

Copyright

by

Vincent Anthony Davis

2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211343997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Report Committee for Vincent Anthony Davis
Certifies that this is the approved version of the following report:

Internet Security for Mobile Computing

APPROVED BY
SUPERVISING COMMITTEE:

Christine Julien

Sarfraz Khurshid

Supervisor:

Internet Security for Mobile Computing

by

Vincent Anthony Davis, B.S.E.E.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin
May 2017

 Dedication

This report is dedicated to my wife, mother, brother, and nephew. To my gorgeous

wife, Adelina, your love, patience, and optimism gives me hope for better future and

family. The world is yours. To my beautiful mother, Hope, no one deserves the life that

you have endured. Your survival and sacrifice gives me motivation to wake up every

morning. To my amazing brother, Michael, you are the best brother in the world. Lastly to

my nephew, Sebastian, dream big!

 v

Acknowledgements

I would like to express my thanks to Dr. Christine Julien for supervising

this report. I would like to thank Dr. Sarfraz Khurshid for being the reader of this

report.

 vi

Abstract

Internet Security for Mobile Computing

Vincent Anthony Davis, M.S.E.

The University of Texas at Austin, 2017

Supervisor: Christine Julien

Mobile devices are now the most dominant computer platform. Every time

a mobile web application accesses the internet, the end user’s data is susceptible to

malicious attacks. For instance, when paying a bill at a store with NFC mobile

payment, navigating through a city operating GPS on a smartphone, or dictating the

temperature at a household with a home automation device. These activities seem

routine, yet, when vulnerabilities are present they can leave holes for hackers to

access bank accounts, pinpoint a user’s recent location, or tell when someone is not

at home. The awareness of the end user cannot be trusted. Device vendors and

developers must provide safeguards.

An ongoing issue is that the present security standards are outdated and

were never envisioned with mobile devices in mind. It can be suggested that

security is only idling the progress of mobile computing. Still, many application

developers and IT professionals do not adopt security standards fast enough to keep

up-to-date with known vulnerabilities.

 vii

The main goals of the next generation of security standards, TLS, will

provide developers with greater security efficiency and improved mobile

throughput. These proposed capabilities of the TLS protocol will streamline mobile

computing into the forefront of security practices. The analysis of this report

demonstrates concepts on the direction mobile security, usability, and performance

from a development standpoint.

 viii

Table of Contents

List of Tables ...x	

List of Figures .. xi	

1.0	 INTRODUCTION ..1	
1.1	 Introduction ..1	
1.2	 Motivation ..2	
1.3	 Stakeholders ...2	

1.3.1 Government ...2	
1.3.2 Mobile Application Developers ..3	
1.3.3 Hardware Vendors ..3	
1.3.4 Cell Phone Carriers ...3	
1.3.5 End Users ..3	

1.4	 Structure of this report ...4	

2.0	 TECHNICAL OVERVIEW ..5	
2.0	 Technical Overview ...5	
2.1	 SSL/TLS ..6	
2.2	 TLS Handshake ..9	

2.2.1	Hello Phase ...9	
2.2.2 Key Exchange ...11	
2.2.3	Elliptic Curve Diffie-Hellman ..16	

2.3	 TLS Attacks ...17	
2.3.1 BEAST ..18	
2.3.2 CRIME ..18	
2.3.3 Extended CRIME: TIME ..19	
2.3.4 BREACH ..19	
2.3.5 POODLE ...20	
2.3.6 Logjam ..20	

 ix

3.0	 Literature Review ..21	

4.0	 Analysis...23	
4.1	 Direction ..23	
4.2	 Usability: TLS Mobile Internet Security In Practice24	

4.2.1	Apple iOS..25	
4.2.2	Google Android ..28	

4.3	 Performance ...30	
4.3.1 Test Environment ..30	
4.3.2 Case Study ..31	
4.3.3 TLS Inoperability ..34	
4.3.3 Future Work ..35	

5.0	 Conclusion ..36	

Bibliography ..38	

Vita ..41	

 x

List of Tables

Table 1:	 Cryptography Key Length in Bits [6] ...15	

Table 2:	 Network Connection Comparison of TLS 1.2 and TLS 1.334	

 xi

List of Figures

Figure 1:	 Example of HTTPS in Chrome Web Browser6	

Figure 2:	 Full Handshake Protocol in TLS 1.3 with 1-RTT10	

Figure 3:	 Full Handshake Protocol in TLS 1.2 with 2-RTT10	

Figure 4:	 Resumption Handshake Protocol in TLS 1.3 with 0-RTT11	

Figure 5:	 Example Plot of an Elliptic Curve ..16	

Figure 6:	 Number of Key Generations per Second in BoringSSL31	

Figure 7:	 Full Handshake Duration (milliseconds) in BoringSSL33	

 1

1.0 INTRODUCTION

1.1 INTRODUCTION

With the explosion of the mobile devices, security has never been more at

the forefront of the technology sector. Mobile devices provide better personal

services than the traditional desktop computer, even under limitations and

constraints of the platform. This includes store payments, GPS navigation, storing

airline boarding passes, etc. However, mobile devices present numerous security

challenges, because people trust the devices with much more personal data that

comes with the ease of convenient services.

Now that mobile internet browsing has surpassed that of desktop computers

[1], the security industry should shift the focus on mobile devices. Transport Layer

Security (TLS) is the main cryptographic and security mechanism for mobile

applications that connect with the internet [4]. Unfortunately, the current iteration

of TLS, version 1.2, was not envisioned for mobile environments. TLS 1.3 is the

new standard that is currently in the draft state and is being built with the main

objective of security and mobile performance [5].

 2

1.2 MOTIVATION

Slow adoption rates of the latest TLS versions is worrisome since it leaves

users open to attacks. The authors of [2] show that around 45% of global websites

are significantly vulnerable to exploits. This could easily be prevented by upgrading

to the most available TLS version and disallowing future TLS downgrades. This

report provides an overview of TLS 1.3 in hopes that developers will adopt the

security standard as it becomes available and incentivize their platform becoming

resistant to exploits, prevent future attacks, and reap the performance benefits of

new security standards. Certainly the benefits of TLS 1.3 translate directly into

mobile performance advantages.

1.3 STAKEHOLDERS

By observing the major stakeholders of mobile application security, one

could get a better sense of the significance.

1.3.1 Government

Routinely the US government publishes material on mobile security [3].

They acknowledge the need for cryptography suitable for mobile devices. TLS 1.3

pushes the initiative further to meet the security requirements held by the

government.

 3

1.3.2 Mobile Application Developers

App developers need to keep their software secure and become familiar with

security standards. Many of the mobile security exploits occur when software

connects to network communications. On major mobile platforms, e.g., Apple and

Android marketplaces, there are checkpoints in place to mitigate vulnerabilities, but

some fall through the cracks. Banks and healthcare providers have additional

requirements beyond typical internet security that must be followed. This goes to

reinforce the software developers’ responsibility to secure their software.

1.3.3 Hardware Vendors

Hardware vendors have it in their interest to make sure that the devices they

sell are secure. Major technology vendors have an active role in setting the internet

standards at the Internet Engineering Task Force (IETF). This is the same agency

that adopts security standards such as TLS.

1.3.4 Cell Phone Carriers

Cell phone carriers like AT&T and Verizon consistently push device

updates to protect against critical vulnerabilities. This is important because weak

points can expose networks, and prevent availability of services.

1.3.5 End Users

Much of the burden for security lies with the end user. Many users have

severely limited knowledge with security. They make bad decisions by going to

inappropriate websites, downloading malicious applications, ignoring security

warnings, and piggybacking on open wireless networks. The best practice for end

 4

users is to ensure their devices are kept up-to-date with security from vendors and

cell phone carriers.

1.4 STRUCTURE OF THIS REPORT

This report looks at internet application security for mobile devices. Section

2 is a technical overview of internet security and the underlying mechanics of TLS

that specifically benefit mobile devices. In addition, the report looks at recent

security exploits and how these exploits shape the current internet security

protocols and mobile devices. Section 3 is a literature review of the current research

into mobile application security. Section 4 is an analysis of the current security

protocols in place for various mobile vendors and the performance implications on

mobile devices.

 5

2.0 TECHNICAL OVERVIEW

2.0 TECHNICAL OVERVIEW

The purpose of the technical overview section is to provide a broad picture

of TLS and the exploits that are prominent for mobile devices. The current

specification of the entire TLS 1.3 protocol working draft can be found at the

following website: https://tools.ietf.org/html/draft-ietf-tls-tls13. Note that since

TLS 1.3 is in a draft state, some features can change over time until the finalized

version. Considering this, the report in itself is to showcase the possibilities of

future security ideas and analyze the potential impacts on mobile computing.

Mobile devices described in the report are mobile cellular phones,

smartphones, smartwatches, tablets, laptops, and other small form-factor

computers. The mobile platform is generally optimized for a portable experience,

and that includes compact and limited computer functionality, minimalistic UI, a

plethora of wireless technologies, on demand services, and high availability. The

main resource limitations of mobile devices are processor speed, local storage and

memory size, network bandwidth and latency, and power consumption. All of these

limitations have made it complex for obtainable security features. SSL/TLS is the

backbone of the network security featured in computers and mobile devices.

 6

2.1 SSL/TLS

Secure Socket Layer, SSL, is a toolset of cryptographic protocols that

encrypts data through a communication network between a client and server. The

main purpose of SSL is to provide confidential communication channels for users

and ensure the integrity of information during data transmission. The tools

negotiate the specific cryptographic protocol for public key exchange, authenticate

the peers, specify the encryption method for exchange data and compression, and

finally provide a hash method for the signature of the data. Note that both sides of

the communication endpoints need SSL technology available to establish secure

communications.

Netscape originally developed SSL which has now evolved into an internet

standard called Transport Layer Security or TLS. Every day people use SSL when

they are on the internet, using web apps and while utilizing their mobile devices. If

a web browser internet page starts with HTTPS, then this internet connection is

established by an SSL session. For example, https://www.google.com is a webpage

that is using SSL shown in Figure 1.

Figure 1: Example of HTTPS in Chrome Web Browser

 7

TLS can be broken down into these basic steps:

1. The client initiates a ‘hello’ to a corresponding server, and the server

responds with a ‘hello’ acknowledgement as well.

2. The client and server then negotiate the cryptographic protocols.

3. The client and server then generate a secret key.

4. To authenticate the server, and in some cases the client, the peers will verify

a certificate that is trusted by a neutral party, a certificate authority (CA).

5. Once the server and client have been verified, secure data exchange is then

possible.

6. Prior to messages transmission, a hash of the data with the sender’s public

key will be attached to the message. The hash of the message is to verify

the integrity of the message, known as signing or signature of the data. The

final step is a symmetric encryption of the data with the secret key generated

in step 3.

7. The message receiver then decrypts the data with the secret key in step 3

and can verify the hash of the message with the sender’s public key.

8. If something happens to the connection during the process, alerts will

terminate the current secure communications.

 TLS 1.2 is the most recent The Internet Engineering Task Force (IETF)

approved version, which is described at length in IETF RFC 5246 [4]. The current

rework TLS 1.3 has moderately different indicated goals than the previous version.

 8

The IETF working charter describes the key goals of TLS 1.3 development as

follows [5]:

• Encrypt as much of the handshake as possible

• Reduce handshake latency while still maintaining security features

• Address known security weaknesses

• Reevaluate handshake contents

• Improved Mobile CPU and network throughput

The goals can be broken down into two main areas: enhance security, and improve

performance. Looking at the current state of TLS 1.3, a majority of the security and

performance improvement is done in the TLS handshake protocol.

The TLS standard features two layered components, the record and the

handshake protocol. These protocols are used to establish a transport protocol, TCP,

communication channel, and allow for secure and reliable connection. The

handshake protocol sets up the initial phase of communications between peers, and

determines the key and type of cryptography for the session. On transition to the

exchange data phase, the record protocol secures the session using the key

determined in the handshake. The record protocol encapsulates all data encryption,

breaks up data into manageable block sizes and then hashes the blocks of data. Then

the data is passed along to the TCP connection. The record and handshake protocols

have revisions in TLS 1.3. This report focuses on the specification of cryptography,

 9

and the handshake protocol. Both specifications allow for improved latency over

TLS 1.2 thus improving performance for mobile devices.

2.2 TLS HANDSHAKE

The handshake protocol establishes the first interaction between the client

and server or application endpoints. A “hello” message back and forth between

client and server starts the secure mechanism. Once secure communication is

established, the protocol allows for data to be transmitted in the application layer.

The handshake of TLS has the most latency because of the processing time needed

to determine TLS version, key exchange method, cryptography, and authentication.

2.2.1 Hello Phase

 The ‘hello’ phase is the initial encounter between client and server in the

handshake protocol. The client sends a “Client Hello” message to the server, along

with a random number and client time. The client’s known cipher suite and key

exchange is also passed along. Once the server receives the “Client Hello,” the

server responds by sending its own “Server Hello,” random number, and server

time, along with its supported cipher suite, key share, certificate with signature, and

finally a Finished signal. The client can proceed to data exchange at this point. This

is considered One Round-Trip Time or 1-RTT. In TLS 1.2 the “Client Hello” and

cipher suite is first passed back and forth between the client and server, followed

 10

by a key exchange, then another Finished signal. This is considered 2-RTT for TLS

1.2. The time saved is extremely valuable. Figures 2 and 3 demonstrates the

procedure for 1-RTT and 2-RTT respectively.

Figure 2: Full Handshake Protocol in TLS 1.3 with 1-RTT

Figure 3: Full Handshake Protocol in TLS 1.2 with 2-RTT

The time saved on a connection that was established in the recent past is

even better under TLS 1.3. There are several methods, but I only explain the basic

 11

case. In TLS 1.3 there is 0-RTT for a resumption or session resumed connection.

The client sends a “Client Hello” message with the previous shared key (PSK), then

early data like an HTTP request is transmitted to the server; this process all

transpires within the first flight message. Once the server receives the initial

message, then it sends a “Server Hello,” key exchange, Finished, then services the

HTTP requests. 0-RTT is demonstrated in Figure 4.

Figure 4: Resumption Handshake Protocol in TLS 1.3 with 0-RTT

2.2.2 Key Exchange

Diffie-Hellman (D-H) and Rivest-Shamir-Adleman (RSA) algorithms are

the two main available methods of key exchange in the handshake phase for TLS

connections. The current draft of TLS 1.3 requires Diffie-Hellman D-H key

exchange, since RSA does not provide guarantees for forward secrecy. Perfect

forward secrecy is a desired property of communications where past sessions are

considered secure even if secure keys are leaked. The only method of breaking

 12

forward secrecy is with brute force methods. One scenario is if a resumption

connection uses a D-H key exchange, then it provides protection against forward

secrecy. For early data transmission conditions, this can be dangerous, so HTTP

requests are limited to idempotent REST lookups. Idempotent REST API’s

constraint certain types of HTTP requests that can be done prior to authentication.

D-H was the first public key cryptography algorithm that was developed by

Ralph Merkle, Whitfield Diffie, and Martin Hellman, in 1976. Soon thereafter, in

1983, RSA was patented by Ron Rivest, Adi Shamir and Leonard Adleman. RSA

has been the most dominant public key encryption mechanism, while D-H has been

the most widely used key exchange method. However, in TLS 1.2 and prior

versions, RSA key handshake has been the most popular and preferred method

incorporated into the system [4].

Here is how the RSA key exchange works in TLS: The client generates a

random number, which is encrypted with the public key of the server. The result is

the secret key for the session phase. Only after the server’s private key decrypts the

secret key can data exchange happen. If authentication is required for the client, the

server generates the secret key with the client’s public key and a server random

number, and the process of authentication repeats. For RSA to work properly, prior

knowledge of the server or client public key is required for the key exchange.

One problem with RSA handshake key exchange is that it does not provide

forward secrecy. If someone had access to previous stored session keys, then prior

 13

data exchange is vulnerable to information loss. Keep in mind that a desirable

property is confidentiality and is most crucial with archived data exchange in the

future. D-H key exchange does not require prior knowledge of the two peers to start

the handshake. With the invention of TLS 1.3, the IETF has chosen D-H to become

the primary key exchange method, and has deprecated the RSA key exchange.

The D-H key exchange in TLS is as follows: the server generates a secret

key by applying D-H algorithm, followed by a message with the server’s public CA

certificate. The client can then authenticate the server based on the mathematical

properties of D-H and verify the certificate. If the client needs to be authenticated,

then the server can request that the client apply the D-H algorithm with a random

number to verify the client’s CA certificate.

In TLS 1.3, Diffie-Hellman with random short-lived session tickets for a

client and server key exchange handshake is highly recommended and currently the

default setting. This is known as Ephemeral Diffie-Hellman (DHE). Note DHE

always provides Perfect Forward Secrecy (PFS). Fixed Diffie-Hellman is an

alternative D-H variant where the public key is included with the CA certificates.

The same private key is used in Fixed D-H handshake, as opposed to new keys for

DHE. It was widely available in TLS 1.2 and below, but has been replaced with

DHE since it was susceptible to attacks with small key sizes. Anonymous D-H, the

third D-H handshake, available in previous TLS versions is no longer

 14

recommended since it does not authenticate peers nor protects against man-in-the-

middle attack.

In May 2006, Elliptic Curve Cryptography was added to TLS 1.0 and 1.1,

as specified in RFC 4492 [7]. The introduction sentence reads “Elliptic Curve

Cryptography (ECC) is emerging as an attractive public-key crypto-system, in

particular for mobile (i.e., wireless) environments” [7]. The developers of TLS

explored faster cryptographic algorithms for the purpose of mobile devices prior to

wide use. Recall that iPhones, which boosted the mobile platform market, were

initially released in 2007. The IETF sensed that ECC would be best suited for

constrained devices. Still despite TLS inclusion of ECC, RSA has been the most

dominant protocol relied upon by TLS users. With TLS 1.3 the idea is to favor and

recommend a handshake that uses ECC in the D-H handshake. The determination

behind this is primarily that ECC provides equivalent security as does RSA but with

smaller key sizes, as shown in Table 1 [6]. On mobile devices RSA impacts CPU

utilization and memory storage. It is worth noting that ECC can be used as a full

cryptography workload similar to RSA. ECC can be used for encryption, signing

certificates, message authentication, and currently the most popular mechanism in

the D-H key exchange.

 15

Symmetric ECC DH/RSA/DSA

80 160 1024

112 224 2048

128 256 3072

192 384 7680

256 512 15360

Table 1: Cryptography Key Length in Bits [6]

Diffie-Hellman with ECC (ECDH) is a feature that can provide key

exchange for the server and the client handshake phase. Instead of using discrete

logarithm in D-H key exchange, ECC uses the mathematical operation of elliptic

curves. The elliptic curve equation and graph of an example elliptic curve is as

follows:

𝑦" = 	𝑥& + 𝑎𝑥 + 𝑏

Equation 1: Elliptic Curve Equation

 16

Figure 5: Example Plot of an Elliptic Curve

2.2.3 Elliptic Curve Diffie-Hellman

Here is how ECDH works in TLS: The client and server agree on a public

elliptic curve E(a,b) in the prime finite field Zp. IETF has a list of popular curves

that are recommended for TLS 1.3, namely [8]:

X25519: y2 = x3 + 486662x2 + x on finite field 2255 – 19

and X448: y2 = x3 + 156326 x2 + x on finite field 2448 – 2224 – 1.

After the selection of the primes, both peers will select a base point on the

curve, B = (x1, y1) The client will then choose a random number, 𝑛+ < |𝐸| and

 17

calculate public key 𝑃+ = 	𝑛+	×	𝐵. The server does the same calculation, choosing

a random number, 𝑛2 < |𝐸| and calculate 𝑃2 = 	𝑛2	×	𝐵. The public keys generated

are the “client key exchange” and “server key exchange” in the handshake. Next,

the client and server send their public keys to each other and the secret key	𝑃3, is

then calculated using this formula: 𝑃3 = 𝑛+	×	𝑛2	×	𝐵 = 𝑃2	×	𝑛+ = 𝑃+	×	𝑛2. The

values of the secret and public keys are points on the E. An eavesdropper would

never be able to recreate the secret key because it is computationally infeasible to

calculate 𝑃3 when given only 𝑃+ and 𝑃2 factors. The attacker would have to know

the random values that were generated by the client or server. Since the key size is

smaller compared to RSA, ECDH is an ideal key exchange mechanism for the

mobile platform.

2.3 TLS ATTACKS

Attacks target vulnerabilities that were not identified prior to launching

software to mass availability, especially on mobile devices. Even when flaws are

identified is not always easy to close loopholes. However, at times vulnerability

fixes are not complicated and could be done by disabling certain features and

removing backward compatibility. It takes years of research and development to

improve protocols and create better impenetrable security of information.

 18

In this section, examples of known TLS attacks are listed. Many of the

changes in TLS 1.3 have been largely influenced by the following man-in-the-

middle (MitM) attacks. MitM attacks are so prevalent with mobile devices because

end users accept the risks of joining public networks, to reduce bandwidth costs.

The public networks allow for rerouting of services through private servers

masquerading as friendly hotspots.

2.3.1 BEAST

BEAST (Browser Exploit Against SSL/TLS) is an attack that targets out-of-

date SSL/TLS versions, namely TLS 1.0 and SSL 3.0. If an attacker is allowed

access to HTTP browser cookies with a MitM attack, then an attacker can

theoretically obtain authentication session tokens. These tokens can then be reused

to gain access to the secure webpages. BEAST has only been displayed in

demonstrations by researchers, and can be mitigated by upgrading TLS versions

[9]. Note that mobile web browsers are all susceptible to desktop browser exploits.

2.3.2 CRIME

CRIME (Compression Ratio Info-leak Made Easy) is another MitM attack used

to guess the session tokens when compression method is used in TLS [10]. An

attacker can gain control of HTTPS requests and hijack message headers making

brute force estimation on authentication tokens. Disabling compression altogether

 19

in TLS is the only suitable solution. Currently compression is deprecated and not

publicly recommended. Note that not using compression with TLS will slow down

network traffic, this exploit has been known publicly for a few years. Therefore,

this is not a mobile performance advantage. The only possible scenario is using

compression with anonymous D-H with no authentication, presenting no need for

security in that matter.

2.3.3 Extended CRIME: TIME

TIME (Time Infoleak Made Easy) MitM attack is similar model to the

compression CRIME attack [11]. Instead of attacking HTTP requests, the attack

focuses on HTTP response, which is a majority of HTTP interaction. As with

CRIME, disabling compression is the only solution to a TIME attack.

2.3.4 BREACH

BREACH (Browser Reconnaissance & Exfiltration via Adaptive Compression

of Hypertext) MitM attack is similar to the CRIME attack [12]. Rather than an

attack on TLS compression, this attack exploits HTTP compression. The attack can

force a client to disable SSL/TLS altogether and can view data in plaintext. There

is no possible solution to this attack. So mobile devices have no option to use

compression for an increased network throughput.

 20

2.3.5 POODLE

POODLE (Padding Oracle On Downgraded Legacy Encryption) is a MitM

attack that relies on clients downgrading SSL/TLS to obsolete SSL version 3.0 [13].

It exploits security flaws found in the older protocols. The best practice to avoid

this attack is to prevent applications and web browsers from using SSL 3.0 and

disabling downgrading. There are a lot of vendors now that require applications to

support higher versions and specifically disable lower versions of TLS. However

much of the internet is still vulnerable to this type of attack.

2.3.6 Logjam

Logjam is another MitM attack that relies on TLS downgrade. Researchers

found that servers were using the most common 512-bit prime numbers to generate

secret keys. [14] showed that 92% of HTTP servers with 512-bit D-H support used

two distinct primes. This led to a simplified cryptanalysis search of the key

information, and making the two primes unsafe. TLS now recommends large key

size for D-H. Also this is a main reason reason that IETF supports a move to ECDH

with TLS 1.3.

 21

3.0 Literature Review

The technical overview purpose was to introduce the background of TLS

1.3 and improvements being made to overcome limitations in previous versions.

The literature review gives an overview of the research that is influencing TLS for

mobile devices.

Google’s extensive knowledge of web traffic, led them to experiment with

Quick UDP Internet Connections (QUIC) protocol. As the name implies, internet

traffic routes through the datagram protocol in the transport layer, rather than TCP.

The primary goal of QUIC is to reduce network latency at the expense of

bandwidth. Google introduced a 0-RTT mechanism that is the foundation that TLS

1.3 0-RTT is built [15].

The OPTLS (OPTimized and/or for One-Point-Three TLS) framework

provides design contributions to TLS 1.3. OPTLS provided a handshake rework

from TLS 1.2, and added the observations from QUIC 0-RTT mechanism. The

protocol introduced four separate handshakes that offer 1-RTT for new connections

and 0-RTT for resumed connections. The protocol does not protect against MitM,

or forward secrecy, but allows for new methodologies that TLS 1.3 will be built

upon [16].

The authors of [17] provide a survey of mobile web browsers HTTPS

security indications to users within the browser. They use the World Wide Web

 22

Consortium (W3C) as a best practice for browser security interface, and compare

those recommendations to that on mobile web browsers. They find that many

mobile devices lack the presence of security indicators that is found in traditional

desktop browsers. Most of the mobile browsers tested provide no warning to the

user of invalid server certificates, indicating a potential compromised website.

Researchers present AndroSSL [18], a tool to test against TLS

vulnerabilities on Android OS. The authors recognize the incompetence of

developers understanding of security. AndroSSL demonstrates protections against

many of the MitM attacks on TLS, and can warn developers to improve their

applications. Today the main mobile applications markets provide the same level

of protection offered with this tool.

To further emphasize the inability of developers’ security knowledge, the

authors of [19] do a full scale security study on free applications that are on the

Google Play store. Some developers unknowingly leave holes in software, as in

allowing exposed interprocess communication between application. Many

developers ignore improper TLS warnings, and proceed to vulnerable HTTP

websites. This can have severe consequences for the mobile experience.

 23

4.0 Analysis

4.1 DIRECTION

With the mobile internet browsing outpacing desktops now [1], there is a

major shift in the focus to address the limitations of mobile security. Proactive

standardization is always the best practice for tackling future threats.

The protections currently in place to provide the best mobile security are

sandboxing applications, security policies for applications sharing, application

scanning on the OS stores, and secure communications. Sandboxing is the manner

of isolating applications and restricting access to the applications own private

memory space. This is the practice that is featured on all mobile devices today.

Application sharing is where information can be exchanged between applications.

Developers need to be aware of this, and open when only necessary. Manufacturers

typically restrict expandable storage on mobile devices, so the vast majority of

security issues come from outside of the device. Application developers need to be

aware of weaknesses of code that attackers can exploit, and the developers must

utilize TLS correctly when opening network ports on the device. Once an

application is published to app stores, the stores have mechanisms in place to

monitor applications for potential security concerns. This is not exactly a thorough

process. Therefore, OS developers need to be proactive in security research to be

one step ahead of hackers.

 24

The current research areas on mobile security plays an important role for

proactive threat protection. In general, these are some research areas that I have

seen that are prevalent on mobile security:

• Various connectivity protection, e.g. Bluetooth, cellular, wireless networks

• Prevention methods to limit the application privileges and accesses of

devices

• Mobile web browser UI limitations to highlight malicious internet content

• Creating dynamic security policies that better suits mobile computing

• Tools for developers to identify applications that are not compliant with

security standards

• Improved throughput while maintaining rigorous security standards

• Agents to perform statistical analysis to pinpoint program abnormalities

• Offloading security duties to cloud based services

4.2 USABILITY: TLS MOBILE INTERNET SECURITY IN PRACTICE

In certain aspects, TLS in mobile devices is slightly different than that of

typical desktop internet browsing, desktop software, and web based applications,

even when using the web browser on an iPhone or Android. TLS is transparent on

desktop internet web browsers, with a lock displayed on the webpage when

enabled. The lock on the web address will specify the level of TLS and

corresponding encryption methods. Some mobile browsers, such as Safari and

 25

Chrome, the HTTPS lock is visible but provides no information about TLS security.

Moreover, on mobile applications, TLS is embedded inside of the applications, and

to normal users there is not a way to determine if secure communications are

established other than assuming that the application is properly secure from the

developer. A problematic situation is that mobile OS’s cannot determine if any

application needs secure communication, leaving the unsuspecting user vulnerable.

Unless the application specifically denies connection when requested, it is likely

the application proceeds with an unsecure connection. Apple has taken the guess

work out of this dilemma with App Transport Security.

4.2.1 Apple iOS

App Transport Security (ATS) is Apple’s security standard across the entire

mobile device platform, including all iOS 9.0 (and above) and macOS 10.11. ATS

is primarily a rebranded version of TLS 1.2 with a set of APIs available to

developers. At the beginning of 2017, Apple mandated a strict requirement that all

applications connecting to the internet use ATS, thus always providing end-to-end

secure communications. ATS also resolves some of the troublesome unsecure

cipher suites from TLS 1.2, namely RC4 and SHA-1, Both of which have been

deprecated by IETF and no longer available in TLS 1.3 [20].

Apple is touting what they call “strong cryptography” in ATS [20], mainly

referencing larger secret keys for the TLS session phase of data transfer, and the

 26

prevention of downgrading to older TLS versions. AES encryption now requires at

least 256-bit keys since AES with smaller keys are insecure and prone to attacks.

SHA with 256-bit keys (SHA-2) is now available on Apple devices and enforced

by default regarding data integrity. To protect users from future compromises of

secret keys leaks, ATS recommends D-H key exchange with ECC. The move to

ECDHE is the same that IETF has demonstrated for perfect forward secrecy and

that Apple has publicly recommended for key exchange. ATS does allows for the

use of RSA certificates along with Apple recommended ECDSA certificates to

authentication peers.

Another significant security feature of ATS is the added Certificate

Transparency. Certificate Transparency has three main services: logging of

certificate activities, actively monitoring certificates, and auditing by certificate

authorities (CA) [21]. Apple also monitors certificates in real-time to catch rogue

activities. Therefore, application developers are forced to use a trusted CA. IETF

has set up a working group for Certificate Transparency, and want this to become

the standard practice for SSL/TLS certificates.

Currently there is no indication from Apple whether ATS will have TLS 1.3

features at the launch, but Apple has taken measures to easily transition into this

version of TLS. Apple has updated the iOS security framework or Security

Transport API, to invoke TLS sessions. Applications that connect to the internet

now must use NSURLConnection and its successor NSURLSession.

 27

NSURLSession is a class that allows for secure connection to URLs from iOS

devices, basically HTTP and HTTPS requests.

The other API, WebView, displays HTTP webpages inside of iOS

applications. WebView is an extremely powerful API, because many websites

require paid API services that developers might not afford or do not allow API

access. For example, public APIs allow for fetching and posting of data, and this

can be directly used in an embedded application. When access to the public API is

no longer available, then usually the only way to gather and display data is within

a web browser. In this situation, WebView can take a snippet of a website and

display that information in an application exactly how the webpage would load in

a browser. This is the only situation whereby Apple allows ATS strict security to

be turned off. Specifically, TLS does not need to be enabled between peers. When

a new WebView application is uploaded to the Apple App Store, and ATS is turned

off, this triggers features that will notify Apple. Then the developers need to justify

why ATS is disabled, and request an exemption. These are the main features of

Security Transport API and interaction with TLS.

A side-effect of ATS is that servers are now required to support TLS 1.2

and disable less than adequate security standards when connecting with ATS. Other

platforms like desktop, IoT, and Android phones now benefit from the security

feature.

 28

Looking at the current industry, servers can be susceptible to downgrade

attack due to inadequate upgraded applications and servers. Apple is forcing

developers and technology maintainers to upgrade their applications and servers.

This benefits not only iOS users, but desktop users, and other users of mobile

platforms.

4.2.2 Google Android

 Developers have the luxury of simple and rapid deployment of software

using Android. The hefty entry price for iOS developers’ license makes free

Android development a bit more attractive as well, which translates into anyone

having clearance to develop on the Android platform and publish content to

numerous application stores. Google’s approach to security is less restrictive than

Apple which can leave end users vulnerable to shoddy development practices. It is

not the responsibility of Google, or Apple for that matter, to determine if developers

are using untrusted standards in applications that provide internet security.

However, TLS is available in their development modules.

 For Android applications that require HTTPS, Google offers the two APIs:

HttpsURLConnection, SSLSocket. These are merely suggestions, which is a stark

contrast with what Apple requires. Google Android offers WebView, similar to

Apple, and they both have the same functionality and security concerns. While

Google does publish an in-depth best practices manual online here:

 29

https://developer.android.com/training/articles/security-ssl.html, WebView tends

to leave the developer exposed if they have no knowledge of how to handle security

holes. Google’s security approach is that they provide a backend service to double

check for vulnerabilities once a developer publishes content to the application store.

 The SafetyNet Attestation API and SafetyNet Safe Browsing API provide

automated security services if developers add this to their applications. With these

APIs, developers have the option to test HTTP URLs against threats and analyze

applications for quality security practices. Not only can the APIs test against the

client applications, but the APIs can also perform network security logic for

backend servers. The services will verify the TLS security versions and acceptable

cipher suites.

 All of the mentioned APIs currently support TLS 1.2 and lower, and there

is not enough information to determine when TLS 1.3 will become available on the

platform. Google contributes heavily to IETF, so one could speculate that they

would support TLS 1.3 early on in the release cycle.

 As mentioned, Google’s tactic to application security is different than that

of Apple. One could argue that the Android OS does not provide a strict

requirement, as iOS, but they do offer all the necessary tools. There is not a

mandatory prerequisite for security, and that is why many exploits are prevalent on

the application stores. End users should have major concerns while relying on

Android OS to deliver the best security experience.

 30

4.3 PERFORMANCE

The available cipher suites and encryption methods found in the TLS 1.3

draft proposal are already available in TLS 1.2 and lower versions. The major

differences, as specified in the technical overview, are mainly removing exposed

protocols and improving latency with newer connection mechanisms. In this

section, I test the performance of RSA and D-H. Also I measure the implementation

of 0-RTT resumption.

4.3.1 Test Environment

OpenSSL is an open-source implementation of SSL and TLS. It features the

ability to set up secure connections between clients and servers. OpenSSL is the

underlining security library available in Apple and Android mobile devices.

BoringSSL is an open-source Google fork of OpenSSL that is found in the Chrome

browser and Android devices [22]. BoringSSL is the toolkit used in this report for

testing the TLS functionality, since it is one of the few prototypes available for TLS

1.3. A smartphone would have been more desirable for the environment; however,

the implementations of TLS 1.3 are not available, and are beyond the scope of this

report. An Apple MacBook is the device under test; for benchmarking the cipher

suites and connection.

 31

Here is the description of the test environment:

• Hardware: 2015 MacBook Pro

• OS: macOS Sierra 10.12.4

• CPU: 2.5 GHz Intel i7

• Memory: 16 GB DDR3

4.3.2 Case Study

Figure 6: Number of Key Generations per Second in BoringSSL

BoringSSL’s implementation of TLS 1.3 speed test was used to benchmark

the key generation for RSA and ECDH in Figure 6. The key generation was taken

8484

2639

3755

1350

490

7405

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

RSA	2048 RSA	4096 ECDH	224 ECDH	256 ECDH	384 ECC	25519

Key	Generations	per	Second

 32

over a span of 100 second intervals. RSA with a key size 2048-bits outpaced an

equivalent ECDH 224-bit key size, with a key generation of over 8000 operations

a second. Performance severely degrades with an RSA 4096-bit key. For

evaluation, ECDH key size 224-bit, 256-bit, and 384-bit are National Institute of

Standards and Technology (NIST) standard ECC curves. The keys have the same

comparable security strength as RSA 2048-bit, 3072-bit, 7680-bit keys

respectively. Performance is considerably worse for ECDH.

RSA compared with particular ECC curves as 25519, show the power of

ECC research. Clearly curve 25519 is better than the National Institute of Standards

and Technology (NIST) ECC 256-bit specified key. Also for the same security as

RSA 3072-bit key, it has quite similar performance at 7405 operations per second.

 33

Figure 7: Full Handshake Duration (milliseconds) in BoringSSL

Next, BoringSSL’s speed test was used to test the full handshake duration

in milliseconds in Figure 7. Note that for authentication of ECC, DSA certificates

were used, and RSA certificates for RSA authentication. Curve 25519 takes about

half the time to complete the handshake for the same key size as NIST ECDH 256-

key. Doubling the key size of RSA from 2048 to 4096-bit triples the handshake

time. This is one of the reasons that TLS now recommends D-H. For NIST 256 and

384-bit key size, the performance was only difference by 0.038 milliseconds.

0.386

0.348

0.105

0.302

0.090

0.161

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

ECDH	384

ECDH	256

ECDH	224

RSA	4096

RSA	2048

ECC	25519

Full	Handshake	Duration	(ms)

 34

4.3.3 TLS Inoperability

Application:

BoringSSL

Security TLS 1.2

Results (seconds)

Security level TLS 1.3

Results (seconds)
Server – client new
connection 6.156s 5.727s
Server – client
resumption 3.111s 2.394s

HTTPS curl 42.9s 43.9s

Table 2: Network Connection Comparison of TLS 1.2 and TLS 1.3

The purpose of TLS connection test was to demonstrate the current state of

TLS 1.3 inoperability with current technology and comparison with TLS 1.2.

Several different benchmarks were performed, and the result are displayed in

Table 2.

First a server and client localhost session with BoringSSL was established

with both TLS 1.2 and TLS 1.3. Four separate tests were performed. TLS 1.2 and

TLS 1.3 with new connections, and using resumption session connection with both

TLS versions. Each test result was summed for 1000 simulations. Resumption

connection clearly performs better than a new connection. TLS 1.3 in both new and

resumption connection was better than TLS 1.2.

Curl [23], the HTTP client command line tool, is another use case to test

TLS 1.3. Curl was compiled with BoringSSL to reach HTTPS websites. 100 curl

simulations to https://tls13.crypto.mozilla.org website server were tested. TLS 1.2

and TLS 1.3 have similar results around 43 seconds to perform 100 HTTPS

requests.

 35

4.3.3 Future Work

The case study is strictly limited due to the current state of TLS 1.3, which

is not currently approved for internet security. Many vendors and the open source

community have not invested in the latest security features thus far.

A more proper test when TLS 1.3 has general availability is to test in a lab

setting with servers and mobile clients; with a dedicated wireless network

bandwidth. A suitable test bench like Apache DayTrader would be sufficient [24].

Apache HTTP server can be the backend application server [25]. To simulate web

traffic, Apache JMeter would be an appropriate tool [26].

 36

5.0 Conclusion

There is no denying the dominance of mobile devices in today’s world.

Unfortunately, like most technologies, security is outdated and no longer meets the

need of the mobile user. Since most users lack the knowledge to protect against

attacks, governments and major vendors are on the hook to provide instruments that

protect the consumer. Also since mobile devices require a multitude of

communication networks to operate effectively, and so there are many

opportunities of vulnerability. TLS 1.3 is a step in the right direction to provide

necessary safeties.

The IETF started on TLS 1.3 in 2014, and the current draft is nearing

release. With the rework of the Handshake protocol, mobile devices only gain to

benefit given the limitations of the mobile platform. D-H and ECC have become

popular because they provide better computational efficiencies and overall

enhanced security features than the previous recommended RSA cryptography.

Apple App Transport Security requires all iOS and macOS applications that

require internet to be at a minimum TLS 1.2 version, which proactively forces

developers and IT maintainers to keep updated with TLS standard. This standard

also necessitates that backend servers that service data and information to also

comply with Apple’s security requirement. Other vendors like Google provide

developers with safeguards that allow for checking applications and backend

servers against known weaknesses.

The performance benchmarks of this report provide a model or proof-of-

concept of the capabilities of TLS 1.3 features. Remember that TLS 1.3 is in a draft

 37

state, so future work is necessary to fully determine true security and performance

impacts. Nevertheless, the results of this report demonstrate that TLS 1.3 positively

benefit the future direction security, which only transforms into improved

performance across the mobile platform.

 38

Bibliography

[1] “Mobile and tablet internet usage exceeds desktop for first time worldwide.”

StatCounter Global Stats, Nov. 2016. http://gs.statcounter.com/press/
mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-
worldwide. Accessed March 1, 2017.

[2] Oh, Sanghak, Eunsoo Kim, and Hyoungshick Kim. "Empirical analysis of
SSL/TLS weaknesses in real websites: Who cares?."

[3] Quirolgico, Steve, et al. "Vetting the security of mobile applications." NIST

special publication 800 (2015): 163.

[4] Dierks, T. et al. “The Transport Layer Security (TLS) Protocol Version 1.2.”

The Internet Engineering Task Force (IETF), Aug. 2008,
https://www.ietf.org/rfc/rfc5246.txt. Accessed March 1, 2017.

[5] Transport Layer Security (TLS): Charter for Working Group. The Internet

Engineering Task Force (IETF), Jul. 2016,
https://datatracker.ietf.org/wg/tls/charter. Accessed March 1, 2017.

[6] Gupta, Vipul, et al. "Performance analysis of elliptic curve cryptography for

SSL." Proceedings of the 1st ACM workshop on Wireless security. ACM,
2002.

[7] Blake-Wilson, S. et al. “Elliptic Curve Cryptography (ECC) Cipher Suites for

Transport Layer Security (TLS).” The Internet Engineering Task Force
(IETF): Network Working Group, May 2006,
https://www.ietf.org/rfc/rfc4492.txt. Accessed March 1, 2017.

[8] Langley, A. et al. “Elliptic Curves for Security.” Internet Research Task Force

(IRTF), Jan. 2016, https://tools.ietf.org/html/rfc7748. Accessed March 1,
2017.

[9] Duong, Thai, and Juliano Rizzo. "Here come the ⊕ ninjas." Unpublished

manuscript 320 (2011).

[10] Duong, Thai, and Juliano Rizzo. "The CRIME attack." Presentation at

ekoparty Security Conference. 2012.

 39

[11] Be’ery, Tal, and Amichai Shulman. "A perfect crime? only time will

tell." Black Hat Europe 2013 (2013).

[12] Prado, Angelo, Neal Harris, and Yoel Gluck. "Ssl, gone in 30 seconds-a breach

beyond crime." Black Hat USA (2013).

[13] Möller, Bodo, Thai Duong, and Krzysztof Kotowicz. "This POODLE bites:

exploiting the SSL 3.0 fallback." Security Advisory (2014).

[14] Adrian, David, et al. "Imperfect forward secrecy: How Diffie-Hellman fails in

practice." Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2015.

[15] Roskind, Jim. "Quic: Design document and specification rational." (2015).

[16] Krawczyk, Hugo, and Hoeteck Wee. "The OPTLS protocol and TLS

1.3." Security and Privacy (EuroS&P), 2016 IEEE European Symposium
on. IEEE, 2016.

[17] Amrutkar, Chaitrali, Patrick Traynor, and Paul C. Van Oorschot. "An

empirical evaluation of security indicators in mobile Web browsers." IEEE
Transactions on Mobile Computing 14.5 (2015): 889-903.

[18] Gagnon, François, et al. "AndroSSL: A Platform to Test Android Applications

Connection Security." International Symposium on Foundations and
Practice of Security. Springer International Publishing, 2015.

[19] Mutchler, Patrick, et al. "A large-scale study of mobile web app

security." Mobile Security Techologies (2015).

[20] Ballard, Lucia, and Cooper, Simon. “What’s New in Security: Session 706.”

Apple Worldwide Developer Conference 2016.

[21] “How Certificate Transparency Works - Certificate Transparency.” Google,

https://www.certificate-transparency.org/how-ct-works. Accessed March 1,
2017.

[22] “BoringSSL.” https://boringssl.googlesource.com. Accessed March 1, 2017.

[23] “Curl.” https://curl.haxx.se. Accessed March 1, 2017.

 40

[24] “Apache DayTrader” http://geronimo.apache.org/GMOxDOC20/

daytrader.html. Accessed March 1, 2017.

[25] “Apache HTTP Server Project.” https://httpd.apache.org. Accessed March 1,

2017.

[26] “Apache JMeter.” http://jmeter.apache.org. Accessed March 1, 2017.

 41

Vita

Vincent Davis was born in San Antonio, Texas. After fulfilling his military

obligation, he attended community college at San Antonio College. Eventually he

transferred into the University of Texas at Austin, where he received a Bachelor of

Science in Electrical Engineering in May 2011. He works as a software engineer in

Los Angeles, California. In August, 2014, he began graduate studies at the

University of Texas at Austin.

Address: davis.vincent@utexas.edu

This report was typed by the author.

