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Digital images and videos are becoming a vital source of information for Quality

of Experience (QoE) and different multimedia related applications during recent

years. Unfortunately, images and videos are likely to undergo various types of

manipulations during different image processing operations. These manipulations

affect the visual quality of images and videos. Image quality is evaluated either

subjectively (done by humans) or objectively (using mathematical techniques). Ob-

jective measures are used for automatic monitoring of image/video quality, opti-

mizing the control parameters in different image processing systems and algorithms

(e.g., enhancement, restoration, inpainting, etc.). The formulation of objective

Image Quality Assessment (IQA) problems is, however, very challenging. The

task for No Reference (NR) IQA becomes even more challenging due to the un-

xxii



availability of the original image. Here, we present new frameworks for objective

assessment of QoE for digital image degradations due to different types of manip-

ulations including enhancement, distortions, and tampering.

In this work, we present a fast blind IQA metric for the images subjected to

different degradations and a blind metric to quantify Blur distortion in color im-

ages with excellent results. Furthermore, we also develop a quantitative measure

that can be used to detect some unpredictable side effects of Contrast Enhancement

(CE) process. We also introduce new measures based on multi-metric fusions for

Contrast Enhancement Evaluation (CEE). The study is the first of its kind, as

performance of CE algorithms is extensively discussed in the literature but the per-

formance of the CEE measures themselves is not well explained to date. Finally,

we conduct a critical study of existing measures developed for IQA of inpainting

applications, which can help researchers to benchmark new inpainting algorithms.

In summary, the thesis provides a suite of new algorithms for evaluating different

types of manipulations including distortions, enhancement, and image inpaint-

ing.
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 ملخص الرسالة

 محمد علي قريشي   الاسم:

 في التطبيقات المختلفةتقييم موضوعي لجودة الصور   عنوان الدراسة:

 هندسة كهربائية  التخصص:

 2016نوفمبر   :تاريخ المناقشة

لسنوات وخصوصا في ا المتعددة للوسائط تطبيقات مختلفة اكتسبت أهمية كبيرة فيمعالجة الصورة والفيديو 

. جودة والصور والفيديعلى جوده  وهذه المعالجات تؤثر ،مختلفةتتم بطرق  قد والفيديومعالجة الصور  الأخيرة.

 .في الحاسب متقدمة وتقنياتالصور يتم تقييمها عموما عن طريق الانسان او عن طريق استخدام خوارزميات 

 الإدراكبلها ارتباط كبير  ةامر ليس بالسهل. حيث أن تقييم الجود موضوعيةبطريقه  الصورةلكن قياس جودة 

ا تقييم جودة الصور يصبح صعب جد ،الخصوص وعلى وجه معقدة. هوطبيعتالبشري ولكن معرفتنا لهذا الادراك 

 .الأصلية عدم توفر الصورعند 

 . وتشمل كلةالمعالج ةالرقمي خوارزميات جديده للتقييم الموضوعي لجودة الصور ىتحتوي علالأطروحة هذه 

لا و جديدة وسريعة خوارزميةمل على تيش ،هذا العمل غيرها.ووالمشوهة ة المعدلللتحسين و ةمن الصور المعالج

م التموج ييأخرى لتقوخوارزمية لتقييم جودة الصور.  الأصليةالصور  عن ةومعرفه مسبقتحتاج الى مساعد جانبي 

يشمل طريقه جديده لقياس بعض المؤثرات الجانبية  وأيضا. أفضلللحصول على نتائج  الملونةالحاصل للصور 

في  مهجنة لتقييم كمية التحسينطرحنا طريقه جديده وأيضا  ن نوعية الصور.يذلك بصدد تحسو المتوقعة الغير

 الصور.

بقياس  ةوالمهتم مسبقا في البحث العلمي المستخدمة الطرقبين  ةبشكل حصري المقارنتتناول  الأطروحةوهذه 

 ةأن هذه الطرق استخدمت وبشكل كبير في القياس مع عدم وجود اي ورقة علميحيث  التحسن النوعي للصور.

 بينهم بشكل شامل.منشورة للمقارنة 

 الصور فيخاصة وب م التحسن في الصوريلتقي المستخدمةعلى دراسة تفصيلية للطرق  الرسالةشملت  ،وفي النهاية

في وتشكل نقطة مهمه للباحثين لتقييم الخوارزميات الجديدة.  ةهذه الدراسو ناقصه.ة ومبهم أجزاءالمحتوية على 

 لصوربها ا التي تمر المحتملةلخوارزميات لتقييم المعالجات مجموعة شاملة ل لأطروحةانقترح في هذه خلاصة ال

 . تحسين وتشويه وتغيرمن 



CHAPTER 1

INTRODUCTION

1.1 Background

With the rapid growth of Internet and advent of advanced image/video acquisi-

tion devices, digital images and videos are becoming an indispensable source of

information for our daily living, our quality of experience, and the different social

and economic aspects of society. Unfortunately, in practical applications, most

images/videos data are subject to visual quality distortions during data acqui-

sition, lossy compression, pre-processing (e.g. tone mapping, gamma correction,

etc.), transmission errors due to a noisy communication channel, and diverse post-

processing operations. Some of the distortions may even appear while securing

the information in images/videos (e.g., watermarking, stegnography, etc.) [3].

During image acquisition from digital cameras, blurring artifacts may be in-

troduced due to incorrect lens focus and noise may be added due to the shutter

opening for a long time. Other blurring artifacts are caused by the movement

of the camera and/or the object during image acquisition. Similarly, the space

required to store raw images and videos is large, these image and videos undergo

a compression process such as JPEG or JPEG2000, hence compression artifacts,

i.e., blocking due to JPEG, blurring, and ringing due to JPEG2000, are intro-
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duced. The different types of distortions affect the quality of images in a variety

of ways. These distortions severely degrade image quality, which results in inac-

curate perceptual judgment. As such, the provision of excellent quality of service

to end users continues to be a major challenge to network service providers.

The question arises, how to assess consistently, the quality of a given image?

The classical pixel-based measures like Mean Squared Error (MSE) and Peak Sig-

nal to Noise Ratio (PSNR), mostly used as quality indices, are unable to correlate

well with the perceptual visual quality of images/videos. International Telecom-

munication Union (ITU) defines QoE as: “Overall acceptability of an application

or service as perceived subjectively by the end users” [14]. Because of the above,

the focus has now shifted from measuring accuracy in multimedia delivery to the

provision of best-perceived multimedia quality to the end users. This prompted a

major interest among researchers in developing robust IQA techniques (subjective

and objective).

Subjective methods, as the name implies, involve humans in assessing image

quality. Human observers provide the most realistic opinion on image quality,

and the ratings are considered most reliable and accurate for perceived quality

in a well-controlled environment and for a large number of observers. The spec-

ifications related to the methodology for subjective experiments are provided in

ITU-R-BT.500-13 recommendations [15]. However, these methods are difficult to

conduct, they are environment dependent, expensive, time-consuming, and not

applicable for real-time applications [16]. For this reason, among others, we have

witnessed during the last decade the growing interest, among academics, consumer

electronics, IT industry, and in digital cinema etc., in developing automated or

objective assessment techniques of image quality.

Objective IQA methods use mathematical techniques to extract and use char-

acteristics features from the original and the distorted images and to use these
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features in quantifying image quality. The objective methods, depending upon

the availability of the original image, are grouped into Full Reference (FR), Re-

duced Reference (RR), and NR methods. In FR methods, the original image is

required in addition to the processed image (e.g., distorted, enhanced, compressed,

inpainted, etc.) and hence are not suitable for real-time applications, where the

original image is usually not available. Whereas, there is no need for the original

image in NR quality prediction methods. However, the original image information

is partially required in the form of some extracted features in RR methods, which

are seen as a compromise between FR and NR methods. Therefore, both RR and

NR methods are the representative candidates for quality assessment of digital

images for real-time applications.

The aim of objective quality assessment techniques is to predict perceived

image quality, the way a human observer perceives it. While this field is still

evolving, novel and better methods continue to emerge. It is also important to

make the best use of these tools in real-world applications. In recent years, IQA

has grown into a very active research sub-discipline under image processing.

The primary applications of image/video quality assessment techniques in-

clude:

� The monitoring and adjustment of image/video quality in real-time broad-

cast for delivering best quality image and video transmission.

� Benchmarking different sensing and acquisition technologies as well as in

optimizing different image processing systems and algorithms for a particular

task (e.g., image denoising, restoration, enhancement, inpainting, etc.).

� Parameter settings and optimization of different image processing systems

and algorithms, etc..

The notion of visual information fidelity or image quality is highly related to
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the way humans perceive distortions that may affect the quality of the observed

image. Therefore, the IQA dilemma, in its traditional sense, has been long con-

sidered as a distortion estimation problem [17]. This, of course, is an important

problem as it is desirable to have ready to use techniques to evaluate quality of the

images subject to distortions or artifacts that may result from processing, lossy

compression, or transmission. On the other hand, very few studies have been car-

ried on the performance evaluation of image enhancement methods (better quality

images rather than distorted images). Indeed, performing a quantitative evalu-

ation of image quality improvement methods is a very challenging task. This is

due to the absence of any objective measures able to account for some high-level

vision tasks and their interaction with low-level image analysis when assessing

perceptual quality in image enhancement [18]. This is also due to the difficulty in

determining the most appropriate visual features to be used in the design of an

overall image enhancement quality measure. Therefore, subjective evaluation is

still the most reliable approach to assess the quality of enhanced images.

Enhancing image contrast is of major interest in many applications ranging

from medical imaging [19], remote sensing [20], underwater imaging [21], defogging

[22], etc. A plethora of CE methods has been proposed in the literature, and very

few CE evaluations measures exist in this area. Moreover, there is no study

to test the reliability of these measures themselves. Given the importance of

CE in different applications, there is a need to investigate the performance of

these measures in terms of robustness and consistency with human judgment.

Moreover, there is no dedicated database for contrast-enhanced images so far.

The existing contrast-processed databases contain images where the quality of

processed images degraded due to the contrast manipulation. The conventional

IQA metrics originally designed to quantify distortions are not well adapted for

CE evaluation.
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Similarly, image inpainting which is considered as a type of image tampering

has also received considerable attention in different areas like the restoration of old

and damaged documents, computational photography, etc. [3]. Image inpainting

is a particular type of copy-move forgery used to restore missing or removing

missing pixels or pixel regions in an image/video to make it as close as possible

to the original or a given target image. Although a lot of research has been

carried in introducing robust inpainting algorithms, limited efforts have been put

in developing metrics for image inpainting quality evaluation. Among different

types of distortions, most commonly observed distortions are the blur around

edges and the contours in the restoration of large regions with missing pixels. The

curved edges are also not restored. The quality evaluation of inpainted images

is also important, with a limited research work has been carried in this regards.

The ultimate choice is the subjective evaluation by human observers, which is

time-consuming, complex, and challenging. In inpainting applications, usually the

reference image is not available. Therefore, it is becoming even hard to develop

NR inpainting quality evaluation metrics.

The objective IQA for different applications is the main focus of this thesis. In

particular, we provide a comprehensive study of different IQA metrics for distor-

tions, enhancement, and inpainting applications, complementing the limitations

of existing work in the literature. The work covers IQA for distortions, enhance-

ment, and a newly field inpainting. A number of contributions have been made

under each of these categories.

1.2 Research Objectives

NR-IQA continues to be a very challenging problem due to the unavailability of

original image information in various applications. The overall robustness of a
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given NR-IQA algorithm depends primarily on the selected set of features and

the way these are exploited for a particular IQA application. Currently, most of

the metrics are based on quality of distortions. Here, we focus on the metrics

mostly used to cover distortions, enhancement, and tampering (inpainting). More

specifically, the main objectives of the thesis are:

� To propose a fast and simple NR-IQA metric to quantify different distor-

tions.

� To propose an NR metric for blur prediction using color information for

natural images.

� To develop a quantitative measure that could be used to detect and control

some unpredictable side effects of image enhancement processes such as over-

shooting or halo effects.

� To develop a new database dedicated to CE images for performance analysis

of CEE measures rather than CE methods.

� To provide a comprehensive statistical analysis of the data collected from

subjective experiments on the above mentioned database.

� To perform a detailed analysis of the state-of-the-art CEE measures in

terms of correlation with the subjective evaluation over the above-mentioned

database as well as other publicly available CE databases.

� To propose a new metric for CEE and test it on the newly introduced CEE

database.

� To perform a critical analysis of existing state-of-the-art image inpainting

quality assessment measures.
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1.3 Major Contributions

The main contributions of the thesis are:

� Development of a fast NR-IQA metric using texture moments and a machine

learning approach [23].

� Development of an NR-IQA metric to quantify blur in natural images using

tensors [24].

� Development of an NR metric based on mutual information to quantify

global image contrast and to detect and control unpredictable side effects of

CE [25, 26].

� Development and testing of a new database dedicated to contrast evaluation

techniques. The quality rankings of enhanced images processed by different

state-of-the-art CE algorithms were obtained from a psychophysical experi-

mental setup [27].

� A detailed performance analysis of existing state-of-the-art CEE measures

correlated to the human perception.

� Development of a new measure based on the multi-metric fusion of CEE

measures strongly correlated with subjective human evaluation.

� A critical review of Image Inpainting Quality Assessment (IIQA) techniques

and the introduction of a new metric for IIQA.
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1.4 Thesis Organization

The rest of the thesis is structured as follows:

Chapter 2 provides details of objective quality assessment of digital images

degraded with different artifacts, discussion on subjective experiments, summary

of public image quality databases, evaluation measures and detailed descriptions

of the proposed NR quality metrics.

Chapter 3 covers the quality evaluation of CE methods in general. It starts

with the literature review of existing state-of-the-art CE evaluation measures,

discussion on existing contrast manipulated databases. The proposed dedicated

CE database and CE evaluation metric are discussed in detail.

Chapter 4 includes a critical review of the existing state-of-the-art IIQA met-

rics. It covers the literature review of image inpainting methods and quality

assessment metrics. The strengths and shortcomings of existing IIQA metrics

are highlighted and new guidelines for the development of new IIQA metric are

provided.

Finally, we conclude the thesis in Chapter 5 and provide a discussion on future

research perspectives.
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CHAPTER 2

IMAGE QUALITY

ASSESSMENT (IQA) FOR

DEGRADATION EVALUATION

2.1 Introduction

Digital images and videos are becoming an essential part of our quality of experi-

ence and provide a source of information for various social and economic aspects

of society. Over a simple one minute internet time, more than 3 million videos

are viewed on Youtube, over 500,000 photos are posted online, and more than

20 million messages are exchanged on WhatsApp, many of which containing im-

ages. Unfortunately, with this substantial amount of internet traffic and the lack

of control of content, the quality of images and videos posted suffers the most.

Human vision is considered the best apparatus for perceiving and assessing im-

age/video quality. Current research efforts aim at developing algorithms that try

objectively to mimic the Human Visual System (HVS). Traditionally, image/video

quality assessment methods have been grouped under two broad classes: Subjec-

tive and Objective methods (see Figure 2.1). Under each of the classes, a number
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Image Quality Assessment methods

Subjective methods Objective methods

Reduced-ReferenceFull-Reference No-Reference

Figure 2.1: Classification of IQA methods

of approaches have been developed. These are discussed in more details further.

2.2 Subjective IQA Methods

Subjective methods involve human judgment of perceived quality, hence are con-

sidered as more reliable methods for real life applications. The most widely used

recommendations are the ITU-R-BT.500.13 [28], which provide detailed explana-

tions of materials, methods, and environment used in experimental testing. The

ITU-R-BT.500.13 also provides discussion on statistical analysis of raw data col-

lected from the subjective experiments. The subjective experiments are direct

methods in which different subjects (observers) rate the quality of a given image.

These methods need careful design considerations, well-controlled environment,

and involve at least 15 observers to be meaningful [28]. However, these are time-

consuming and cannot be used for real-time applications. They are generally

used in the benchmarking of different objective image quality evaluation mea-

sures. Subjective methods can be further grouped based on the basis of rating

and ranking [16]. In rating-based methods, participants assign a score to each

stimulus presented to them either on an interval scale (0 − 100) or categorical

scale (Excellent, Good, Fair, Bad, and Very Bad). Based on the display of the
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original image along with the test image, these methods are further classified

into Single Stimulus (SS) and Double Stimulus (DS). So we have Absolute Cat-

egory Rating (ACR) where only a single image is rated on a scale of discrete

levels (e.g., 5−level scale), Double Category Rating (DCR) where both original

and test images are displayed simultaneously and observers rate the test image

on a discrete degradation scale based on the perceived quality as compared to

the original image. The DCR methods are also called Double-Stimulus Impair-

ment Scale (DSIS). Similarly, interval-based rating methods are also grouped into

Single-Stimulus Continuous Quality Evaluation (SSCQE) and Double-Stimulus

Continuous Quality Scale (DSCQS). In SSCQE, only a test image is shown to

the observers and they are asked to rate the image quality using a slider over

a continuous scale. Whereas in DSCQS, both original and test images are dis-

played in random order and the observers are unaware of the original image and

they are asked to rate the quality of both images on a continuous scale. Between

the category and interval rating based methods, the main problem in the inter-

val (continuous) rating scales, is that people have their own perceptual judgment

scales in their mind, hence it is very difficult to obtain an unbiased rating if the

number of points on the scale is very large.

The ranking-based methods can be grouped into rank order-based methods

and Pairwise Comparison (PC)-based methods. In rank order-based methods,

different stimuli are displayed at once and the observers are asked to rank those

according to their perceived quality judgement. This protocol is time-efficient;

however, it is sometimes difficult to differentiate among the stimuli, particularly

when the number of stimuli is more than three or four and the differences among

the stimuli are also very small. Whereas, in PC-based methods, the stimuli are

presented to the observers in pairs, and the observers choose whether stimuli A

is better than stimuli B or vice versa, or both stimuli are alike. In this case, each
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stimulus is compared with the other. The PC-based methods are simple because

only one stimulus is compared with the other, and they are effective when the

differences between the stimuli are very small compared to the rank-order or

rating based methods.

The pairwise ranking raw data can be statistically analyzed in terms of coef-

ficients of transitivity and consistency to sort out the bad participants as well as

pathological stimuli [29]. Moreover, the pairwise ranking data can also be easily

converted to rating scores. The PC ranking data can further be extended for more

stimulus and images. However, since each stimulus is compared in pairwise man-

ner with the others, the number of comparisons increases with the stimulus. For

M stimuli (or methods in our case), the maximum number of pairwise compar-

isons becomes
(
M
2

)
= M(M−1)

2
. An overview of different subjective methodologies

used in IQA applications is shown in Figure 2.2. Note that in both rating and

ranking based subjective experiments, the aggregated scores from all observers

are considered as the overall ratings or ranking scores for each image.

Subjective methods are directly based on human visual perception, which

makes them the most appropriate choice for image/video quality assessment; how-

ever, they exhibit a number of limitations. Human perception is dependent upon

observers' mood, viewing distances, fatigue, and lighting conditions. These meth-

ods are also difficult to design, expensive, time consuming, and not recommended

for real-time applications [30]. For this reason, significant research efforts have

been made to develop objective IQA, metrics which correlate well with the rating

obtained from human observers. In Section 2.5, we will discuss in details different

objectives IQA metrics. Before that, we will give an overview of different subjec-

tive image quality databases and various performance evaluation measures used

to validate the objective metrics.
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Subjective
Experiment

Ranking-based Rating-based

Rank-order

Pairwise

Forced choice

Non-Forced
choice

Similarity
judgement

Categorical

Interval

SSCQE

DSCQS

ACR

DCR

Figure 2.2: Classes of subjective methodologies used for quality assessment

2.3 IQA Databases

With the increased growth of research activities in IQA, it was important to

introduce benchmarking IQA ground truth databases to be used for testing the

different IQA metrics. They are also useful in the development of new metrics.

Currently, many publicly available IQA databases along with the subject ratings

are available. However, most of these are dedicated to IQA for degradation in

image quality [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. A brief description of

these databases is given below.
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Laboratory for Image and Video Engineering (LIVE) Database [31]:

The database contains 29 original images, 779 processed images which are dis-

torted with six distortions up to five levels. The distortions include compression

artifacts (JPEG and JPEG2000), blurring, white Gaussian noise, and fast fad-

ing. The quality ratings are provided as Difference Mean Opinion Score (DMOS)

scores in the range (0− 100).

Categorical Subjective Image Quality (CSIQ) Database [33]: The

database was developed at Oklahoma State University, USA, and consists of 30

reference images and 866 distorted. Each original image is distorted using six

different types of distortions with four to five distortion levels. The distortions

are JPEG and JPEG2000 compression, Gaussian blurring, global contrast decre-

ments, additive white and pink Gaussian noises. The ratings are given as DMOS

scores on the scale (0− 1).

Tampere Image Database 2008 (TID2008) [32]: The database was de-

veloped at Tampere University of Technology, Finland. It contains 25 reference

images, 1700 distorted images, and 17 distortions with four levels. The different

distortions include noise distortions of various types (additive Gaussian, masked,

spatially correlated, high frequency, impulse, and non-eccentricity pattern noise),

Gaussian blur, image denoising, compression artifacts (JPEG, JPEG2000), trans-

mission errors in compression (JPEG, JPEG2000), contrast artifacts, intensity

shift, and variable intensity distortion at block level. The subjective experiments

were carried out in three different countries both in the lab and using the internet.

The quality ratings are given as Mean Opinion Score (MOS) scores in the range

(0− 9).
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Tampere Image Database 2013 (TID2013) [38]: The database is an exten-

sion of the TID2008 and is the largest image quality database consisting of totally

3000 distorted images, 25 reference images, 24 different types of distortions and

five distortion levels. The quality ratings are given as MOS scores in the range

(0.2− 7.3).

Image and Video Communication (IVC) Database [34]: The database

consists of 10 reference images and 185 distorted images. The distorted images

are created with four different types of degradations at five levels. The distor-

tions include blurring, compression (JPEG and JPEG2000), and Local Adaptive

Resolution (LAR) coding. The subjective ratings are given as MOS scores in the

range (1− 5).

Media Information and Communication Technology (MICT) Database

[37]: The database was developed by the University of Toyama, Japan. It con-

sists of 14 original images and 168 distorted images. The database is limited

to compression and communication artifacts and contains images distorted with

JPEG and JPEG2000 compression. The ratings are provided as of MOS scores in

the range (1− 5).

Colourlab Image Database: Image Quality (CID:IQ) [39]: This database

is a recently developed one dedicated for IQA for distortions. The subjective ex-

periments were performed in five different countries both in the laboratory envi-

ronment and through the internet. The images in the database are distorted by

compression artifacts (JPEG and JPEG2000), blurring, Poisson noise, and two

gamut mapping methods.
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Wireless Imaging Quality (WIQ) Database [35, 36]: This database con-

sists of seven reference images and 80 distorted images, in grayscale and JPEG

format. The artifacts are due to the simulated wireless channel. The ratings are

provided as DMOS in the range (0− 100).

Cornell-A57 Database: The database consists of only three gray-scale origi-

nal images and 54 distorted images. The six different types of artifacts are due to:

additive white Gaussian noise, Gaussian blurring, quantization of 5-level wavelet

high-frequency coefficients, additive white Gaussian noise, JPEG compression,

and two JPEG2000 compression artifacts due to compression without visual fre-

quency weighting and quantization based on dynamic contrast. The subjective

ratings are provided as DMOS scores in the range (0− 1).

Camera Image Database (CID2013) [40]: This is a new database consisting

of 480 real images captured by 79 cameras in six image groups. The database was

evaluated by 188 observers.

A comprehensive summary of the above-mentioned databases including the

number of original and distorted images, distortion types, levels of distortions,

description of subjective experiments, and rating scores, is presented in Table 2.1.

2.4 Performance Evaluation Measures

With the diversity in the approaches used in measuring quality of images or image

distortions come across the challenge that of normalizing the scores to a certain

standard range. An important phenomenon to be considered in this mapping

is the non-linearlity characteristics of human subjective scores. To account for

these non-linearities in the subjective scores due to human opinions, the predicted

objective scores need to be scaled using a nonlinear mapping function. A 5-
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parameter non-linear logistic fitting function is generally used as was discussed

in details in [42]. The fitted objective scores, after nonlinear mapping, along

with the subjective ratings (MOS/DMOS), are utilized for the estimation of few

performance evaluation measures. The 5-parameter non-linear logistic function

generally used is given as follows:

q = β1

[
1

2
− 1

expβ2(x−β3)

]
+ β4x+ β5 (2.1)

where q represents the fitted objective score after non-linear mapping, x is the

calculated objective quality score, and βk for k = 1, 2, 3, 4, 5 are the fitting pa-

rameters. These parameters are computed by minimizing the MSE between the

subjective scores (MOS/DMOS) and the fitted values.

The Video Quality Expert Group (VQEG) [43] recommended some measures

to validate the performance of objective image quality metrics. A brief description

of commonly used performance evaluation measures is now given:

a. Pearson Linear Correlation Coefficient (PLCC) is used to measure

the prediction accuracy (i.e. the ability to predict the subjective score with low

error). It determines the strength of linear regression between the subjective

scores (MOS/DMOS) and the objective scores after performing nonlinear regres-

sion analysis on the subjective scores. Its value ranges from −1 to +1 and it is

calculated as:

PLCC =

∑N
i=1(si − s)(qi − q)√∑N

i=1(si − s)2
∑N

i=1(qi − q)2

(2.2)

where si is the ith subjective score, qi is the predicted objective score (after non-

linear regression analysis) for the ith image/video, s and q are the averages of

subjective and objective scores, respectively, for the whole database, and N is the
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total number of images (or videos).

b. Spearman Rank Order Correlation Coefficient (SROCC) is used to

measure the prediction monotonicity between metric scores and subjective scores

(i.e., the degree to which the predicted scores agree with the relative magnitudes

of subjective scores). The subjective scores, s, and the objective scores, x, are

sorted and converted into their ranks and SROCC is calculated using Eq. (2.3).

Since ranks are used in calculating the SROCC and the relative distance between

the data points is ignored, the resulting score is independent of the non-linear

mapping. Its value ranges from −1 to +1. The SROCC values close to +1

indicate that objective scores are in strong agreement with human perception, −1

means perfect disagreement and 0 means no correlation exists. The SROCC is

computed as follows:

SROCC = 1− 6
∑N

i=1 d2
i

N(N2 − 1)
(2.3)

where di is the difference between the ranks of ith image subjective and objective

scores.

c. Kendall Rank Order Correlation Coefficient (KROCC) is a non-

parametric rank correlation metric and is calculated as:

KROCC =
2(Nc −Nd)

N(N − 1)
(2.4)

where Nc and Nd are the numbers of concordant and discordant pairs, respectively,

in the list.
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d. Root Mean Squared Error (RMSE) is used to measure the overall

performance of the IQA metric and is calculated as .

RMSE =

√√√√ 1

N

N∑

i=1

(si − qi)
2 (2.5)

The objective scores after non-linear regression analysis are used in the calcu-

lation of the RMSE and PLCC.

In short, the evaluation metrics SROCC and KROCC are used to measure the

prediction monotonicity whereas PLCC and RMSE assess the prediction accuracy

of the objective quality assessment methods. Large values of SROCC, KROCC,

and PLCC, while small values RMSE correspond to close relationship between

the objective scores and the subjective ratings indicating the power of different

objective IQA metrics.

2.5 Objective IQA Methods

With the above definitions and frameworks, we are moving to discuss the different

approaches that have been proposed in the literature to measure image quality. As

outlined earlier, objective methods, overcome the drawbacks of subjective methods

by using mathematical techniques for extracting and using characteristic features

from the reference and/or distorted images/videos. These features are then used to

quantify quality. Objective quality assessment methods aim to predict perceived

image/video quality score with high level of correlation with the subjective scores

given by human subjects, which are the ultimate users in most image processing

applications. Depending upon the availability of a reference image/video (i.e. an

image/video with perfect quality), the objective methods can be grouped into FR,

RR, and NR methods (see Figure 2.1). In FR methods, the reference image/video
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is required in addition to the distorted image/video while there is no need for

the reference image/video to predict the quality of a distorted image/video in NR

methods. The reference image/video information is partially needed in the form

of some extracted features in RR methods, which is seen as a compromise between

FR and NR methods [44].

In recent years, more efforts have been put in developing IQA metrics that

consider the different properties of the HVS. FR algorithms have attracted the

most attention over the last decade. The reader can check the following references

for FR-IQA algorithms [45, 46, 18]. Figure 2.4 shows the block diagram for a

typical FR-IQA system model. FR-IQA methods are applicable in different off-

line (stored) multimedia applications and IQA of this type is considered as almost

a solved problem. We will see later that the biggest challenge resides in assessing

quality when only the distorted image is available.

2.5.1 Full-Reference IQA Methods

In early research, the most widely used IQA methods compute visual quality by

measuring pixel distortion, e.g., the MSE and the PSNR [47]. In pixel-based

methods, the reference and the distorted images are compared on a pixel-by-pixel

basis. The MSE is estimated as follows:

MSE =
1

MN

M∑

i=1

N∑

j=1

[Ir(i, j)− Id(i, j)]2 (2.6)

where Ir, Id are the reference and the distorted images respectively.

PSNR (dB) = 10 log10

(
2552

MSE

)
= 20 log10

(
255√
MSE

)
(2.7)

The main advantages of PSNR and MSE are simplicity, ease in implementa-

tion, and clear physical meanings. However, such pixel-based methods were widely
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criticized, for not correlating well with human visual perception. In Figure 2.3,

we show a number of images affected by different types/levels of distortions but

exhibiting the same value of the MSE.

Figure 2.3: Example of distorted images with similar MSE

FR-IQA methods have also been developed using image structure information.

The most widely used FR metric is the Structural SIMilarity (SSIM). The SSIM

assumes that natural images are highly structured, and the HVS perception is

sensitive to structural distortions. Structural methods are based on comparing

the structures of reference and distorted images and the structural degradation

is considered as the quality score for the distorted image. In the SSIM [48], 3

types of similarities i.e. contrast similarity, structural similarity, and luminance

similarity, are calculated in the spatial domain for overlapping blocks with one

pixel overlap and using a sliding window approach. The product of these three

similarities gives a local similarity map. The three components i.e., luminance
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similarity, contrast similarity, and structural similarity are calculated using the

following expressions:

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1

(2.8)

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2

(2.9)

s(x,y) =
σxy + C3

σxσy + C3

(2.10)

and finally, the SSIM is computed as:

SSIM(x,y) = [l(x,y)]α[c(x,y)]β[s(x,y)]γ (2.11)

where µx, µy, σx,σy, σxy are the mean, standard deviation and covariance between

overlapping blocks of images x and y. The constants C1, C2, and C3 are used to

avoid instability (for zero denominator). The overall quality score is obtained by

averaging the local similarity scores over N blocks:

SSIM =
1

N

N∑

i=1

SSIM(i) (2.12)

The SSIM popularity is mainly due to its simplicity and computational effi-

ciency. Other variations of the SSIM include the MS-SSIM [49] using a multi-scale

approach, the CW-SSIM [50] using complex wavelets, and the DW-SSIM [51] us-

ing discrete wavelets, etc. The major problem with the SSIM is that it does not

perform well on blurred images. To solve this problem, a number of gradient-

based approaches were introduced considering the fact that edges contain most of

the image structure information.

Among the most popular gradient based structural FR-IQA methods is the

Feature Similarity Index Metric (FSIM) [52] is the popular one. It uses the Phase

Congruency (PC) and the Gradient Magnitude (GM) as low-level features for full
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reference objective assessment of image quality. The motivation was that percep-

tual image quality depends on salient low-level features (image phase information)

and these low level features change with distortions. Phase congruency is shown

to be invariant to contrast changes, however HVS perception is highly dependent

upon image contrast. To overcome this problem, image gradient (using the Scharr

gradient operator) is used to capture the contrast as well as structure changes due

to distortion. The phase congruency similarity map and gradient similarity map

are computed as:

SPC(i) =
2.PCr(i).PCd(i) + C1

PC2
r (i) + PC2

d(i) + C1
(2.13)

SG(i) =
2.Gr(i).Gd(i) + C2

G2
r (i) + G2

d(i) + C2
(2.14)

where i represents pixel location and Gr, Gd are the gradients of the reference and

the distorted image.

The local similarity map due to both phase congruency and gradient is ob-

tained by multiplying both terms:

S(i) = SPC(i).SG(i) (2.15)

The phase congruency value at each image location represents the importance

of visual perceivable difference and used as weight in computing the overall quality

score. The weights are calculated as:

PCw(i) = max(PCr(i),PCd(i)) (2.16)

and finally the FSIM is given as:

FSIM =

∑N
i=1 S(i).PCw(i)∑N

i=1 PCw(i)
(2.17)

24



Another structure-based FR-IQA method is the Visual Saliency Index (VSI)

[53] based on features calculated from visual saliency information of the reference

and distorted images. Features based on image gradient map (using Scharr gradi-

ent operator) are also calculated, as visual saliency map is invariant to contrast.

The local similarity map is obtained by multiplying both visual saliency map and

image gradient map.

Recently, Xue et al. proposed the Gradient Magnitude Similarity Deviation

(GMSD) [54] for FR-IQA using only the image gradient information (using the

Prewitt gradient operator) to capture contrast and structural changes in image

pixels occurring due to different distortions.

From the above mentioned methods, it is obvious that most of the FR-IQA

assessment metrics are calculated in two steps. First, a local image similar-

ity/dissimilarity quality map is obtained. The local quality map reflects the local

quality of each image block in the distorted image. Then, an overall quality score

for a given image is computed from these local maps in an all-important pooling

stage. Among different pooling strategies, average pooling is the most widely used

to obtain the overall score [48]. The main disadvantage of average pooling is that

equal weights are assigned to all pixels. However, different distortions can affect

different areas in an image based on the salient information and can give vary-

ing annoyance level (produced due to distortion). Moreover, edge pixels can give

more visual information than pixels in smooth areas. Hence, HVS has different

response in different areas/locations of an image while this phenomenon is totally

ignored in average pooling. To overcome this problem, weighted averaging is used.

In FSIM [52], the phase congruency value at each location in an image is used to

weight the local quality score, while in VSI [53] local saliency map is used as a

weighting factor for the local quality map to get overall score.

A new pooling strategy was discussed in the GMSD [54]. The standard de-
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viation of local quality map is used as overall quality score for an image. The

idea is that natural image contain different local structures. The degradations

occur in these local structures due to different distortions, are not the same. In

JPEG and JPEG2000, for example, the most prominent distortions are blocking,

blurring and ringing. Blurring is prominently visible in textured areas rather than

flat areas in an image. Blocking causes high quality degradations in smooth ar-

eas compared to textured areas. The global variation of image local quality (i.e.

standard deviation of local quality map) is the best candidate for overall qual-

ity score for an image degraded due to multiple distortions. The different types

of pooling strategies proposed for estimating the overall quality score from local

quality scores are summarized in Table 2.2, where s represents local quality score

at each pixel location, and N is total number of image pixels.

Before leaving the subject of FR-IQA techniques, it is worth noting that liter-

ature in this topic is very extensive. For this reason, we focused here on relevant

and most common approaches. The reader is encouraged to refer to the following

review/survey papers for more details [45, 46, 18].

In summary, FR-IQA methods are applicable in different off-line (stored) mul-

timedia applications and IQA of this type is considered as almost a solved problem.

We will see later that the biggest challenge resides in assessing quality when only

the distorted image is available.

2.5.2 Reduced-Reference IQA Methods

In most practical applications, the reference image is not available. However, some

of the reference image/video information may be available in the form of some

extracted features [44]. Such scenario is called Reduced Reference IQA. Applica-

tions of RR-IQA techniques include real-time broadcast, tracking degradations in

image quality to control the streaming resources, etc. Figure 2.5 shows the block
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Table 2.2: Different pooling strategies used to compute the
overall quality score

Pooling
strategy

Quality score (Q) Examples Remarks

averaging 1
N

N∑
i=1

qi SSIM [48] Easy to compute. HVS percep-
tion at different areas on an im-
age is not well considered.

weighting

N∑
i=1

qiwi

N∑
i=1

wi

FSIM [52],
VSI [53]

HVS perception is based on vi-
sual salient information, results
are more correlated to subjec-
tive scores

standard
deviation

√
1
N

N∑
i=1

(qi − q)2 GMSD [54] Effective for image degraded
due to multiple distortions

– qi represents local quality score at index i in local quality map.
– wi represents weight for the local quality score at index i
– N represents total number of points in local quality map.

diagram for a typical RR-IQA system model.

In this figure, a reference image is sent to the receiver via a communication

channel. The features are extracted from the reference image at the sender side

and transmitted to the receiver through an ancillary channel. The reference image

experiences distortion in the encoding stage as well as in the transmission channel.

At the receiver, features are extracted from the distorted image similar to the

Reference
Image

Encoder
Communication

Network
Decoder

Distorted
Image

FR-IQA
Metric

Figure 2.4: Block diagram of a typical FR-IQA system model
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Communication
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Decoder
Distorted

Image

RR-IQA
Metric

Figure 2.5: Block diagram of a typical RR-IQA system model

Reference
Image

Encoder
Communication

Network
Decoder

Distorted
Image

NR-IQA
Metric

Figure 2.6: Block diagram of a typical NR-IQA system model

sender side. The features from both reference image and distorted image are used

to estimate the overall quality score for the distorted image.

Wang et al. in [55] mentioned that for RR-IQA, the features should be per-

ceptually relevant and sensitive to various distortions. They proposed a RR-IQA

method based on the steerable pyramid wavelet transform and the natural scene

statistics model. The image quality is estimated using Kullback-Leibler diver-

gence between the marginal probability distributions of the wavelet coefficients

from the reference and the distorted images.

In [56], Gao et al. proposed a framework for RR-IQA to mimic the HVS using

multi-scale geometric analysis (MGA), Contrast Sensitivity Function (CSF), and

the Webers law of Just Noticeable Difference (JND). In [57], Xue et al. proposed

a RR-IQA algorithm based on modeling the subband coefficients using steerable

pyramid transformations. The strongest coefficient edge-map corresponding to
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the image gradient is built at each scale. The histogram of the SCM (Strongest

Coefficient Map) is modeled with a Weibull distribution. The shape parameters of

the Weibull distribution at different scales are used as RR features. The final qual-

ity score is calculated as a summation of geometric mean of absolute deviations

and relative deviations of the reference and distorted image features.

In [58], Chetouani et al. proposed neural network based RR-IQA method.

The statistical features are extracted in the wavelet domain from both reference

and distorted images. The reference and distorted images are transformed using

a 3-level wavelet decomposition. The edge-map for both the reference and the

degraded image at each decomposition level is created as follows:

Edge-Map(i) =
√

LH(i)2 + HL(i)2 + HH(i)2 (2.18)

where LH, HL and HH are the horizontal, vertical and diagonal details subbands of

an image at each decomposition level. For a 3-level wavelet decomposition, three

edge-maps are created for each reference and distorted image. The mean and

standard deviations are calculated from each edge-map for both the reference and

the distorted image giving a total of 12 features (6 each for reference and distorted

image). These features along with DMOS, are used for training a neural network.

The trained model is then used as quality prediction of distorted images. The

RR-IQA methods are the most appropriate choice for predicting quality closest to

human subjective score compared to NR-IQA but they are limited for only those

applications which require the reference image (in some form).

2.5.3 No-Reference IQA Methods

Even though both FR- and RR-IQA algorithms correlate well with subjective

scores, NR-IQA is a more practical and challenging due to the unavailability of
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reference image. Note that, often reference images are not available, e.g., tele-

vision transmission; and hence NR-IQA is desirable, despite its computationally

challenging nature. Figure 2.6 shows the block diagram for a typical NR-IQA

system model. NR-IQA algorithms can be grouped into a) Distortion specific,

b) Machine learning based, and c) Natural Scene Statistics (NSS) based. These

categories are display in Figure 2.7.

A. Distortion-Specific based NR-IQA Techniques:

Distortion specific NR-IQA can only predict image quality with a certain type for

distortion by extracting distortion aware features and hence have a limited scope

[44].

The methods for blurriness detection, for example, are classified as spatial,

transform, and hybrid methods. The spatial methods are further divided into edge

based and non-edge based methods. Marziliano et al. [59] estimated blurriness

effects based on average edge widths. Ong et al. [60] estimated blurriness effects

based on edge widths in both the edge direction and its gradient direction. Among

non-edge based spatial domain methods, Wee et al. in [61] estimated sharpness

based on the largest eigenvalues of the covariance matrix of the image pixels. Zhu

et al. in [62] estimated sharpness based on the Singular Value Decomposition

(SVD) of the local image-gradient matrix. These metrics were also shown to

perform well in the presence of noise.

Among the transform domain methods, Marichal et al. [63] estimated blur-

ring effects based on the histogram of nonzero Discrete Cosine Transform (DCT)

coefficients for 8 × 8 blocks. Similarly, Caviedes et al. [64] estimated sharpness

based on the kurtosis of the DCT coefficients computed for 8 x 8 block centered

at edge pixels. The overall blur estimate is computed as average of local kurtosis.

The problem with edge-based blur estimation methods is that they fail in case
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of highly blurred images. To overcome this problem, Chetouani et al. in [65]

proposed a metric for blur estimation without using the image edge information.

The blur index is computed from the frequency domain radial analysis applied to

both distorted image and its filtered version. While Vu and Chandler [66] esti-

mated sharpness based on the weighted average of the log energies of the DWT

subbands.

Among the hybrid methods, Vu and Chandler [66] estimated sharpness effects

based on a combination of spectral and spatial measures. The spectral measure

uses the slope of the local magnitude spectrum, and the spatial measure uses the

local total variation of pixel values; these two measures were then combined using

a weighted geometric mean to generate an image sharpness map, which averaged

into a scalar indicating overall perceived sharpness.

In NR-IQA for JPEG compression artifacts, the general approach involves

measuring edge strength at block boundaries, and then using this measure to esti-

mate the visibility of the blocking, often based on masking. The image quality is

then determined based on this estimate of perceived blockiness. These algorithms

consider blocking as the most significant artifact originating from the compression

process, so they first extract features to characterize the relative magnitudes of

blocking artifacts.

In [67], Wang et al. proposed an efficient metric for blockiness distortion due

to JPEG compression. They used the average absolute differences across the block

boundaries and within block boundaries to estimate the blocking in JPEG images.

For JPEG2000 compression artifacts, the general approach involves measur-

ing the amount of blurring or edge-spread by using edge-detection techniques.

Other methods have also been developed based on natural-scene statistics. In

[68], Sheikh et al. proposed to use the wavelet subband probabilities. The fea-

tures extracted from these probabilities are used to estimate quality score using a
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nonlinear fitting function. Zhang et al. [69] used kurtosis of the DCT coefficients

as features for no-reference quality assessment of JPEG 2000 compressed images.

The authors demonstrated the effectiveness of the metric in terms of parameter-

free operations and computational efficiency. Other approaches can be found in

[45, 46, 18].

B. Non-Distortion specific NR-IQA methods:

To handle all types of distortions, these algorithms are divided into machine learn-

ing based and natural scene statistics based.

B1. Machine Learning based NR-IQA Techniques: The algorithms be-

longing to this class, use machine learning based approaches for no-reference image

quality assessment. Machine learning methods are powerful mathematical tools

for solving prediction problems and provide good approximations of functional re-

lationship between known sets of input and output data. This helps in predicting

image quality scores that are close to that of the HVS. In [70], Tong et al. used

a machine learning approach for NR-IQA based on neural network. The network

was trained for both high-quality and low-quality image classes and binary clas-

sification was used to predict the quality of the distorted image by estimating the

probability, the distorted image belongs to these two classes.

In [71], Tang et al. used low-level texture and natural scene statistics features

based on complex wavelet transform for NR image quality assessment (LBIQ).

These features are used for training three different regression networks and a final

quality score is calculated as a weighted combination of quality estimation from

the three regression models.

In [72], Li et al. presented a NR image quality assessment algorithm using a

Generalized Regression Neural Network (GRNN). The mean and entropy of the
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phase congruency map, and the entropy and gradient of the distorted image are

used as features. The final quality score is calculated by approximating the func-

tional relationship between these features and subjective scores using the GRNN.

In [73], Ye et al. presented the CBIQ-I and CBIQ-II algorithms based on visual

codebooks. The Gabor features are extracted from local image blocks to form

the codebooks. The quantized features are then used to estimate image quality

via either an example-based regression or support-vector regression. Further im-

provement in CBIQ-II was discussed by Ye et al. in [74], by using features from

unsupervised learning instead of Gabor features which are shown to be effective

across different distortions.

B2. Natural Scene Statistics based NR-IQA Techniques: NSS-based

approaches assume that natural scenes possess certain statistical properties and

that the presence of distortion will affect these properties. In this category, the

perceptual relevant features are used to estimate the quality of the distorted image.

In these methods, a two stage classification/regression network is generally used

for quality prediction. In the classification stage, the distortions are characterized,

and in the regression stage, the features along with the DMOS scores of training

images are used to train the regression network.

In [75], Moorthy et al. presented the BIQI algorithm to estimate image quality

using statistical features from a 9/7 Discrete Wavelet Transformation. The wavelet

subband coefficients are modeled by Generalized Gaussian distribution, and mean

and variance of the distribution are used as features. A feature vector of 18× 1,

is created using (3 scales × 3 orientations × 2 parameters). The same features

are then used in the classification stage to characterize the distortion, and then

in regression stage to estimate image quality.

To improve the performance of BIQI [75], Moorthy and Bovik in [76], presented
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the DIIVINE algorithm for NR-IQA using statistical features extracted from dif-

ferent subband coefficients using a steerable pyramid transformation across 2

scales and 6 orientations. A feature vector of dimensions 88 × 1 was used for

quality prediction using classification followed by a regression stage.

In [77, 78], Saad et al. proposed a no-reference IQA technique called BLind Im-

age Integrity Notator using DCT Statistics (BLIINDS). Its two variants BLIINDS-

I and BLIINDS-II use DCT statistics. In both BLIINDS-I and BLIINDS-II, the

DCT is calculated for image blocks of 17×17. The DCT contrast and DCT-based

structural features are extracted for each DCT image block. The DCT contrast is

the average of the ratio of the non-DC DCT coefficient magnitudes in the image

block normalized by the DC coefficient of that block. The DCT-based structure

features are based on the kurtosis and anisotropy of each DCT block. The per-

formance of BLIINDS-I is improved in BLIINDS-II using a generalized statistical

model of local DCT coefficients and the model parameters are used as features

to estimate image quality. The problem with these metrics is that they do not

perform well for JPEG and FF (fast fading) distortions in the LIVE2 dataset.

In [79], Mittal et al. presented the BRISQUE algorithm, for real-time NR

image quality assessment using spatial domain image statistics. 18 features are

extracted for each of 2 image scales and total 36 features are used for distortion

classification followed by regression to predict image quality.

In [80], He et al. proposed a blind IQA metric based on sparse representation

of NSS features calculated from 4-level details subband coefficients. The NSS

features are mean, variance and entropy of the wavelet subbands at different

scales.

Instead of using transform domain features, Xue et al. in [81], proposed a NR

image quality assessment method based on joint statistics of contrast features i.e.

Gradient Magnitude (GM) and Laplacian Of Gaussian (LOG). The results are
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comparable to other state of art NR-IQA methods.

NSS based NR-IQA algorithms work only with natural images; as under such

distortions, images appear to be unnatural. However, modeling of natural images

is a difficult task and does not apply to a good percent of images commonly used

in practice.

Another approach for image quality assessment using the NR-IQA metrics was

discussed by Chetouani et al. in [82]. The distortions were classified using Linear

Discriminant Analysis (LDA) and FR-IQA metrics were used as features. Finally

the quality is estimated using the most appropriate IQA metric.

A number of surveys have been carried by different researchers, some insight

into the advantages and disadvantages of different techniques can be found in [45,

46, 18]. We have made two contributions towards objective quality assessment of

image degradations. These are discussed in more details in the following sections.

2.6 A Fast No-Reference IQA Metric using

Law’s Texture Moments

In this work, a computationally efficient NR-IQA algorithm is proposed that uses

basic filtering operations in spatial domain. The features are calculated using

Laws’ filters proven to be efficient in texture analysis followed by range filtering.

The overall quality score of an image is predicted using a simple GRNN (GRNN

was shown in earlier work to provide better results than the traditional neural

network). Laws filtered images are created by separable masks, which are easy to

implement. Range filtering is an example of local filtering requiring few compu-

tations. The GRNN provides fast learning and smooth prediction. The proposed

algorithm has low computational complexity, making it suitable for real-time ap-

plications. The performance of the proposed technique is confirmed, using the
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LIVE 2 IQA database [31]. The proposed approach is shown to provide excellent

results that are robust across different distortions, and is computationally less

expensive than most existing techniques.

2.6.1 The Proposed Technique

Different types of distortions disturb the edges and contrast of images in different

ways. To capture this fact, we propose to start with a feature extraction stage

involving features that are perceptually-motivated. This stage is followed by a

machine learning stage to predict an image quality score. The overall structure of

the proposed technique is displayed in Fig. 2.8, and the details, of each individual

block, are discussed below.

Figure 2.8: Experimental setup block diagram for the proposed method

(A) Feature Extraction The extraction of representative features plays an

important role in texture analysis and pattern recognition problems. Texture

plays an important role in human visual perception, as such the features need

to be perceptually motivated for robust IQA. In [83], it was suggested that the

preprocessing stage in HVS resembles band-pass filters. Furthermore, human

visual perception is based on contrast rather than absolute intensity levels, so the
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Table 2.3: Twenty-Five possible 2D Laws’ masks

L5L5 L5E5 L5S5 L5W5 L5R5

E5L5 E5E5 E5S5 E5W5 E5R5

S5L5 S5E5 S5S5 S5W5 S5R5

W5L5 W5E5 W5S5 W5W5 W5R5

R5L5 R5E5 R5S5 R5W5 R5R5




1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1







−1 −4 −6 −4 −1
−2 −8 −12 −8 −2
0 0 0 0 0

+2 +8 +12 +8 +2
+1 +4 +6 +4 +1




(a) (b)

Figure 2.9: Example of Laws’ filter masks (a) L5L5 (b) E5L5

change in the minimum and maximum pixel values is also important. Under these

observations, we opted to extract our perceptual features from the Laws’ filtered

images, followed by a range filtering stage.

(A1) Laws’ Texture Moments: Laws, in [83], proposed 5 zero-summing (ex-

cept L5) 1-D filter masks corresponding to the different local spatial textural fea-

tures of images for the level, edge, spot, ripple and wave texture information. The

five 1-D masks are L5 = [1, 4, 6, 4, 1], E5 = [−1,−2, 0, 2, 1], S5 = [−1, 0, 2, 0,−1],

R5 = [1,−4, 6,−4, 1] and W5 = [−1, 2, 0,−2, 1]. From these 1-D masks, 25 2-D

filter masks can be generated by convolving vertical 1-D filter masks with hori-

zontal 1-D filter masks (see Table 2.3). Each filter mask is capable of extracting

particular geometric information from the texture image (edges, lines, and spots).

For example the L5E5 filter mask is used to capture vertical edges while E5L5 is

used for extracting horizontal edge information.

(A2) Range Filtering: The original range filter was proposed, by Bailey

et al. [84], to calculate the spatial intensity changes and to highlight edges in

images. In range filtering, each pixel in an image is replaced by the difference of
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Figure 2.10: Examples of Laws filtering process

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

(a) V5L5 (b) E5L5

Figure 2.11: Example of range filtering on Laws filtered images

the maximum and minimum value of pixel intensities within a local neighborhood

(window). Fig. 2.11 shows some examples of range filtering performed on some

Law’s filtered images. A significant enhancement of image edges is obtained.

The idea is to apply a sequence of filters on the image and for each filtered

image, features are calculated. For the kth filter mask of size 5 × 5, the filtered

image Lk is obtained by convolving the original image I with the filter mask hk.

Fig. 2.10 shows an example of applying some Laws’ filter masks on an image

from the dataset. Based on the above, for each image in the dataset, 25 filtered
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Figure 2.12: Feature extraction stage for the proposed NR-IQA metric

images are created by convolving it with 25 different Laws’ masks. These masks

are used to capture the occurrence of lines, points and edges within the image

texture. Since masks are separable, their realtime implementation is simple and

fast. The kth feature, fk, is calculated by taking the average of the local range

filtered images Rk. Fig. 2.12 shows the block diagram of the feature extraction

stage.

(B) Generalized Regression Neural Network: In addition to the extrac-

tion of perceptually motivated features, an efficient feature fusion algorithm is

also important in predicting a single quality score. Among different existing ap-

proaches, we have adopted, here, the GRNN, given its robust performance, its

dynamic network structure, and simplicity. The GRNN was proposed by Spetcht

[85] and is a type of probabilistic neural network that requires few training sam-

ples for effective learning, in comparison with the conventional Back Propagation

Neural Network (BPNN). The probability density function used in GRNN is the

Gaussian Distribution. Each training sample, Xi, is used as the mean of a Normal
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Distribution:

Ŷ (X) =

∑n
i=1 Yi exp(−(X−Xi)

T (X−Xi)/2σ
2

∑n
i=1 exp(−(X−Xi)T (X−Xi)/2σ2

(2.19)

where X represents a given input, Xi is a training vector, Y is the predicted

value, n is the number of training samples (observations), and σ is a smoothing

parameter.

A schematic diagram of the GRNN-IQA architecture is shown in Fig. 2.13.

It consists of 4 layers, i.e input, hidden (pattern), summation, and output. The

feature vector is applied to the input layer. The number of inputs is equal to

the number of features. The number of neurons in the hidden (pattern) layer

is equal to the input training vectors (samples). The input features are used

with a Gaussian pdf (probability density function) in each pattern unit, then, the

relationship between the input and the response of the pattern layer is stored in

the unit. The summation layer has two units. Both units compute the weighted

sum of the output of pattern layer units. For the first unit, the weight is set to Yi

and constitutes the numerator of Equation (2.19), while in the second unit, the

weight is unity and represents the denominator of Equation (2.19). The output

layer computes the quotient of the two outputs from the summation layer, and

results in Ŷ (X), the prediction, Y, of conditioned upon X.

Compared to the conventional neural network model, the GRNN is non-

iterative and can learn from training data in one-pass. Its advantages are: simple

architecture, few training parameters, fast training and, excellent stability.

2.6.2 Performance Evaluation

The experiments are performed on a well known publicly available database [31].

The experimental procedure for the proposed technique is summarized in Fig.
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Figure 2.13: Schematic diagram of GRNN for image quality assessment

2.8. First, every image, I, in the database, is convolved with the 25 different

Laws’ filter masks to yield 25 filtered images. Then, for each filtered image, range

filtering is applied to make the image details more prominent. Finally, the mean

value of each range filtered image is calculated and a feature vector of dimension

25× 1 is created for each distorted image. In order to have consistent results, the

set of images belonging to 29 subjects in the LIVE 2 database are divided into

five groups. (see Table 2.4). Then, 5-Fold cross validation is used to avoid bias in

the regression process. The training is performed on four groups, and tested on

the remaining group. The process is repeated such that each time a unique group

is selected for testing, and the remaining four groups are used in training.

Table 2.4: Database Groups used for the Experiments

Dataset Image Categories

G1 Sailing1, bikes, dancers, house, paintedhouse, statue
G2 Lighthouse2, rapids, womanhat, churchandcapitol, building2
G3 Monarch, parrots, sailing2, ocean, studentsculpt, carnivaldols
G4 Cemetry, manfishing, coinsinfo, sailing4, lighthouse, caps
G5 Plane, stream, buildings, woman, flowersonih35, sailing3
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2.6.3 Experimental Results

The performance of the proposed NR-IQA method is tested for each distortion as

well as a combination of all distortions in the LIVE 2 database. The performance

evaluation metric selected is the SROCC which is used to measure the monotonic-

ity between the subjective and objective scores. The results are summarized in

Table 2.5. From the results, it is clear that the proposed technique is efficient

for the images distorted with Gaussian blur, JPEG 2000, fast fading and white

noise. The algorithm fails with JPEG, as our algorithm is not based on transform

domain analysis. The regression plot of the predicted objective score and subjec-

tive DMOS for each distortion is also shown in Fig. 2.14. In order to benchmark

the proposed method, the experimental results are compared with the traditional

GRNN algorithm [72], which is also an NR-IQA using the same database. From

the comparison, it is clear that the proposed method using Laws texture features,

outperforms the GRNN [72] on all distortions except for JPEG distortion. The

results were also compared with another NR-IQA algorithm; the BIQI [75], and

again the proposed method outperforms on all distortions except for JPEG distor-

tion. The main advantage of the algorithm is its simplicity, as only basic masking

operations are required for feature extraction and can be efficiently implemented

in hardware for real-time applications.

2.6.4 Discussions

To show the low complexity of the proposed algorithm, the overall computational

efficiency of the proposed algorithm is compared with that of the NR BIQI[75],

GRNN[72], BRISQUE[79], DIIVINE[] and BLIINDS-II[78] algorithms. The run-

time of each algorithm to compute the quality score for a single image of resolution

768 x 512 in the LIVE database is calculated. The procedure is repeated 100 times

and the average is shown in Table 2.6. The tests are performed on an Intel Core-i5
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Table 2.5: SROCC for different algorithms and DMOS

Method GBLUR JPEG J2K FF WN

Proposed
G1 0.942 0.737 0.707 0.595 0.979
G2 0.915 0.884 0.739 0.872 0.964
G3 0.972 0.898 0.889 0.899 0.971
G4 0.887 0.809 0.854 0.806 0.987
G5 0.911 0.957 0.930 0.545 0.971

Avg. 0.942 0.857 0.864 0.763 0.974

GRNN [72] 0.833 0.872 0.816 0.735 0.979
BIQI[75] 0.846 0.891 0.799 0.707 0.951
ICA 0.9061 0.6465 0.8200 0.8164 0.9768
BLIINDS[78] 0.957 0.839 0.922 0.750 0.973

processor at 2.50 GHz, 4GB RAM, Windows 7 (64-bit). From Table 2.6, it is quite

evident that the proposed algorithm outperforms all other algorithms. Thus the

proposed algorithm is well suited for real-time blind IQA applications.

Table 2.6: Computational Complexity of different NR-IQA algorithms

Method Time (seconds) per image

GRNN [72] 0.23
BIQI[75] 18.4
BRISQUE[79] 0.45
BLIINDS-II[78] 45.53
DIIVINE[76] 27.35
Proposed Algorithm 0.11

In this work, a fast NR image quality assessment method is proposed. Since

human visual perception corresponds to bandpass filters, the Laws’ filter masks

are used to extract different bandpass filtered images. The results are highly

correlated with human perceptions for the images distorted with white noise and

Gaussian blur. Compared to the traditional approaches, the proposed method is

recommended for NR-IQA due to its fast learning and low computational load.

The proposed technique is simple to implement as the feature extraction stage is

based only on basic convolution operations, and can be efficiently implemented in
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Figure 2.14: Regression plots between DMOS and predicted score for different
distortions in LIVE 2 dataset.

hardware making it very suitable for real-time multimedia applications.

Another NR-IQA metric is also proposed to quantify Blur in color images.

The reason for selecting blur distortions for our work is that it is considered as an

important component in the spectrum of distortions. In the following section, we

will discuss this metric in more details.

2.7 A No-Reference Blur Metric for Color Im-

ages using Higher Order Singular Values

During different processing stages, various artifacts are introduced in digital im-

ages. The blur is most commonly observed distortion among these artifacts, which

is due to the limitations of acquisition equipment (i.e., out-of focus camera lens,

low-lighting conditions, relative movement etc.) and different processing stages
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before final viewing by the user. More importantly, blur also affects the edge

information which is considered as a key factor to human perception of quality.

In FR scenario, the blur assessment is a simple task. However, in no-reference

case, the task of distortion assessment becomes a more challenging one. In the

literature, different methods have been developed for blind blur assessment of

digital images. In [86], Ferzli et al. discussed an image sharpness/blur assessment

technique based on the concept of Just Noticeable Blur (JNB). They determine

the probability of blurriness required around the edge before it can be perceived or

noticeable by the HVS. By using the same concept of JNB [86], Narvekar et al. [87]

proposed a NR image sharpness metric based on the Cumulative Probability of

Blur Detection (CPBD) at an edge. In [65], Chetouani et al. proposed an approach

for no reference blur estimation based on Radial Spectral Energy (RSE) analysis.

The NR blur metric was computed by adding the blur to an image and measuring

its impact using the radial energy analysis in the frequency domain. There also

exist some methods for quality assessment of digital images based on signal energy

analysis using transform domain such as SVD. Among these, Shnayderman et al.

[88] were the first to use SVD for FR image quality assessment. The reference and

distorted images were divided into non-overlapping blocks and singular values for

the corresponding blocks were calculated. The mean distance between the singular

values of the reference and the distorted image blocks were used for quantifying

quality. For NR-IQA using SVD, Sang et al. [89] demonstrated that the singular

values of an image when plotted against their indices follow an exponentially

decreasing curve with the degree of the exponent varying with the amount of

blur. The same authors in [90] also proposed a blind blur assessment metric

based on blur similarity by following the same idea in [65]. The blurred images

were re-blurred with a Gaussian kernel of size 11 × 11. The similarity between

the singular values of the distorted image and re-blurred image was used as a blur
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index.

The methods discussed earlier as well as other state-of-the-art existing IQA

techniques are mostly based on either the luminance component of a color image,

or use separate color channels followed by pooling of the results to get the final

quality score. For an RGB color image, there exists a strong correlation among

the Red, Green, and Blue color components. Different distortions may influence

different color components and disturb the correlation among them as well. The

loss of color due to the different types of degradations substantially affects human

perception. Moreover, the perception of blur is also different for Red, Green, and

Blue color components. The reason is that the blur is directly related to the focus

and in turn it depends on the wavelength of the incoming light (i.e., color). Indeed

the focal length of the lens is related to the refractive index which varies with the

wavelength of the color.

Therefore, it is inappropriate to completely ignore the correlation among the

color components in IQA. The idea is to search for representations where the

inter-channel correlation can be exploited in order to capture the effect of blur on

the three channels. Wang et. al. [91] proposed the use of three color channels for

FR quality assessment using SVD of Quaternion matrix. The Quaternion matrix

was generated by taking the local variance of Red, Green, and Blue channels as

imaginary part and the luminance component as the real part. The overall quality

score was derived by computing the distance in singular values of image blocks in

the reference and the distorted images.

Motivated by the superior performance of SVD for the luminance component

of images in NR-IQA [90, 89], we introduce here a new framework for IQA of color

images using the so-called higher order singular values. We propose to use tensor

analysis to fully represent the correlation among different color components. Ten-

sors are used to represent high dimensional data and to extract useful information
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from high dimensions rather than from the 2D matrices [92, 1]. The Higher Or-

der Singular Value Decomposition (HOSVD) is an efficient tensor decomposition

technique [92]. It has been widely used in different image processing applications

including color restoration [93] and denoising [94]. Cheng et al. [95] used tensors

for the first time for FR quality assessment of color images. Here in this work, we

extend for the first time, introduce a new framework for using tensors for blind

blur assessment from color images using HOSVD. We consider a given RGB color

image as a tensor and compute the higher order singular values from its unfold-

ings. We provide, some mathematical background of SVD, and tensors in the next

section, followed by our proposed algorithm.

2.7.1 Mathematical Background

SVD decomposition of 2D Images A 2D gray scale image, A ∈ RM×N , satis-

fying some regularity conditions, can be decomposed using SVD as:

A = UΣVT (2.20)

where U ∈ RM×M is the matrix of left singular vectors, V ∈ RN×N is the right

singular matrix, and Σ ∈ RM×N is the rectangular diagonal matrix of singular

values arranged in descending order. The singular values vector can be extracted

as d = diag(Σ) = [σ1, σ2, · · · , σr] for i = 1, 2, · · · , r, r being the rank of A. The

U and V give structural information along the rows and columns of A while the

d represents the luminance or energy information of A.

In [89], Sang et al. showed that the singular values computed from the lumi-

nance component of natural images when plotted against their indices, follow an

exponential decay. The exponent coefficient of the decay varies with the amount

or degree of blur present in the image. In [89], the authors provide the derivations

48



to quantify the quality scores from the singular values. For the sake of complete-

ness, we briefly outline these steps again to show how the exponent coefficient is

calculated which is then used as a quality score.

As mentioned previously, the SVD values of a given image decrease exponen-

tially with increasing blur. The inverse power function or exponential can be

expressed as:

y = x−α (2.21)

where α is the exponent coefficient.

By taking the natural logarithm of both sides of (2.21), we get:

ln
( 1

y

)
= α ln(x) (2.22)

Let w = ln(x) and z = ln
(

1
z

)
, we get

z = αw (2.23)

which is a linear equation in terms of the coefficient α. We can solve for α using

a Least Squares approach, i.e., minimizing mean square error:

min
r∑

k=1

e2
k = min

α

r∑

k=1

(zk − αwk)2 (2.24)

The optimal value of α, is obtained by taking the derivative of (2.24) w.r.t α,

and setting it to zero:

α =

r∑
k=1

zkwk

r∑
k=1

wkwk

=

r∑
k=1

ln(dk) ln(k)

r∑
k=1

ln(k) ln(k)
(2.25)

where dk represents the singular value at index k for an image.
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Preliminaries on Tensors and HOSVD While SVD is well suited to an-

alyze 2D matrices, it cannot be used directly with higher dimension arrays. For

such arrays, the concept of SVD has been extended using tensor theory. To for-

mally define a tensor, let A ∈ RI1×I2×···×IN be an N th order tensor having N indices

where I1, I2, · · · , IN are the upper limits of each dimension. Therefore, we can say

that a scalar is a zero-order tensor denoted by lowercase italic letters (e.g., a), a

vector is a 1st-order tensor denoted by lowercase bold letters (e.g., a), a matrix is a

2nd-order tensor denoted by capital bold letters (e.g., A), and matrices with more

than two dimensions are higher-order tensors represented by calligraphy letter

(A). Here, we propose to represent a given RGB color image as a 3rd-order tensor

A ∈ RI1×I2×I3 , having 3 indices, where I1, I2, and I3 represent height, width, and

number of color channels (i.e., 3 for Red, Green and Blue).

The tensors can be decomposed into fibers (modes) and slices by fixing all

indices except for one and two respectively. Each index in a tensor is called

mode, and upper limit of indices in each mode is called mode dimension. For

2D matrix, columns and rows are mode-1 and mode-2 fibers respectively. The

3rd-order tensor (an RGB image) has 3 modes (column, row and tube fibers) and

dimension of each mode is I1 (height), I2 (width), and I3 (3 for color channels)

corresponding to a:i2i3 , ai1:i3 , and ai1i2: respectively. The mode-1 (columns) and

mode-2 (rows) represent spatial information while mode-3 is used to represent

color channels. The sub-tensors can be defined by fixing one or two indices of a

3rd-order tensor.

For different applications, tensors are often transformed into 2D matrices.

The rearranging of elements of a tensor into a 2D matrix is known as unfolding

or matricization. For a 3rd-order tensor (an RGB image) A, a 2D matrix or slice

is obtained by fixing one of the three indices. A frontal slice is obtained by fixing

the 3rd index i3, and denoted as A::i3 . Fixing the 2nd index, we get the lateral (or
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(a) A 3rd-order tensor (b) Mode-1 (column) fibers

(c) Mode-2 (row) fibers (d) Mode-3 (tube) fibers

Figure 2.15: An example of 3rd-order tensor and Mode-n fibers [1]

vertical) slice A:i2:, and fixing the 1st index, we get the horizontal slice Ai1::. In

this way, the mode(n) unfolding of an RGB image is a matrix A(n) ∈ RIn×
∏

k,k 6=n Ik .

For illustration, mode(n) unfolding or slices of a 3rd-order tensor are shown in Fig.

2.16. The HOSVD is the SVD of each of the tensor modal unfoldings [92]. For a

tensor A, it is defined as:

UT
nA(n) = ΣnV

T
n for 1 ≤ n ≤ d (2.26)

where UT
n and UT

n are unitary matrices, the matrix Σn contains the singular

values of A(n) on the diagonal, and d represents the size of a tensor.

2.7.2 The Proposed Technique

We first decompose the color image into three unfoldings and compute the higher

order singular values for each unfolding. Confirming previous results, we observed
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(a) Frontal slices A(1) ∈ RI2×I1I3

(b) Lateral slices A(2) ∈ RI1×I2I3

(c) Horizontal slices A(3) ∈ RI3×I1I2

(d) Mode(2) unfolding of a color

Figure 2.16: An example of different unfoldings of a 3rd-order tensor A ∈ RI1×I2×I3
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the exponential decay of the singular values. Fig. 2.17 shows two images with

different degrees of blur and the plots of higher order singular values for the orig-

inal image and its five blurred versions, from the TID2013 database. From the

plots, we clearly notice that the degree of the exponent varies with the degree of

blur. The correlation between the degree of blur and the decay parameter is even

stronger than the case of the luminance alone as considered in previous work and

will be shown in our experiments. Throughout all the experiments, we observed

a higher correlation between the subjective score and the blur metric computed

using HOSVD of mode(2) unfolding. The reason is that mode(2) unfolding contains

more spatial and inter-channel correlations than other modes. Therefore, we per-

form HOSVD only on mode(2) unfolding. The proposed technique is summarized

here:

Step 1: For an RGB image, perform matrix unfoldings, A(2) ∈ RI1×I2I3

Step 2: Take HOSVD of unfolding A(2). A(2) = U(2)Σ(2)V(2)T , where Σ(2) is

a diagonal matrix with higher order singular values corresponding to mode(2)

unfolding of the color image.

Step 3: Compute the blur metric using (2.25).

2.7.3 Experimental Results

We carried our experiments on four publicly available and commonly used image

quality databases i.e., CSIQ [33], LIVE2 [31], TID2013 [38], and the newly avail-

able database CID:IQ [39]. Since the method deals with blur assessment in color

images, we only used the blur distorted images from these databases for the ex-

periments. The performance was evaluated using the SROCC, the PLCC, and the

RMSE. High values of SROCC and PLCC and low values of RMSE correspond

to close relationship of the objective scores to the subjective ratings.

A 5-parameter logistic fitting function [42] is used for the calculation of PLCC
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and RMSE to account for the non-linearity in the subjective scores due to human

opinions. The fitting function we used here is:

Q(q) = β1

[
1

2
− 1

1 + exp(β2(q − β3))

]
+ β4(q) + β5 (2.27)

where Q represents the fitted objective score after non-linear mapping, q is the

calculated objective quality score, and βk for k = 1, 2, 3, 4, 5 are fitting parame-

ters. These parameters are calculated by minimizing the mean-squared error be-

tween the subjective scores and the fitted values. The predicted objective scores

(after non-linear mapping) and subjective scores (MOS/DMOS) for the blurred

images as well as the original images from the CSIQ, LIVE, TID2013 and CIDIQ

databases are shown in scatter plots in Figure 2.18. In these plots, the objec-

tive scores are kept on x-axis while y-axis represents MOS values for the blurred

images represented as plus symbols (+).

We have compared our results to different state-of-the-art NR-IQA techniques

that are related to blind blur assessment. The results of SROCC, PLCC, and

RMSE for different databases are shown in Table 2.7. The proposed metric gives

better performance for three of the four databases. For the LIVE2 database, the

proposed metric has also consistent performance except for [90], where the re-

sults are very much comparable. From the weighted average, it is also evident

that the proposed metric achieves the best overall performance in terms of pre-

diction accuracy and monotonicity at the cost of slight increase in computational

complexity.
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Figure 2.17: Sample images with different degrees of blur from the TID2013
database [2]: blur 4, MOS = 3.23, α = 1.48 (a), blur 5, MOS = 2.16, α = 1.70
(b), singular value curves for blurred images using HOSVD (c)

55



T
ab

le
2.

7:
S
u
m

m
ar

y
of

d
iff

er
en

t
ev

al
u
at

io
n

m
et

ri
cs

on
fo

u
r

d
at

ab
as

es
,

th
e

fi
rs

t
tw

o
b

es
t

re
su

lt
s

ar
e

h
ig

h
li
gh

te
d

D
at

ab
as

e
E

va
lu

at
io

n
C

ri
te

ri
a

J
N

B
[8

6]
C

P
B

D
[8

7]
S
R

E
[6

5]
N

R
-S

V
[8

9]
N

S
V

D
[9

0]
H

O
S
V

D

C
S
IQ

[3
3]

S
R

O
C

C
0.

78
84

0.
89

04
0.

84
52

0.
91

67
0
.9

1
9
6

0
.9

3
3
4

P
L

C
C

0.
83

16
0.

91
88

0.
88

26
0
.9

4
3
3

0.
94

17
0
.9

5
4
3

R
M

S
E

0.
16

62
0.

11
81

0.
14

07
0
.0

9
9
4

0.
10

07
0
.0

8
9
4

L
IV

E
2

[3
1]

S
R

O
C

C
0.

84
16

0.
94

25
0.

90
30

0.
94

54
0
.9

5
0
2

0
.9

4
9
7

P
L

C
C

0.
84

80
0.

91
54

0.
89

12
0.

93
70

0
.9

4
8
4

0
.9

3
7
5

R
M

S
E

12
.7

04
8

9.
65

20
10

.8
73

2
8.

62
41

8
.0

1
5
1

7
.5

7
0
3

T
ID

20
08

[3
2]

S
R

O
C

C
0.

66
67

0.
84

12
0.

75
11

0
.9

0
8
9

0.
89

33
0
.9

1
6
3

P
L

C
C

0.
69

39
0.

83
25

0.
76

89
0.

91
90

0
.9

2
1
8

0
.9

4
6
1

R
M

S
E

0.
84

58
0
.6

5
0
2

0.
75

03
0.

72
46

0.
74

95
0
.6

5
9
1

T
ID

20
13

[3
8]

S
R

O
C

C
0.

78
37

0.
89

29
0.

81
52

0
.8

9
7
0

0.
88

33
0
.9

0
8
6

P
L

C
C

0.
80

14
0.

87
74

0.
80

23
0
.8

8
3
9

0.
88

33
0
.8

9
2
8

R
M

S
E

1.
09

25
0.

88
26

1.
09

79
0
.8

6
1
1

0.
86

23
0
.8

2
8
7

C
ID

:I
Q

[3
9]

S
R

O
C

C
0.

50
57

0.
78

29
0.

71
20

0
.8

3
8
6

0.
81

88
0
.8

7
3
0

P
L

C
C

0.
51

53
0.

78
46

0.
75

42
0
.8

6
7
2

0.
84

99
0
.9

0
0
8

R
M

S
E

1.
49

88
1.

08
42

1.
14

84
0
.8

7
0
8

0.
92

26
0
.8

8
6
8

W
ei

gh
te

d
A

ve
ra

ge
S
R

O
C

C
0.

74
09

0.
88

20
0.

82
52

0
.9

0
3
1

0.
89

77
0
.9

1
9
0

P
L

C
C

0.
76

09
0.

87
93

0.
83

85
0
.9

1
1
3

0.
91

01
0
.9

2
3
9

R
M

S
E

4.
06

73
3.

08
83

3.
48

97
2.

75
36

2
.6

0
0
3

2
.4

6
1
1

56



Table 2.8: Results for different color spaces on CSIQ database

Color Space SROCC PLCC RMSE

RGB 0.9334 0.9543 0.0894
CIELab 0.9321 0.9537 0.0899
YCbCr 0.9321 0.9554 0.0884

To further assess the performance of our metric using tensors, we also used

two other color spaces shown to rely on weakly correlated components, namely

the CIELab and YCbCr color spaces. The results we obtained were consistent

across different color spaces whether these rely on strongly or weakly correlated

components. To save space, we report in Table 2.8, our results for the CSIQ

database comparing RGB, CIELab, and YCbCr color spaces. We note again that

the results are consistent across different color spaces.

2.7.4 Discussions

A novel methodology for quantifying blurring effects in color images using the

concept of higher order singular values is proposed. The spatial and inter-channel

correlations, in the color image, are exploited using tensors to quantify the amount

of blur more efficiently and consistently rather than using the traditional lumi-

nance component only or the individual color channels in existing techniques. A

color image is considered as a 3rd-order tensor and decomposed into a superset of

2D matrices or so-called unfoldings. The higher order singular values are calcu-

lated for these unfoldings using conventional SVD. SVD is a mathematical concept

used to decompose 2D matrices (or images) into a sequence of three transforma-

tions (two rotations and one scaling). The scaling is used to quantify the amount

of variability of the given 2D data in the two main directions. We show in the

proposed work that the extracted higher order singular values consistently follow

an exponentially decreasing curve. Moreover, we show that the degree of such
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Figure 2.18: Regression plots between subjective and predicted scores for blur
distortion in databases (a) CSIQ (b) LIVE2 (c) TID2013 (d) CID:IQ

exponential decay varies closely with the amount of blur a given image is sub-

ject to. Our experimental results, performed on different public IQA databases,

validated the power and consistency of the proposed metric across different color

spaces compared to state-of-the-art no-reference blur assessment metrics. The

proposed technique could be embedded in camera sensors to provide photo after

blur removal and could be use used in multimedia applications for best quality of

experience delivery of videos to the end users. It is expected to create new research

opportunities for researchers in the field of IQA and multimedia industry.
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2.8 Summary

The notion of visual image quality is highly related to the way humans perceive

distortions that may affect the quality of the observed image. The IQA dilemma,

has been long considered as a distortion estimation problem. On the other hand,

very few studies have been carried on the performance evaluation of image en-

hancement methods (better quality images rather than distorted images). Look-

ing at the challenging nature of CEE in different applications, we have made some

contributions under this category and these are discussed in details in the next

Chapter.
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CHAPTER 3

IQA FOR ENHANCEMENT

EVALUATION

3.1 Introduction

Enhancing image contrast is of major interest in many applications ranging from

medical imaging [19], remote sensing [20], underwater imaging [21], defogging

[22], etc. A plethora of CE methods has been proposed in the literature, and

it becomes rather difficult to provide a comprehensive and complete survey of

published work in this area. On the other hand, very few studies have been done on

the performance evaluation of image enhancement methods (better quality images

rather than distorted images). Indeed, performing a quantitative evaluation of

image quality enhancement methods is a very challenging task. This is due to the

absence of any objective measures able to account for some high-level vision tasks

and their interaction with low-level image analysis when assessing the perceptual

quality of image enhancement [18]. This is also due to the difficulty in determining

the most appropriate visual features to be used in the design of an overall image

enhancement quality measure. Therefore, subjective evaluation is still the most

reliable approach to assess the quality of enhanced images. Moreover, there is
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no study to test the reliability of objective CEE measures themselves. Given

the importance of CE in different applications, there is a need to investigate the

performance of these measures in terms of robustness and consistency with human

judgment.

3.2 Related Work

3.2.1 Existing Contrast Enhancement Databases

One of the first studies on CEE has been proposed in [96]. However, it was only

restricted to images containing two classes of pixels (i.e., one object on a uniform

background or many similar objects on a uniform background). The CE evaluation

was based on the bimodality analysis of the gray-level distribution. Thereafter,

some simple and interesting CEE measures have been proposed in [97, 98, 99,

100]. These measures are not inspired by the classical approaches of IQA. The

proposed measures are based on the computation of a global index derived from

some local measures related to contrast. These are inspired originally by Michelson

and Weber-Fechner contrast measures. These measures are based on min-max

operations that make them more noise sensitive. The authors proposed some

improvements to overcome these limitations by using entropy of local contrast, or

by introducing logarithmic arithmetic operations inspired by the non-linear HVS

response. In the study conducted in [97, 98, 99, 100], no complete subjective

experiments were performed, and the performance analysis was only based on the

perceptual judgment of output images. Moreover, the tests were conducted on a

limited set of images (very often grayscale images), and the measures were not

evaluated on any dedicated database but only on few images from the TID2013

database that has been built for traditional IQA purpose [38]. Furthermore, the

statistical analysis of these measures and comparison with some representative
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CE methods were also missing.

In contrast, Damon et al. [101], proposed another study based on a database

containing processed images obtained by changing color, saturation, brightness,

sharpness, and their combinations. The subjective evaluation was performed to

assess the quality of processed images. The use of classical IQA approaches in a

reverse order was proposed, i.e., the given image (enhanced image) is considered

as the reference and the original image as the distorted one. It has also been

reported that the Visual Information Fidelity (VIF) [102] measure offers better

performance as compared to many of the classical IQA measures. The authors

in [101] improved the results by proposing a more efficient measure combining

contrast, sharpness, and color in an empirical manner.

Following the approach of Damon et al. [101], another study of contrast change

evaluation was discussed in [103] using a database consisting of 15 original and

633 enhanced images. The global contrast of images is modified using non-linear

mapping functions. The conventional IQA measures designed for degradations

assessment were then used to assess the quality of the processed images from the

database. For this purpose, a RR metric was derived combining the entropy of

phase congruency image and other higher-order statistics of local features com-

puted from the histogram of the observed image. However, the enhancement

evaluation methods based on conventional IQA approach are not appropriate for

CE measure evaluation. Indeed, for example, the approach followed by Damon

et al. [101] is not convincing and could produce contradicting results. Indeed, an

image with good perceptual quality, in the sense of traditional FR-IQA context,

is considered as very similar to the original one. For example, it would correspond

to a SSIM value near one, which does not serve the objective of CE. Whereas, in

the context of CE, the objective is not to process the image so as to make it as

close as possible to the original image.
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Another recent study, by Fang et al. [104] on quality assessment of contrast

distorted images was carried using the natural scene statistics model. The contrast

problem is considered only in terms of distortion.

Besides these works, predicting visual quality of enhanced images for different

applications has also been investigated in some interesting studies [105, 40, 106,

107, 108, 39]. Ledda et al. [105] proposed a database for only subjective evaluation

of six tone mapping methods. The PC was performed in a subjective experiment

to rank these methods in accordance with the perceived quality. But the authors

did not perform CEE performance analysis. Virtanen et al. [40] provided another

database related to tone-mapping applications. It contains images degraded with

different types of distortions and images with variation of contrast due to gamut

mapping. The main objective of the database was to validate the performance

of existing IQA metrics designed mainly for degraded images. Another similar

database was also proposed in [39] to evaluate gamut mapping, blurring, and

other distortions.

In addition to the above, Chen et al. [108] developed a database for CEE of

images in bad visibility (i.e., haze, underwater, and low light environment). The

images were enhanced through different dehazing methods and the performance

of various enhancement algorithms was discussed. In this work, the original and

pair of enhanced images were shown on the same screen to allow the observer to

compare the enhanced images with respect to the original image.

Another less studied application, namely image retargeting quality assessment,

has been addressed in [106, 107]. Here, subjective and objective quality evalua-

tion of retargeted images was performed using dedicated databases. In [106], the

authors provided a database containing images by different retargeting methods.

The subjective quality of the retargeted images was measured in terms of rank

in a pairwise subjective experiment, and the performance of different retarget-
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ing evaluation measures were assessed in terms of correlation analysis. Similarly,

Ma et al. [107] also carried out the same study except, instead of ranking, they

provided the rating scores on a different proposed database. To summarize the re-

lated works carried to date, we provide, in Table 3.5 and 3.6, our own perspective

on the main contributions made in this field of research.

3.2.2 Contrast Enhancement Evaluation Measures (CEE)

The improvement in image quality after CE can be evaluated using a multitude

of objective measures. Although, we can see a lot of research efforts towards

the development of CE algorithms, the objective CEE measures are limited and

specific to different applications. The CE evaluation is different from conventional

IQA. The reason is that in conventional IQA, the image which is similar to the

original is considered as of good quality, and the similarity decreases with the

increase in degradation. It is worth noticing that when using classical IQA, like

SSIM, which is FR metric for quality assessment of degraded images, its value is

close to one, when there is no distortion in an image and its value is less than one in

the case of a degraded image. However, in the case of CE, we start from an input

image and try to improve its quality. This processing is expected to produce more

visible structures and the obtained images are rather different from the original

one. If we use the SSIM for the contrast enhanced image, it will give value less

than one, which does not correspond to an image of good quality. It has been

observed that only the VIF measure [102], which is based on classical FR-IQA

approach, yields interesting results. Indeed, the VIF produces a value less than

one for the degraded images and greater than one for the case of enhancement.

Damon et al. [101], proposed that, to assess the quality of enhanced images,

one can use the given image (enhanced image) as the reference and the original

image as the distorted one and apply conventional IQAs. Whereas, in the case of
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NR-IQA, the CEE measures are derived from the given image. Some measures

like sharpness, blurriness, SVD based measures, details visibility map, after CE

could be used to derive NR-CE quality measures. Recently, Fang et al. [104]

used natural scene statistics to quantify the quality of contrast-enhanced images

by looking the enhancement process as degradation process and apply the con-

ventional IQA for the contrast distorted images in classical IQA databases. But

in general, it is not applicable to CE applications.

In this section, we provide a brief overview of the measures used in our study.

For the sake of completeness, we also provide the mathematical expressions for

the measures as well. Based on the availability of the original image, we can

group these measures into two broad classes, i.e., FR and NR measures (see

Fig. 3.1). Moreover, based on the methodology used, we have also categorized

these measures into Statistics-based, Gradient/Energy-based, and HVS-inspired

CE evaluations (see Fig. 3.2). These measures are usually derived from grayscale

images. For color images, the luminance component is used for contrast assess-

ment. In this work, we adopt some state-of-the-art measures and our aim is to

investigate how well these measures are consistent with the human judgment of

quality. These measures are computed using only the luminance component of

images. The mathematical expressions for the CEE measures are also provided in

Tables 3.2, 3.3, and 3.4. To be consistent with the use of variables in the math-

ematical expressions of CEE measures, we list the description of each variable in

Table 3.1. In the following, we start with a brief description of each category of

CEE measures.
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Statistics based CEE Measures

Absolute Mean Brightness Error (AMBE): It is used to evaluate how much

original brightness is preserved in the enhanced image [109]. It is calculated

as the deviation of the mean intensity of the enhanced image from that of

the original image. For CE, it is desirable that the original brightness of an

image is to be preserved. The lower value of AMBE means that the enhanced

image has good brightness preservation. Here, brightness preservation does not

mean that the image natural look (quality) also preserves. Either a very low

value or the highest value of AMBE also indicates poor performance in case of CE.

Root Mean Square Contrast (RMSC): It is a pixel-based NR metric [110]. It

gives high values for the images containing a major bright portion (e.g., sky, sea,

etc.). High values of RMSC correspond to image with better contrast. However,

it is not considered as an effective measure of CE since its value also increases

with the appearance of some undesirable artifacts and noise amplification.

Reduced-reference Image Quality Metric for Contrast change (RIQMC): It is a

RR metric used to quantify image contrast and naturalness [103]. It combines the

entropy of phase congruency image, and four statistical features computed from

image histogram (i.e., mean, variance, skewness, and kurtosis). The first order

statistical feature, F1, is computed by penalizing very large and very small mean

values using the Gaussian kernel and is defined as follows:

F1 = exp
[
−
(E(Ie)− µ

β

)2]
(3.1)

where µ and β determine the mean and shape of the Gaussian kernel.

The context-free contrast feature, F2, defined as a function of variance com-
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Table 3.1: Notations used for CEE measures.

Notation Description

Ir original image
Ie enhanced image
H image height (rows)
W image width (columns)
b block size
i, j pixel indices
L number of gray levels
Iij image pixel value at index (i, j)
Ī mean pixel value in an image
c constant (c = 0.0001) to avoid division by zero
E (.) statistical expectation
B1,B2 number of blocks along rows and columns

puted from the image histogram is expressed as follows:

F2 = E[p(Ie)
2]− E[p(Ie)]

2 (3.2)

where p(Ie) represents the histogram of an enhanced image.

Similarly, the higher-order statistical features, i.e., skewness, F3 and kurtosis,

F4, are computed as follows:

F3 =
E[Ie − E(Ie)]

3

σ3(Ie)
(3.3)

F4 =
E[Ie − E(Ie)]

4

σ4(Ie)
− 3 (3.4)

where σ is the standard deviation of the gray-levels in the image.

The similarity feature, F5, defined as the difference between the entropy of

phase congruency of enhanced image and original image:

F5 = HPC(Ie)−HPC(Ir) (3.5)
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where HPC(.) represents the entropy of phase congruency image.

Finally, the RIQMC is computed as a linear combination of the five features

using the following expression.

RIQMC =
5∑

i=1

wiFi (3.6)

where the weights, wi, for i = 0, 1, · · · , 4, represent the contribution of each feature

in the final contrast metric.

The RIQMC fusion depends on the weights, but they are not provided in the

text. Through experiments, we have observed that with increasing the contrast

(improvement in quality), the RIQMC value decreases.

Visual Information Fidelity (VIF): It is a FR quality metric used to quantify

the loss of original image information due to processing or transmission of the

given image. The original and test images are decomposed into different subbands

and the mutual information to be perceived by HVS from these subbands is

calculated for both images. The measure is expressed as the fraction of original

image information that can be perceived by HVS from the test image. VIF

measures can be used as a quality metric for both degraded and enhanced images

[102]. Its values are equal to, less than, and greater than one for the original,

degraded, and enhanced images respectively.

Discrete Entropy (DE): It measures the amount of information or randomness

of gray-levels in an image [111]. It is well known that the increase in contrast

highlights the subtle details in an image and results in an increase in entropy

value. It is a global measure based on the overall histogram of an image and fails

to consider the local details and spatial correlations among the pixels. The higher
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values of DE correspond to image with more details visibility amplification and

is considered as image with good quality.

Mutual Information based Contrast Measure (MICM): It is a NR metric used

to quantify the global image contrast and to detect and control the side effects of

CE in few neighborhood-based methods [25]. It is based on mutual information

derived from the joint probability mass function of a gray level co-occurrence

matrix and is given by:

MICM =
L∑

i=0

L∑

j=1

pij log2

(
pij

px(i)py(i)

)
(3.7)

where pij is the joint probability mass function of the luminance channel, whereas

px and py represent the marginal probabilities calculated along the rows and

columns of co-occurrence matrix respectively. It is better than 1st order entropy,

we take into consideration the spatial correlation among the pixels using the gray

level co-occurrence matrix. It is simple to compute, however, it does not provide

information about image unnaturalness.

Lightness Order Error (LOE): It measures the naturalness preservation in the

enhanced imaged based on estimating the lightness order error between the orig-

inal image and enhanced image [112]. The lightness of an RGB image, Ic, is

obtained by taking the maximum of the three color components.

Lij = max
c∈{r,g,b}

[Icij] (3.8)

where r, g, and b represent the red, green, and blue color components in an RGB

image.

The relative order difference of the lightness between the original image and
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its enhanced version is calculated as follows:

RDij =
M∑

x=1

N∑

y=1

(U(Lrij, L
r
xy)⊕ U(Leij, L

e
xy)) (3.9)

U(a, b) =

{
1 for a ≥ b

0 otherwise
(3.10)

where U(a, b) is a unit step function and ⊕ is exclusive-or operator.

The final LOE measure is calculated as:

LOE =
1

(W ×H)

W∑

i=1

H∑

j=1

RDij (3.11)

In the original implementation, the downsampled version of both images was

used to reduce the computational complexity with the downsampling ratio of

r = 50/ min(H,W ).

Since the relative order of lightness represents the light source directions and

the brightness variations, the naturalness of an enhanced image is related to the

relative order of lightness in different local areas. Small values of LOE indicate

that the naturalness is well preserved in an enhanced image in comparison with

the original image. The authors claimed that metric well provides naturalness

information. However, naturalness is a complex property and is difficult to define.

Gradient/Energy-based CEE Measures

The following measures are based on either local signal activity or energy as

measured through the gradient operator or the spectral energy distribution. In-

deed, any increase/decrease of the contrast inevitably affects the pixel intensity

gradient and the spectral energy distribution in the spatial-frequency domain.

Image Enhancement Metric (IEM): It is a FR metric proposed by Jaya et al.
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[113] and is calculated by subdividing an image into non-overlapping blocks. The

ratio of the sum of absolute values of differences of the center pixel from its eight

neighbors in all blocks of the enhanced image and the corresponding blocks in

the original image represents the IEM value. The absolute intensity differences

between a pixel and its neighbors corresponding to the reference and enhanced

images are used to account for the change in contrast and sharpness. Typical

values for the image blocks are 3× 3 or 5× 5. For identical images, IEM is equal

to one. The values of IEM greater than one means image contrast and sharpness

are increased.

Edge Content (EC): It is a blind objective measure based on the local gradient

of the image intensity [114]. In its expression, ∆I (.) represents the gradient

magnitude of the pixel value computed from the Sobel edge operator. Higher

values of EC correspond to images with more contrast. The overall EC value

for a complete image is calculated by averaging the local EC values for each block.

Radial Spectral Energy (RSE): It is based on radial spectral energy analysis

developed for blind image sharpness assessment [65]. It is based on the idea

that the effect of adding a certain amount of blur to a given image depends on

the original quality of this image. In other words, a contrasted image is more

sensitive to blur effect than a less contrasted image. The enhancement measure

is computed as the variation of the radial spectrum due to contrast enhancement.

The radial energy on the original image and its contrasted version are calculated

as follows:

ERr(ω) =
1

K

∑

k

|Ir(ω, θk)| (3.12)
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ERe(ω) =
1

K

∑

k

|Ie(ω, θk)| (3.13)

where I (.) is the Fourier transform of the image signal I (.) at a particular radial

frequency ω and in θk direction, θk =
kπ

K
and ω =

√
(u2 + v2) where u, v are

spatial frequencies, and K is total number of directions.

Then the blur index is computed as:

RSE = log
( 1

ωmax

∑

ω

|ERr(ω)− ERe(ω)|
)

(3.14)

where ωmax is the maximum radial frequency within the image and can be calcu-

lated as ωmax =
√
u2
max + v2

max, where umax and vmax are the maximum values of

spatial frequencies u and v. The log(.) is used in the expression to make the mea-

sure non-linear in accordance with HVS response. An increase of RSE corresponds

to increase in contrast.

HVS-Inspired CEE Measures

Some simple CEE measures have been proposed in [97, 98, 99, 100, 115]. These

approaches are not inspired by the traditional IQA measures as suggested by

[101]. The proposed measures are based on the computation of a global index

derived from some local measures related to contrast and gradient. These CEE

measures are mainly inspired by the Michelson and Weber-Fechner contrast

measures which are not really adapted to natural scenes. These measures have

been evaluated on a limited set of images processed by some CE methods.

However, these studies do not provide a comprehensive analysis of the validity

of these measures on various images and different CE methods. The main CEE

measures of this class are now briefly discussed.
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Measure of Enhancement (EME): The EME was proposed by Agaian et al.

[97] and is a NR metric based on a contrast measure using the pixel value

dynamic range (min-max values) within a block. The image is first divided into

non-overlapping blocks of the same size (say 8× 8). The EME value is computed

based on the minimum and maximum pixel values in each block, respectively.

The overall measure is computed by averaging the local EME values for image

blocks. Since log of ratios of maximum and minimum intensities within each

block can be written as difference, EME may represent signal dynamic range of

the image. EME increases with the increase in image contrast.

Measure of Enhancement by Entropy (EMEE): The EMEE measures the

entropy in the local contrast as defined in [98]. It also increases with the increase

in image contrast. The use of entropy is motivated by the fact that any small

variation in the contrast would convey additional amount of information on

the spatial content of the image. This consequently would affect the entropy value.

Absolute Measure of Enhancement (AME): Similarly to EME, the AME [99],

is also a block-based logarithmic Michelson contrast based measure. The AME

decreases with the increase in image contrast.

Absolute Measure of Enhancement by Entropy (AMEE): The AMEE measures

the entropy in the local Michelson contrast of an image as defined in [99]. It

increases with the increase in contrast. The reason for using the entropy is also

the same as for EMEE measure.

Second Derivative like MEasurement (SDME): This measure is based on the

fact that the local contrast is highly related to the local variations of the signal
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[100]. This could be captured by any derivative operator, here, a pseudo-second

order derivative operator is used. It is also a block-based measure with default

block size either 3×3 or 5×5. The authors claimed that this measure is less noise

sensitive than the other similar measures based on only min-max operations. It

decreases with an increase in image contrast.

Root Mean Enhancement (RME): It incorporates both RMS contrast and

properties of HVS [98]. It measures the relative RMS contrast in the log domain.

It is calculated by subdividing an image into non-overlapping blocks (say 3 × 3

or 5 × 5). For low contrast images, RME value is small, whereas it is large for

high contrast images.

It is also worth noting that the goal of CEE measures should not be limited

to quality assessment but also to provide a quantitative measure that could be

used to control some unpredictable after-effects due to CE. The side effects due

to CE are color mismatch, color bleeding, saturation, overshooting, halo effects,

blocking/ringing artifacts amplification, and other undesirable effects. The exist-

ing CEE measures either increase or decrease with the increase in contrast and

none of the measures could predict the side effects due to CE. In this regard, we

proposed a NR metric based on mutual information computed from gray level co-

occurrence matrix to show how this measure may help in evaluating the artifacts

in CE processes. The details of this work are provided in the next section.
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Table 3.2: The expressions of the Statistics-based CEE measures

CEE measures expressions Type

AMBE[109] = |E (Ir)− E(Ie)| FR

VIF[102] =

∑

k∈subbands
IM(~CN,k|~FN,k)

∑

k∈subbands
IM(~CN,k| ~EN,k)

FR

RMSC[110] =

√√√√ 1

HW − 1

W∑

i=1

H∑

j=1

(
Iij − Ī

)2

NR

DE [111] = −
255∑

x=0

p(x) log2 p(x) NR

– IM (~CN,k|~FN,k) and IM (~CN,k| ~EN,k), represents the mutual information that can be
extracted from a particular wavelet subband k in the original (F) and test (E) images
respectively, C represents the wavelet coefficients.

– p(x) represents the normalized image histogram.

3.3 A New No-Reference CEE Measure based

on Mutual Information

Contrast enhancement in its broad sense is considered as a process by which some

characteristics of the image signal are highlighted. The objectives of image en-

hancement differ and depend on the considered applications. From the point of

view of purely signal processing perspective, enhancing contrast signal may pro-

duce interesting results but in the same time it may generate some undesirable

effects from the perceptual image quality aspects. Indeed, for example global

approaches, such as histogram based CE methods [116, 117], may produce satura-

tion in some dark and bright zones and consequently reduce the visibility of some

details. Neighborhood or local based methods have been developed to overcome

the limitation of global methods [118, 119]. However, local analysis based meth-

ods may also produce noise amplification, overshooting, color mismatch, blocking

effect accentuation, and other undesirable effects [120, 121]. Therefore, looking
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Table 3.3: The expressions of the Gradient-based CEE measures

CEE measures expressions Type

EC[114] =
1

H ×W
W∑

i=1

H∑

j=1

|∆I(i, j)| NR

RSE[65] = log
( 1

ωmax

∑

ω

|ERr(ω)− ERe(ω)|
)

NR

IEM[113] =

B1∑

i=1

B2∑

j=1

8∑

n=1

|Ie,cij − Ie,nij |

B1∑

i=1

B2∑

j=1

8∑

n=1

|Ir,cij − Ir,nij |
FR

– Imaxij , Iminij , and Icenij are the maximum, minimum, and center pixel intensity within
the block (i, j), respectively.

– n represents pixel neighborhood index
– ERr and ERe represents Radial Spectral Energy of reference and enhanced image

respectively, ω is the radial frequency.

for some strategies to control the image CE is really very useful in many applica-

tions. One of the most challenging problem is then not only to develop objective

measure for CEE but also and more importantly to control the effects of CE on

the perceptual quality of images. This control process should be consistent with

the subjective appreciation of the treated images. Some simple CEE measures

have been proposed in the literature [109, 114, 122, 97, 123, 98]. But to our best

knowledge there are very few works dedicated to the development of measures

that could be used to control the side effects of CE. The intent of our work is to

propose a new framework for quantifying the side effects of some CE methods and

especially local based methods which has been proven more efficient than global

ones. Here we limit the study to two representative methods of neighborhood-

based approaches, namely Adaptive Edge-based Contrast Enhancement (AEBCE)

method [124] and a new unsharpening method introduced in this chapter for the

first time which we termed Extended Unsharpening Method (EUM). The frame-

work introduced here is based on mutual information concept [125]. The idea
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Table 3.4: The expressions of the HVS-Inspired CEE measures

CEE measures expressions Type

EME[97] =
1

B1 ×B2

B1∑

i=1

B2∑

j=1

20 ln
( Imaxij

Iminij + c

)
NR

EMEE[98] =
1

B1 ×B2

B1∑

i=1

B2∑

j=1

α

(
Imaxij

Iminij + c

)α

ln

(
Imaxij

Iminij + c

)
NR

AME[99] =
−1

B1 ×B2

B1∑

i=1

B2∑

j=1

20 ln

(
Imaxij − Iminij

Imaxij + Iminij

)
NR

AMEE[99] = − 1

B1 ×B2

B1∑

i=1

B2∑

j=1

α

(
Imaxij − Iminij

Imaxij + Iminij

)α

ln

(
Imaxij − Iminij

Imaxij + Iminij

)
NR

SDME[100] =
−1

B1 ×B2

B1∑

i=1

B2∑

j=1

20 ln
∣∣∣
Imaxij − 2Icenij + Iminij

Imaxij + 2Icenij + Iminij

∣∣∣ NR

RME[98] =
1

B1 ×B2

B1∑

i=1

B2∑

j=1

∣∣∣∣∣
log |Icenij − Īb|
log |Icenij + Īb|

∣∣∣∣∣ NR

– Imaxij , Iminij , and Icenij are the maximum, minimum, and center pixel intensity within
the block (i, j), respectively.

– Īb is the average pixel value within the block centered at index (i, j)

of using information-based measure is dictated by the fact that any process that

tends to enhance image contrast would inherently change the spatial dependency

relations between pixels and therefore global and local spatial information con-

tained in the image. It is shown through this study that, this information based

framework opens a new promising approach for quantifying and controlling the

CE side effects such as over-shooting or halo effects, by blindly determining the

critical point where over enhancement starts. The proposed framework is briefly

introduced and illustrated on some real color images of various contents. The

new mutual information measure is analyzed on the two mentioned CE methods

AEBCE and EUM.
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3.3.1 Preliminaries

The Co-occurrence matrix

The proposed metric is based on the grey-level co-occurrence matrix [126]. This

is motivated by the fact that the co-occurrence matrix has been widely used in

image analysis and especially for texture analysis and classification [127]. From

the co-occurrence matrix, we compute the contrast, joint entropy and the mutual

information for the Luminance component of color images in CIELAB space.

The proposed metric derived from information theory will be used for tracking

image quality enhancement. We show that the variations of pixel intensity distri-

bution are well visible on the co-occurrence matrix as shown in Figure 3.3 where

we consider a typical case of local CE and blurring effect on natural images. We

observe that the width of ellipse in the 2D histogram plot of the co-occurrence

matrix changes with enhancement. For a blurred image, the ellipse width is thin-

ner compared to the original image, and increases when the image contrast is

increased as shown in Figure 3.3 (e) and (f) respectively.

For the sake of completeness, we recall in the following some basic notions

used in this section. Let
[
I
]

be an image of size H ×W , i.e. where each pixel

(x, y) can take values I(x, y) in the range
[
0, K − 1

]
, where K = 256, for 8-bit

per pixel. The co-occurrence matrix
[
C
]
, is computed by examining all the pair

of pixels in the image situated at a given distance and direction. The element of

this matrix is defined as follows:

Cij (r, θ) =
H∑

x=1

W∑

y=1

δ(x, y) (3.15)

where

δ(x, y) =





1 if I(x, y) = i and I(x+ ∆x, y + ∆y) = j

0 otherwise

(3.16)
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Effects of CE and blur on the co-occurrence matrix (a) Original image
(b) Gaussian blurred image (c) Contrast enhanced image. (d)-(f) 2D histograms
of co-occurrence matrices for images (a)-(c) respectively.

r2 = (∆x2 + ∆y2), θ = tan−1
(

∆x
∆y

)
, and Cij represents the frequency of oc-

currences of the gray level j adjacent to gray-level i in θ direction and at distance

r.

In what follows, we will omit the parameters r and θ. So, for a given direction

and distance, the second order probability mass function could be estimated as:

[
pij
]

=
Cij

K−1∑
k=0

K−1∑
l=0

Ckl

(3.17)
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Adaptive Edge-based Contrast Enhancement (AEBCE)

It is based on local CE using edge information [124]. For a given image, I, the

local contrast in a window of size w×w centered at pixel location (k, l) is defined

as follows:

Ckl =
|Ikl − Ekl|
|Ikl + Ekl|

(3.18)

Ekl =

∑
(i,j)∈wkl

IijΦij

∑
(i,j)∈wkl

Φij

(3.19)

where Ekl is the mean edge-gray value computed over the local window, and

Φij represents edge value of pixel (i, j), computed from any gradient operator

(e.g. Sobel, Prewitt etc.). The image contrast is then increased by applying any

increasing and bounded to
[
0, 1
]

function on the local contrast such as:

C
′
kl = T (Ckl) such that 0 ≤ C

′
kl ≤ 1 and C

′
kl ≥ Ckl (3.20)

The new image pixel value is computed as follows:

I
′
kl =





Ekl
1−C′kl
1+C

′
kl

if Ikl ≤ Ekl

Ekl
1+C

′
kl

1−C′kl
otherwise

(3.21)

For color images, the CE is applied to each color component. The edge based

CE method closely resembles human visual perception. However, caution must

be taken to avoid over enhancement or other unstable effects such us halo or noise

amplification. For automatic CE, it is desirable to find an optimal point where the

saturation starts to appear as halo effects near the edges. The proposed metric

effectively determines this optimal point for best contrast.
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Extended Unsharpening Method (EUM)

The unsharp masking method is used to increase the contrast of images. Here,

we extend this method and use binomial smoothing filter instead of average filter.

The reason for using the binomial filter is that it preserves the spatial coherence

between pixels and the contours better than the box filter which tends to produce

contrast inversion in high frequency components or edges. But the problem with

this approach is that it is more sensitive to noise. For our experiments, we fixed the

mask size to be 3× 3 and generated different contrast images for γ = 1, 2 · · · , 20.

For color images, the unsharp masking is applied on the luminance component

in CIELAB color space and then converted back to RGB color space. Given an

image I, its smoothed version Ismooth is computed by using a lowpass filter as

follows:

Ismooth(x, y) = (I ∗ h)(x, y) (3.22)

Here h is the impulse response associated with the binomial filter. A mask for

3× 3 binomial filter is as follows:

h =
1

16




1 2 1

2 4 2

1 2 1




(3.23)

Iusm(x, y) = Ismooth(x, y) + γ(I(x, y)− Ismooth(x, y)) (3.24)

The unsharp masking is applied only to Luminance component of color images

in CIELAB color space.

83



3.3.2 The Proposed Technique

The proposed measure is based on the 2nd order statistics computed from the gray-

level co-occurrence matrix. In the preprocessing stage, we convert the color image

from RGB to the perceptual color space CIELAB. Only the luminance component

is then processed and analyzed. In order to capture the spatial correlation between

neighboring pixels, the joint probability mass function is calculated from the co-

occurrence matrix of the luminance component. It could be noticed that a co-

occurrence matrix with dispersed values reveals the richness of the image details,

while a concentrated co-occurrence matrix along the diagonal corresponds to low

contrasted image. Therefore, the use of the co-occurrence matrix for evaluating

the overall contrast of an image is relevant.

For a given color image, the co-occurrence matrix associated with the lumi-

nance channel is computed for distances d = 1, 2 and two orthogonal directions.

The second order probability function is derived from the co-occurrence as defined

in (3.17).

We compute the joint entropy from the image co-occurrence matrix using

(3.25):

H = −
∑

i

∑

j

pij log2 (pij) (3.25)

where pij is the joint probability mass function of the luminance channel.

The mutual information within the rows and the columns of the co-occurrence

matrix is then calculated from the joint probability mass function and marginal

probabilities using 3.26, 3.27, and 3.28:

px (i) =
K∑

j=1

pij (3.26)

py (i) =
K∑

i=1

pij (3.27)
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MICM =
∑

i

∑

j

pij log2

(
pij

px(i)py(i)

)
(3.28)

This measure is used as a powerful tool for quantifying the CE of color images.

It could be also used to detect and control the side effects, such as saturation,

overshooting or noise amplification that may result from CE.

3.3.3 Experimental Results

To evaluate the performance of the proposed metric, we performed our experi-

ments on different color images. The images were of dimension 512 × 384. First

of all, we generate contrast images using edge-based and unsharp masking-based

CE methods by changing their parameters. The gray-level co-occurrence matrix

was calculated for neighboring pixel distances, d = 1, 2, and directions θ = 0◦, 90◦

from the luminance component in CIELAB color space. From the co-occurrence

matrix, we computed the entropy, contrast, and mutual information. The per-

formance of the proposed metric is evaluated for AEBCE and EUM CE methods

already discussed in Section 3.3.1. Figure 3.5 shows the halo effect produced due

to saturation of pixel values at the edges for different window sizes in the edge

based contrast algorithm, for a zoomed portion of the corresponding images in

Fig. 3.4. The effects of CE on the entropy, contrast, AMBE, EC, EME, AME,

and the proposed measures (i.e., mutual information) for edge-based method is

shown in Fig. 3.7. From the curves in Figure 3.7, we observe that the AMBE

does not provide information about the best contrast as we notice an increasing

exponential curve with increasing parameter. Similarly, the other metric, AME

has decreasing exponential curve and is unable to provide information about the

optimal CE. The other metrics i.e, entropy, contrast, EME, and EC increase with

window size and they start to saturate after a certain point. However, we observe

a sharp decay in the proposed measure curve after reaching a certain point (the
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point after that saturation starts). Similarly for EUM-based CE, our proposed

measure provides an optimal point after that increase in contrast results in over-

shooting effects and clearly visible in Fig. 3.6 and 3.8. We also tested our proposed

metric on other images and we observed consistency across different test images.

All of our experiments showed the superiority of the proposed metric in addition

to providing the point of best contrast not provided by other CEE measures.

(a) (b)

(c) (d)

Figure 3.4: Effects of increasing window size in AEBCE technique (a) original
image [b-d] enhanced image with different window size (b) 3×3 (c) 5×5 (d) 7×7

3.3.4 Discussions

Through this study, we demonstrated the inefficiency of the existing objective

CEE measures in capturing the undesirable effects that may results from CE such

as overshooting or noise amplification. The proposed measure based on some in-

formation concepts offers an efficient solution for analyzing and detecting such

side effects for some neighborhood based CE methods. The other interesting re-

sult is that the proposed measure offers an efficient index to localize the size of
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(a) (b)

(c) (d)

Figure 3.5: Effects of increasing window size in AEBCE technique (a) original
image [b-d] zoomed regions with different window size (b) 3× 3 (c) 5× 5 (d) 7× 7

(a) (b)

(c) (d)

Figure 3.6: Effects of increasing window size in EUM-based CE technique (zoomed
regions) (a) original image [b-d] enhanced images with different γ values (b) γ =
3.5 (c) γ = 7.5 (d) γ = 10
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Figure 3.7: Comparison plots of different CEE measures for local AEBCE method

Figure 3.8: Comparison plots of different CEE measures for EUM-based CE
method
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the window at which the CE tends to decrease the quality of the image. The pro-

posed metric is expected to open a new era for developing perceptually motivated

algorithms for evaluating the image enhancement techniques as well as analyzing

techniques for finding saturation point beyond which enhancement becomes un-

pleasant to the viewer. One idea to be explored in the future is the use of the

proposed measure in order to develop adaptive local CE methods. The extension

to video would be also an interesting perspective work.

In the following section, we provide a detailed description of our new database

containing images obtained using six CE methods as well as a brief discussion

on the testing methodologies, testing environment, and performance analysis of

state-of-the-art CEE measures on the proposed database.

3.4 A New Database for Contrast Enhancement

Evaluation

In this work, we develped and tested a new database dedicated to CE images for

perfomance comparison of CEE measures following the main relevant ITU guide-

lines designed for the subjective experiments [28]. It is worth noting, that our

methodology differs from previous works in many aspects; (1) The objectives are

not the same. We aim here to analyze the performance of CEE measures in con-

trast to the work in [40, 101, 103] in which the performance analysis of classical

IQA measures (i.e., IQA for distortions) was discussed, (2), The database is not

the same compared with classical IQA databases like TID2013 [38], CSIQ [33]

containing contrast images and few existing contrast databases [101, 103]. These

databases contain simulated changes of global contrast using a simple pixel value

mapping function so as to produce a decrease in contrast. The authors consider

these transformations as contrast distortion. Whereas, in our framework, we deal
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with the artifacts and distortion that may happen when applying CE operations.

The distortion that might appear in the enhanced images after processing with

CE methods are, for example, color saturation, color loss, blocking and ringing

amplification in the case of compressed images, noise amplification, and halo ef-

fects and some others. The common databases did not contain any of these after

effects due to CE. Moreover, in our case, we use different representative CE meth-

ods. (3), In contrast of all the databases, we do not want to estimate distortion in

terms of decrease in quality like in classical IQA, rather our goal is to assess and

quantify, subjectively and objectively, the increase in quality. (4), The application

is entirely different compared to the CEE of tone mapped and retargeted images

[106, 107, 105].

To the best of our knowledge, there are only two dedicated databases related to

contrast manipulation [101, 103], where the processed images are obtained using

simple artificial pixel-based transformations. Whereas, in our proposed database,

some realistic CE artifacts are considered and provided with subjective ranking

of different CE methods, which can be used to validate the performance of new

CEE measures. The proposed database will help in preliminary validation of new

image CEE measures without performing dedicated subjective experiments. The

main contributions of this work are:

� To provide a comprehensive performance analysis of the state-of-the-art

CEE measures in terms of correlation with the subjective evaluation pro-

vided in the developed database as well as on other existing contrast ma-

nipulated databases.

� To evaluate six representative CE methods on a set of images representing

different kinds of visual content. Here, our objective is to analyze the per-

formance of CEE measures rather than CE methods. We focused only on

some representative CE methods.
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� To provide a comprehensive statistical analysis of the data collected from

subjective experiments on a new and unique CE dedicated database.

� To propose a multi-metric fusion to improve the correlation performance

with the subjective ranking.

Here, we provide a brief discussion of the new database, selection and creation

of images, testing environment, testing procedure, performance comparisons of

different CEE measures on the new database.

3.4.1 Database Creation

We constructed a new database named as Contrast Enhancement Evaluation

Database (CEED2016), containing 30 original color images and 180 enhanced

images with a size of 512× 512 pixels. The database is built with our own images

and some common pictures used by the image processing community. The images

in the database are shown in Fig. 3.10.

Selection of Images: It is well-understood that the human perception of

image quality is highly dependent upon the scene content under observation. For

this reason, we selected images with different textures, color distributions, and

contrast variations. We have used three quantitative measures for the selection

of images. These measures are Colorfulness (CF) [128], Spatial Information (SI)

[128], and Global Contrast Factor (GCF) [129]. A brief description of each mea-

sure is given below:

Colorfulness (CF): It is a perceptual indicator of the variety and intensity of

colors in the image [128]. The Red (R), Green (G), and Blue (B) color components

are converted into opponent color space as follows:

rg = R−G (3.29)
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yb =
(R +G)

2
−B (3.30)

The CF is then given by:

CF =
√
σ2
rg + σ2

yb
+ 0.3

√
µ2
rg + µ2

yb
(3.31)

where σi and µi for i ∈ [rg, yb] represent the standard deviations and the mean of

the pixel values in the opponent color space.

Spatial information (SI): It is an indicator of edge energy and is calculated as

the root mean square of the edge magnitude over the entire image [41]:

SI =

√
L

1080

√√√√
N∑

k=1

(∆2
k

N

)
(3.32)

where ∆k represents the gradient magnitude computed from the Sobel operator

at the kth pixel, N is the total number of image pixels, and L is the vertical

resolution of the image.

Global Contrast Factor (GCF): It is a global measure of the overall image con-

trast as perceived by the HVS. This contrast measure accounts for the multi-scale

characteristics of the HVS. It is based on a multi-resolution decomposition scheme

and a weighting process. The global contrast is then expressed as the weighted

average of the local contrast computed at different resolution levels. The con-

trast weighting function is derived from a psychophysical experiment [129]. It is

calculated as follows:

GCF =
N∑

i=k

wkck (3.33)

where wk and ck represents weights and average local contrast of the image for a
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given resolution and N is the number of resolution levels.

ck =
1

W k ×Hk

Wk×Hk∑

i=1

1

lcki
, for k = 1, · · · , N (3.34)

where lcki represents local contrast for ith pixel at the kth resolution, W k and

Hk represents image width and height at kth resolution. The local contrast is

computed as the average of the differences of pixel values with its four nearest

neighbors.

Since the database contains images enhanced by different CE methods, and

to see the effect of improvement in quality in a clearer way, we have used this

measure to select images with varying contrast from low to high.

Using the measures above, we provided a scatter plot for the images in our

database (Fig. 3.9). Here, ’?’ symbol is used, to represent images. From the

plots, it could be observed that the database contains images with diverse spatial

information, colorfulness, and global contrast features.

Creation of Enhanced Images: In the literature, we can find numerous

CE methods. In our work, we selected six CE methods as a representative set

of the most common approaches used in the literature. These methods are: AE-

BCE [124], Contrast Limited Adaptive Histogram Equalization (CLAHE) [131],

DCT [132], Global Histogram Equalization (GHE) [133], Top Hat Transformation

based (TOPHAT) [134], and Multi-scale Retinex (MRETINEX) [135]. The above

were selected to cover the different classes of CE including: histogram-based,

edge-based, transform-based, morphological-based, and HVS-inspired methods

[132, 134, 124, 133, 135, 131]. We have used the codes for some methods ac-

cessible from the original papers author’s websites. For GHE and CLAHE, we

have used the MATLAB built-in functions histeq and adapthisteq respectively.

Since, the main goal of the study is the performance comparison of CEE mea-
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Figure 3.9: Scatter plots for all images in the new database between (a) Spatial
information versus Colorfulness (b) Global contrast factor versus Colorfulness

sures instead of CE methods, therefore, for our experiments, we have used the

CE algorithms with their default parameters without tuning the algorithms for

performance optimization.

Among the original images, we have also included six compressed images (three

for JPEG and three for JPEG2000) with moderate compression so as to observe

the effect of contrast enhancement that may increase the visibility of these masked

artifacts. In this way, we can also observe the capabilities of different CEE metrics

in quantifying these particular CE after effects i.e., blur, ringing amplification. In
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Fig. 3.11, we show some enhanced images with visible artifacts due to CE.

3.4.2 Testing Environment

The subjective experiments were performed at Université Paris 13 at Laboratoire

de Traitement et Transport de l’Information (L2TI). The images were displayed

on a calibrated LCD monitor in a dark room environment to avoid any problem

with the illumination adaptation of background. The details of display parameters

are shown in Table 3.7.

Table 3.7: Display setup used in the subjective experiments

Parameter Description

Type LCD
Model EIZO Color Edge CG242W
Screen 24.1 inch
Resolution 1920× 1200 pixels
Calibration device Eye-One Match 3
Color space sRGB
Color temperature 6500K
White point luminance 119 cd/m2

Display frame rate 60Hz
Contrast 80
Room Environment Dark
Gamma 2.2
Background color Gray (128, 128, 128)

Twenty-three observers both experts and non-experts and coming from dif-

ferent age groups, gender, and background participated in the experiment. All

the observers had either normal vision or corrected to normal vision and they

were undergone a pre-screening procedure for color vision and visual acuity. The

observers were forced to perform the experiments at a fixed distance of twice the

screen height. The non-expert observers were not informed about the definition

of contrast, and were asked to give their preference about the image they feel

perceptually better than the other compared to the original image. They were
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allowed to give the same rank for both images in case of the equivalent degree of

quality.

The database contains 30 original images. Each original image is enhanced

by six CE methods, resulting in 180 enhanced images in addition to the original

images. For each original image, the six enhanced images were shown in pairs to

the observers. The number of possible combinations to display for each original

image are
(

6
2

)
= (6)(5)

2
= 15. We allowed the observers to take their time for the

subjective experiments and they were not forced to finish early. However, they

were informed that the whole subjective tests take on average 30 minutes.

3.4.3 Testing Procedure

Considering the advantages of PC-based methods, we opted to use the non-forced

choice balanced pairwise ranking protocol (Condorcet method) in our subjec-

tive experiments. The interface for the subjective experiments was developed in

MATLAB, where, for each original image, we randomly displayed all possible pair

combinations of enhanced images to the observers. We also showed the original

image in the center of the screen (a pair of enhanced images are to its left and

right), to facilitate the analysis of after effects of CE. The observers had the choice

to rank equally similar stimuli. A screenshot of the graphical interface is shown

in Fig. 3.12. In the PC ranking protocol, each enhanced image is compared with

the others in pairs and ranking results are stored in a preference matrix. An ag-

gregated preference matrix for the 23rd image in the database is shown in Table

3.8. From the Table 3.8, it can be observed that the CLAHE method is highly

preferred, whereas GHE is least preferred by all the observers. The preference

data was collected for all the images in our database for statistical and correlation

analysis.
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Table 3.8: A sample preference matrix for 23rd image (i.e., mosque) aggregated
over preferences of 23 observers. In our experiment, M1 = AEBCE, M2 = CLAHE,
M3 = DCT, M4 = GHE, M5 = TOPHAT, M6 = MRETINEX.

- M1 M2 M3 M4 M5 M6 pi

M1 – 2.5 10 23 22 3 60.5
M2 20.5 – 17.5 23 23 15.5 99.5
M3 13 5.5 - 23 23 10 74.5
M4 0 0 0 – 1 0 1
M5 1 0 0 22 – 0 23
M6 20 7.5 13 23 23 – 86.5

3.4.4 Statistical Analysis

The data gathered from the subjective experiment was processed to verify its re-

liability and validity. The reliability relates to the consistency and it is further

related to the closeness of agreement in the preference ranking among different

observers (also called inter-rater reliability). Whereas, validity relates to the ac-

curacy of the data. However, it does not mean that the data with high reliability

is also accurate. For the preference based pairwise rank data, the reliability was

measured using Kendall’s Coefficient of Concordance (W) [29] and Coefficient of

Agreement. Other measures are Kendall’s Tau (τ) and Spearman’s Rank Order

Correlation Coefficient (ρ).

(A) Coefficient of Agreement (u): The coefficient of agreement or inter-rater

reliability is a measure of understanding among a group of observers in their

judgments. It is measured on a continuous scale in the range [0− 1]. Kendall and

Babington et al. [136] proposed coefficient of agreement, u, among the observers

and defined it as:

u =

2
M∑

i,j=1,i 6=j

(
aij
2

)

(
S
2

)(
M
2

) − 1 (3.35)

where M is the number of CE methods, S is the number of observers, and aij

represents the number of times image enhanced by method Mi is preferred over the
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image enhanced by method Mj. Its value is equal to one, when all the observers

(or raters) agree on their preferences.

To test for the significance of coefficient of agreement (u), we have performed

a chi-squared test (χ2). The χ2 values are calculated as follows:

χ2 =
M(M − 1)(1 + u(S − 1))

2
(3.36)

The degree of freedom for this χ2 statistic is selected as M(M−1)
2

. The minimum

value of u is −1
(S−1)

and −1
S

for even and odd number of observers respectively.

For our experiment, with 23 observers, the minimum value of the consistency

coefficient (umin) is −1
23

= −0.0435. The null hypothesis H0 is rejected when the

observed χ2 is greater than its critical value.

(B) Coefficient of Consistency or Transitivity (ζ) The pairwise rank data is

further assessed for inconsistency. It relates to the transitivity property in a

paired comparison. It is determined from the number of intransitivity or circular

triads in a set of ranking. It is also called intra-rater agreement and is calculated

for each observer and image. The coefficient of consistency in a set of pairwise

comparison can be calculated using the relation [136]:

ζ = 1− C

Cmax

(3.37)

where C represents the number of circular triads and Cmax is the maximum pos-

sible circular triads in a pairwise comparison. C is calculated using the following

relation:

C =
M

24
(M2 − 1)− 1

2
M (3.38)

where M =
∑

(ai−(M−1)/2)2, ai is the number of times stimulus i was preferred
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over other stimuli. The maximum value of C is given by:

Cmax =





(M3−4M)
24

M is even

(M3−M)
24

M is odd

(3.39)

Note that, ζ = 1 represents a perfect consistency in the pairwise comparisons.

The consistency coefficient for each observer is calculated by averaging con-

sistency coefficients across all the images used in the experiment. Whereas, the

consistency coefficient for each image is computed by averaging consistency coef-

ficients for all observers participated in the experiments (see Table 3.9 and 3.10).

(C) Kendall’s Coefficient of Concordance (W ) is also used to measure the degree

of agreement in the rankings among different observers. It is calculated as follows:

W =
(12× S)

(S2(M3 −M)− S × T )
(3.40)

where S and M are the number of observers and the number of methods respec-

tively. T is the correction factor, when there are ties in the rank. T is zero when

there is no tie within the rank. The correction factor T is calculated as follows:

T =
K∑

k=1

t3k − tk (3.41)

where K is the total number of tie groups, and tk is the total number of ties in a

particular group.

To determine the significance of W , we calculated the χ2 value given by:

χ2 = S(M − 1)W (3.42)

Then, the probability of getting the results by chance (p-value) is also calculated

using the χ2 distribution. The p-values for the experimental data indicates that
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(1) chalet (2) mountain (3) plane1 (4) aerial-view (5) playground

(6) city river (7) camel (8) puppies (9) elephant (10) sculpture

(11) swan (12) monkey (13) deer (14) tree (15) flower1

(16) bush (17) fruits (18) flower2 (19) painting (20) street

(21) building (22) fort (23) mosque (24) plane2 (25) barbara

(26) mandrill (27) clock (28) zelda (29) pepper (30) clown

Figure 3.10: Images in the database (Images 1-23 are self captured while images
24-30 are standard test images
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(a) (b)

(c) (d)

Figure 3.11: Illustration of some artifacts due to CE (a) color shift, (b) halo
effects, (c) blocking, and (d) ringing

Figure 3.12: The display environment where the original and enhanced images
are presented at the same time
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Table 3.10: Consistency coefficients for 23 observers

Observer ζ̄image Observer ζ̄image Observer ζ̄image

1 0.7583 9 0.9208 17 0.8406
2 0.7990 10 0.8354 18 0.8271
3 0.9042 11 0.7896 19 0.8094
4 0.6885 12 0.7708 20 0.8688
5 0.8688 13 0.8906 21 0.7917
6 0.7323 14 0.8354 22 0.7167
7 0.9208 15 0.8604 23 0.8344
8 0.8187 16 0.7406 – –

the consistency coefficients are significant. However, we removed some images in

the comparisons where these coefficients values are low.

For our preference based pairwise rank data collected from the subjective ex-

periment, the values of these coefficients are presented in Table 3.9. From the

significant tests, we have noticed that inter-observers’ and intra-observers’ con-

sistency coefficients for the images in our new database are high except for the

images numbered 6, 8, 12, 16, and 26. We then discarded these images and their

related data and did not use these in further experiments.

3.4.5 Correlation Analysis

From the subjective experiments, we have derived the preference scores, i.e., the

number of times an image enhanced by a particular CE method is preferred over

other enhanced images. The subjective preference ranking of the six CE meth-

ods is shown in the first row in Table 3.11. We observe that CLAHE is highly

preferred whereas GHE and TOPHAT are not preferred most of the time. In re-

lation to CLAHE, we were expecting the MRETINEX to give better results, but

surprisingly it was not the case for the database in our subjective experiments.

The CEE measures are also calculated for the enhanced images created from the

six CE techniques. For NR-CEE measures, we have computed the change rate
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Figure 3.13: SROCC plots for 25 images in the database. The x- and y-axes
represent image index and correlation values respectively
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and then averaged over all the images in the database. The average scores for

the CEE measures under study are also shown in Table 3.11. It is worth noting

that most of the measures resulted in high/low values for GHE and TOPHAT in

contradiction with the subjective preference ranking, and consequently resulted

in the reduction of correlation results.

Based on the subjective experimental data, we have used the SROCC and the

KROCC to observe the consistency of the CEE measures with the human visual

perception [29]. The SROCC and KROCC are widely used non-parametric mea-

sures to determine the monotonicity between the ranks of two variables and their

values ranges from −1 to +1. The values are close to +1 in case of strong correla-

tion between the ranks of two variables and −1 in the case of strong disagreement

between the two variables. The SROCC and KROCC give zero values when there

is no correlation between the ranks. In our study, the aim is to observe how well a

CEE measure is consistent in capturing the ranking for the six enhanced versions

of each original image in the database. Therefore, before performing the correla-

tions, we must consider, how the change in magnitude of metric values affects the

image quality. For some metrics, high values correspond to good quality, whereas

for other metrics, the opposite is true (see Section 3.2.2). For preference ranking,

the highest score is highly ranked. Whereas, the metrics with high/low values

corresponding to good quality are also highly ranked.

We calculate the median and mean correlations for each of CEE measures

under study. For each image in the database, we have the ranking scores for its

six enhanced versions as well as the quantitative scores. If Ii represents an original

image and Ii,j, its enhanced version processed by method Mj, for i = 1, 2, · · · , nI
and j = 1, 2, · · · , nJ , for (nI = 25, nJ = 6). Here nI and nJ represent the number

of original images and the number of CE methods respectively. We compute the
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SROCC for each image using the following relation:

ρi,k = 1− 6d2
i,j

nJ(n2
J − 1)

, for i = 1, 2, · · · , nI (3.43)

where di,j represents the difference in the ranks of subjective preferences and

objective scores of kth CEE measure for the ith image. The correlation for each

image for all the CEE measures are shown in Fig. 3.13. Finally, the median and

mean of the SROCC’s for the 25 images are computed as a single performance

measure of each CEE measure and reported in Table 3.12. Similarly, two different

types of KROCC across the images, i.e., τmedian and τmean are also calculated and

shown in Table 3.12. The median correlation provides more information compared

to the mean correlation, as the median statistic is not affected by the outliers.

The performance of different CEE metrics is also compared with other existing

databases with contrast manipulated images and results are shown in Table 3.13.

3.4.6 Results and Discussions

From the correlation results on different databases, we observed that the perfor-

mance of various CEE metrics might differ on some databases. The metrics which

perform better for some databases do not work well on others. The reasons are

that the metrics are not adapted to different CE distortions, and the databases

do not contain enhanced images affected by various CE distortions.

The comparison of the median correlations between subjective and objective

data for the CEE measures is also shown in Fig. 3.14. From Fig. 3.14, we observe

that only VIF, RIQMC, AMEE, LOE, AMBE, DE, and MICM metrics have

positive correlations with the subjective ranking. The negative correlation of

other CEE measures shows the inconsistencies of these measures with the human

perception of quality judgment. This is due to the inconsistencies exist between
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Table 3.12: Median and mean correlation analysis of CEE measures on the pro-
posed CEED2016 database

Measure
SROCC (ρ) KROCC (τ)

ρmedian ρmean τmedian τmean

EME[97] -0.3714 -0.3896 -0.3333 -0.2905
AME[99] -0.4286 -0.3896 -0.2000 -0.2958
EC[114] -0.4286 -0.4079 -0.3333 -0.3118
AMBE[109] 0.2000 0.1892 0.2000 0.1747
SDME[100] -0.4286 -0.3325 -0.3333 -0.2425
IEM[113] -0.4286 -0.3782 -0.3333 -0.2958
VIF[102] 0.6000 0.4797 0.4667 0.3884
AMEE[99] 0.5429 0.3892 0.3333 0.3241
EMEE[98] -0.4286 -0.4239 -0.3333 -0.3225
RME[98] -0.4857 -0.4468 -0.3333 -0.3598
RSE[65] -0.4286 -0.3819 -0.3333 -0.2802
RMSC[110] -0.4286 -0.3905 -0.3333 -0.3167
MICM[25] 0.0286 0.0713 0.0667 0.0726
LOE[112] 0.3714 0.3377 0.3333 0.2810
DE[111] 0.1429 0.1676 0.0667 0.1161
RIQMC[103] 0.5429 0.4865 0.4667 0.4021
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the metric values and subjective preferences for the TOPHAT and GHE methods,

where these two approaches were ranked worst based on the observers’ preferences.

We can also draw a conclusion from the correlation analysis, that most of the

CEE measures are not well suited for the CE evaluation for GHE and TOPHAT

based CE methods. From these results, it is also clear that using simple local

features, such as contrast or gradient, in the design of CE measure is not sufficient.

It is important to include the color aspects in the design of CEE measures for

color images. Through this study, it is shown that CE evaluation is still a very

challenging problem. We believe that the introduction of some learning based

approaches would offer better solutions to this very challenging problem.

3.4.7 A Multi-Metric Fusion based CEE Measure

It is also evident that a single metric cannot perform very well. This is due to the

reason, that no metric is sensitive to different types of artifacts introduced due to

CE process. Therefore, we propose to combine some best metrics to benefit from

their strengths in quantifying the image contrast. We use a simple weighting based

fusion and tune the weights to avoid the limitations of each metric and increase

the correlation performance. We use the top four metrics with positive correla-

tions, (i.e., VIF, RIQMC, LOE, and AMBE), and fuse their possible combinations

using different weights. We show in Table 3.14, only the top three combinations

with high correlations. Compared with the single metrics, the multi-metric fusion

results in a substantial increase in correlation performance at the cost of an in-

crease in complexity. From the fusion weights, we observe that LOE metric which

captures the naturalness property of an image is considered more important by

giving more weights in the fusion process. These observations provide us hints in

designing new metrics to consider different quality parameters (e.g., naturalness,

lightness, saturation, color-shift, visibility of edges, etc.) in CE applications.
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Table 3.14: Median correlation results for combining different CEE metrics

Fused Metrics SROCC KROCC Weights

(Q1) VIF+RIQMC+AMEE+LOE +0.8286 +0.6445 [0.1,0.1,0.1,0.7]
(Q2) VIF+RIQMC+LOE +0.7945 +0.6445 [0.1,0.1,0.8]
(Q3) VIF+LOE +0.7714 +0.6000 [0.1,0.9]

3.5 Summary

In this work, a comprehensive psychophysical-based performance comparison of

different state-of-the-art CEE measures is presented. The analysis was carried

over a new database, that we introduced, which consists of enhanced images us-

ing different CE methods most commonly found in practice. Extensive subjective

experiments were performed using a balanced pairwise preference-based ranking

protocol to rank the CE methods by perceived quality. The correlation between

subjective preferences and objective measures showed that most of the existing

CEE measures are not well adapted with human perception of enhancement qual-

ity. Our analysis revealed that only seven measures, namely VIF, RIQMC, AMEE,

LOE, AMBE, DE, and MICM exhibit positive correlations with perceptual qual-

ity of contrast enhancement. This is due to the reason that a single metric may be

unable to capture various CE artifacts. We demonstrated that multi-metric fusion

resulted in substantial improvement in correlation performance. It provides us an

insight to consider various CE distortions in designing a new CEE metric. The

new database is expected to provide a platform for developing new CEE measures

and benchmarking the results without the need for dedicated subjective experi-

ments. Soon, the developed database along with the subjective experimental data

will all be made publicly available to the research community.
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Figure 3.14: Subjective vs objective comparisons of CEE in terms of median
correlations, (a) Median correlations, (b) Mean correlations
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CHAPTER 4

IQA FOR INPAINTING

EVALUATION

4.1 Introduction

Image inpainting is generally defined as the process of restoring missing pixels

and damaged regions, or removing unwanted objects in digital images in a plau-

sible way [4]. Considerable research has been carried in developing inpainting

algorithms, and a plethora of image inpainting algorithms have been proposed

[137, 4, 138, 139].Image inpainting has recently received considerable attention

in different areas related to image processing. While the applications of image

inpainting are countless, we outline below the most common and practical ones.

� Removing Unwanted Objects: Unwanted objects can be removed from the

image using inpainting techniques. The scenario is seen as a special class of

image tampering. Fig. 4.1 shows a nice example of image inpainting where

the cage in the original image is removed in the inpainted image [3].

� Restoring Photos: The deterioration in photos with the passage of time can

be overcome using inpainting. The scratches in the photos resulting from
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improper handling can also be removed. This is also the case of restoring

images from cultural archives, etc. Fig. 4.2 shows an example in which the

scratches in the old photograph have been removed using inpainting [4].

� Photo Retouching: Another widely used application of image inpainting is

in the media industry where photos of actors/actresses, models, etc., are

manipulated by removing wrinkles, mole marks, or undesirable facial fea-

tures to make these “more attractive”. Fig. 4.3 shows an example of image

inpainting where the face is made more attractive by removing some marks

using inpainting [5].

� Text Removal: Image inpainting can also be used for removing unwanted

text, stamps, copyright logos, etc., in digital images. Fig. 4.4 shows an

example of a street image with superimposed text, from which the text is

removed in the inpainted image.

(a) (b) (c)

Figure 4.1: An example of image inpainting for object removal (a) original image.
(b) binary mask, (c) inpainted image [3].

In a way, image inpainting can be seen as a modified copy-move tampering

process which is used to recover or remove some parts of the image without any

perceptual loss [11, 140]. It is different from copy-move forgery in a sense that

different blocks or regions come from different locations of the image (see Fig. 4.5).
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Figure 4.2: An example of image inpainting used in restoration, original image
(left), restored image (right) [4].

Figure 4.3: An example of inpainting for photo retouching, original image (left),
restouched image (right) [5].

Although a substantial amount of research has been carried out in developing

robust inpainting algorithms, very little efforts have been put in developing quality

assessment metrics to evaluate the performance of image inpainting (restoration)

methods. IIQA is a complex and a challenging problem. The objectives of image

inpainting assessment are quite different from those of classical image quality

evaluation. Here, for inpainting IQA, the goal is to evaluate the quality of the

restored images using either subjective or objective methods. However, traditional

IQA fidelity-based metrics have mainly been developed for quantifying distortions

in degraded images hence, these are not well suitable for evaluating the quality

of restored images and cannot directly be used. This is due to the fact, that the
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Figure 4.4: An example of image inpainting for text removal, original image (left),
restored image (right) [4].

Figure 4.5: Difference between two types of tampering (a) copymove forgery (b)
inpainting [6]

restored image in inpainting is different from its original counterpart. In image

inpainting, different artifacts are introduced which in turns affect the perceived

quality. Among these artifacts, blur is introduced around edges when restoring

large inpainted regions. The curved boundaries are not produced correctly as

well. This is our focus here, in this chapter, we provide a comprehensive and a

critical review of different methods developed for quality assessment of inpainted

images. This review will be the first of its kind and is expected to help researchers

working in this area to benchmark new inpainting techniques, develop more robust

methods for inpainting quality assessment, and benchmark their results.

The rest of the chapter is structured as follows: Section 4.2 provides a discus-

sion of common inpainting algorithms. Section 4.3 briefly discusses the state-of-
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the-art IIQA metrics. Different inpainting databases are discussed in Section 4.4.

Finally, the chapter is concluded in Section 4.5.

4.2 Image Inpainting Methods

The main objective of inpainting algorithms is to restore the unknown regions

to create a more pleasing and realistic feeling about the new image. Among

different types of inpainting artifacts, most commonly observed ones are blurring,

disconnected edges, inconsistent pieces of texture, etc. Based on our analysis

of the state-of-the-art, we propose here to group inpainting algorithms into four

broad categories: Exemplar-based, Partial Differential Equation (PDE)-based,

Sparsity-based, and Hybrid (combination of Exemplar-, PDE-, or Sparsity-based)

approaches. We display in Fig. 4.6 a tree diagram of different classes of most

commonly used inpainting algorithms. Since, the chapter aims to provide a critical

review of IIQA metrics instead of the inpainting algorithms themselves, we will

only provide a brief discussion of each of these categories. Note that in image

inpainting, the basic assumption is that pixels in the known and unknown regions

should have similar geometrical structures and statistical properties.

In PDE-based or diffusion-based inpainting methods, the local structure infor-

mation is transferred or diffused from the known region to the unknown (target)

region [4]. Several variations of PDE-based methods were introduced based on

the flow of texture information in linear, nonlinear, isotropic, or anisotropic direc-

tions. The PDE-based methods are well-adopted for restoring long narrow regions

(cracks, lines). However, they are not recommended for restoring large unknown

texture regions, due to the introduction of blur in the textured regions.

In Exemplar-based inpainting techniques, the structure completion process is

carried out using texture synthesis i.e., the target regions are restored by selecting
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the patches in the known regions similar (in terms of structure) to the partially

unknown patches in the target regions [11]. These techniques use greedy and

global optimization functions in filling the target regions with the similar known

pixels.

Sparse representations of images, over a particular basis (e.g., Discrete Cosine

Transform (DCT), Wavelet, etc.) has also been used in image inpainting. In

Sparsity-based inpainting methods, the assumption made is that the known and

unknown image regions share the same sparse representations.

The Exemplar-based and the Sparsity-based inpainting methods, above, were

shown to perform better compared to the PDE-based methods for filling large tex-

ture regions. Various Hybrid techniques also exist that combine the strengths and

different types of inpainting methods for performance improvement. To demon-

strate the effect of different inpainting algorithms, Fig. 4.7 shows a very nice

example of inpainting where broken pieces of the kiwi fruit are restored using

different inpainting algorithms [7]. The broken area is shown as a green mask. It

is clear that Figs. 4.7 (d) and (f) represent more realistic inpainting output com-

pared to the other methods. After this brief survey on commonly used inpainting

algorithms, we now move to the focus of the chapter and discuss in more details

different types of subjective and objective IIQA metrics, commonly used in the

literature.

4.3 Image Inpainting Quality Assessment

(IIQA) Measures

Image inpainting methods were initially used for removing missing or damaged

areas in an image. The main criterion was that the restored image should be

“close” to the original one. The traditional fidelity metrics were used to evaluate
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Figure 4.7: An example of broken object restoration using inpainting (a) original
image, (b) original image with target region in green color, (c-f) inpainting results
from different algorithms [7].

the quality of inpainted images. The MSE and PSNR, which are considered as

the most widely used fidelity metrics, were the simplest ones available. Oliveira

et al. in [141], for example, used these metrics for quality evaluation of inpainted

images. However, both MSE and PSNR are not well correlated with perceptual

quality assessment. In inpainting applications, the objective is to restore the

original image such that it is more appealing and that the artifacts introduced

inside, outside, and around the inpainted regions, are not noticeable/visible.

For performance evaluation of different inpainting algorithms, the metric of

choice would be a qualitative judgment averaged over a number of human ob-

servers. In this regard, Hays et al. [142] qualitatively evaluated inpainting image

quality for the first time using subjective experiments. The purpose of the ex-

periment was just the identification of the original and the tampered (inpainted)

images. The proposed method was compared with an exemplar-based approach
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[11]. Twenty naive observers participated in the subjective tests and were asked

to differentiate between the real image and the inpainted image (fake image). The

detection rate for tampered images was achieved as 34%, 64%, and 3% for the

images inpainted by their algorithm, [11], and for original images. The purpose

of the study was to investigate whether or not the proposed inpainted algorithm

produced better perceptual quality image compared to other methods. However,

the study did not provide any quantitative ratings of inpainted images.

Subjective assessment methods involve humans and the ratings provided are

considered as most reliable and accurate in relation to perceived quality. However,

these methods are time-consuming, laborious, and require a significant number

of observers to be consistent. They also require a well-controlled environment

and lighting conditions. This has motivated researchers in this field to develop

alternative objective metrics for inpainting quality assessment without the need

of human involvement. Such objective methods use mathematical tools to extract

characteristic features from either the reference or the test images or both. These

features are then used to get a single quality score for the given image. The aim

of objective quality assessment techniques is to predict perceived image quality,

the way a human observer perceives it.

Traditional objective quality assessment methods, depending upon the avail-

ability of the original image, are grouped into Full Reference (FR), Reduced Ref-

erence (RR), and No Reference (NR) methods. In FR methods, the original

image is required in addition to the processed image (inpainted image). These are

impractical as the original image is usually not available. With NR quality pre-

diction methods, the original image is not available. For RR techniques, partial

information about the original images is available in the form of some extracted

features. RR techniques are seen as a compromise between FR and NR meth-

ods. For the case of inpainting, only NR methods are considered as the original
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images are not available. Based on our analysis of the literature, we decided to

group IIQA measures broadly into structural-based, saliency-based, and machine

learning-based measures. We display in Fig. 4.8 a tree diagram listing the differ-

ent metrics commonly used for IIQA. The different categories are now discussed

in more details.

For completeness, we define the notations we used in this chapter. We represent

an image to be inpainted with Ir and the inpainted image with Iinp. The original

image to be inpainted is decomposed into three distinct regions, (1) The region to

be restored or modified by the inpainting algorithm is represented by Ω, (2) The

remaining area is denoted by Φ, and (3) The boundary between the two regions is

indicated by δΩ. Fig. 4.9 shows an image inpainting model where different regions

are clearly labeled. After defining the notations, we will now start discussing each

of the groups of IIQA mentioned in Fig. 4.8.

4.3.1 Structure-based IIQA measures

In image inpainting, some of the structural details in the original image are either

removed or replaced. Inspired by the use of SSIM [48] in traditional IQA, Wang

et al. [143] proposed a FR metric using luminance, definition, and gradient simi-

larities to determine a quality index for inpainted images. The metric, defined as

Parameter Weight Image Inpainting Quality (PWIIQ), is calculated as follows:

PWIIQ =
[
L(Ir, Iinp)

]α[
D(Ir, Iinp)

]β[
G(Ir, Iinp)

]γ
(4.1)

where the terms L, D, and G, represent the variances of image luminance, defini-

tion, and gradient similarity between the original and inpainted images. The α,

β, and γ are positive parameters used to determine the importance of each term

in the final quality score.
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Φ

Ω

δΩ

Figure 4.9: A simple model used in image inpainting techniques

For implementation purposes, both the original and the inpainted images are

first divided into b× b fixed-size blocks, and the luminance similarity between the

corresponding blocks is computed:

l(Ir, Iinp) =
2µrµinp +K1

µ2
r + µ2

inp +K1

(4.2)

where µr and µinp represent the mean value of the original and inpainted image

blocks respectively, while K1 is a positive constant with very small value to avoid

instability when the denominator is close to zero.

The weighted block means for the original and inpainted images are used. The

weights are computed from the symmetrical Gaussian filter window of size 11×11

pixels. The resulting weighted mean is given by:

µ =
N∑

i=1

wixi (4.3)

where w =
{

wi such that
∑N

i=1 wi = 1, i = 1, 2, · · · , N
}
, where N denotes

the number of pixels in the window.

The luminance component, L, is computed as the average of the luminance
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similarities across all blocks:

L(Ir, Iinp) =
1

B1 ×B2

B1∑

i=1

B2∑

j=1

l(I ijr , I
ij
inp) (4.4)

where B1 and B2 represent the number of overlapping blocks along the rows and

columns of the image.

Secondly, the image definition function, D, is computed as follows:

D(Ir, Iinp) =

W−1∑
i=0

H−1∑
j=0

|F ijinp| − |F00
inp|

W−1∑
i=0

H−1∑
j=0

|F ijr | − |F00
r |

(4.5)

where F(.) represents the Fourier transform of an image and F00 is the dc com-

ponent or overall mean value of an image.

Finally, the gradient component is defined as:

G(Ir, Iinp) =

2
W−1∑
i=0

H−1∑
j=0

Gij
r G

ij
inp +K2

W−1∑
i=0

H−1∑
j=0

[
Gij
r

]2
+

W−1∑
i=0

H−1∑
j=0

[
Gij
inp

]2
+K2

(4.6)

where the G(.) represents the gradient magnitude computed from the Sobel filter

mask of size 3 × 3 in the vertical and horizontal directions and K2 is a small

positive constant.

Similarly to its IQA counterpart, the structure-based methods suffer from some

serious limitations. Since image inpainting operations do not require the original

images, the large inpainted regions may be quite different from the actual ones.

Consequently, the structural similarity based methods (e.g., [143]) may fail for im-

ages with large inpainted regions. To overcome the drawbacks of structure-based

methods, researchers started introducing image saliency to derive new measures
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for evaluating quality of inpainted images.

4.3.2 Saliency-based IIQA measures:

Visual saliency plays a significant role in image quality assessment applications.

Image saliency is used to highlight the areas towards which the human vision sys-

tem is more sensitive. Various saliency detection algorithms exist in the literature

[144, 145]. Given its importance in IQA, saliency has been used in estimating vis-

ibility of different artifacts introduced by the inpainting process. The basic idea

is that salient regions change after inpainting. The most prominent IIQA metrics

using the concept of saliency are now briefly outlined.

Average Squared Visual Salience (ASVS): In [146], Ardis et al. proposed

two objective metrics for quality assessment of inpainted images. The image

saliency was used in capturing the distortions introduced during the restoration

process. The first metric is the ASVS, which is represented by the normalized sum

of squares of the saliency values within the inpainted region. The ASVS metric

relates to the noticeability of the inpainted pixels compared to the overall scene.

ASVS is a NR metric as it does not require the original image information. It is

calculated as follows:

ASVS =
1

||Ω||
∑

p∈Ω

|S ′(p)|2 (4.7)

where S ′(p) represents the saliency value for the inpainting pixel, p, related within

the inpainted region, Ω. High values of the ASVS correspond to more visibility of

inpainting related artifacts and reduced perceptual quality [146].

Degree of Noticeability (DN): Ardis et al. in [147], categorized inpainting

artifacts into two broad classes, i.e., in-region and out-region artifacts. During

the restoration operation in image inpainting, the in-region artifacts occur due
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to the introduction of distinct color and structures in the inpainted regions only.

These artifacts result in an increased saliency in the inpainted areas and thus

disturb attention flow. The ASVS metric relates to the in-region artifacts as it

only considers the salient pixels within the inpainted region.

Similarly, the out-region artifacts occur when the local colors or structures are

not properly extended to the inpainted region by the inpainted method. These

artifacts result in an increase in the saliency of the inpainted region neighborhood

and hence decreases attention flow within the inpainted region. The in-region and

out-region artifacts are computed as follows:

In-region = ASVS =
1

||Ω||
∑

p∈Ω

|S ′(p)|2 (4.8)

Out-region =
1

||Φ||
∑

p∈Φ

|S ′(p)− S(p)|2 (4.9)

Ardis et al., in [146], took into account both in-region and out-region artifacts

and proposed another metric, namely the DN. The DN measure is intended to

identify non-noticeable inpainted regions and indicates the change in attention

flow in the neighborhood of the inpainted regions. It is calculated as follows:

DN =
||Ω||

||Ω||+ ||Φ|| in-region +
||Φ||

||Ω||+ ||Φ||out-region (4.10)

Equation (4.10) can further be simplified as follows:

DN =
1

||Ω||+ ||Φ||
(∑

p∈Ω

|S ′(p)|2 +
∑

p∈Φ

|S ′(p)− S(p)|2
)

(4.11)

For both ASVS and DN calculations, the saliency maps are generated using

the iLab Neuromorphic Vision Toolkit (iNVT) version 3.1, using scale-4 and dis-

cretization of 1 : 16. The expected visual cortex stimulation was set with 0.1 ms
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observation cutoff. Furthermore, four orientation scales, three center scales (2 to

4), and two center-surround channels (3,4) were considered .

Similarly to the ASVS, high values of the DN correspond to more visibility of

inpainting related artifacts and reduced perceptual quality. The authors claimed a

good correlation for both metrics, with subjective ratings. However, the subjective

ratings were not considered reliable as only three observers participated in the

psychophysical experiment. Moreover, the overall visual appearance of an image

is also ignored while calculating DN and ASVS IIQA metrics.

Gaze Density (GD)-based IIQA measures : Following the work in [146],

Mahalingam et al. [148] proposed two visual saliency-based metrics for inpainting

quality assessment within and outside the inpainted regions. From eye-tracking

experimental data, the gaze densities were used to capture the saliency in the

original and inpainted images. The motivation was that changes in the saliency

map in the inpainted image is related to its perceptual quality.

In their subjective experiments, 45 reference images and 90 modified images

were obtained using two different inpainting algorithms. The images were equally

distributed into three subsets. Twenty-four naive observers without any prior

knowledge of the original and the inpainted images rated the subgroups under

ambient lighting conditions and at a distance of 65cm from the display screen.

The average gaze distribution was calculated for each image from the eye-tracking

experiment. It was observed that the Human Visual System (HVS) is more at-

tracted towards the regions with more noticeable inpainting artifacts. The gaze

density was calculated for both inside and outside the inpainted regions using:

GDin =
1

||Ω||
∑

p∈Ω

S ′(p) (4.12)

GDout =
1

||Φ||
∑

p∈Φ

S ′(p) (4.13)
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The gaze density measures of the inpainted image were normalized by the gaze

densities of the original image to account for variations in textures and sizes. The

final normalized gaze densities were given by:

GDin =

∑
p∈Ω S

′(p)∑
p∈Ω S(p)

, and (4.14)

GDout =

∑
p∈Φ S

′(p)∑
p∈Φ S(p)

(4.15)

The experimental results showed a strong correlation between the rankings from

the subjective experiments and the gaze density based measures. However, these

methods require the original image and are not suited for practical inpainting

applications, where the original image is usually unavailable. Similar to the ASVS

and the DN metrics, both GDin and GDout highlight the change in attention flow

within and outside the inpainted regions respectively, and do not consider the

global visual appearance of the image.

Border Saliency based Measures (BorSal): The measures proposed in

[146, 148] considered the in-region and out-region artifacts separately. Oncu et al.

[149] showed that saliency map pixels in the neighborhood of the inpainted region

are sufficient to capture the changes in saliency due to inpainting. The BorSal

metric was proposed to compute the normalized gaze density using the border

pixels extended only to three pixels inside and outside the inpainted regions.

The six pixels wide border area simultaneously contain information from both in-

region and out-region artifacts (see Fig. 4.10). The BorSal metric was computed

as follows:

BorSal =

∑
p∈Border S

′(p)∑
p∈Border S(p)

(4.16)

Structural Border Saliency based Measures (StructBorSal): The Bor-

Sal IIQA metric accounts for changes in the flow of attention over the inpainted

131



Φ

Figure 4.10: A typical model used for BorSal and StructBorSal IIQA metrics
computations (shaded region is used for IIQA)

image. Oncu et al. [149] proposed another metric called StructBorSal, to account

for the structure information in the whole image and to highlight the artifacts in

the restored image. The SSIMIPT based measure [150] was used by taking the

geometrical mean of the three SSIM computed for each color channel separately.

The StructBorSal metric combines the BorSal metric with the structural measure

as follows:

StructBorSal = BorSal + SSIMIPT (4.17)

The correlations between the subjective ratings and 14 quality measures (IQA

metrics for distortions as well as inpainting) were calculated. The results showed

poor performance of existing metrics. The inpainting IQA metrics performed well

for images with small and less structured inpainted regions.

The above mentioned saliency-based inpainting IQA metrics, i.e., DN [146],

GDin [148] , GDout [148], BorSal [149], and StructBorSal [149] require the original

image whereas in the restoration process, usually the original image is not avail-

able. The overall visual appearance of the image also plays a significant role in

the quality perception. These metrics are also lacking in considering the global

visual appearance of an image, limiting their use in practical setups.
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Visual Coherence Metric (VisCom): In image inpainting, the reference

image is usually not available, therefore the restored pixels rely solely on the sur-

rounding pixels. The restored pixels in the inpainted regions, however, should

exhibit consistency with existing pixels. The coherence of the inpainted regions,

which is associated with the degree of annoyance of noticeable distortions, is com-

puted by taking the correlation between the inpainted pixels and the original ones.

Similarly, the HVS is more sensitive to the edges and contours in an image. The

presence of contours and edge details are more attracted by the HVS compared

to the remaining regions. The saliency map of a given image relates to the degree

of attention in the image and hence can be used to weight the coherence map in

evaluating the final quality index.

Trung et al. [151, 152, 153, 10], proposed a FR quality metric using visual co-

herence and visual saliency of restored regions. The index is computed as follows:

VisCoM =
1

||Ω||
∑

p∈Ω

C(p)αS(p)β (4.18)

where C(p) and S(p) represent the coherence term and the saliency or structure

term respectively. The exponents α and β control the significance of each term in

the final quality score.

The coherence term, C, is basically a similarity index between the inpainted

regions and the remaining ones in the inpainted image. It is defined as follows:

C(p) = max
[
SIM(Ψp,Ψq), ∀Ψq ∈ Φ, ∀Ψp ∈ Ω

]
(4.19)

where Ψp and Ψq represent small patches around pixels, p and q, respectively.

The SIM is the similarity function between two patches. Traditional similarity

measures, such as the MSE and PSNR, are not well correlated with perceptual

quality. The Structural Similarity Metric (SSIM) [48], used in classical IQA, is
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exploited here to find the coherence between patches of size 7 × 7. The SIM is

defined as:

SIM(Ψp,Ψq) =
(2µpµq +K1)(2σpq +K2)

(µ2
p + µ2

q +K1)(σ2
p + σ2

q +K2)
(4.20)

where µp, σp and µq, σq represent the mean and standard deviation of the patches,

Ψp and Ψq, centered at pixels, p and q, respectively, whereas σpq is the cross

correlation between the patches Ψp and Ψq, and K1 and K2 are small positive

coefficients to insure stability when denominator is zero.

The local structure term is computed from the saliency values which are further

used as weights in the final quality index. Among different saliency detection

algorithms, the authors used a simple and computationally efficient method for

salient region detection [154]. In [154], color and luminance information were used

for saliency detection. For a given image, I, the saliency map was generated using:

S ′ = ||Iµ − IG|| (4.21)

where Iµ represents the mean value of the original image, and IG is a Gaussian

blurred (5×5 filter mask) version of the original image. The operation is performed

in the CIELab color space. The method is simple, computationally efficient, and

does not need any downsampling operation during the estimation of the saliency

map. Finally, the saliency map, defined in Eq. 4.21, is normalized to the range
[
0, 1
]
:

S(p) =
S ′(p)

maxI(S ′)
∀p ∈ Ω (4.22)

The authors in [151, 152, 153, 10] used the visual coherence of recovered regions

and visual saliency describing visual importance to develop their index shown in

Eq. 4.18. The proposed approach showed promising results but could only handle

a limited number of possible inpainting artifacts.

Based on our study of existing approaches, we present in Table 4.1 a summary
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of both structure-based and saliency-based IIQA metrics. It is important to note

that there exists only one NR-IIQA metric among these metrics. To overcome

this limitation, among others, researchers tried to use advanced machine learning

approaches in developing robust quality assessment metrics for practical inpainting

applications.

4.3.3 Machine Learning based IIQA Measures

Machine learning-based approaches were originally developed for solving classi-

fication and regression problems efficiently and provide good approximation of

functional relationships between input features and output classes/scores scores

in the training session. In testing stage, a set of features is extracted from a given

image. The trained model and the extracted features are then used for predicting

the quality rating of test image.

Among the first approaches using machine learning for IIQA is the metric

proposed by Viacheslav et al. in [155]. The method is an NR approach for

IIQA based on natural scene statistics and machine learning. First, the saliency

map of the inpainted image is calculated to identify most important perceptual

information in the inpainted image. The saliency map is then thresholded using

average gaze density computed from the outside inpainted regions using Eq. (4.13)

for proto-objects. Then, the DCT is calculated only for the proto-objects and

used to train a dictionary of 100 classes, where each word in the dictionary is a

DCT coefficient. For each DCT block, the histogram of words is then used as a

feature vector. The quality scores collected from the subjective experiment and

the extracted features were then used to train a Support Vector Regression (SVR)

network and to predict the quality of inpainted images resulting from different

algorithms.

The same authors in [156] replaced the DCT based features with the tradi-
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tional Local Binary Pattern (LBP) features given their power in describing image

structures effectively. The quality scores collected from the subjective experiments

and the extracted features are then used to train an SVR for quality prediction.

For the subjective experiments, in [156], a database consisting of 300 images with

different structures and textures was used. The database also included some real

images. The images were restored using a mask and using four different inpainted

methods. Ten observers participated in the subjective experiments and rated the

quality of the inpainted images on a scale 1-5 (5 for excellent quality, 1 for bad

quality). The results showed good correlation with human ratings of quality.

Recently, Markio et al. [157] demonstrated that saliency is not an absolute

requirement for assessing inpainting quality. They performed an experiment us-

ing a learning-to-rank approach. Instead of determining the absolute scores for

inpainted images, the preference order is obtained among inpainted images from

different inpainting algorithms. They demonstrated that visual saliency map is

useful but not a requirement. Rather, they showed that some features can be

used to reflect the changes within and outside the modified areas in an inpainted

image. Such features are extracted from gaze measurements using a simple To-

bii eye-tracker device. From each original image, twelve inpainted images are

generated from two inpainted methods, three patch sizes, and two multiscale pa-

rameters. One-hundred eleven original images were used in the experiments. The

proposed metric was compared to other existing metrics in terms of prediction

accuracy in estimating the preferences order ranking. The authors showed that

existing saliency-based IIQA metrics fail in ordering the inpainted images cor-

rectly due to the small significant difference in the saliency maps in the inpainted

regions. The results showed an improvement of at least 7% over other metrics

with 68.65% prediction accuracy. Table 4.2 provides summary of above-discussed

machine learning-based IIQA approaches.
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Table 4.2: A summary of machine learning based IIQA measures

Method Year Type Feature Description Regression

Voronin et al.
[155, 158]

2014 NR DCT-based dictionary SVR, RBF1 kernel

Voronin et al.
[156]

2015 NR LBP histograms SVR, EMD2 kernal

Markio et al.
[157]

2016 NR RankingSVM,
RBF kernel

1 RBF (Radial Basis Function)
2 EMD (Earth Mover’s Distance

4.4 Image Inpainting Quality Assessment

Databases

With the tremendous increase of research activities in image inpainting algo-

rithms and applications, it was crucial to develop comprehensive databases for

performance evaluation and benchmarking of different inpainting methods. In

the literature, usually, the performance of an inpainting algorithm is evaluated on

own local images or using standard databases used for standard IQA problems.

Given the importance of image inpainting in multimedia applications, publicly-

available databases are needed for unbiased performance comparison. In this

regards, Tiefenbacher et al. provided, for the first time, a public database namely

the Technische Universitt Mnchen Image Inpainting Database (TUM-IID) [8], for

objectively estimating quality of inpainted images and performance evaluation of

different IIQA metrics. The database contained 17 reference images with diverse

texture types and resolution of 640 × 480 pixels stored in PNG format. Each

image in the database is inpainted using four state-of-the-art inpainted methods

and for two inpainting regions. Then, each inpainted image in the database was

rated by 21 observers using a Single Stimulus (SS) subjective experiment proto-

col, and the ratings from all observers were averaged to get a single score for each
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image. Some sample images, inpainting masks, and inpainted images from public

and private databases are shown in Figs. 4.11 and 4.12 respectively. In an effort

to summarize existing work in inpainting using different databases (private and

public), we present in Table 4.3, the most common experimental setups used in

the literature.

4.5 Discussion and Summary

The quality assessment of inpainted images is a complex and challenging problem.

It is entirely different from the classical IQA due to different artifacts not com-

monly observed in other applications. In this work, a critical review of the state-

of-the-art IIQA metrics is presented. The study reveals that among the existing

IIQA metrics, most of these require original image information. Whereas, image

inpainting is usually used in case of unavailability of reference or original image.

It is also observed that most of the metrics are designed and validated on private

databases consisting of a limited number of images. We have found only one pub-

lic database [8] with a limited number of images. Seeing the importance of this

evolving field, it is extremely desired to develop more public databases consisting

of a large number of inpainted images generated from various inpainted meth-

ods. This will help in providing fair comparisons among different IIQA metrics,

highlighting their shortcomings, and in introducing new efficient quality measures

well-correlated with the human perception of quality.
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(a) (e) (i)

(b) (f) (h)

(c) (b) (d)

(d) (j) (l)

Figure 4.11: Sample images from publicly available TUM-IID [8] database: (a-d)
Reference images, (e-h) inpainted images using [9], (i-l) masks used for inpainting.
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(a) (b)

(c) (d)

Figure 4.12: Sample local images used in [10] for inpainting quality assessment
(a) original image with mask, inpainted image using (b) [11], (c) [12], (d) [13]
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CHAPTER 5

CONCLUSION AND FUTURE

RECOMMENDATIONS

5.1 Conclusion

In this thesis, a number of contributions were made towards objective quality

assessment of image degradations, enhancement, and inpainting. Starting with

the quality assessment of distortion, two main contributions were made. A fast

NR-IQA metric using fast convolution operations was proposed. The advantages

of this technique are simplicity and easy hardware implementations for real-time

applications [23]. Another NR-IQA metric was proposed using higher order sin-

gular values to quantify blur in color images, which is an important component in

the spectrum of distortions. The spatial and inter-channel correlations, in color

images, were exploited using tensors to quantify the amount of blur more effi-

ciently and consistently rather than using the traditional luminance component

only or the individual color channels as in existing techniques [24].

For quality assessment of enhancement, an extensive literature review of exist-

ing state-of-the-art CEE measures was carried. In earlier studies [26, 25], differ-

ent CEE metrics were analyzed to show how these metrics can help in evaluating
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artifacts due to CE processes. An NR metric was proposed based on mutual

information computed from the gray level co-occurrence matrix and tested with

two classical neighborhood-based CE methods. This study was extended to a new

dedicated CE database, to see how different CE evaluation measures are consistent

with human judgement of image quality enhancement [27, 160].

For quality assessment of inpainted images, a comprehensive and critical review

of the state-of-the-art IIQA metrics was presented. The review is the first of

its kind and is expected to help researchers working in this area to benchmark

new inpainting techniques, develop more robust methods for inpainting quality

assessment, and benchmark their results [161].

In addition to the above-mentioned major thesis contributions, additional re-

search work was carried out and some important contributions to the area were

made. These additional achievements are the use of Compressed Sensing (CS)

for image compression and extensive review of blind image forgery detection tech-

niques.

CS is a recently introduced approach for signal sampling, which allows recovery

of sparse signals using fewer measurements, sampled at less than the Nyquist rate.

In this regards, two novel image compression algorithms using CS were proposed.

The main contribution was the introduction of a sampling scheme based on the

optimal representations of the wavelet coefficients to form sparse vectors for CS

[162, 163].

Moreover, with the advent of advanced editing tools, we are witnessing a major

threat to the multimedia industry, it is becoming easier to alter images/videos in

a realistic than it was before. For this reason, a comprehensive literature review

of blind image tampering detection techniques was carried [3, 164].
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5.2 Future Recommendations

The field of IQA is very important and has diverse applications. Based on the

research work discussed in this thesis, the following future recommendations are

proposed:

� IQA for Medical Imaging: During the past few years, an increasing

trend of using e-Health services for remote patient diagnosis was observed.

The applications of medical images are Resonance Imaging (MRI), Com-

puted Tomography (CT), and ultrasonic imaging. Medical images may suf-

fer from different types of degradations due to acquisition, transmission or,

post-processing operations. It would be desirable to evaluate how image

distortions affect the analysis of medical images and the resulting diagnosis

rather than the traditional perceptual appeal of natural images. Moreover,

the NR-IQA metrics for medical images are important since the reference

image is usually not available.

� Extension of CEE Database: The proposed CEE database contains only

images enhanced from different CE methods. The database is built to eval-

uate the performance of CEE measures rather than the CE methods. It can

be further extended to support different applications such as:

– Adding more images related to color management. i.e., images en-

hanced from the methods to improve color appearance, illumination,

restoration or other methods used to address problems related to image

acquisition.

– Adding more images created from methods developed to reduce cod-

ing artifacts (i.e., ringing, blocking, blurring, quantization, etc.) for

performance evaluation of different compression algorithms.
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– Including more images created from different denoising methods to

evaluate the performance of different denoising methods. The noise

can be additive Gaussian white noise, multiplicative, impulse noise,

and specular noise.

– Adding more images with different enhancement artifacts (i.e., halo ef-

fect, saturation loss, color shift, excessive brightness change, etc.). This

can be used to investigate the capabilities of different CEE measures

in terms of sensitivity towards these CE artifacts. Currently, there is

no database of these kinds exists in the literature.

� Reduced Time Complexity: Among different challenges in the field of

IQA is the time complexity issue, which is very important for real-time ap-

plications. Most of the existing metrics perform well in terms of consistency

of their results with the human subjective scores, but they are very complex

and computationally inefficient. There is a need to develop objective IQA

metrics which are easy to implement and computationally efficient. One of

the possible solutions is to use reduced samples from compressed sensing

in the design of objective IQA metrics instead of using the whole image

information.

� Novel Applications: Although substantial research efforts have been put

in developing FR, RR, and NR IQA metrics for quantifying distortions

and/or enhancement, a very nice application would be to provide infor-

mation to users playing YouTube videos regarding the quality rating and

the types of distortions the video has been subjected to.

� IQA Software: It is extremely needed to develop a self-contained software

package based on a MATLAB graphical user interface (or other software)

which can be used for quality assessment of digital images using state-of-the-
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art IQA methods. The software should be fully configurable and it should

have the capability to easily add new metrics and to configure each metric

with the chosen parameters. It should rate the quality of a given test image

in terms of Excellent, Very Good, Good, Fair, and Poor quality image based

on the correlation calculated between the subjective scores and the selected

metric. The package should support researchers working in IQA filed in

terms of comparing the new metrics with other metrics integrated into the

software package.

� Human Face Beauty Assessment: Digital image retouching is widely

used in fashion and multimedia industry, and a growing interest is witnessed

in developing tools like Adobe Photoshop, to make photos look more natural

and attractive. Although, there exists a lot of image retouching detection

methods, limited work has been carried in developing objective metrics to

quantify beautification or enhancement of human faces automatically. This

is particularly true for females in the entertainment industry. The quality

assessment of retouched photos without any information about the original

image is considered a challenging task, will be regarded as a significant

contribution, and can open new research directions.
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New Scheme for No Reference Image Quality Assessment,” 3rd International

Conference on Image Processing Theory, Tools and Applications, no. 2012,

2012.

[83] K. I. Laws, “Textured image segmentation,” 1980.

[84] D. Bailey and R. Hodgson, “Range filters: Localintensity subrange filters

and their properties,” Image and Vision Computing, vol. 3, no. 3, pp. 99–

110, 1985.

[85] D. F. Specht, “A general regression neural network,” Neural Networks, IEEE

Transactions on, vol. 2, no. 6, pp. 568–576, 1991.

[86] R. Ferzli and L. Karam, “A No-Reference Objective Image Sharpness Metric

Based on the Notion of Just Noticeable Blur (JNB),” IEEE Transactions

on Image Processing, vol. 18, no. 4, pp. 717–728, apr 2009.

[87] N. D. Narvekar and L. J. Karam, “A No-Reference Image Blur Metric Based

on the Cumulative Probability of Blur Detection (CPBD),” IEEE Transac-

tions on Image Processing, vol. 20, no. 9, pp. 2678–2683, sep 2011.

[88] A. Shnayderman, A. Gusev, and A. Eskicioglu, “An SVD-based grayscale

image quality measure for local and global assessment,” IEEE Transactions

on Image Processing, vol. 15, no. 2, pp. 422–429, feb 2006.

159



[89] Q. Sang, H. Qi, X. Wu, C. Li, and A. C. Bovik, “No-reference image blur

index based on singular value curve,” Journal of Visual Communication and

Image Representation, vol. 25, no. 7, pp. 1625–1630, 2014.

[90] Q.-B. Sang, X.-J. Wu, C.-F. Li, and Y. Lu, “Blind Image Blur Assessment

Using Singular Value Similarity and Blur Comparisons,” PLoS ONE, vol. 9,

no. 9, p. e108073, sep 2014.

[91] Y. Wang, W. Liu, and Y. Wang, “Color Image Quality Assessment Based

on Quaternion Singular Value Decomposition,” in 2008 Congress on Image

and Signal Processing. Sanya, China: IEEE, may 2008, pp. 433–439.

[92] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A Multilinear Singular

Value Decomposition,” SIAM Journal on Matrix Analysis and Applications,

vol. 21, no. 4, pp. 1253–1278, jan 2000.

[93] D. Letexier and S. Bourennane, “Adaptive Flattening for Multidimensional

Image Restoration,” IEEE Signal Processing Letters, vol. 15, pp. 229–232,

2008.

[94] A. Rajwade, A. Rangarajan, and A. Banerjee, “Image Denoising Using the

Higher Order Singular Value Decomposition,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 35, no. 4, pp. 849–862, apr

2013.

[95] C. Cheng and H. Wang, “Quality assessment for color images with tucker de-

composition,” in 19th IEEE International Conference on Image Processing.

Orlando, FL: IEEE, sep 2012, pp. 1489–1492.
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