1,921 research outputs found

    Survey and Benchmark of Block Ciphers for Wireless Sensor Networks

    Get PDF
    Cryptographic algorithms play an important role in the security architecture of wireless sensor networks (WSNs). Choosing the most storage- and energy-efficient block cipher is essential, due to the facts that these networks are meant to operate without human intervention for a long period of time with little energy supply, and that available storage is scarce on these sensor nodes. However, to our knowledge, no systematic work has been done in this area so far.We construct an evaluation framework in which we first identify the candidates of block ciphers suitable for WSNs, based on existing literature and authoritative recommendations. For evaluating and assessing these candidates, we not only consider the security properties but also the storage- and energy-efficiency of the candidates. Finally, based on the evaluation results, we select the most suitable ciphers for WSNs, namely Skipjack, MISTY1, and Rijndael, depending on the combination of available memory and required security (energy efficiency being implicit). In terms of operation mode, we recommend Output Feedback Mode for pairwise links but Cipher Block Chaining for group communications

    FPGA IMPLEMENTATION FOR ELLIPTIC CURVE CRYPTOGRAPHY OVER BINARY EXTENSION FIELD

    Get PDF
    Elliptic curve cryptography plays a crucial role in network and communication security. However, implementation of elliptic curve cryptography, especially the implementation of scalar multiplication on an elliptic curve, faces multiple challenges. One of the main challenges is side channel attacks (SCAs). SCAs pose a real threat to the conventional implementations of scalar multiplication such as binary methods (also called doubling-and-add methods). Several scalar multiplication algorithms with countermeasures against side channel attacks have been proposed. Among them, Montgomery Powering Ladder (MPL) has been shown an effective countermeasure against simple power analysis. However, MPL is still vulnerable to certain more sophisticated side channel attacks. A recently proposed modified MPL utilizes a combination of sequence masking (SM), exponent splitting (ES) and point randomization (PR). And it has shown to be one of the best countermeasure algorithms that are immune to many sophisticated side channel attacks [11]. In this thesis, an efficient hardware architecture for this algorithm is proposed and its FPGA implementation is also presented. To our best knowledge, this is the first time that this modified MPL with SM, ES, and PR has been implemented in hardware

    Stream ciphers for secure display

    Get PDF
    In any situation where private, proprietary or highly confidential material is being dealt with, the need to consider aspects of data security has grown ever more important. It is usual to secure such data from its source, over networks and on to the intended recipient. However, data security considerations typically stop at the recipient's processor, leaving connections to a display transmitting raw data which is increasingly in a digital format and of value to an adversary. With a progression to wireless display technologies the prominence of this vulnerability is set to rise, making the implementation of 'secure display' increasingly desirable. Secure display takes aspects of data security right to the display panel itself, potentially minimising the cost, component count and thickness of the final product. Recent developments in display technologies should help make this integration possible. However, the processing of large quantities of time-sensitive data presents a significant challenge in such resource constrained environments. Efficient high- throughput decryption is a crucial aspect of the implementation of secure display and one for which the widely used and well understood block cipher may not be best suited. Stream ciphers present a promising alternative and a number of strong candidate algorithms potentially offer the hardware speed and efficiency required. In the past, similar stream ciphers have suffered from algorithmic vulnerabilities. Although these new-generation designs have done much to respond to this concern, the relatively short 80-bit key lengths of some proposed hardware candidates, when combined with ever-advancing computational power, leads to the thesis identifying exhaustive search of key space as a potential attack vector. To determine the value of protection afforded by such short key lengths a unique hardware key search engine for stream ciphers is developed that makes use of an appropriate data element to improve search efficiency. The simulations from this system indicate that the proposed key lengths may be insufficient for applications where data is of long-term or high value. It is suggested that for the concept of secure display to be accepted, a longer key length should be used

    Dynamic Polymorphic Reconfiguration to Effectively “CLOAK” a Circuit’s Function

    Get PDF
    Today\u27s society has become more dependent on the integrity and protection of digital information used in daily transactions resulting in an ever increasing need for information security. Additionally, the need for faster and more secure cryptographic algorithms to provide this information security has become paramount. Hardware implementations of cryptographic algorithms provide the necessary increase in throughput, but at a cost of leaking critical information. Side Channel Analysis (SCA) attacks allow an attacker to exploit the regular and predictable power signatures leaked by cryptographic functions used in algorithms such as RSA. In this research the focus on a means to counteract this vulnerability by creating a Critically Low Observable Anti-Tamper Keeping Circuit (CLOAK) capable of continuously changing the way it functions in both power and timing. This research has determined that a polymorphic circuit design capable of varying circuit power consumption and timing can protect a cryptographic device from an Electromagnetic Analysis (EMA) attacks. In essence, we are effectively CLOAKing the circuit functions from an attacker

    Exploitation of Unintentional Information Leakage from Integrated Circuits

    Get PDF
    Unintentional electromagnetic emissions are used to recognize or verify the identity of a unique integrated circuit (IC) based on fabrication process-induced variations in a manner analogous to biometric human identification. The effectiveness of the technique is demonstrated through an extensive empirical study, with results presented indicating correct device identification success rates of greater than 99:5%, and average verification equal error rates (EERs) of less than 0:05% for 40 near-identical devices. The proposed approach is suitable for security applications involving commodity commercial ICs, with substantial cost and scalability advantages over existing approaches. A systematic leakage mapping methodology is also proposed to comprehensively assess the information leakage of arbitrary block cipher implementations, and to quantitatively bound an arbitrary implementation\u27s resistance to the general class of differential side channel analysis techniques. The framework is demonstrated using the well-known Hamming Weight and Hamming Distance leakage models, and approach\u27s effectiveness is demonstrated through the empirical assessment of two typical unprotected implementations of the Advanced Encryption Standard. The assessment results are empirically validated against correlation-based differential power and electromagnetic analysis attacks
    corecore