1,445 research outputs found

    Enhanced visualization of the retinal vasculature using depth information in OCT

    Get PDF
    This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s11517-017-1660-8[Abstract]: Retinal vessel tree extraction is a crucial step for analyzing the microcirculation, a frequently needed process in the study of relevant diseases. To date, this has normally been done by using 2D image capture paradigms, offering a restricted visualization of the real layout of the retinal vasculature. In this work, we propose a new approach that automatically segments and reconstructs the 3D retinal vessel tree by combining near-infrared reflectance retinography information with Optical Coherence Tomography (OCT) sections. Our proposal identifies the vessels, estimates their calibers, and obtains the depth at all the positions of the entire vessel tree, thereby enabling the reconstruction of the 3D layout of the complete arteriovenous tree for subsequent analysis. The method was tested using 991 OCT images combined with their corresponding near-infrared reflectance retinography. The different stages of the methodology were validated using the opinion of an expert as a reference. The tests offered accurate results, showing coherent reconstructions of the 3D vasculature that can be analyzed in the diagnosis of relevant diseases affecting the retinal microcirculation, such as hypertension or diabetes, among others.This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union through the PI14/02161 and the DTS15/00153 research projects and by the Ministerio de Economía y Competitividad, Government of Spain through the DPI2015-69948-R research project. Also, this work has received financial support from the European Union (European Regional Development Fund - ERDF) and the Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016-2019, Ref. ED431G/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047.Xunta de Galicia; ED431G/01Xunta de Galicia; ED431C 2016-04

    In vivo human retinal and choroidal vasculature visualization using differential phase contrast swept source optical coherence tomography at 1060 nm

    Get PDF
    A differential phase contrast (DPC) method is validated for in vivo human retinal and choroidal vasculature visualization using high-speed swept-source optical coherence tomography (SS-OCT) at 1060 nm. The vasculature was identified as regions of motion by creating differential phase variance (DPV) tomograms: multiple B-scans were collected of individual slices through the retina and the variance of the phase differences was calculated. DPV captured the small vessels and the meshwork of capillaries associated with the inner retina in en face images over 4 mm^2 in a normal subject. En face DPV images were capable of capturing the microvasculature and regions of motion through the inner retina and choroid

    Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography

    Get PDF
    We formulate a theory to show that the statistics of OCT signal amplitude and intensity are highly dependent on the sample reflectivity strength, motion, and noise power. Our theoretical and experimental results depict the lack of speckle amplitude and intensity contrasts to differentiate regions of motion from static areas. Two logarithmic intensity-based contrasts, logarithmic intensity variance (LOGIV) and differential logarithmic intensity variance (DLOGIV), are proposed for serving as surrogate markers for motion with enhanced sensitivity. Our findings demonstrate a good agreement between the theoretical and experimental results for logarithmic intensity-based contrasts. Logarithmic intensity-based motion and speckle-based contrast methods are validated and compared for in vivo human retinal vasculature visualization using high-speed swept-source optical coherence tomography (SS-OCT) at 1060 nm. The vasculature was identified as regions of motion by creating LOGIV and DLOGIV tomograms: multiple B-scans were collected of individual slices through the retina and the variance of logarithmic intensities and differences of logarithmic intensities were calculated. Both methods captured the small vessels and the meshwork of capillaries associated with the inner retina in en face images over 4 mm^2 in a normal subject

    Differential intensity contrast swept source optical coherence tomography for human retinal vasculature visualization

    Get PDF
    We demonstrate an intensity-based motion sensitive method, called differential logarithmic intensity variance (DLOGIV), for 3D microvasculature imaging and foveal avascular zone (FAZ) visualization in the in vivo human retina using swept source optical coherence tomog. (SS-OCT) at 1060 nm. A motion sensitive SS-OCT system was developed operating at 50,000 A-lines/s with 5.9 μm axial resoln., and used to collect 3D images over 4 mm^2 in a normal subject eye. Multiple B-scans were acquired at each individual slice through the retina and the variance of differences of logarithmic intensities as well as the differential phase variances (DPV) was calcd. to identify regions of motion (microvasculature). En face DLOGIV image were capable of capturing the microvasculature through depth with an equal performance compared to the DPV

    Imaging of the Lamina Cribrosa using Swept-Source Optical Coherence Tomography.

    Get PDF
    The lamina cribrosa (LC) is the presumed site of axonal injury in glaucoma. Its deformation has been suggested to contribute to optic neuropathy by impeding axoplasmic flow within the optic nerve fibers, leading to apoptosis of retinal ganglion cells. To visualize the LC in vivo, optical coherence tomography (OCT) has been applied. Spectral domain (SD)-OCT, used in conjunction with recently introduced enhanced depth imaging (EDI)-OCT, has improved visualization of deeper ocular layers, but in many individuals it is still limited by inadequate resolution, poor image contrast and insufficient depth penetrance. The posterior laminar surface especially is not viewed clearly using these methods. New generation high-penetration (HP)-OCTs, also known as swept-source (SS)-OCT, are capable to evaluate the choroid in vivo to a remarkable level of detail. SS-OCTs use a longer wavelength (1,050 nm instead of 840 nm) compared to the conventional techniques. We review current knowledge of the LC, findings from trials that use SD-OCT and EDI-OCT, and our experience with a prototype SS-OCT to visualize the LC in its entirety. Key Points What is known? •     The LC is the presumed site of axonal injury in glaucoma •     Compared to spectral domain-OCT, enhanced depth imaging-OCT improves imaging of the LC •     Even so, currently used SD-OCT techniques are restricted by poor wavelength penetrance of the deeper ocular layers What our findings add? •    SS-OCT may be a superior imaging modality for deep ocular structures •    Prior studies used SS-OCT to evaluate choroidal thickness in both healthy and 'normal tension glaucoma' eyes •    SS-OCT enables good evaluation of three-dimension (3D) lamina cribrosa morphology. How to cite this article: Nuyen B, Mansouri K, Weinreb RN. Imaging of the Lamina Cribrosa using Swept-Source Optical Coherence Tomography. J Current Glau Prac 2012;6(3): 113-119

    Optical imaging of the chorioretinal vasculature in the living human eye

    Get PDF
    Detailed visualization of microvascular changes in the human retina is clinically limited by the capabilities of angiography imaging, a 2D fundus photograph that requires an intravenous injection of fluorescent dye. Whereas current angiography methods enable visualization of some retinal capillary detail, they do not adequately reveal the choriocapillaris or other microvascular features beneath the retina. We have developed a noninvasive microvascular imaging technique called phase-variance optical coherence tomography (pvOCT), which identifies vasculature three dimensionally through analysis of data acquired with OCT systems. The pvOCT imaging method is not only capable of generating capillary perfusion maps for the retina, but it can also use the 3D capabilities to segment the data in depth to isolate vasculature in different layers of the retina and choroid. This paper demonstrates some of the capabilities of pvOCT imaging of the anterior layers of choroidal vasculature of a healthy normal eye as well as of eyes with geographic atrophy (GA) secondary to age-related macular degeneration. The pvOCT data presented permit digital segmentation to produce 2D depth-resolved images of the retinal vasculature, the choriocapillaris, and the vessels in Sattler’s and Haller’s layers. Comparisons are presented between en face projections of pvOCT data within the superficial choroid and clinical angiography images for regions of GA. Abnormalities and vascular dropout observed within the choriocapillaris for pvOCT are compared with regional GA progression. The capability of pvOCT imaging of the microvasculature of the choriocapillaris and the anterior choroidal vasculature has the potential to become a unique tool to evaluate therapies and understand the underlying mechanisms of age-related macular degeneration progression

    Enhanced imaging of choroidal vasculature by high-penetration and dual-velocity optical coherence angiography

    Get PDF
    Dual-beam-scan Doppler optical coherence angiography (DB-OCA) with a 1-μm-wavelength probe is demonstrated for improved in vivo choroidal angiograms of the human eye. This method utilizes two scanning beams with spatial and temporal separation on the retina, and provides two measurable velocity ranges. The method achieves higher sensitivity to very low velocity flows than conventional Doppler optical coherence tomography. Moreover, longer wavelengths allowing greater penetration, enhanced visualization of choroidal vessels is verified with en-face projection images of the Doppler shift squared. Specifically, better choroidal vasculature visibility is achieved at a wavelength of 1 μm than at 840 nm

    Retinal Vasculature Identification and Characterization Using OCT Imaging

    Get PDF
    The eye fundus is the part of the human body where the blood vessels can be directly observed and studied. For this reason, the analysis and diagnosis of many relevant diseases that affect the circulatory system, for example, reference, hypertension, diabetes or arteriosclerosis can be supported by the use of this source of information, analyzing their degree of severity and impact by the study of the properties of the retinal microcirculation. The development of computer aided-diagnosis tools became relevant over the recent years as they support and facilitate the work of specialists, helping to accurately identify the target structures in many processes of analysis and diagnosis. In that sense, the automatic identification of the retinal vasculature is crucial as its manual identification is an exhaustive and tedious work when it is manually performed by the experts. This chapter presents an analysis of the characteristics of the optical coherence tomography imaging and its potential for the retinal vascular identification and characterization. In that sense, we also analyze computational approaches to automatically obtain and characterize the retinal vasculature and provide an intuitive visualization that facilitates the posterior clinical analysis of relevant diseases such as hypertension or diabetes
    corecore