
The mutual information within the rows and the columns of the co-occurrence
matrix is then calculated from the joint probability mass function and marginal

probabilities using 3.26, 3.27, and 3.28:
K
ps (i) = sz‘j (3.26)
j=1

py (i) = Zpij (3.27)
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MICM = Z Z pi; log, ( ?Zy 6 )) (3.28)

This measure is used as a powerful tool for quantifying the CE of color images.
It could be also used to detect and control the side effects, such as saturation,

overshooting or noise amplification that may result from CE.

3.3.3 Experimental Results

To evaluate the performance of the proposed metric, we performed our experi-
ments on different color images. The images were of dimension 512 x 384. First
of all, we generate contrast images using edge-based and unsharp masking-based
CE methods by changing their parameters. The gray-level co-occurrence matrix
was calculated for neighboring pixel distances, d = 1, 2, and directions 8 = 0°,90°
from the luminance component in CIELAB color space. From the co-occurrence
matrix, we computed the entropy, contrast, and mutual information. The per-
formance of the proposed metric is evaluated for AEBCE and EUM CE methods
already discussed in Section 3.3.1. Figure 3.5 shows the halo effect produced due
to saturation of pixel values at the edges for different window sizes in the edge
based contrast algorithm, for a zoomed portion of the corresponding images in
Fig. 3.4. The effects of CE on the entropy, contrast, AMBE, EC, EME, AME,
and the proposed measures (i.e., mutual information) for edge-based method is
shown in Fig. 3.7. From the curves in Figure 3.7, we observe that the AMBE
does not provide information about the best contrast as we notice an increasing
exponential curve with increasing parameter. Similarly, the other metric, AME
has decreasing exponential curve and is unable to provide information about the
optimal CE. The other metrics i.e, entropy, contrast, EME, and EC increase with
window size and they start to saturate after a certain point. However, we observe

a sharp decay in the proposed measure curve after reaching a certain point (the
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point after that saturation starts). Similarly for EUM-based CE, our proposed
measure provides an optimal point after that increase in contrast results in over-
shooting effects and clearly visible in Fig. 3.6 and 3.8. We also tested our proposed
metric on other images and we observed consistency across different test images.
All of our experiments showed the superiority of the proposed metric in addition

to providing the point of best contrast not provided by other CEE measures.

Figure 3.4: Effects of increasing window size in AEBCE technique (a) original
image [b-d] enhanced image with different window size (b) 3 x3 (c) 5x5 (d) 7x 7

3.3.4 Discussions

Through this study, we demonstrated the inefficiency of the existing objective
CEE measures in capturing the undesirable effects that may results from CE such
as overshooting or noise amplification. The proposed measure based on some in-
formation concepts offers an efficient solution for analyzing and detecting such
side effects for some neighborhood based CE methods. The other interesting re-

sult is that the proposed measure offers an efficient index to localize the size of
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Figure 3.5: Effects of increasing window size in AEBCE technique (a) original
image [b-d] zoomed regions with different window size (b) 3 x 3 (¢) 5x 5 (d) 7x 7

Figure 3.6: Effects of increasing window size in EUM-based CE technique (zoomed
regions) (a) original image [b-d] enhanced images with different ~ values (b) v =
35 (c)y=75(d)v=10
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the window at which the CE tends to decrease the quality of the image. The pro-
posed metric is expected to open a new era for developing perceptually motivated
algorithms for evaluating the image enhancement techniques as well as analyzing
techniques for finding saturation point beyond which enhancement becomes un-
pleasant to the viewer. One idea to be explored in the future is the use of the
proposed measure in order to develop adaptive local CE methods. The extension
to video would be also an interesting perspective work.

In the following section, we provide a detailed description of our new database
containing images obtained using six CE methods as well as a brief discussion
on the testing methodologies, testing environment, and performance analysis of

state-of-the-art CEE measures on the proposed database.

3.4 A New Database for Contrast Enhancement
Evaluation

In this work, we develped and tested a new database dedicated to CE images for
perfomance comparison of CEE measures following the main relevant ITU guide-
lines designed for the subjective experiments [28]. It is worth noting, that our
methodology differs from previous works in many aspects; (1) The objectives are
not the same. We aim here to analyze the performance of CEE measures in con-
trast to the work in [40, 101, 103] in which the performance analysis of classical
IQA measures (i.e., IQA for distortions) was discussed, (2), The database is not
the same compared with classical IQA databases like TID2013 [38], CSIQ [33]
containing contrast images and few existing contrast databases [101, 103]. These
databases contain simulated changes of global contrast using a simple pixel value
mapping function so as to produce a decrease in contrast. The authors consider

these transformations as contrast distortion. Whereas, in our framework, we deal
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with the artifacts and distortion that may happen when applying CE operations.
The distortion that might appear in the enhanced images after processing with
CE methods are, for example, color saturation, color loss, blocking and ringing
amplification in the case of compressed images, noise amplification, and halo ef-
fects and some others. The common databases did not contain any of these after
effects due to CE. Moreover, in our case, we use different representative CE meth-
ods. (3), In contrast of all the databases, we do not want to estimate distortion in
terms of decrease in quality like in classical IQA, rather our goal is to assess and
quantify, subjectively and objectively, the increase in quality. (4), The application
is entirely different compared to the CEE of tone mapped and retargeted images
[106, 107, 105].

To the best of our knowledge, there are only two dedicated databases related to
contrast manipulation [101, 103], where the processed images are obtained using
simple artificial pixel-based transformations. Whereas, in our proposed database,
some realistic CE artifacts are considered and provided with subjective ranking
of different CE methods, which can be used to validate the performance of new
CEE measures. The proposed database will help in preliminary validation of new
image CEE measures without performing dedicated subjective experiments. The

main contributions of this work are:

e To provide a comprehensive performance analysis of the state-of-the-art
CEE measures in terms of correlation with the subjective evaluation pro-
vided in the developed database as well as on other existing contrast ma-

nipulated databases.

e To evaluate six representative CE methods on a set of images representing
different kinds of visual content. Here, our objective is to analyze the per-
formance of CEE measures rather than CE methods. We focused only on

some representative CE methods.
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e To provide a comprehensive statistical analysis of the data collected from

subjective experiments on a new and unique CE dedicated database.

e To propose a multi-metric fusion to improve the correlation performance

with the subjective ranking.

Here, we provide a brief discussion of the new database, selection and creation
of images, testing environment, testing procedure, performance comparisons of

different CEE measures on the new database.

3.4.1 Database Creation

We constructed a new database named as Contrast Enhancement Evaluation
Database (CEED2016), containing 30 original color images and 180 enhanced
images with a size of 512 x 512 pixels. The database is built with our own images
and some common pictures used by the image processing community. The images
in the database are shown in Fig. 3.10.

Selection of Images: It is well-understood that the human perception of
image quality is highly dependent upon the scene content under observation. For
this reason, we selected images with different textures, color distributions, and
contrast variations. We have used three quantitative measures for the selection
of images. These measures are Colorfulness (CF) [128], Spatial Information (SI)
[128], and Global Contrast Factor (GCF) [129]. A brief description of each mea-
sure is given below:

Colorfulness (CF): 1t is a perceptual indicator of the variety and intensity of
colors in the image [128]. The Red (R), Green (G), and Blue (B) color components

are converted into opponent color space as follows:

ry=R—G (3.29)
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(R+@G)

b = ~ B (3.30)

The CF is then given by:

CF =,/o} +o,, +0.3\/u7 +ps, (3.31)

where o; and p; for ¢ € [r,, yp] represent the standard deviations and the mean of
the pixel values in the opponent color space.
Spatial information (SI): It is an indicator of edge energy and is calculated as

the root mean square of the edge magnitude over the entire image [41]:

(3.32)

where Ay represents the gradient magnitude computed from the Sobel operator
at the k' pixel, N is the total number of image pixels, and L is the vertical
resolution of the image.

Global Contrast Factor (GCF): It is a global measure of the overall image con-
trast as perceived by the HVS. This contrast measure accounts for the multi-scale
characteristics of the HVS. It is based on a multi-resolution decomposition scheme
and a weighting process. The global contrast is then expressed as the weighted
average of the local contrast computed at different resolution levels. The con-
trast weighting function is derived from a psychophysical experiment [129]. It is

calculated as follows:

N
GCF =Y wc (3.33)

i=k

where wy and ¢ represents weights and average local contrast of the image for a
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given resolution and N is the number of resolution levels.

Wkx H*

1 1
k = Tk % IF Z E,fork‘zl,---,N (3.34)

i=1 i

where [ represents local contrast for ith pixel at the k' resolution, W* and
H* represents image width and height at k%" resolution. The local contrast is
computed as the average of the differences of pixel values with its four nearest
neighbors.

Since the database contains images enhanced by different CE methods, and
to see the effect of improvement in quality in a clearer way, we have used this
measure to select images with varying contrast from low to high.

Using the measures above, we provided a scatter plot for the images in our
database (Fig. 3.9). Here, *’ symbol is used, to represent images. From the
plots, it could be observed that the database contains images with diverse spatial
information, colorfulness, and global contrast features.

Creation of Enhanced Images: In the literature, we can find numerous
CE methods. In our work, we selected six CE methods as a representative set
of the most common approaches used in the literature. These methods are: AE-
BCE [124], Contrast Limited Adaptive Histogram Equalization (CLAHE) [131],
DCT [132], Global Histogram Equalization (GHE) [133], Top Hat Transformation
based (TOPHAT) [134], and Multi-scale Retinex (MRETINEX) [135]. The above
were selected to cover the different classes of CE including: histogram-based,
edge-based, transform-based, morphological-based, and HVS-inspired methods
(132, 134, 124, 133, 135, 131]. We have used the codes for some methods ac-
cessible from the original papers author’s websites. For GHE and CLAHE, we
have used the MATLAB built-in functions histeq and adapthisteq respectively.

Since, the main goal of the study is the performance comparison of CEE mea-
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Figure 3.9: Scatter plots for all images in the new database between (a) Spatial
information versus Colorfulness (b) Global contrast factor versus Colorfulness

sures instead of CE methods, therefore, for our experiments, we have used the
CE algorithms with their default parameters without tuning the algorithms for
performance optimization.

Among the original images, we have also included six compressed images (three
for JPEG and three for JPEG2000) with moderate compression so as to observe
the effect of contrast enhancement that may increase the visibility of these masked
artifacts. In this way, we can also observe the capabilities of different CEE metrics

in quantifying these particular CE after effects i.e., blur, ringing amplification. In
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Fig. 3.11, we show some enhanced images with visible artifacts due to CE.

3.4.2 Testing Environment

The subjective experiments were performed at Université Paris 13 at Laboratoire
de Traitement et Transport de I'Information (L2TT). The images were displayed
on a calibrated LCD monitor in a dark room environment to avoid any problem
with the illumination adaptation of background. The details of display parameters
are shown in Table 3.7.

Table 3.7: Display setup used in the subjective experiments

Parameter Description

Type LCD

Model EIZO Color Edge CG242W
Screen 24.1 inch
Resolution 1920 x 1200 pixels
Calibration device Eye-One Match 3
Color space sRGB

Color temperature 6500K

White point luminance 119 cd/m?

Display frame rate 60Hz

Contrast 80

Room Environment Dark

Gamma 2.2

Background color Gray (128,128,128)

Twenty-three observers both experts and non-experts and coming from dif-
ferent age groups, gender, and background participated in the experiment. All
the observers had either normal vision or corrected to normal vision and they
were undergone a pre-screening procedure for color vision and visual acuity. The
observers were forced to perform the experiments at a fixed distance of twice the
screen height. The non-expert observers were not informed about the definition
of contrast, and were asked to give their preference about the image they feel

perceptually better than the other compared to the original image. They were
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allowed to give the same rank for both images in case of the equivalent degree of
quality.

The database contains 30 original images. FEach original image is enhanced
by six CE methods, resulting in 180 enhanced images in addition to the original
images. For each original image, the six enhanced images were shown in pairs to
the observers. The number of possible combinations to display for each original
image are (g) = % = 15. We allowed the observers to take their time for the

subjective experiments and they were not forced to finish early. However, they

were informed that the whole subjective tests take on average 30 minutes.

3.4.3 Testing Procedure

Considering the advantages of PC-based methods, we opted to use the non-forced
choice balanced pairwise ranking protocol (Condorcet method) in our subjec-
tive experiments. The interface for the subjective experiments was developed in
MATLAB, where, for each original image, we randomly displayed all possible pair
combinations of enhanced images to the observers. We also showed the original
image in the center of the screen (a pair of enhanced images are to its left and
right), to facilitate the analysis of after effects of CE. The observers had the choice
to rank equally similar stimuli. A screenshot of the graphical interface is shown
in Fig. 3.12. In the PC ranking protocol, each enhanced image is compared with
the others in pairs and ranking results are stored in a preference matrix. An ag-
gregated preference matrix for the 237 image in the database is shown in Table
3.8. From the Table 3.8, it can be observed that the CLAHE method is highly
preferred, whereas GHE is least preferred by all the observers. The preference
data was collected for all the images in our database for statistical and correlation

analysis.
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Table 3.8: A sample preference matrix for 23" image (i.e., mosque) aggregated
over preferences of 23 observers. In our experiment, M; = AEBCE, M, = CLAHE,
Mz = DCT, My = GHE, M5 = TOPHAT, Mg = MRETINEX.

- M, M, M M, M; Mg Di
My — 2.5 10 23 22 3 60.5
M, 20.5 — 17.5 23 23 15.5 99.5
M3 13 5.5 - 23 23 10 74.5
M, 0 0 0 — 1 0 1
M 1 0 0 22 - 0 23
Mg 20 7.5 13 23 23 - 86.5

3.4.4 Statistical Analysis

The data gathered from the subjective experiment was processed to verify its re-
liability and validity. The reliability relates to the consistency and it is further
related to the closeness of agreement in the preference ranking among different
observers (also called inter-rater reliability). Whereas, validity relates to the ac-
curacy of the data. However, it does not mean that the data with high reliability
is also accurate. For the preference based pairwise rank data, the reliability was
measured using Kendall’s Coefficient of Concordance (W) [29] and Coefficient of
Agreement. Other measures are Kendall’s Tau (7) and Spearman’s Rank Order
Correlation Coefficient (p).

(A) Coefficient of Agreement (u): The coefficient of agreement or inter-rater
reliability is a measure of understanding among a group of observers in their
judgments. It is measured on a continuous scale in the range [0 — 1]. Kendall and
Babington et al. [136] proposed coefficient of agreement, u, among the observers

and defined it as: y
2 3 (%)
u=—t ] (3.35)

() ()

where M is the number of CE methods, S is the number of observers, and a;;

represents the number of times image enhanced by method M; is preferred over the
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image enhanced by method M;. Its value is equal to one, when all the observers
(or raters) agree on their preferences.
To test for the significance of coefficient of agreement (u), we have performed

a chi-squared test (x?). The x? values are calculated as follows:

X2:AHM—4x;+ms—1» (3.36)

(M

The degree of freedom for this x? statistic is selected as MT_U The minimum

value of u is and ’?1 for even and odd number of observers respectively.

(S-1)
For our experiment, with 23 observers, the minimum value of the consistency
coefficient (wpy;y,) is 5—?} = —0.0435. The null hypothesis Hj is rejected when the
observed y? is greater than its critical value.

(B) Coefficient of Consistency or Transitivity (() The pairwise rank data is
further assessed for inconsistency. It relates to the transitivity property in a
paired comparison. It is determined from the number of intransitivity or circular
triads in a set of ranking. It is also called intra-rater agreement and is calculated

for each observer and image. The coefficient of consistency in a set of pairwise

comparison can be calculated using the relation [136]:

(=1- (3.37)

Cmax

where C' represents the number of circular triads and Ci,.y is the maximum pos-
sible circular triads in a pairwise comparison. C'is calculated using the following
relation:

1

M(M2 —1)— =M (3.38)

C=% 2

where M =Y (a; — (M —1)/2)?, a; is the number of times stimulus ¢ was preferred
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over other stimuli. The maximum value of C' is given by:

M3—4aM .
% M is even

Cloax = (3.39)

(MZ—ZM) M is odd

Note that, ( = 1 represents a perfect consistency in the pairwise comparisons.
The consistency coefficient for each observer is calculated by averaging con-
sistency coefficients across all the images used in the experiment. Whereas, the
consistency coefficient for each image is computed by averaging consistency coef-
ficients for all observers participated in the experiments (see Table 3.9 and 3.10).
(C) Kendall’s Coefficient of Concordance (W) is also used to measure the degree

of agreement in the rankings among different observers. It is calculated as follows:

(12 x S)
(S2(M3—M)—SxT)

W = (3.40)

where S and M are the number of observers and the number of methods respec-
tively. T is the correction factor, when there are ties in the rank. T is zero when

there is no tie within the rank. The correction factor T is calculated as follows:
K
T=> ti-t (3.41)

k=1

where K is the total number of tie groups, and ¢, is the total number of ties in a
particular group.

To determine the significance of W, we calculated the x? value given by:
X2 =SM—-1)W (3.42)

Then, the probability of getting the results by chance (p-value) is also calculated

using the y? distribution. The p-values for the experimental data indicates that
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(1) chalet (2) mountain

(4) aerial-view

(7) camel

t (10) sculpture

(11) swan

(15) flowerl

-

(18) flower2 (19) painting

20) street
i:; T |

(

23) mosque

(26) mandrill (27) clock (28) zelda (29) pepper (30) clown

Figure 3.10: Images in the database (Images 1-23 are self captured while images
24-30 are standard test images
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Figure 3.11: Illustration of some artifacts due to CE (a) color shift, (b) halo
effects, (¢) blocking, and (d) ringing

LEFTimage is better RIGHT image is better
Same quality

Figure 3.12: The display environment where the original and enhanced images
are presented at the same time
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Table 3.10: Consistency coefficients for 23 observers

Observer Eimage Observer C_image Observer @mage
1 0.7583 9 0.9208 17 0.8406
2 0.7990 10 0.8354 18 0.8271
3 0.9042 11 0.7896 19 0.8094
4 0.6885 12 0.7708 20 0.8688
5 0.8688 13 0.8906 21 0.7917
6 0.7323 14 0.8354 22 0.7167
7 0.9208 15 0.8604 23 0.8344
8 0.8187 16 0.7406 — -

the consistency coefficients are significant. However, we removed some images in
the comparisons where these coefficients values are low.

For our preference based pairwise rank data collected from the subjective ex-
periment, the values of these coefficients are presented in Table 3.9. From the
significant tests, we have noticed that inter-observers’ and intra-observers’ con-
sistency coefficients for the images in our new database are high except for the
images numbered 6, 8, 12, 16, and 26. We then discarded these images and their

related data and did not use these in further experiments.

3.4.5 Correlation Analysis

From the subjective experiments, we have derived the preference scores, i.e., the
number of times an image enhanced by a particular CE method is preferred over
other enhanced images. The subjective preference ranking of the six CE meth-
ods is shown in the first row in Table 3.11. We observe that CLAHE is highly
preferred whereas GHE and TOPHAT are not preferred most of the time. In re-
lation to CLAHE, we were expecting the MRETINEX to give better results, but
surprisingly it was not the case for the database in our subjective experiments.
The CEE measures are also calculated for the enhanced images created from the

six CE techniques. For NR-CEE measures, we have computed the change rate
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Figure 3.13: SROCC plots for 25 images in the database. The x- and y-axes

represent image index and correlation values respectively
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and then averaged over all the images in the database. The average scores for
the CEE measures under study are also shown in Table 3.11. It is worth noting
that most of the measures resulted in high/low values for GHE and TOPHAT in
contradiction with the subjective preference ranking, and consequently resulted
in the reduction of correlation results.

Based on the subjective experimental data, we have used the SROCC and the
KROCC to observe the consistency of the CEE measures with the human visual
perception [29]. The SROCC and KROCC are widely used non-parametric mea-
sures to determine the monotonicity between the ranks of two variables and their
values ranges from —1 to +1. The values are close to 41 in case of strong correla-
tion between the ranks of two variables and —1 in the case of strong disagreement
between the two variables. The SROCC and KROCC give zero values when there
is no correlation between the ranks. In our study, the aim is to observe how well a
CEE measure is consistent in capturing the ranking for the six enhanced versions
of each original image in the database. Therefore, before performing the correla-
tions, we must consider, how the change in magnitude of metric values affects the
image quality. For some metrics, high values correspond to good quality, whereas
for other metrics, the opposite is true (see Section 3.2.2). For preference ranking,
the highest score is highly ranked. Whereas, the metrics with high/low values
corresponding to good quality are also highly ranked.

We calculate the median and mean correlations for each of CEE measures
under study. For each image in the database, we have the ranking scores for its
six enhanced versions as well as the quantitative scores. If I; represents an original
image and I ;, its enhanced version processed by method M;, for i =1,2,--- n;
and j = 1,2,--- ,ny, for (n; = 25,n; = 6). Here n; and n; represent the number

of original images and the number of CE methods respectively. We compute the
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SROCC for each image using the following relation:

2

2

fore=1,2,--- 4
nJ(nJ_1)7 or e ) &y y N1 (3 3)

pik=1—

where d; ; represents the difference in the ranks of subjective preferences and
objective scores of k' CEE measure for the i image. The correlation for each
image for all the CEE measures are shown in Fig. 3.13. Finally, the median and
mean of the SROCC’s for the 25 images are computed as a single performance
measure of each CEE measure and reported in Table 3.12. Similarly, two different
types of KROCC across the images, i.e., Tiedian aNd Tinean are also calculated and
shown in Table 3.12. The median correlation provides more information compared
to the mean correlation, as the median statistic is not affected by the outliers.
The performance of different CEE metrics is also compared with other existing

databases with contrast manipulated images and results are shown in Table 3.13.

3.4.6 Results and Discussions

From the correlation results on different databases, we observed that the perfor-
mance of various CEE metrics might differ on some databases. The metrics which
perform better for some databases do not work well on others. The reasons are
that the metrics are not adapted to different CE distortions, and the databases
do not contain enhanced images affected by various CE distortions.

The comparison of the median correlations between subjective and objective
data for the CEE measures is also shown in Fig. 3.14. From Fig. 3.14, we observe
that only VIF, RIQMC, AMEE, LOE, AMBE, DE, and MICM metrics have
positive correlations with the subjective ranking. The negative correlation of
other CEE measures shows the inconsistencies of these measures with the human

perception of quality judgment. This is due to the inconsistencies exist between
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Table 3.12: Median and mean correlation analysis of CEE measures on the pro-
posed CEED2016 database

Measire SROCC (p) KROCC (1)
Pmedian Pmean Tmedian Tmean

EME[97] -0.3714 -0.3896 -0.3333 -0.2905
AME[99] -0.4286 -0.3896 -0.2000 -0.2958
EC[114] -0.4286 -0.4079 -0.3333 -0.3118
AMBE[109] 0.2000 0.1892 0.2000 0.1747
SDME[lOO] -0.4286 -0.3325 -0.3333 -0.2425
IEM[113] -0.4286 -0.3782 -0.3333 -0.2958
VIF[lOQ} 0.6000 0.4797 0.4667 0.3884
AMEE[99] 0.5429 0.3892 0.3333 0.3241
EMEE[98] -0.4286 -0.4239 -0.3333 -0.3225
RME[98] -0.4857 -0.4468 -0.3333 -0.3598
RSE[65] -0.4286 -0.3819 -0.3333 -0.2802
RMSCJ[110] -0.4286 -0.3905 -0.3333 -0.3167
MICM[25] 0.0286 0.0713 0.0667 0.0726
LOE[112] 0.3714 0.3377 0.3333 0.2810
DE[lll] 0.1429 0.1676 0.0667 0.1161
RIQMC[103] 0.5429 0.4865 0.4667 0.4021
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the metric values and subjective preferences for the TOPHAT and GHE methods,
where these two approaches were ranked worst based on the observers’ preferences.
We can also draw a conclusion from the correlation analysis, that most of the
CEE measures are not well suited for the CE evaluation for GHE and TOPHAT
based CE methods. From these results, it is also clear that using simple local
features, such as contrast or gradient, in the design of CE measure is not sufficient.
It is important to include the color aspects in the design of CEE measures for
color images. Through this study, it is shown that CE evaluation is still a very
challenging problem. We believe that the introduction of some learning based

approaches would offer better solutions to this very challenging problem.

3.4.7 A Multi-Metric Fusion based CEE Measure

It is also evident that a single metric cannot perform very well. This is due to the
reason, that no metric is sensitive to different types of artifacts introduced due to
CE process. Therefore, we propose to combine some best metrics to benefit from
their strengths in quantifying the image contrast. We use a simple weighting based
fusion and tune the weights to avoid the limitations of each metric and increase
the correlation performance. We use the top four metrics with positive correla-
tions, (i.e., VIF, RIQMC, LOE, and AMBE), and fuse their possible combinations
using different weights. We show in Table 3.14, only the top three combinations
with high correlations. Compared with the single metrics, the multi-metric fusion
results in a substantial increase in correlation performance at the cost of an in-
crease in complexity. From the fusion weights, we observe that LOE metric which
captures the naturalness property of an image is considered more important by
giving more weights in the fusion process. These observations provide us hints in
designing new metrics to consider different quality parameters (e.g., naturalness,

lightness, saturation, color-shift, visibility of edges, etc.) in CE applications.
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Table 3.14: Median correlation results for combining different CEE metrics

Fused Metrics SROCC KROCC Weights

(Q1) VIF+RIQMC+AMEE+LOE +0.8286 +0.6445 [0.1,0.1,0.1,0.7]
(Q2) VIF+RIQMC+LOE +0.7945 +0.6445 [0.1,0.1,0.8]
(Qs) VIF+LOE +0.7714 +0.6000 [0.1,0.9]

3.5 Summary

In this work, a comprehensive psychophysical-based performance comparison of
different state-of-the-art CEE measures is presented. The analysis was carried
over a new database, that we introduced, which consists of enhanced images us-
ing different CE methods most commonly found in practice. Extensive subjective
experiments were performed using a balanced pairwise preference-based ranking
protocol to rank the CE methods by perceived quality. The correlation between
subjective preferences and objective measures showed that most of the existing
CEE measures are not well adapted with human perception of enhancement qual-
ity. Our analysis revealed that only seven measures, namely VIF, RIQMC, AMEE,
LOE, AMBE, DE, and MICM exhibit positive correlations with perceptual qual-
ity of contrast enhancement. This is due to the reason that a single metric may be
unable to capture various CE artifacts. We demonstrated that multi-metric fusion
resulted in substantial improvement in correlation performance. It provides us an
insight to consider various CE distortions in designing a new CEE metric. The
new database is expected to provide a platform for developing new CEE measures
and benchmarking the results without the need for dedicated subjective experi-
ments. Soon, the developed database along with the subjective experimental data

will all be made publicly available to the research community.
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CHAPTER 4

IQA FOR INPAINTING
EVALUATION

4.1 Introduction

Image inpainting is generally defined as the process of restoring missing pixels
and damaged regions, or removing unwanted objects in digital images in a plau-
sible way [4]. Considerable research has been carried in developing inpainting
algorithms, and a plethora of image inpainting algorithms have been proposed
[137, 4, 138, 139].Image inpainting has recently received considerable attention
in different areas related to image processing. While the applications of image

inpainting are countless, we outline below the most common and practical ones.

e Removing Unwanted Objects: Unwanted objects can be removed from the
image using inpainting techniques. The scenario is seen as a special class of
image tampering. Fig. 4.1 shows a nice example of image inpainting where

the cage in the original image is removed in the inpainted image [3].

e Restoring Photos: The deterioration in photos with the passage of time can

be overcome using inpainting. The scratches in the photos resulting from
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improper handling can also be removed. This is also the case of restoring
images from cultural archives, etc. Fig. 4.2 shows an example in which the

scratches in the old photograph have been removed using inpainting [4].

e Photo Retouching: Another widely used application of image inpainting is
in the media industry where photos of actors/actresses, models, etc., are
manipulated by removing wrinkles, mole marks, or undesirable facial fea-

“more attractive”. Fig. 4.3 shows an example of image

tures to make these
inpainting where the face is made more attractive by removing some marks

using inpainting [5].

e Text Removal: Image inpainting can also be used for removing unwanted
text, stamps, copyright logos, etc., in digital images. Fig. 4.4 shows an

example of a street image with superimposed text, from which the text is

removed in the inpainted image.

Figure 4.1: An example of image inpainting for object removal (a) original image.
(b) binary mask, (c) inpainted image [3].

In a way, image inpainting can be seen as a modified copy-move tampering
process which is used to recover or remove some parts of the image without any
perceptual loss [11, 140]. It is different from copy-move forgery in a sense that

different blocks or regions come from different locations of the image (see Fig. 4.5).
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Figure 4.2: An example of image inpainting used in restoration, original image
(left), restored image (right) [4].

1.4

Figure 4.3: An example of inpainting for photo retouching, original image (left),
restouched image (right) [5].

Although a substantial amount of research has been carried out in developing
robust inpainting algorithms, very little efforts have been put in developing quality
assessment metrics to evaluate the performance of image inpainting (restoration)
methods. IIQA is a complex and a challenging problem. The objectives of image
inpainting assessment are quite different from those of classical image quality
evaluation. Here, for inpainting IQA, the goal is to evaluate the quality of the
restored images using either subjective or objective methods. However, traditional
IQA fidelity-based metrics have mainly been developed for quantifying distortions
in degraded images hence, these are not well suitable for evaluating the quality

of restored images and cannot directly be used. This is due to the fact, that the
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Figure 4.4: An example of image inpainting for text removal, original image (left),
restored image (right) [4].

(a) (b)

Figure 4.5: Difference between two types of tampering (a) copymove forgery (b)
inpainting [6]
restored image in inpainting is different from its original counterpart. In image
inpainting, different artifacts are introduced which in turns affect the perceived
quality. Among these artifacts, blur is introduced around edges when restoring
large inpainted regions. The curved boundaries are not produced correctly as
well. This is our focus here, in this chapter, we provide a comprehensive and a
critical review of different methods developed for quality assessment of inpainted
images. This review will be the first of its kind and is expected to help researchers
working in this area to benchmark new inpainting techniques, develop more robust
methods for inpainting quality assessment, and benchmark their results.

The rest of the chapter is structured as follows: Section 4.2 provides a discus-

sion of common inpainting algorithms. Section 4.3 briefly discusses the state-of-
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the-art ITQA metrics. Different inpainting databases are discussed in Section 4.4.

Finally, the chapter is concluded in Section 4.5.

4.2 Image Inpainting Methods

The main objective of inpainting algorithms is to restore the unknown regions
to create a more pleasing and realistic feeling about the new image. Among
different types of inpainting artifacts, most commonly observed ones are blurring,
disconnected edges, inconsistent pieces of texture, etc. Based on our analysis
of the state-of-the-art, we propose here to group inpainting algorithms into four
broad categories: Exemplar-based, Partial Differential Equation (PDE)-based,
Sparsity-based, and Hybrid (combination of Exemplar-, PDE-, or Sparsity-based)
approaches. We display in Fig. 4.6 a tree diagram of different classes of most
commonly used inpainting algorithms. Since, the chapter aims to provide a critical
review of IIQA metrics instead of the inpainting algorithms themselves, we will
only provide a brief discussion of each of these categories. Note that in image
inpainting, the basic assumption is that pixels in the known and unknown regions
should have similar geometrical structures and statistical properties.

In PDE-based or diffusion-based inpainting methods, the local structure infor-
mation is transferred or diffused from the known region to the unknown (target)
region [4]. Several variations of PDE-based methods were introduced based on
the flow of texture information in linear, nonlinear, isotropic, or anisotropic direc-
tions. The PDE-based methods are well-adopted for restoring long narrow regions
(cracks, lines). However, they are not recommended for restoring large unknown
texture regions, due to the introduction of blur in the textured regions.

In Exemplar-based inpainting techniques, the structure completion process is

carried out using texture synthesis i.e., the target regions are restored by selecting
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the patches in the known regions similar (in terms of structure) to the partially
unknown patches in the target regions [11]. These techniques use greedy and
global optimization functions in filling the target regions with the similar known
pixels.

Sparse representations of images, over a particular basis (e.g., Discrete Cosine
Transform (DCT), Wavelet, etc.) has also been used in image inpainting. In
Sparsity-based inpainting methods, the assumption made is that the known and
unknown image regions share the same sparse representations.

The Exemplar-based and the Sparsity-based inpainting methods, above, were
shown to perform better compared to the PDE-based methods for filling large tex-
ture regions. Various Hybrid techniques also exist that combine the strengths and
different types of inpainting methods for performance improvement. To demon-
strate the effect of different inpainting algorithms, Fig. 4.7 shows a very nice
example of inpainting where broken pieces of the kiwi fruit are restored using
different inpainting algorithms [7]. The broken area is shown as a green mask. Tt
is clear that Figs. 4.7 (d) and (f) represent more realistic inpainting output com-
pared to the other methods. After this brief survey on commonly used inpainting
algorithms, we now move to the focus of the chapter and discuss in more details
different types of subjective and objective IIQA metrics, commonly used in the

literature.

4.3 Image Inpainting Quality Assessment
(IIQA) Measures

Image inpainting methods were initially used for removing missing or damaged
areas in an image. The main criterion was that the restored image should be

“close” to the original one. The traditional fidelity metrics were used to evaluate
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Figure 4.7: An example of broken object restoration using inpainting (a) original
image, (b) original image with target region in green color, (c-f) inpainting results
from different algorithms [7].

the quality of inpainted images. The MSE and PSNR, which are considered as
the most widely used fidelity metrics, were the simplest ones available. Oliveira
et al. in [141], for example, used these metrics for quality evaluation of inpainted
images. However, both MSE and PSNR are not well correlated with perceptual
quality assessment. In inpainting applications, the objective is to restore the
original image such that it is more appealing and that the artifacts introduced
inside, outside, and around the inpainted regions, are not noticeable/visible.

For performance evaluation of different inpainting algorithms, the metric of
choice would be a qualitative judgment averaged over a number of human ob-
servers. In this regard, Hays et al. [142] qualitatively evaluated inpainting image
quality for the first time using subjective experiments. The purpose of the ex-
periment was just the identification of the original and the tampered (inpainted)

images. The proposed method was compared with an exemplar-based approach
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[11]. Twenty naive observers participated in the subjective tests and were asked
to differentiate between the real image and the inpainted image (fake image). The
detection rate for tampered images was achieved as 34%, 64%, and 3% for the
images inpainted by their algorithm, [11], and for original images. The purpose
of the study was to investigate whether or not the proposed inpainted algorithm
produced better perceptual quality image compared to other methods. However,
the study did not provide any quantitative ratings of inpainted images.

Subjective assessment methods involve humans and the ratings provided are
considered as most reliable and accurate in relation to perceived quality. However,
these methods are time-consuming, laborious, and require a significant number
of observers to be consistent. They also require a well-controlled environment
and lighting conditions. This has motivated researchers in this field to develop
alternative objective metrics for inpainting quality assessment without the need
of human involvement. Such objective methods use mathematical tools to extract
characteristic features from either the reference or the test images or both. These
features are then used to get a single quality score for the given image. The aim
of objective quality assessment techniques is to predict perceived image quality,
the way a human observer perceives it.

Traditional objective quality assessment methods, depending upon the avail-
ability of the original image, are grouped into Full Reference (FR), Reduced Ref-
erence (RR), and No Reference (NR) methods. In FR methods, the original
image is required in addition to the processed image (inpainted image). These are
impractical as the original image is usually not available. With NR quality pre-
diction methods, the original image is not available. For RR techniques, partial
information about the original images is available in the form of some extracted
features. RR techniques are seen as a compromise between FR and NR meth-

ods. For the case of inpainting, only NR methods are considered as the original
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images are not available. Based on our analysis of the literature, we decided to
group IIQA measures broadly into structural-based, saliency-based, and machine
learning-based measures. We display in Fig. 4.8 a tree diagram listing the differ-
ent metrics commonly used for IIQA. The different categories are now discussed
in more details.

For completeness, we define the notations we used in this chapter. We represent
an image to be inpainted with I, and the inpainted image with I;,,. The original
image to be inpainted is decomposed into three distinct regions, (1) The region to
be restored or modified by the inpainting algorithm is represented by €2, (2) The
remaining area is denoted by ®, and (3) The boundary between the two regions is
indicated by 6€2. Fig. 4.9 shows an image inpainting model where different regions
are clearly labeled. After defining the notations, we will now start discussing each

of the groups of IIQA mentioned in Fig. 4.8.

4.3.1 Structure-based IIQA measures

In image inpainting, some of the structural details in the original image are either
removed or replaced. Inspired by the use of SSIM [48] in traditional IQA, Wang
et al. [143] proposed a FR metric using luminance, definition, and gradient simi-
larities to determine a quality index for inpainted images. The metric, defined as

Parameter Weight Image Inpainting Quality (PWIIQ), is calculated as follows:
PWIIQ = [L(I, Linp)|“[D(Lr, Tinp)]* [G Ly, Tinp)]” (4.1)

where the terms L, D, and G, represent the variances of image luminance, defini-
tion, and gradient similarity between the original and inpainted images. The «,
B, and v are positive parameters used to determine the importance of each term

in the final quality score.

124



SOLIPOW Y (O[] MULIPIP oY) Surdnois 10j yromewrely pesodor :QF oInsI

NODSIA || [eSI0g1on13g

[es10d

mean || Man

NAa

SASV | | biimd

9OURIOJOY [N

poseq-SurIea | QUIYDIRIA

9OUAINJOY ON

paseq-Aouaifeg

Poseq-TeIN}onIlg

SOLIIOTA JUSTUSSIOSSY/

Lyrengy Suryureduy ogew]

125



/////

Figure 4.9: A simple model used in image inpainting techniques

For implementation purposes, both the original and the inpainted images are
first divided into b x b fixed-size blocks, and the luminance similarity between the

corresponding blocks is computed:

2Mrlump + Kl

l Iralin =
(Fr: inp) 13+ [y + K

(4.2)

where j1, and f;,, represent the mean value of the original and inpainted image
blocks respectively, while K7 is a positive constant with very small value to avoid
instability when the denominator is close to zero.

The weighted block means for the original and inpainted images are used. The
weights are computed from the symmetrical Gaussian filter window of size 11 x 11

pixels. The resulting weighted mean is given by:

N
i=1
where w = {Wi such that Zf\il w, =1, 1=1,2,--- ,N}, where N denotes

the number of pixels in the window.

The luminance component, L, is computed as the average of the luminance
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similarities across all blocks:

By

By
2, ]
LI Tug) = 5—5 32 ZZ[ I I3,) (4.4)

where B; and B, represent the number of overlapping blocks along the rows and
columns of the image.

Secondly, the image definition function, D, is computed as follows:

W-1H-1
;) ZO [Fowl = 7o
D(Irajinp) = W_lj 1 B (45>
S % - 1R
i=0 j=0

where F(.) represents the Fourier transform of an image and Fyq is the dc com-
ponent or overall mean value of an image.
Finally, the gradient component is defined as:

—1H-1
2 z ) GIGH + Ky

np

G(I,, Lny) = (4.6)

0 j=0

-1 —1H-1

[GY]? +Wz S 6] K,
i=0 j=0
where the G(.) represents the gradient magnitude computed from the Sobel filter
mask of size 3 x 3 in the vertical and horizontal directions and K5 is a small
positive constant.

Similarly to its IQA counterpart, the structure-based methods suffer from some
serious limitations. Since image inpainting operations do not require the original
images, the large inpainted regions may be quite different from the actual ones.
Consequently, the structural similarity based methods (e.g., [143]) may fail for im-

ages with large inpainted regions. To overcome the drawbacks of structure-based

methods, researchers started introducing image saliency to derive new measures
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for evaluating quality of inpainted images.

4.3.2 Saliency-based IIQA measures:

Visual saliency plays a significant role in image quality assessment applications.
Image saliency is used to highlight the areas towards which the human vision sys-
tem is more sensitive. Various saliency detection algorithms exist in the literature
[144, 145]. Given its importance in IQA, saliency has been used in estimating vis-
ibility of different artifacts introduced by the inpainting process. The basic idea
is that salient regions change after inpainting. The most prominent IIQA metrics
using the concept of saliency are now briefly outlined.

Average Squared Visual Salience (ASVS): In [146], Ardis et al. proposed
two objective metrics for quality assessment of inpainted images. The image
saliency was used in capturing the distortions introduced during the restoration
process. The first metric is the ASVS, which is represented by the normalized sum
of squares of the saliency values within the inpainted region. The ASVS metric
relates to the noticeability of the inpainted pixels compared to the overall scene.
ASVS is a NR metric as it does not require the original image information. It is

calculated as follows:

ASVS = 37 [5'(p)? (47)
o 2

where S’(p) represents the saliency value for the inpainting pixel, p, related within
the inpainted region, €2. High values of the ASVS correspond to more visibility of
inpainting related artifacts and reduced perceptual quality [146].

Degree of Noticeability (DN): Ardis et al. in [147], categorized inpainting
artifacts into two broad classes, i.e., in-region and out-region artifacts. During

the restoration operation in image inpainting, the in-region artifacts occur due

128



to the introduction of distinct color and structures in the inpainted regions only.
These artifacts result in an increased saliency in the inpainted areas and thus
disturb attention flow. The ASVS metric relates to the in-region artifacts as it
only considers the salient pixels within the inpainted region.

Similarly, the out-region artifacts occur when the local colors or structures are
not properly extended to the inpainted region by the inpainted method. These
artifacts result in an increase in the saliency of the inpainted region neighborhood
and hence decreases attention flow within the inpainted region. The in-region and

out-region artifacts are computed as follows:

In-region = ASVS = HQH Z 1S’ (p) (4.8)

peEN

Out-region = Z 15 (p) — S(p)|? (4.9)

p€<1>
Ardis et al., in [146], took into account both in-region and out-region artifacts
and proposed another metric, namely the DN. The DN measure is intended to
identify non-noticeable inpainted regions and indicates the change in attention

flow in the neighborhood of the inpainted regions. It is calculated as follows:

1] |||

DN = ——————in-region + ———————
[1€2] + ][] 1201 + |||

out-region (4.10)

Equation (4.10) can further be simplified as follows:

DR ||Q||+||<1>||(Z|S' P+ 1S'm) - So)F) (4.11)

ped

For both ASVS and DN calculations, the saliency maps are generated using
the iLab Neuromorphic Vision Toolkit (iNVT) version 3.1, using scale-4 and dis-

cretization of 1 : 16. The expected visual cortex stimulation was set with 0.1 ms
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observation cutoff. Furthermore, four orientation scales, three center scales (2 to
4), and two center-surround channels (3,4) were considered .

Similarly to the ASVS, high values of the DN correspond to more visibility of
inpainting related artifacts and reduced perceptual quality. The authors claimed a
good correlation for both metrics, with subjective ratings. However, the subjective
ratings were not considered reliable as only three observers participated in the
psychophysical experiment. Moreover, the overall visual appearance of an image
is also ignored while calculating DN and ASVS IIQA metrics.

Gaze Density (GD)-based IIQA measures : Following the work in [146],
Mahalingam et al. [148] proposed two visual saliency-based metrics for inpainting
quality assessment within and outside the inpainted regions. From eye-tracking
experimental data, the gaze densities were used to capture the saliency in the
original and inpainted images. The motivation was that changes in the saliency
map in the inpainted image is related to its perceptual quality.

In their subjective experiments, 45 reference images and 90 modified images
were obtained using two different inpainting algorithms. The images were equally
distributed into three subsets. Twenty-four naive observers without any prior
knowledge of the original and the inpainted images rated the subgroups under
ambient lighting conditions and at a distance of 65cm from the display screen.
The average gaze distribution was calculated for each image from the eye-tracking
experiment. It was observed that the Human Visual System (HVS) is more at-
tracted towards the regions with more noticeable inpainting artifacts. The gaze

density was calculated for both inside and outside the inpainted regions using;:

GDy, = % > S (p) (4.12)
19]] 7=
]‘ !
GDou = Y _ S'(p) (4.13)
1]l =
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The gaze density measures of the inpainted image were normalized by the gaze
densities of the original image to account for variations in textures and sizes. The

final normalized gaze densities were given by:

i ZpEQ S/(p)

GD,, = =22° 70 and (4.14)
ZpEQ S(p)

2 peaS'(P)
ZpECP S(p)

The experimental results showed a strong correlation between the rankings from

GDout = (4.15)

the subjective experiments and the gaze density based measures. However, these
methods require the original image and are not suited for practical inpainting
applications, where the original image is usually unavailable. Similar to the ASVS
and the DN metrics, both GD;,, and GD,,; highlight the change in attention flow
within and outside the inpainted regions respectively, and do not consider the
global visual appearance of the image.

Border Saliency based Measures (BorSal): The measures proposed in
[146, 148] considered the in-region and out-region artifacts separately. Oncu et al.
[149] showed that saliency map pixels in the neighborhood of the inpainted region
are sufficient to capture the changes in saliency due to inpainting. The BorSal
metric was proposed to compute the normalized gaze density using the border
pixels extended only to three pixels inside and outside the inpainted regions.
The six pixels wide border area simultaneously contain information from both in-
region and out-region artifacts (see Fig. 4.10). The BorSal metric was computed

as follows:

S/
BorSal = 2pesioraer 5 () (4.16)
szBorder S(p)

Structural Border Saliency based Measures (StructBorSal): The Bor-

Sal ITQA metric accounts for changes in the flow of attention over the inpainted
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Figure 4.10: A typical model used for BorSal and StructBorSal IIQA metrics
computations (shaded region is used for IIQA)

image. Oncu et al. [149] proposed another metric called StructBorSal, to account
for the structure information in the whole image and to highlight the artifacts in
the restored image. The SSIM;pr based measure [150] was used by taking the
geometrical mean of the three SSIM computed for each color channel separately.
The StructBorSal metric combines the BorSal metric with the structural measure
as follows:

StructBorSal = BorSal + SSIM;pr (4.17)

The correlations between the subjective ratings and 14 quality measures (IQA
metrics for distortions as well as inpainting) were calculated. The results showed
poor performance of existing metrics. The inpainting IQA metrics performed well
for images with small and less structured inpainted regions.

The above mentioned saliency-based inpainting IQA metrics, i.e., DN [146],
GDy,, [148] , GD,y: [148], BorSal [149], and StructBorSal [149] require the original
image whereas in the restoration process, usually the original image is not avail-
able. The overall visual appearance of the image also plays a significant role in
the quality perception. These metrics are also lacking in considering the global

visual appearance of an image, limiting their use in practical setups.
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Visual Coherence Metric (VisCom): In image inpainting, the reference
image is usually not available, therefore the restored pixels rely solely on the sur-
rounding pixels. The restored pixels in the inpainted regions, however, should
exhibit consistency with existing pixels. The coherence of the inpainted regions,
which is associated with the degree of annoyance of noticeable distortions, is com-
puted by taking the correlation between the inpainted pixels and the original ones.
Similarly, the HVS is more sensitive to the edges and contours in an image. The
presence of contours and edge details are more attracted by the HVS compared
to the remaining regions. The saliency map of a given image relates to the degree
of attention in the image and hence can be used to weight the coherence map in
evaluating the final quality index.

Trung et al. [151, 152, 153, 10], proposed a FR quality metric using visual co-

herence and visual saliency of restored regions. The index is computed as follows:

VisCoM — ﬁ S Cp) S )’ (4.18)

peES)

where C'(p) and S(p) represent the coherence term and the saliency or structure
term respectively. The exponents a and 5 control the significance of each term in
the final quality score.

The coherence term, C, is basically a similarity index between the inpainted

regions and the remaining ones in the inpainted image. It is defined as follows:
C(p) = max [SIM(V,, V), V¥, ed, V¥, e] (4.19)

where ¥, and V¥, represent small patches around pixels, p and q, respectively.
The SIM is the similarity function between two patches. Traditional similarity
measures, such as the MSE and PSNR, are not well correlated with perceptual

quality. The Structural Similarity Metric (SSIM) [48], used in classical IQA, is
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exploited here to find the coherence between patches of size 7 x 7. The SIM is

defined as:
(2pptq + K1) (205 + K>)
(2 + i + Ko)(oF + 07 + K

SIM(W,, ¥,) = (4.20)

where p1,, 0, and pi4, 0, represent the mean and standard deviation of the patches,
¥, and ¥,, centered at pixels, p and q, respectively, whereas o0,, is the cross
correlation between the patches ¥, and W¥,, and K; and Ky are small positive
coefficients to insure stability when denominator is zero.

The local structure term is computed from the saliency values which are further
used as weights in the final quality index. Among different saliency detection
algorithms, the authors used a simple and computationally efficient method for
salient region detection [154]. In [154], color and luminance information were used

for saliency detection. For a given image, I, the saliency map was generated using:

S = |I1, — Il (4.21)

where [, represents the mean value of the original image, and I is a Gaussian
blurred (5x 5 filter mask) version of the original image. The operation is performed
in the CIELab color space. The method is simple, computationally efficient, and
does not need any downsampling operation during the estimation of the saliency

map. Finally, the saliency map, defined in Eq. 4.21, is normalized to the range

[0, 1]:

S(p) = ) Vp e Q (4.22)

max;(S’)

The authors in [151, 152, 153, 10] used the visual coherence of recovered regions
and visual saliency describing visual importance to develop their index shown in
Eq. 4.18. The proposed approach showed promising results but could only handle
a limited number of possible inpainting artifacts.

Based on our study of existing approaches, we present in Table 4.1 a summary
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of both structure-based and saliency-based IIQA metrics. It is important to note
that there exists only one NR-IIQA metric among these metrics. To overcome
this limitation, among others, researchers tried to use advanced machine learning
approaches in developing robust quality assessment metrics for practical inpainting

applications.

4.3.3 Machine Learning based IIQA Measures

Machine learning-based approaches were originally developed for solving classi-
fication and regression problems efficiently and provide good approximation of
functional relationships between input features and output classes/scores scores
in the training session. In testing stage, a set of features is extracted from a given
image. The trained model and the extracted features are then used for predicting
the quality rating of test image.

Among the first approaches using machine learning for IIQA is the metric
proposed by Viacheslav et al. in [155]. The method is an NR approach for
ITQA based on natural scene statistics and machine learning. First, the saliency
map of the inpainted image is calculated to identify most important perceptual
information in the inpainted image. The saliency map is then thresholded using
average gaze density computed from the outside inpainted regions using Eq. (4.13)
for proto-objects. Then, the DCT is calculated only for the proto-objects and
used to train a dictionary of 100 classes, where each word in the dictionary is a
DCT coefficient. For each DCT block, the histogram of words is then used as a
feature vector. The quality scores collected from the subjective experiment and
the extracted features were then used to train a Support Vector Regression (SVR)
network and to predict the quality of inpainted images resulting from different
algorithms.

The same authors in [156] replaced the DCT based features with the tradi-
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tional Local Binary Pattern (LBP) features given their power in describing image
structures effectively. The quality scores collected from the subjective experiments
and the extracted features are then used to train an SVR for quality prediction.
For the subjective experiments, in [156], a database consisting of 300 images with
different structures and textures was used. The database also included some real
images. The images were restored using a mask and using four different inpainted
methods. Ten observers participated in the subjective experiments and rated the
quality of the inpainted images on a scale 1-5 (5 for excellent quality, 1 for bad
quality). The results showed good correlation with human ratings of quality.
Recently, Markio et al. [157] demonstrated that saliency is not an absolute
requirement for assessing inpainting quality. They performed an experiment us-
ing a learning-to-rank approach. Instead of determining the absolute scores for
inpainted images, the preference order is obtained among inpainted images from
different inpainting algorithms. They demonstrated that visual saliency map is
useful but not a requirement. Rather, they showed that some features can be
used to reflect the changes within and outside the modified areas in an inpainted
image. Such features are extracted from gaze measurements using a simple To-
bii eye-tracker device. From each original image, twelve inpainted images are
generated from two inpainted methods, three patch sizes, and two multiscale pa-
rameters. One-hundred eleven original images were used in the experiments. The
proposed metric was compared to other existing metrics in terms of prediction
accuracy in estimating the preferences order ranking. The authors showed that
existing saliency-based IIQA metrics fail in ordering the inpainted images cor-
rectly due to the small significant difference in the saliency maps in the inpainted
regions. The results showed an improvement of at least 7% over other metrics
with 68.65% prediction accuracy. Table 4.2 provides summary of above-discussed

machine learning-based IIQA approaches.
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Table 4.2: A summary of machine learning based IIQA measures

Method Year Type Feature Description Regression

Voronin et al. 2014 NR DCT-based dictionary SVR, RBF! kernel
155, 158]

Voronin et al. 2015 NR LBP histograms SVR, EMD? kernal
[156]

Markio et al. 2016 NR RankingSVM,

[157] RBF kernel

I RBF (Radial Basis Function)
2 EMD (Earth Mover’s Distance

4.4 Image Inpainting Quality Assessment
Databases

With the tremendous increase of research activities in image inpainting algo-
rithms and applications, it was crucial to develop comprehensive databases for
performance evaluation and benchmarking of different inpainting methods. In
the literature, usually, the performance of an inpainting algorithm is evaluated on
own local images or using standard databases used for standard IQA problems.
Given the importance of image inpainting in multimedia applications, publicly-
available databases are needed for unbiased performance comparison. In this
regards, Tiefenbacher et al. provided, for the first time, a public database namely
the Technische Universitt Mnchen Image Inpainting Database (TUM-IID) [8], for
objectively estimating quality of inpainted images and performance evaluation of
different IIQA metrics. The database contained 17 reference images with diverse
texture types and resolution of 640 x 480 pixels stored in PNG format. Each
image in the database is inpainted using four state-of-the-art inpainted methods
and for two inpainting regions. Then, each inpainted image in the database was
rated by 21 observers using a Single Stimulus (SS) subjective experiment proto-

col, and the ratings from all observers were averaged to get a single score for each
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image. Some sample images, inpainting masks, and inpainted images from public
and private databases are shown in Figs. 4.11 and 4.12 respectively. In an effort
to summarize existing work in inpainting using different databases (private and
public), we present in Table 4.3, the most common experimental setups used in

the literature.

4.5 Discussion and Summary

The quality assessment of inpainted images is a complex and challenging problem.
It is entirely different from the classical IQA due to different artifacts not com-
monly observed in other applications. In this work, a critical review of the state-
of-the-art IIQA metrics is presented. The study reveals that among the existing
ITQA metrics, most of these require original image information. Whereas, image
inpainting is usually used in case of unavailability of reference or original image.
It is also observed that most of the metrics are designed and validated on private
databases consisting of a limited number of images. We have found only one pub-
lic database [8] with a limited number of images. Seeing the importance of this
evolving field, it is extremely desired to develop more public databases consisting
of a large number of inpainted images generated from various inpainted meth-
ods. This will help in providing fair comparisons among different IIQA metrics,
highlighting their shortcomings, and in introducing new efficient quality measures

well-correlated with the human perception of quality.
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Figure 4.11: Sample images from publicly available TUM-IID [8] database: (a-d)
Reference images, (e-h) inpainted images using [9], (i-1) masks used for inpainting.
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Figure 4.12: Sample local images used in [10] for inpainting quality assessment
(a) original image with mask, inpainted image using (b) [11], (c) [12], (d) [13]
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CHAPTER 5

CONCLUSION AND FUTURE
RECOMMENDATIONS

5.1 Conclusion

In this thesis, a number of contributions were made towards objective quality
assessment of image degradations, enhancement, and inpainting. Starting with
the quality assessment of distortion, two main contributions were made. A fast
NR-IQA metric using fast convolution operations was proposed. The advantages
of this technique are simplicity and easy hardware implementations for real-time
applications [23]. Another NR-IQA metric was proposed using higher order sin-
gular values to quantify blur in color images, which is an important component in
the spectrum of distortions. The spatial and inter-channel correlations, in color
images, were exploited using tensors to quantify the amount of blur more effi-
ciently and consistently rather than using the traditional luminance component
only or the individual color channels as in existing techniques [24].

For quality assessment of enhancement, an extensive literature review of exist-
ing state-of-the-art CEE measures was carried. In earlier studies [26, 25|, differ-

ent CEE metrics were analyzed to show how these metrics can help in evaluating
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artifacts due to CE processes. An NR metric was proposed based on mutual
information computed from the gray level co-occurrence matrix and tested with
two classical neighborhood-based CE methods. This study was extended to a new
dedicated CE database, to see how different CE evaluation measures are consistent
with human judgement of image quality enhancement [27, 160].

For quality assessment of inpainted images, a comprehensive and critical review
of the state-of-the-art IIQA metrics was presented. The review is the first of
its kind and is expected to help researchers working in this area to benchmark
new inpainting techniques, develop more robust methods for inpainting quality
assessment, and benchmark their results [161].

In addition to the above-mentioned major thesis contributions, additional re-
search work was carried out and some important contributions to the area were
made. These additional achievements are the use of Compressed Sensing (CS)
for image compression and extensive review of blind image forgery detection tech-
niques.

CS is a recently introduced approach for signal sampling, which allows recovery
of sparse signals using fewer measurements, sampled at less than the Nyquist rate.
In this regards, two novel image compression algorithms using CS were proposed.
The main contribution was the introduction of a sampling scheme based on the
optimal representations of the wavelet coefficients to form sparse vectors for CS
(162, 163].

Moreover, with the advent of advanced editing tools, we are witnessing a major
threat to the multimedia industry, it is becoming easier to alter images/videos in
a realistic than it was before. For this reason, a comprehensive literature review

of blind image tampering detection techniques was carried [3, 164].
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5.2 Future Recommendations

The field of IQA is very important and has diverse applications. Based on the
research work discussed in this thesis, the following future recommendations are

proposed:

e IQA for Medical Imaging: During the past few years, an increasing
trend of using e-Health services for remote patient diagnosis was observed.
The applications of medical images are Resonance Imaging (MRI), Com-
puted Tomography (CT), and ultrasonic imaging. Medical images may suf-
fer from different types of degradations due to acquisition, transmission or,
post-processing operations. It would be desirable to evaluate how image
distortions affect the analysis of medical images and the resulting diagnosis
rather than the traditional perceptual appeal of natural images. Moreover,
the NR-IQA metrics for medical images are important since the reference

image is usually not available.

e Extension of CEE Database: The proposed CEE database contains only
images enhanced from different CE methods. The database is built to eval-
uate the performance of CEE measures rather than the CE methods. It can

be further extended to support different applications such as:

— Adding more images related to color management. i.e., images en-
hanced from the methods to improve color appearance, illumination,
restoration or other methods used to address problems related to image

acquisition.

— Adding more images created from methods developed to reduce cod-
ing artifacts (i.e., ringing, blocking, blurring, quantization, etc.) for

performance evaluation of different compression algorithms.
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— Including more images created from different denoising methods to
evaluate the performance of different denoising methods. The noise
can be additive Gaussian white noise, multiplicative, impulse noise,

and specular noise.

— Adding more images with different enhancement artifacts (i.e., halo ef-
fect, saturation loss, color shift, excessive brightness change, etc.). This
can be used to investigate the capabilities of different CEE measures
in terms of sensitivity towards these CE artifacts. Currently, there is

no database of these kinds exists in the literature.

e Reduced Time Complexity: Among different challenges in the field of
IQA is the time complexity issue, which is very important for real-time ap-
plications. Most of the existing metrics perform well in terms of consistency
of their results with the human subjective scores, but they are very complex
and computationally inefficient. There is a need to develop objective IQA
metrics which are easy to implement and computationally efficient. One of
the possible solutions is to use reduced samples from compressed sensing
in the design of objective IQA metrics instead of using the whole image

information.

e Novel Applications: Although substantial research efforts have been put
in developing FR, RR, and NR IQA metrics for quantifying distortions
and/or enhancement, a very nice application would be to provide infor-
mation to users playing YouTube videos regarding the quality rating and

the types of distortions the video has been subjected to.

e IQA Software: It is extremely needed to develop a self-contained software
package based on a MATLAB graphical user interface (or other software)

which can be used for quality assessment of digital images using state-of-the-
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art IQA methods. The software should be fully configurable and it should
have the capability to easily add new metrics and to configure each metric
with the chosen parameters. It should rate the quality of a given test image
in terms of Excellent, Very Good, Good, Fair, and Poor quality image based
on the correlation calculated between the subjective scores and the selected
metric. The package should support researchers working in IQA filed in
terms of comparing the new metrics with other metrics integrated into the

software package.

Human Face Beauty Assessment: Digital image retouching is widely
used in fashion and multimedia industry, and a growing interest is witnessed
in developing tools like Adobe Photoshop, to make photos look more natural
and attractive. Although, there exists a lot of image retouching detection
methods, limited work has been carried in developing objective metrics to
quantify beautification or enhancement of human faces automatically. This
is particularly true for females in the entertainment industry. The quality
assessment of retouched photos without any information about the original
image is considered a challenging task, will be regarded as a significant

contribution, and can open new research directions.
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