5,928 research outputs found

    Magnetic resonance imaging of myocardial strain after acute ST-segment-elevation myocardial infarction: a systematic review

    Get PDF
    The purpose of this systematic review is to provide a clinically relevant, disease-based perspective on myocardial strain imaging in patients with acute myocardial infarction or stable ischemic heart disease. Cardiac magnetic resonance imaging uniquely integrates myocardial function with pathology. Therefore, this review focuses on strain imaging with cardiac magnetic resonance. We have specifically considered the relationships between left ventricular (LV) strain, infarct pathologies, and their associations with prognosis. A comprehensive literature review was conducted in accordance with the PRISMA guidelines. Publications were identified that (1) described the relationship between strain and infarct pathologies, (2) assessed the relationship between strain and subsequent LV outcomes, and (3) assessed the relationship between strain and health outcomes. In patients with acute myocardial infarction, circumferential strain predicts the recovery of LV systolic function in the longer term. The prognostic value of longitudinal strain is less certain. Strain differentiates between infarcted versus noninfarcted myocardium, even in patients with stable ischemic heart disease with preserved LV ejection fraction. Strain recovery is impaired in infarcted segments with intramyocardial hemorrhage or microvascular obstruction. There are practical limitations to measuring strain with cardiac magnetic resonance in the acute setting, and knowledge gaps, including the lack of data showing incremental value in clinical practice. Critically, studies of cardiac magnetic resonance strain imaging in patients with ischemic heart disease have been limited by sample size and design. Strain imaging has potential as a tool to assess for early or subclinical changes in LV function, and strain is now being included as a surrogate measure of outcome in therapeutic trials

    Delaunay triangulation based image enhancement for echocardiography images

    Get PDF
    A novel image enhancement approach for automatic echocardiography image processing is proposed. The main steps include undecimated wavelet based speckle noise reduction, edge detection, followed by a regional enhancement process that employs Delaunay triangulation based thresholding. The edge detection is performed using a fuzzy logic based center point detection and a subsequent radial search based fuzzy multiscale edge detection. The edges obtained are used as the vertices for Delaunay triangulation for enhancement purposes. This method enhances the heart wall region in the echo image. This technique is applied to both synthetic and real image sets that were obtained from a local hospital

    Systolic ejection murmurs and the left ventricular outflow tract in boxer dogs

    Get PDF
    Turbulence of various genesis in the left ventricular outflow tract (LVOT) causes systolic ejection murmurs. The prevalence of murmurs in adult boxer dogs is 50-80%, the majority of which are of low intensity. Some of the murmurs are caused by aortic stenosis (AS), while the origin of the others is unclear. The aim of this thesis was to study the physiology and clinical evaluation of systolic ejection murmurs and their relation to the development of the LVOT in boxers with and without AS. Growing and adult boxer dogs were examined by the standard methods cardiac auscultation, ECG, phonocardiography and echocardiography. Additionally, the complementary methods time-frequency and complexity analyses of heart murmurs and contrast echocardiography were evaluated. Studies on inter-observer variation in cardiac auscultation proved the importance of experience in detection and grading of low intensity ejection murmurs. Excitement of the dogs by exercise or noise stimulation (barking dog and squeaky toy) caused higher murmur grades, longer murmur duration and increased aortic flow velocities. No differences were found between diameters measured at different levels of the LVOT in growing boxers. Contrast echocardiography enhanced Doppler signals, but did not allow evaluation of myocardial blood flow. Using time-frequency analysis, duration of murmur frequency >200 Hz proved useful for differentiation between dogs with mild AS and dogs without. Combining assessment of murmur duration >200 Hz and complexity analysis using the correlation dimension (T2), a sensitivity of 94% and a specificity of 82% for differentiation between dogs with and without AS was achieved. The variability in presence and intensity of low intensity murmurs during growth was high. None of the young dogs developed AS, whereas 3 out of 16 individuals developed mild-moderate aortic insufficiency. Aortic or pulmonic flow velocities did not differ significantly between growing dogs with or without low intensity murmurs. In conclusion, the variability in presence and intensity of low intensity ejection murmurs in boxers is high during growth with no obvious progression. Both in young and adult boxers the murmur grade increased during excitement, which may be due to rapid flow in a comparatively small LVOT that has been suggested for the boxer breed. Experience is important in cardiac auscultation of low intensity murmurs. Therefore, assessment of murmur duration > 200 Hz combined with T2 analysis may be a useful complementary method for diagnosis of cardiovascular function in dogs

    Myocardial strain in healthy adults across a broad age range as revealed by cardiac magnetic resonance imaging at 1.5 and 3.0T: associations of myocardial strain with myocardial region, age, and sex

    Get PDF
    Purpose: We assessed myocardial strain using cine displacement encoding with stimulated echoes (DENSE) using 1.5T and 3.0T MRI in healthy adults. Materials and Methods: Healthy adults without any history of cardiovascular disease underwent MRI at 1.5T and 3.0T within 2 days. The MRI protocol included b-SSFP, 2D cine-EPI-DENSE, and late gadolinium enhancement in subjects>45 years. Acquisitions were divided into 6 segments, global and segmental peak longitudinal and circumferential strain were derived and analyzed by field strength, age and gender. Results: 89 volunteers (mean age 44.8 ± 18.0 years, range: 18-87 years) underwent MRI at 1.5T, and 88 of these subjects underwent MRI at 3.0T (1.4±1.4 days between the scans). Compared with 3.0T, the magnitudes of global circumferential (-19.5±2.6% vs. -18.47±2.6%; p=0.001) and longitudinal (-12.47±3.2% vs -10.53±3.1%; p=0.004) strain were greater at 1.5T. At 1.5T, longitudinal strain was greater in females than in males: -10.17±3.4% vs. -13.67±2.4%; p=0.001. Similar observations occurred for circumferential strain at 1.5T (-18.72±2.2% vs. -20.10±2.7%; p=0.014) and at 3.0T (-17.92 ± 1.8% vs -19.1 ± 3.1%; p=0.047). At 1.5T, longitudinal and circumferential strain were not associated with age after accounting for sex (longitudinal strain p= 0.178, circumferential strain p= 0.733). At 3.0T, longitudinal and circumferential strain were associated with age. (p<0.05) Longitudinal strain values were greater in the apico-septal, basal-lateral and mid-lateral segments and circumferential strain in the inferior, infero-lateral and antero-lateral LV segments. Conclusion: Myocardial strain parameters as revealed by cine-DENSE at different MRI field strengths were associated with myocardial region, age and sex

    A novel method for estimating myocardial strain: assessment of deformation tracking against reference magnetic resonance methods in healthy volunteers

    Get PDF
    We developed a novel method for tracking myocardial deformation using cardiac magnetic resonance (CMR) cine imaging. We hypothesised that circumferential strain using deformation-tracking has comparable diagnostic performance to a validated method (Displacement Encoding with Stimulated Echoes- DENSE) and potentially diagnostically superior to an established cine-strain method (feature-tracking). 81 healthy adults (44.6 ± 17.7 years old, 47% male), without any history of cardiovascular disease, underwent CMR at 1.5T including cine, DENSE, and late gadolinium enhancement in subjects >45 years. Acquisitions were divided into 6 segments, and global and segmental peak circumferential strain were derived and analysed by age and sex. Peak circumferential strain differed between the 3 groups (DENSE: -19.4 ± 4.8 %; deformation-tracking: -16.8 ± 2.4 %; feature-tracking: -28.7 ± 4.8%) (ANOVA with Tukey post-hoc, F-value 279.93, p<0.01). DENSE and deformation-tracking had better reproducibility than feature-tracking. Intra-class correlation co-efficient was >0.90. Larger magnitudes of strain were detected in women using deformation-tracking and DENSE, but not feature-tracking. Compared with a reference method (DENSE), deformation-tracking using cine imaging has similar diagnostic performance for circumferential strain assessment in healthy individuals. Deformation-tracking could potentially obviate the need for bespoke strain sequences, reducing scanning time and is more reproducible than feature-tracking

    Advances in computational modelling for personalised medicine after myocardial infarction

    Get PDF
    Myocardial infarction (MI) is a leading cause of premature morbidity and mortality worldwide. Determining which patients will experience heart failure and sudden cardiac death after an acute MI is notoriously difficult for clinicians. The extent of heart damage after an acute MI is informed by cardiac imaging, typically using echocardiography or sometimes, cardiac magnetic resonance (CMR). These scans provide complex data sets that are only partially exploited by clinicians in daily practice, implying potential for improved risk assessment. Computational modelling of left ventricular (LV) function can bridge the gap towards personalised medicine using cardiac imaging in patients with post-MI. Several novel biomechanical parameters have theoretical prognostic value and may be useful to reflect the biomechanical effects of novel preventive therapy for adverse remodelling post-MI. These parameters include myocardial contractility (regional and global), stiffness and stress. Further, the parameters can be delineated spatially to correspond with infarct pathology and the remote zone. While these parameters hold promise, there are challenges for translating MI modelling into clinical practice, including model uncertainty, validation and verification, as well as time-efficient processing. More research is needed to (1) simplify imaging with CMR in patients with post-MI, while preserving diagnostic accuracy and patient tolerance (2) to assess and validate novel biomechanical parameters against established prognostic biomarkers, such as LV ejection fraction and infarct size. Accessible software packages with minimal user interaction are also needed. Translating benefits to patients will be achieved through a multidisciplinary approach including clinicians, mathematicians, statisticians and industry partners

    Quantitive three-dimensional echocardiography

    Get PDF

    Cardiac magnetic resonance imaging in stable ischaemic heart disease

    Get PDF
    Cardiac magnetic resonance imaging (CMR) is a new robust versatile non-invasive imaging technique that can detect global and regional myocardial dysfunction, presence of myocardial ischaemia and myocardial scar tissue in one imaging session without radiation, with superb spatial and temporal resolution, inherited three-dimensional data collection and with relatively safe contrast material. The reproducibility of CMR is high which makes it possible to use this technique for serial assessment to evaluate the effect of revascularisation therapy in patients with ischaemic heart disease
    • …
    corecore