95 research outputs found

    SOFT AND SOFTER HANDOVER PERFORMANCE OF CDMA

    Get PDF
    One of telecommunication providers in Indonesia applies CDMA2000 1x technology. The technology hasmany advantages such as larger channel capacity of BTS (Base Transceiver Station). On the other hand, thecapacity depends on user’s density. Therefore to guarantee voice connection when user or mobile station (MS) isalways moving from one cell to others, handover technique is needed. However the technique can be failed for manyreasons. Therefore impact of call attempt on softer and soft handover performance is investigated. Hence the paperexamined soft – softer handover performance of CDMA in BTS (Base Transceiver Station), BSC, and Sectors inboth sub-urban and rural areas in Denpasar, Bali with area code of 0361.The research has been done in rural and suburban area with call area code ‘0361’. The analyses includedregression and simple linear correlation applications. The results showed that number of call attempts affected thefailure of soft and softer handover technique dominantly. Generally, average level of success both handover in bothrural and suburban area were about 99% which are above KPI (Key Performance Indicator) reference at 98.50%.However in rural area, other factors such as blocking called attempt and error called number have caused the softerhandover failure

    Context-aware multi-attribute decision multi - attribute decision making for radio access technology selection in ultra dense network

    Get PDF
    Ultra Dense Network (UDN) is the extreme densification of heterogeneous Radio Access Technology (RAT) that is deployed closely in coordinated or uncoordinated manner. The densification of RAT forms an overlapping zone of signal coverage leading to the frequent service handovers among the RAT, thus degrading overall system performance. The current RAT selection approach is biased towards network-centric criteria pertaining to signal strength. However, the paradigm shift from network-centric to user-centric approach necessitates a multi-criteria selection process, with methodology relating to both network and user preferences in the context of future generation networks. Hence, an effective selection approach is required to avoid unnecessary handovers in RAT. The main aim of this study is to propose the Context-aware Multiattribute decision making for RAT (CMRAT) selection for investigating the need to choose a new RAT and further determine the best amongst the available methods. The CMRAT consists of two mechanisms, namely the Context-aware Analytical Hierarchy Process (CAHP) and Context-aware Technique for Order Preference by Similarity to an Ideal Solution (CTOPSIS). The CAHP mechanism measures the need to switch from the current RAT, while CTOPSIS aids in decision making to choose the best target RAT. A series of experimental studies were conducted to validate the effectiveness of CMRAT for achieving improved system performance. The investigation utilises shopping mall and urban dense network scenarios to evaluate the performance of RAT selection through simulation. The findings demonstrated that the CMRAT approach reduces delay and the number of handovers leading to an improvement of throughput and packet delivery ratio when compared to that of the commonly used A2A4-RSRQ approach. The CMRAT approach is effective in the RAT selection within UDN environment, thus supporting heterogeneous RAT deployment in future 5G networks. With context-aware selection, the user-centric feature is also emphasized

    Co-operative Transport System and investigation of the co-operation

    Get PDF
    This paper deals with Intelligent Transport Systems (ITS) and the concept of a Co-operative Transport System (CTS), in which the communication and the knowledge sharing is much more important. This distributed knowledge allows improving road transport operations more safety and efficiency. After showing some issues about development and advantages of a CTS, the communication part is discussed among CTS elements. The most important parts and usefulness of CTSs are shown with some examples, e.g. TRACKSS, which is based on the knowledge sharing sensors on the road network

    Handover in Mobile WiMAX Networks: The State of Art and Research Issues

    Get PDF
    The next-generation Wireless Metropolitan Area Networks, using the Worldwide Interoperability for Microwave Access (WiMAX) as the core technology based on the IEEE 802.16 family of standards, is evolving as a Fourth-Generation (4G) technology. With the recent introduction of mobility management frameworks in the IEEE 802.16e standard, WiMAX is now placed in competition to the existing and forthcoming generations of wireless technologies for providing ubiquitous computing solutions. However, the success of a good mobility framework largely depends on the capability of performing fast and seamless handovers irrespective of the deployed architectural scenario. Now that the IEEE has defined the Mobile WiMAX (IEEE 802.16e) MAC-layer handover management framework, the Network Working Group (NWG) of the WiMAX Forum is working on the development of the upper layers. However, the path to commercialization of a full-fledged WiMAX mobility framework is full of research challenges. This article focuses on potential handover-related research issues in the existing and future WiMAX mobility framework. A survey of these issues in the MAC, Network and Cross-Layer scenarios is presented along with discussion of the different solutions to those challenges. A comparative study of the proposed solutions, coupled with some insights to the relevant issues, is also included

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial

    SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS

    Full text link
    A finales de los años noventa, y al comienzo del nuevo milenio, las redes inalámbricas han evolucionado bastante, pasando de ser sólo una tecnología prometedora para convertirse en un requisito para las actividades cotidianas en las sociedades desarrolladas. La infraestructura de transporte también ha evolucionado, ofreciendo comunicación a bordo para mejorar la seguridad vial y el acceso a contenidos de información y entretenimiento. Los requisitos de los usuarios finales se han hecho dependientes de la tecnología, lo que significa que sus necesidades de conectividad han aumentado debido a los diversos requisitos de las aplicaciones que se ejecutan en sus dispositivos móviles, tales como tabletas, teléfonos inteligentes, ordenadores portátiles o incluso ordenadores de abordo (On-Board Units (OBUs)) dentro de los vehículos. Para cumplir con dichos requisitos de conectividad, y teniendo en cuenta las diferentes redes inalámbricas disponibles, es necesario adoptar técnicas de Vertical Handover (VHO) para cambiar de red de forma transparente y sin necesidad de intervención del usuario. El objetivo de esta tesis es desarrollar algoritmos de decisión (Vertical Handover Decision Algorithms (VHDAs)) eficientes y escalables, optimizados para el contexto de las redes vehiculares. En ese sentido se ha propuesto, desarrollado y probado diferentes algoritmos de decisión basados en la infraestructura disponible en las actuales, y probablemente en las futuras, redes inalámbricas y redes vehiculares. Para ello se han combinado diferentes técnicas, métodos computacionales y modelos matemáticos, con el fin de garantizar una conectividad apropiada, y realizando el handover hacia las redes más adecuadas de manera a cumplir tanto con los requisitos de los usuarios como los requisitos de las aplicaciones. Con el fin de evaluar el contexto, se han utilizado diferentes herramientas para obtener información variada, como la disponibilidad de la red, el estado de la red, la geolocalizaciónMárquez Barja, JM. (2012). SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17869Palanci

    Comparison of vertical handover decision-based techniques in heterogeneous networks

    Get PDF
    Industry leaders are currently setting out standards for 5G Networks projected for 2020 or even sooner. Future generation networks will be heterogeneous in nature because no single network type is capable of optimally meeting all the rapid changes in customer demands. Heterogeneous networks are typically characterized by some network architecture, base stations of varying transmission power, transmission solutions and the deployment of a mix of technologies (multiple radio access technologies). In heterogeneous networks, the processes involved when a mobile node successfully switches from one radio access technology to the other for the purpose of quality of service continuity is termed vertical handover or vertical handoff. Active calls that get dropped, or cases where there is discontinuity of service experienced by mobile users can be attributed to the phenomenon of delayed handover or an outright case of an unsuccessful handover procedure. This dissertation analyses the performance of a fuzzy-based VHO algorithm scheme in a Wi-Fi, WiMAX, UMTS and LTE integrated network using the OMNeT++ discrete event simulator. The loose coupling type network architecture is adopted and results of the simulation are analysed and compared for the two major categories of handover basis; multiple and single criteria based handover methods. The key performance indices from the simulations showed better overall throughput, better call dropped rate and shorter handover time duration for the multiple criteria based decision method compared to the single criteria based technique. This work also touches on current trends, challenges in area of seamless handover and initiatives for future Networks (Next Generation Heterogeneous Networks)

    A Cross-Layer Location-Based Approach for Mobile-Controlled Connectivity

    Get PDF
    We investigate into the potentiality of an enhanced Power and Location-based Vertical Handover (PLB-VHO) approach, based on a combination of physical parameters (i.e., location and power attenuation information), for mobile-controlled connectivity across UMTS and WLAN networks. We show that the location information in a multiparameter vertical handover can significantly enhance communication performance. In the presented approach a power attenuation map for the visited area is built and kept updated by exploiting the information sharing of power measurements with other cooperating mobile devices inside the visited networks. Such information is then used for connectivity switching in handover decisions. The analytical model for the proposed technique is first presented and then compared with a traditional Power-Based approach and a simplified Location-Based technique. Simulation results show the effectiveness of PLB-VHO approach, in terms of (i) network performance optimization and (ii) limitation of unnecessary handovers (i.e., mitigation ofping-pong effect)

    Quality-Oriented Mobility Management for Multimedia Content Delivery to Mobile Users

    Get PDF
    The heterogeneous wireless networking environment determined by the latest developments in wireless access technologies promises a high level of communication resources for mobile computational devices. Although the communication resources provided, especially referring to bandwidth, enable multimedia streaming to mobile users, maintaining a high user perceived quality is still a challenging task. The main factors which affect quality in multimedia streaming over wireless networks are mainly the error-prone nature of the wireless channels and the user mobility. These factors determine a high level of dynamics of wireless communication resources, namely variations in throughput and packet loss as well as network availability and delays in delivering the data packets. Under these conditions maintaining a high level of quality, as perceived by the user, requires a quality oriented mobility management scheme. Consequently we propose the Smooth Adaptive Soft-Handover Algorithm, a novel quality oriented handover management scheme which unlike other similar solutions, smoothly transfer the data traffic from one network to another using multiple simultaneous connections. To estimate the capacity of each connection the novel Quality of Multimedia Streaming (QMS) metric is proposed. The QMS metric aims at offering maximum flexibility and efficiency allowing the applications to fine tune the behavior of the handover algorithm. The current simulation-based performance evaluation clearly shows the better performance of the proposed Smooth Adaptive Soft-Handover Algorithm as compared with other handover solutions. The evaluation was performed in various scenarios including multiple mobile hosts performing handover simultaneously, wireless networks with variable overlapping areas, and various network congestion levels

    Mobility-based predictive call admission control and resource reservation for next-generation mobile communications networks.

    Get PDF
    Recently, the need for wireless and mobile communications has grown tremendously and it is expected that the number of users to be supported will increase with high rates in the next few years. Not only the number of users, but also the required bandwidth to support each user is supposed to increase especially with the deploying of the multimedia and the real time applications. This makes the researchers in the filed of mobile and wireless communications more interested in finding efficient solutions to solve the limitations of the available natural radio resources. One of the important things to be considered in the wireless mobile environment is that the user can move from one location to another when there is an ingoing call. Resource reservation ( RR ) schemes are used to reserve the bandwidth ( BW ) required for the handoff calls. This will enable the user to continue his/her call while he/she is moving. Also, call admission control ( CAC ) schemes are used as a provisioning strategy to limit the number of call connections into the network in order to reduce the network congestion and the call dropping. The problem of CAC and RR is one of the most challenging problems in the wireless mobile networks. Also, in the fourth generation ( 4G ) of mobile communication networks, many types of different mobile systems such as wireless local area networks ( WLAN s) and cellular networks will be integrated. The 4G mobile networks will support a broad range of multimedia services with high quality of service.New Call demission control and resource reservation techniques are needed to support the new 4G systems. Our research aims to solve the problems of Call Admission Control (CAC), and resource reservation (RR) in next-generation cellular networks and in the fourth generation (4G) wireless heterogeneous networks. In this dissertation, the problem of CAC and RR in wireless mobile networks is addressed in detail for two different architectures of mobile networks: (1) cellular networks, and (2) wireless heterogeneous networks (WHNs) which integrate cellular networks and wireless local area networks (WLANs). We have designed, implemented, and evaluated new mobility-based predictive call admission control and resource reservation techniques for the next-generation cellular networks and for the 4G wireless heterogeneous networks. These techniques are based on generating the mobility models of the mobile users using one-dimensional and multidimensional sequence mining techniques that have been designed for the wireless mobile environment. The main goal of our techniques is to reduce the call dropping probability and the call blocking probability, and to maximize the bandwidth utilization n the mobile networks. By analyzing the previous movements of the mobile users, we generate local and global mobility profiles for the mobile users, which are utilized effectively in prediction of the future path of the mobile user. Extensive simulation was used to analyze and study the performance of these techniques and to compare its performance with other techniques. Simulation results show that the proposed techniques have a significantly enhanced performance which is comparable to the benchmark techniques
    corecore