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Abstract 

 

Internet Security for Mobile Computing 

 

Vincent Anthony Davis, M.S.E. 

The University of Texas at Austin, 2017 

 

Supervisor:  Christine Julien 

 

Mobile devices are now the most dominant computer platform. Every time 

a mobile web application accesses the internet, the end user’s data is susceptible to 

malicious attacks. For instance, when paying a bill at a store with NFC mobile 

payment, navigating through a city operating GPS on a smartphone, or dictating the 

temperature at a household with a home automation device. These activities seem 

routine, yet, when vulnerabilities are present they can leave holes for hackers to 

access bank accounts, pinpoint a user’s recent location, or tell when someone is not 

at home. The awareness of the end user cannot be trusted. Device vendors and 

developers must provide safeguards.  

An ongoing issue is that the present security standards are outdated and 

were never envisioned with mobile devices in mind. It can be suggested that 

security is only idling the progress of mobile computing. Still, many application 

developers and IT professionals do not adopt security standards fast enough to keep 

up-to-date with known vulnerabilities.  
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The main goals of the next generation of security standards, TLS, will 

provide developers with greater security efficiency and improved mobile 

throughput. These proposed capabilities of the TLS protocol will streamline mobile 

computing into the forefront of security practices. The analysis of this report 

demonstrates concepts on the direction mobile security, usability, and performance 

from a development standpoint. 



 viii 

Table of Contents 

List of Tables .....................................................................................................x	

List of Figures .................................................................................................. xi	

1.0	 INTRODUCTION ....................................................................................1	
1.1	 Introduction ......................................................................................1	
1.2	 Motivation ........................................................................................2	
1.3	 Stakeholders .....................................................................................2	

1.3.1 Government .............................................................................2	
1.3.2 Mobile Application Developers ..............................................3	
1.3.3 Hardware Vendors ..................................................................3	
1.3.4 Cell Phone Carriers .................................................................3	
1.3.5 End Users ................................................................................3	

1.4	 Structure of this report .....................................................................4	

2.0	 TECHNICAL OVERVIEW ......................................................................5	
2.0	 Technical Overview .........................................................................5	
2.1	 SSL/TLS ..........................................................................................6	
2.2	 TLS Handshake ................................................................................9	

2.2.1	Hello Phase .............................................................................9	
2.2.2 Key Exchange .......................................................................11	
2.2.3	Elliptic Curve Diffie-Hellman ..............................................16	

2.3	 TLS Attacks ...................................................................................17	
2.3.1 BEAST ..................................................................................18	
2.3.2 CRIME ..................................................................................18	
2.3.3 Extended CRIME: TIME ......................................................19	
2.3.4 BREACH ..............................................................................19	
2.3.5 POODLE ...............................................................................20	
2.3.6 Logjam ..................................................................................20	



 ix 

3.0	 Literature Review ....................................................................................21	

4.0	 Analysis...................................................................................................23	
4.1	 Direction ........................................................................................23	
4.2	 Usability: TLS Mobile Internet Security In Practice .....................24	

4.2.1	Apple iOS..............................................................................25	
4.2.2	Google Android ....................................................................28	

4.3	 Performance ...................................................................................30	
4.3.1 Test Environment ..................................................................30	
4.3.2 Case Study ............................................................................31	
4.3.3 TLS Inoperability ..................................................................34	
4.3.3 Future Work ..........................................................................35	

5.0	 Conclusion ..............................................................................................36	

Bibliography ....................................................................................................38	

Vita    ................................................................................................................41	



 x 
 

List of Tables 

Table 1:	 Cryptography Key Length in Bits [6] .........................................15	

Table 2:	 Network Connection Comparison of TLS 1.2 and TLS 1.3 .......34	



 xi 

List of Figures 

Figure 1:	 Example of HTTPS in Chrome Web Browser ..............................6	

Figure 2:	 Full Handshake Protocol in TLS 1.3 with 1-RTT .......................10	

Figure 3:	 Full Handshake Protocol in TLS 1.2 with 2-RTT .......................10	

Figure 4:	 Resumption Handshake Protocol in TLS 1.3 with 0-RTT ..........11	

Figure 5:	 Example Plot of an Elliptic Curve ..............................................16	

Figure 6:	 Number of Key Generations per Second in BoringSSL .............31	

Figure 7:	 Full Handshake Duration (milliseconds) in BoringSSL .............33	

 



 1 

1.0 INTRODUCTION 

 

1.1 INTRODUCTION 
 

With the explosion of the mobile devices, security has never been more at 

the forefront of the technology sector. Mobile devices provide better personal 

services than the traditional desktop computer, even under limitations and 

constraints of the platform. This includes store payments, GPS navigation, storing 

airline boarding passes, etc. However, mobile devices present numerous security 

challenges, because people trust the devices with much more personal data that 

comes with the ease of convenient services.  

Now that mobile internet browsing has surpassed that of desktop computers 

[1], the security industry should shift the focus on mobile devices. Transport Layer 

Security (TLS) is the main cryptographic and security mechanism for mobile 

applications that connect with the internet [4]. Unfortunately, the current iteration 

of TLS, version 1.2, was not envisioned for mobile environments. TLS 1.3 is the 

new standard that is currently in the draft state and is being built with the main 

objective of security and mobile performance [5].  

  



 2 

1.2 MOTIVATION 
 

Slow adoption rates of the latest TLS versions is worrisome since it leaves 

users open to attacks. The authors of [2] show that around 45% of global websites 

are significantly vulnerable to exploits. This could easily be prevented by upgrading 

to the most available TLS version and disallowing future TLS downgrades. This 

report provides an overview of TLS 1.3 in hopes that developers will adopt the 

security standard as it becomes available and incentivize their platform becoming 

resistant to exploits, prevent future attacks, and reap the performance benefits of 

new security standards. Certainly the benefits of TLS 1.3 translate directly into 

mobile performance advantages. 

1.3 STAKEHOLDERS 

 

By observing the major stakeholders of mobile application security, one 

could get a better sense of the significance. 

1.3.1 Government 

Routinely the US government publishes material on mobile security [3]. 

They acknowledge the need for cryptography suitable for mobile devices. TLS 1.3 

pushes the initiative further to meet the security requirements held by the 

government. 
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1.3.2 Mobile Application Developers 

App developers need to keep their software secure and become familiar with 

security standards. Many of the mobile security exploits occur when software 

connects to network communications. On major mobile platforms, e.g., Apple and 

Android marketplaces, there are checkpoints in place to mitigate vulnerabilities, but 

some fall through the cracks. Banks and healthcare providers have additional 

requirements beyond typical internet security that must be followed. This goes to 

reinforce the software developers’ responsibility to secure their software.  

1.3.3 Hardware Vendors  

Hardware vendors have it in their interest to make sure that the devices they 

sell are secure. Major technology vendors have an active role in setting the internet 

standards at the Internet Engineering Task Force (IETF). This is the same agency 

that adopts security standards such as TLS.  

1.3.4 Cell Phone Carriers 

Cell phone carriers like AT&T and Verizon consistently push device 

updates to protect against critical vulnerabilities. This is important because weak 

points can expose networks, and prevent availability of services.  

1.3.5 End Users 

Much of the burden for security lies with the end user. Many users have 

severely limited knowledge with security. They make bad decisions by going to 

inappropriate websites, downloading malicious applications, ignoring security 

warnings, and piggybacking on open wireless networks. The best practice for end 
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users is to ensure their devices are kept up-to-date with security from vendors and 

cell phone carriers. 

 

1.4 STRUCTURE OF THIS REPORT 

 
This report looks at internet application security for mobile devices. Section 

2 is a technical overview of internet security and the underlying mechanics of TLS 

that specifically benefit mobile devices. In addition, the report looks at recent 

security exploits and how these exploits shape the current internet security 

protocols and mobile devices. Section 3 is a literature review of the current research 

into mobile application security. Section 4 is an analysis of the current security 

protocols in place for various mobile vendors and the performance implications on 

mobile devices. 
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2.0 TECHNICAL OVERVIEW 

 

2.0 TECHNICAL OVERVIEW 

The purpose of the technical overview section is to provide a broad picture 

of TLS and the exploits that are prominent for mobile devices. The current 

specification of the entire TLS 1.3 protocol working draft can be found at the 

following website: https://tools.ietf.org/html/draft-ietf-tls-tls13. Note that since 

TLS 1.3 is in a draft state, some features can change over time until the finalized 

version. Considering this, the report in itself is to showcase the possibilities of 

future security ideas and analyze the potential impacts on mobile computing. 

Mobile devices described in the report are mobile cellular phones, 

smartphones, smartwatches, tablets, laptops, and other small form-factor 

computers. The mobile platform is generally optimized for a portable experience, 

and that includes compact and limited computer functionality, minimalistic UI, a 

plethora of wireless technologies, on demand services, and high availability. The 

main resource limitations of mobile devices are processor speed, local storage and 

memory size, network bandwidth and latency, and power consumption. All of these 

limitations have made it complex for obtainable security features. SSL/TLS is the 

backbone of the network security featured in computers and mobile devices. 
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2.1 SSL/TLS 

 
Secure Socket Layer, SSL, is a toolset of cryptographic protocols that 

encrypts data through a communication network between a client and server. The 

main purpose of SSL is to provide confidential communication channels for users 

and ensure the integrity of information during data transmission. The tools 

negotiate the specific cryptographic protocol for public key exchange, authenticate 

the peers, specify the encryption method for exchange data and compression, and 

finally provide a hash method for the signature of the data. Note that both sides of 

the communication endpoints need SSL technology available to establish secure 

communications.  

Netscape originally developed SSL which has now evolved into an internet 

standard called Transport Layer Security or TLS. Every day people use SSL when 

they are on the internet, using web apps and while utilizing their mobile devices. If 

a web browser internet page starts with HTTPS, then this internet connection is 

established by an SSL session. For example, https://www.google.com is a webpage 

that is using SSL shown in Figure 1.  

 

Figure 1: Example of HTTPS in Chrome Web Browser 
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TLS can be broken down into these basic steps: 

1. The client initiates a ‘hello’ to a corresponding server, and the server 

responds with a ‘hello’ acknowledgement as well. 

2. The client and server then negotiate the cryptographic protocols. 

3. The client and server then generate a secret key. 

4. To authenticate the server, and in some cases the client, the peers will verify 

a certificate that is trusted by a neutral party, a certificate authority (CA).  

5. Once the server and client have been verified, secure data exchange is then 

possible. 

6. Prior to messages transmission, a hash of the data with the sender’s public 

key will be attached to the message. The hash of the message is to verify 

the integrity of the message, known as signing or signature of the data. The 

final step is a symmetric encryption of the data with the secret key generated 

in step 3. 

7. The message receiver then decrypts the data with the secret key in step 3 

and can verify the hash of the message with the sender’s public key. 

8. If something happens to the connection during the process, alerts will 

terminate the current secure communications.  

 TLS 1.2 is the most recent The Internet Engineering Task Force (IETF) 

approved version, which is described at length in IETF RFC 5246 [4]. The current 

rework TLS 1.3 has moderately different indicated goals than the previous version.  
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The IETF working charter describes the key goals of TLS 1.3 development as 

follows [5]: 

• Encrypt as much of the handshake as possible  

• Reduce handshake latency while still maintaining security features 

• Address known security weaknesses 

• Reevaluate handshake contents 

• Improved Mobile CPU and network throughput  

The goals can be broken down into two main areas: enhance security, and improve 

performance. Looking at the current state of TLS 1.3, a majority of the security and 

performance improvement is done in the TLS handshake protocol.  

The TLS standard features two layered components, the record and the 

handshake protocol. These protocols are used to establish a transport protocol, TCP, 

communication channel, and allow for secure and reliable connection. The 

handshake protocol sets up the initial phase of communications between peers, and 

determines the key and type of cryptography for the session. On transition to the 

exchange data phase, the record protocol secures the session using the key 

determined in the handshake. The record protocol encapsulates all data encryption, 

breaks up data into manageable block sizes and then hashes the blocks of data. Then 

the data is passed along to the TCP connection. The record and handshake protocols 

have revisions in TLS 1.3. This report focuses on the specification of cryptography, 
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and the handshake protocol. Both specifications allow for improved latency over 

TLS 1.2 thus improving performance for mobile devices.  

2.2 TLS HANDSHAKE 

 
The handshake protocol establishes the first interaction between the client 

and server or application endpoints. A “hello” message back and forth between 

client and server starts the secure mechanism. Once secure communication is 

established, the protocol allows for data to be transmitted in the application layer. 

The handshake of TLS has the most latency because of the processing time needed 

to determine TLS version, key exchange method, cryptography, and authentication.  

2.2.1 Hello Phase 

 
 The ‘hello’ phase is the initial encounter between client and server in the 

handshake protocol. The client sends a “Client Hello” message to the server, along 

with a random number and client time. The client’s known cipher suite and key 

exchange is also passed along. Once the server receives the “Client Hello,” the 

server responds by sending its own “Server Hello,” random number, and server 

time, along with its supported cipher suite, key share, certificate with signature, and 

finally a Finished signal. The client can proceed to data exchange at this point. This 

is considered One Round-Trip Time or 1-RTT. In TLS 1.2 the “Client Hello” and 

cipher suite is first passed back and forth between the client and server, followed 
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by a key exchange, then another Finished signal. This is considered 2-RTT for TLS 

1.2. The time saved is extremely valuable. Figures 2 and 3 demonstrates the 

procedure for 1-RTT and 2-RTT respectively.  

 

Figure 2: Full Handshake Protocol in TLS 1.3 with 1-RTT 

 

Figure 3: Full Handshake Protocol in TLS 1.2 with 2-RTT 

The time saved on a connection that was established in the recent past is 

even better under TLS 1.3. There are several methods, but I only explain the basic 
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case. In TLS 1.3 there is 0-RTT for a resumption or session resumed connection. 

The client sends a “Client Hello” message with the previous shared key (PSK), then 

early data like an HTTP request is transmitted to the server; this process all 

transpires within the first flight message. Once the server receives the initial 

message, then it sends a “Server Hello,” key exchange, Finished, then services the 

HTTP requests. 0-RTT is demonstrated in Figure 4. 

 

Figure 4: Resumption Handshake Protocol in TLS 1.3 with 0-RTT 

2.2.2 Key Exchange 

 
Diffie-Hellman (D-H) and Rivest-Shamir-Adleman (RSA) algorithms are 

the two main available methods of key exchange in the handshake phase for TLS 

connections. The current draft of TLS 1.3 requires Diffie-Hellman D-H key 

exchange, since RSA does not provide guarantees for forward secrecy. Perfect 

forward secrecy is a desired property of communications where past sessions are 

considered secure even if secure keys are leaked. The only method of breaking 
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forward secrecy is with brute force methods. One scenario is if a resumption 

connection uses a D-H key exchange, then it provides protection against forward 

secrecy. For early data transmission conditions, this can be dangerous, so HTTP 

requests are limited to idempotent REST lookups. Idempotent REST API’s 

constraint certain types of HTTP requests that can be done prior to authentication. 

D-H was the first public key cryptography algorithm that was developed by 

Ralph Merkle, Whitfield Diffie, and Martin Hellman, in 1976. Soon thereafter, in 

1983, RSA was patented by Ron Rivest, Adi Shamir and Leonard Adleman. RSA 

has been the most dominant public key encryption mechanism, while D-H has been 

the most widely used key exchange method. However, in TLS 1.2 and prior 

versions, RSA key handshake has been the most popular and preferred method 

incorporated into the system [4].  

Here is how the RSA key exchange works in TLS: The client generates a 

random number, which is encrypted with the public key of the server. The result is 

the secret key for the session phase. Only after the server’s private key decrypts the 

secret key can data exchange happen. If authentication is required for the client, the 

server generates the secret key with the client’s public key and a server random 

number, and the process of authentication repeats. For RSA to work properly, prior 

knowledge of the server or client public key is required for the key exchange.  

One problem with RSA handshake key exchange is that it does not provide 

forward secrecy. If someone had access to previous stored session keys, then prior 
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data exchange is vulnerable to information loss. Keep in mind that a desirable 

property is confidentiality and is most crucial with archived data exchange in the 

future. D-H key exchange does not require prior knowledge of the two peers to start 

the handshake. With the invention of TLS 1.3, the IETF has chosen D-H to become 

the primary key exchange method, and has deprecated the RSA key exchange. 

The D-H key exchange in TLS is as follows: the server generates a secret 

key by applying D-H algorithm, followed by a message with the server’s public CA 

certificate. The client can then authenticate the server based on the mathematical 

properties of D-H and verify the certificate. If the client needs to be authenticated, 

then the server can request that the client apply the D-H algorithm with a random 

number to verify the client’s CA certificate.    

In TLS 1.3, Diffie-Hellman with random short-lived session tickets for a 

client and server key exchange handshake is highly recommended and currently the 

default setting. This is known as Ephemeral Diffie-Hellman (DHE). Note DHE 

always provides Perfect Forward Secrecy (PFS). Fixed Diffie-Hellman is an 

alternative   D-H variant where the public key is included with the CA certificates. 

The same private key is used in Fixed D-H handshake, as opposed to new keys for 

DHE. It was widely available in TLS 1.2 and below, but has been replaced with 

DHE since it was susceptible to attacks with small key sizes. Anonymous D-H, the 

third D-H handshake, available in previous TLS versions is no longer 



 14 

recommended since it does not authenticate peers nor protects against man-in-the-

middle attack.  

In May 2006, Elliptic Curve Cryptography was added to TLS 1.0 and 1.1, 

as specified in RFC 4492 [7]. The introduction sentence reads “Elliptic Curve 

Cryptography (ECC) is emerging as an attractive public-key crypto-system, in 

particular for mobile (i.e., wireless) environments” [7]. The developers of TLS 

explored faster cryptographic algorithms for the purpose of mobile devices prior to 

wide use. Recall that iPhones, which boosted the mobile platform market, were 

initially released in 2007. The IETF sensed that ECC would be best suited for 

constrained devices. Still despite TLS inclusion of ECC, RSA has been the most 

dominant protocol relied upon by TLS users. With TLS 1.3 the idea is to favor and 

recommend a handshake that uses ECC in the D-H handshake. The determination 

behind this is primarily that ECC provides equivalent security as does RSA but with 

smaller key sizes, as shown in Table 1 [6]. On mobile devices RSA impacts CPU 

utilization and memory storage. It is worth noting that ECC can be used as a full 

cryptography workload similar to RSA. ECC can be used for encryption, signing 

certificates, message authentication, and currently the most popular mechanism in 

the D-H key exchange. 
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Symmetric  ECC DH/RSA/DSA 

80 160 1024 

112 224 2048 

128 256 3072 

192 384 7680 

256 512 15360 

Table 1: Cryptography Key Length in Bits [6] 

 
Diffie-Hellman with ECC (ECDH) is a feature that can provide key 

exchange for the server and the client handshake phase. Instead of using discrete 

logarithm in D-H key exchange, ECC uses the mathematical operation of elliptic 

curves. The elliptic curve equation and graph of an example elliptic curve is as 

follows: 

𝑦" = 	𝑥& + 𝑎𝑥 + 𝑏 

Equation 1: Elliptic Curve Equation 
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Figure 5: Example Plot of an Elliptic Curve 

2.2.3 Elliptic Curve Diffie-Hellman 
 

Here is how ECDH works in TLS: The client and server agree on a public 

elliptic curve E(a,b) in the prime finite field Zp. IETF has a list of popular curves 

that are recommended for TLS 1.3, namely [8]: 

X25519: y2 = x3 + 486662x2 + x on finite field 2255 – 19 

and X448: y2 = x3 + 156326 x2 + x on finite field 2448 – 2224 – 1. 

After the selection of the primes, both peers will select a base point on the 

curve,  B = (x1, y1) The client will then choose a random number,  𝑛+ < |𝐸| and 
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calculate public key 𝑃+ = 	𝑛+	×	𝐵. The server does the same calculation, choosing 

a random number,   𝑛2 < |𝐸| and calculate 𝑃2 = 	𝑛2	×	𝐵. The public keys generated 

are the “client key exchange” and “server key exchange” in the handshake. Next, 

the client and server send their public keys to each other and the secret key	𝑃3, is 

then calculated using this formula:  𝑃3 = 𝑛+	×	𝑛2	×	𝐵 = 𝑃2	×	𝑛+ = 𝑃+	×	𝑛2. The 

values of the secret and public keys are points on the E. An eavesdropper would 

never be able to recreate the secret key because it is computationally infeasible to 

calculate 𝑃3 when given only 𝑃+  and 𝑃2 factors. The attacker would have to know 

the random values that were generated by the client or server. Since the key size is 

smaller compared to RSA, ECDH is an ideal key exchange mechanism for the 

mobile platform. 

 

2.3 TLS ATTACKS 

 
Attacks target vulnerabilities that were not identified prior to launching 

software to mass availability, especially on mobile devices. Even when flaws are 

identified is not always easy to close loopholes. However, at times vulnerability 

fixes are not complicated and could be done by disabling certain features and 

removing backward compatibility. It takes years of research and development to 

improve protocols and create better impenetrable security of information.  
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In this section, examples of known TLS attacks are listed. Many of the 

changes in TLS 1.3 have been largely influenced by the following man-in-the-

middle (MitM) attacks. MitM attacks are so prevalent with mobile devices because 

end users accept the risks of joining public networks, to reduce bandwidth costs. 

The public networks allow for rerouting of services through private servers 

masquerading as friendly hotspots. 

2.3.1 BEAST 

 
BEAST (Browser Exploit Against SSL/TLS) is an attack that targets out-of-

date SSL/TLS versions, namely TLS 1.0 and SSL 3.0. If an attacker is allowed 

access to HTTP browser cookies with a MitM attack, then an attacker can 

theoretically obtain authentication session tokens. These tokens can then be reused 

to gain access to the secure webpages. BEAST has only been displayed in 

demonstrations by researchers, and can be mitigated by upgrading TLS versions 

[9]. Note that mobile web browsers are all susceptible to desktop browser exploits.  

2.3.2 CRIME 

 
CRIME (Compression Ratio Info-leak Made Easy) is another MitM attack used 

to guess the session tokens when compression method is used in TLS [10]. An 

attacker can gain control of HTTPS requests and hijack message headers making 

brute force estimation on authentication tokens. Disabling compression altogether 
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in TLS is the only suitable solution. Currently compression is deprecated and not 

publicly recommended. Note that not using compression with TLS will slow down 

network traffic, this exploit has been known publicly for a few years. Therefore, 

this is not a mobile performance advantage. The only possible scenario is using 

compression with anonymous D-H with no authentication, presenting no need for 

security in that matter. 

2.3.3 Extended CRIME: TIME 

 
TIME (Time Infoleak Made Easy) MitM attack is similar model to the 

compression CRIME attack [11]. Instead of attacking HTTP requests, the attack 

focuses on HTTP response, which is a majority of HTTP interaction. As with 

CRIME, disabling compression is the only solution to a TIME attack. 

2.3.4 BREACH 

 
BREACH (Browser Reconnaissance & Exfiltration via Adaptive Compression 

of Hypertext) MitM attack is similar to the CRIME attack [12]. Rather than an 

attack on TLS compression, this attack exploits HTTP compression. The attack can 

force a client to disable SSL/TLS altogether and can view data in plaintext. There 

is no possible solution to this attack. So mobile devices have no option to use 

compression for an increased network throughput. 
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2.3.5 POODLE 

 
POODLE (Padding Oracle On Downgraded Legacy Encryption) is a MitM 

attack that relies on clients downgrading SSL/TLS to obsolete SSL version 3.0 [13]. 

It exploits security flaws found in the older protocols. The best practice to avoid 

this attack is to prevent applications and web browsers from using SSL 3.0 and 

disabling downgrading. There are a lot of vendors now that require applications to 

support higher versions and specifically disable lower versions of TLS. However 

much of the internet is still vulnerable to this type of attack. 

2.3.6 Logjam 

 
Logjam is another MitM attack that relies on TLS downgrade. Researchers 

found that servers were using the most common 512-bit prime numbers to generate 

secret keys. [14] showed that 92% of HTTP servers with 512-bit D-H support used 

two distinct primes. This led to a simplified cryptanalysis search of the key 

information, and making the two primes unsafe. TLS now recommends large key 

size for D-H. Also this is a main reason reason that IETF supports a move to ECDH 

with TLS 1.3. 
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3.0 Literature Review 

 

The technical overview purpose was to introduce the background of TLS 

1.3 and improvements being made to overcome limitations in previous versions. 

The literature review gives an overview of the research that is influencing TLS for 

mobile devices. 

Google’s extensive knowledge of web traffic, led them to experiment with 

Quick UDP Internet Connections (QUIC) protocol. As the name implies, internet 

traffic routes through the datagram protocol in the transport layer, rather than TCP. 

The primary goal of QUIC is to reduce network latency at the expense of 

bandwidth. Google introduced a 0-RTT mechanism that is the foundation that TLS 

1.3 0-RTT is built [15].  

The OPTLS (OPTimized and/or for One-Point-Three TLS) framework 

provides design contributions to TLS 1.3. OPTLS provided a handshake rework 

from TLS 1.2, and added the observations from QUIC 0-RTT mechanism. The 

protocol introduced four separate handshakes that offer 1-RTT for new connections 

and 0-RTT for resumed connections. The protocol does not protect against MitM, 

or forward secrecy, but allows for new methodologies that TLS 1.3 will be built 

upon [16].  

The authors of [17] provide a survey of mobile web browsers HTTPS 

security indications to users within the browser. They use the World Wide Web 



 22 

Consortium (W3C) as a best practice for browser security interface, and compare 

those recommendations to that on mobile web browsers. They find that many 

mobile devices lack the presence of security indicators that is found in traditional 

desktop browsers. Most of the mobile browsers tested provide no warning to the 

user of invalid server certificates, indicating a potential compromised website.  

Researchers present AndroSSL [18], a tool to test against TLS 

vulnerabilities on Android OS. The authors recognize the incompetence of 

developers understanding of security. AndroSSL demonstrates protections against 

many of the MitM attacks on TLS, and can warn developers to improve their 

applications. Today the main mobile applications markets provide the same level 

of protection offered with this tool.  

To further emphasize the inability of developers’ security knowledge, the 

authors of [19] do a full scale security study on free applications that are on the 

Google Play store. Some developers unknowingly leave holes in software, as in 

allowing exposed interprocess communication between application.  Many 

developers ignore improper TLS warnings, and proceed to vulnerable HTTP 

websites. This can have severe consequences for the mobile experience.  
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4.0 Analysis 

 

4.1 DIRECTION 

With the mobile internet browsing outpacing desktops now [1], there is a 

major shift in the focus to address the limitations of mobile security. Proactive 

standardization is always the best practice for tackling future threats.  

The protections currently in place to provide the best mobile security are 

sandboxing applications, security policies for applications sharing, application 

scanning on the OS stores, and secure communications. Sandboxing is the manner 

of isolating applications and restricting access to the applications own private 

memory space. This is the practice that is featured on all mobile devices today. 

Application sharing is where information can be exchanged between applications. 

Developers need to be aware of this, and open when only necessary. Manufacturers 

typically restrict expandable storage on mobile devices, so the vast majority of 

security issues come from outside of the device. Application developers need to be 

aware of weaknesses of code that attackers can exploit, and the developers must 

utilize TLS correctly when opening network ports on the device. Once an 

application is published to app stores, the stores have mechanisms in place to 

monitor applications for potential security concerns. This is not exactly a thorough 

process. Therefore, OS developers need to be proactive in security research to be 

one step ahead of hackers. 
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The current research areas on mobile security plays an important role for 

proactive threat protection. In general, these are some research areas that I have 

seen that are prevalent on mobile security: 

• Various connectivity protection, e.g. Bluetooth, cellular, wireless networks 

• Prevention methods to limit the application privileges and accesses of 

devices 

• Mobile web browser UI limitations to highlight malicious internet content 

• Creating dynamic security policies that better suits mobile computing 

• Tools for developers to identify applications that are not compliant with 

security standards 

• Improved throughput while maintaining rigorous security standards 

• Agents to perform statistical analysis to pinpoint program abnormalities 

• Offloading security duties to cloud based services 

 

4.2 USABILITY: TLS MOBILE INTERNET SECURITY IN PRACTICE 

 
In certain aspects, TLS in mobile devices is slightly different than that of 

typical desktop internet browsing, desktop software, and web based applications, 

even when using the web browser on an iPhone or Android. TLS is transparent on 

desktop internet web browsers, with a lock displayed on the webpage when 

enabled. The lock on the web address will specify the level of TLS and 

corresponding encryption methods. Some mobile browsers, such as Safari and 
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Chrome, the HTTPS lock is visible but provides no information about TLS security. 

Moreover, on mobile applications, TLS is embedded inside of the applications, and 

to normal users there is not a way to determine if secure communications are 

established other than assuming that the application is properly secure from the 

developer. A problematic situation is that mobile OS’s cannot determine if any 

application needs secure communication, leaving the unsuspecting user vulnerable. 

Unless the application specifically denies connection when requested, it is likely 

the application proceeds with an unsecure connection. Apple has taken the guess 

work out of this dilemma with App Transport Security. 

4.2.1 Apple iOS 
 

App Transport Security (ATS) is Apple’s security standard across the entire 

mobile device platform, including all iOS 9.0 (and above) and macOS 10.11. ATS 

is primarily a rebranded version of TLS 1.2 with a set of APIs available to 

developers. At the beginning of 2017, Apple mandated a strict requirement that all 

applications connecting to the internet use ATS, thus always providing end-to-end 

secure communications. ATS also resolves some of the troublesome unsecure 

cipher suites from TLS 1.2, namely RC4 and SHA-1, Both of which have been 

deprecated by IETF and no longer available in TLS 1.3 [20].  

Apple is touting what they call “strong cryptography” in ATS [20], mainly 

referencing larger secret keys for the TLS session phase of data transfer, and the 
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prevention of downgrading to older TLS versions. AES encryption now requires at 

least 256-bit keys since AES with smaller keys are insecure and prone to attacks. 

SHA with 256-bit keys (SHA-2) is now available on Apple devices and enforced 

by default regarding data integrity. To protect users from future compromises of 

secret keys leaks, ATS recommends D-H key exchange with ECC. The move to 

ECDHE is the same that IETF has demonstrated for perfect forward secrecy and 

that Apple has publicly recommended for key exchange. ATS does allows for the 

use of RSA certificates along with Apple recommended ECDSA certificates to 

authentication peers. 

Another significant security feature of ATS is the added Certificate 

Transparency. Certificate Transparency has three main services: logging of 

certificate activities, actively monitoring certificates, and auditing by certificate 

authorities (CA) [21]. Apple also monitors certificates in real-time to catch rogue 

activities. Therefore, application developers are forced to use a trusted CA. IETF 

has set up a working group for Certificate Transparency, and want this to become 

the standard practice for SSL/TLS certificates. 

Currently there is no indication from Apple whether ATS will have TLS 1.3 

features at the launch, but Apple has taken measures to easily transition into this 

version of TLS. Apple has updated the iOS security framework or Security 

Transport API, to invoke TLS sessions. Applications that connect to the internet 

now must use NSURLConnection and its successor NSURLSession. 
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NSURLSession is a class that allows for secure connection to URLs from iOS 

devices, basically HTTP and HTTPS requests.  

The other API, WebView, displays HTTP webpages inside of iOS 

applications. WebView is an extremely powerful API, because many websites 

require paid API services that developers might not afford or do not allow API 

access. For example, public APIs allow for fetching and posting of data, and this 

can be directly used in an embedded application. When access to the public API is 

no longer available, then usually the only way to gather and display data is within 

a web browser. In this situation, WebView can take a snippet of a website and 

display that information in an application exactly how the webpage would load in 

a browser. This is the only situation whereby Apple allows ATS strict security to 

be turned off. Specifically, TLS does not need to be enabled between peers. When 

a new WebView application is uploaded to the Apple App Store, and ATS is turned 

off, this triggers features that will notify Apple. Then the developers need to justify 

why ATS is disabled, and request an exemption. These are the main features of 

Security Transport API and interaction with TLS. 

A side-effect of ATS is that servers are now required to support TLS 1.2 

and disable less than adequate security standards when connecting with ATS. Other 

platforms like desktop, IoT, and Android phones now benefit from the security 

feature.  
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Looking at the current industry, servers can be susceptible to downgrade 

attack due to inadequate upgraded applications and servers. Apple is forcing 

developers and technology maintainers to upgrade their applications and servers. 

This benefits not only iOS users, but desktop users, and other users of mobile 

platforms. 

4.2.2 Google Android 

 
 Developers have the luxury of simple and rapid deployment of software 

using Android. The hefty entry price for iOS developers’ license makes free 

Android development a bit more attractive as well, which translates into anyone 

having clearance to develop on the Android platform and publish content to 

numerous application stores. Google’s approach to security is less restrictive than 

Apple which can leave end users vulnerable to shoddy development practices. It is 

not the responsibility of Google, or Apple for that matter, to determine if developers 

are using untrusted standards in applications that provide internet security. 

However, TLS is available in their development modules.  

 For Android applications that require HTTPS, Google offers the two APIs: 

HttpsURLConnection, SSLSocket. These are merely suggestions, which is a stark 

contrast with what Apple requires. Google Android offers WebView, similar to 

Apple, and they both have the same functionality and security concerns. While 

Google does publish an in-depth best practices manual online here: 
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https://developer.android.com/training/articles/security-ssl.html, WebView tends 

to leave the developer exposed if they have no knowledge of how to handle security 

holes. Google’s security approach is that they provide a backend service to double 

check for vulnerabilities once a developer publishes content to the application store.  

 The SafetyNet Attestation API and SafetyNet Safe Browsing API provide 

automated security services if developers add this to their applications. With these 

APIs, developers have the option to test HTTP URLs against threats and analyze 

applications for quality security practices. Not only can the APIs test against the 

client applications, but the APIs can also perform network security logic for 

backend servers. The services will verify the TLS security versions and acceptable 

cipher suites. 

 All of the mentioned APIs currently support TLS 1.2 and lower, and there 

is not enough information to determine when TLS 1.3 will become available on the 

platform. Google contributes heavily to IETF, so one could speculate that they 

would support TLS 1.3 early on in the release cycle.  

 As mentioned, Google’s tactic to application security is different than that 

of Apple. One could argue that the Android OS does not provide a strict 

requirement, as iOS, but they do offer all the necessary tools. There is not a 

mandatory prerequisite for security, and that is why many exploits are prevalent on 

the application stores. End users should have major concerns while relying on 

Android OS to deliver the best security experience.  
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4.3 PERFORMANCE 
 

The available cipher suites and encryption methods found in the TLS 1.3 

draft proposal are already available in TLS 1.2 and lower versions. The major 

differences, as specified in the technical overview, are mainly removing exposed 

protocols and improving latency with newer connection mechanisms. In this 

section, I test the performance of RSA and D-H. Also I measure the implementation 

of 0-RTT resumption. 

4.3.1 Test Environment 

OpenSSL is an open-source implementation of SSL and TLS. It features the 

ability to set up secure connections between clients and servers. OpenSSL is the 

underlining security library available in Apple and Android mobile devices. 

BoringSSL is an open-source Google fork of OpenSSL that is found in the Chrome 

browser and Android devices [22]. BoringSSL is the toolkit used in this report for 

testing the TLS functionality, since it is one of the few prototypes available for TLS 

1.3. A smartphone would have been more desirable for the environment; however, 

the implementations of TLS 1.3 are not available, and are beyond the scope of this 

report. An Apple MacBook is the device under test; for benchmarking the cipher 

suites and connection.  
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Here is the description of the test environment: 

• Hardware: 2015 MacBook Pro 

• OS: macOS Sierra 10.12.4 

• CPU: 2.5 GHz Intel i7 

• Memory: 16 GB DDR3 

4.3.2 Case Study 

 

  

Figure 6: Number of Key Generations per Second in BoringSSL 

BoringSSL’s implementation of TLS 1.3 speed test was used to benchmark 

the key generation for RSA and ECDH in Figure 6. The key generation was taken 
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over a span of 100 second intervals. RSA with a key size 2048-bits outpaced an 

equivalent ECDH 224-bit key size, with a key generation of over 8000 operations 

a second. Performance severely degrades with an RSA 4096-bit key. For 

evaluation, ECDH key size 224-bit, 256-bit, and 384-bit are National Institute of 

Standards and Technology (NIST) standard ECC curves. The keys have the same 

comparable security strength as RSA 2048-bit, 3072-bit, 7680-bit keys 

respectively. Performance is considerably worse for ECDH.  

RSA compared with particular ECC curves as 25519, show the power of 

ECC research. Clearly curve 25519 is better than the National Institute of Standards 

and Technology (NIST) ECC 256-bit specified key. Also for the same security as 

RSA 3072-bit key, it has quite similar performance at 7405 operations per second. 
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Figure 7: Full Handshake Duration (milliseconds) in BoringSSL 

Next, BoringSSL’s speed test was used to test the full handshake duration 

in milliseconds in Figure 7. Note that for authentication of ECC, DSA certificates 

were used, and RSA certificates for RSA authentication. Curve 25519 takes about 

half the time to complete the handshake for the same key size as NIST ECDH 256-

key. Doubling the key size of RSA from 2048 to 4096-bit triples the handshake 

time. This is one of the reasons that TLS now recommends D-H. For NIST 256 and 

384-bit key size, the performance was only difference by 0.038 milliseconds.  
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4.3.3 TLS Inoperability  

 

Application: 

BoringSSL 

Security TLS 1.2 

Results (seconds) 

Security level TLS 1.3 

Results (seconds) 
Server – client new 
connection 6.156s 5.727s 
Server – client 
resumption 3.111s 2.394s 

HTTPS curl 42.9s 43.9s 

Table 2: Network Connection Comparison of TLS 1.2 and TLS 1.3 

The purpose of TLS connection test was to demonstrate the current state of 

TLS 1.3 inoperability with current technology and comparison with TLS 1.2. 

Several different benchmarks were performed, and the result are displayed in   

Table 2. 

First a server and client localhost session with BoringSSL was established 

with both TLS 1.2 and TLS 1.3. Four separate tests were performed. TLS 1.2 and 

TLS 1.3 with new connections, and using resumption session connection with both 

TLS versions. Each test result was summed for 1000 simulations. Resumption 

connection clearly performs better than a new connection. TLS 1.3 in both new and 

resumption connection was better than TLS 1.2. 

Curl [23], the HTTP client command line tool, is another use case to test 

TLS 1.3. Curl was compiled with BoringSSL to reach HTTPS websites. 100 curl 

simulations to https://tls13.crypto.mozilla.org website server were tested. TLS 1.2 

and TLS 1.3 have similar results around 43 seconds to perform 100 HTTPS 

requests.  
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4.3.3 Future Work 

The case study is strictly limited due to the current state of TLS 1.3, which 

is not currently approved for internet security. Many vendors and the open source 

community have not invested in the latest security features thus far.  

A more proper test when TLS 1.3 has general availability is to test in a lab 

setting with servers and mobile clients; with a dedicated wireless network 

bandwidth. A suitable test bench like Apache DayTrader would be sufficient [24]. 

Apache HTTP server can be the backend application server [25]. To simulate web 

traffic, Apache JMeter would be an appropriate tool [26]. 
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5.0 Conclusion 

There is no denying the dominance of mobile devices in today’s world.  

Unfortunately, like most technologies, security is outdated and no longer meets the 

need of the mobile user. Since most users lack the knowledge to protect against 

attacks, governments and major vendors are on the hook to provide instruments that 

protect the consumer. Also since mobile devices require a multitude of 

communication networks to operate effectively, and so there are many 

opportunities of vulnerability. TLS 1.3 is a step in the right direction to provide 

necessary safeties. 

The IETF started on TLS 1.3 in 2014, and the current draft is nearing 

release. With the rework of the Handshake protocol, mobile devices only gain to 

benefit given the limitations of the mobile platform. D-H and ECC have become 

popular because they provide better computational efficiencies and overall 

enhanced security features than the previous recommended RSA cryptography. 

Apple App Transport Security requires all iOS and macOS applications that 

require internet to be at a minimum TLS 1.2 version, which proactively forces 

developers and IT maintainers to keep updated with TLS standard. This standard 

also necessitates that backend servers that service data and information to also 

comply with Apple’s security requirement. Other vendors like Google provide 

developers with safeguards that allow for checking applications and backend 

servers against known weaknesses.  

The performance benchmarks of this report provide a model or proof-of-

concept of the capabilities of TLS 1.3 features. Remember that TLS 1.3 is in a draft 
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state, so future work is necessary to fully determine true security and performance 

impacts. Nevertheless, the results of this report demonstrate that TLS 1.3 positively 

benefit the future direction security, which only transforms into improved 

performance across the mobile platform. 
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