13,311 research outputs found

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Mixed integer programming approaches to problems combining network design and facility location

    Get PDF
    Viele heutzutage über das Internet angebotene Dienstleistungen benötigen wesentlich höhere Bandbreiten als von bestehenden lokalen Zugangsnetzen bereitgestellt werden. Telekommunikationsanbieter sind daher seit einigen Jahren bestrebt, ihre zum Großteil auf Kupferkabeln basierenden Zugangsnetze entsprechend zu modernisieren. Die gewünschte Erweiterung der bereitgestellten Bandbreiten wird oftmals erzielt, indem ein Teil des Kupfernetzes durch Glasfaser ersetzt wird. Dafür sind Versorgungsstandorte notwendig, an welchen die optischen und elektrischen Signale jeweils in einander umgewandelt werden. In der Praxis gibt es mehrere Strategien für die Installation von optischen Zugangsnetzen. Fiber-to-the-Home bezeichnet Netze, in denen jeder Haushalt direkt per Glasfaser angebunden wird. Wird je Wohngebäude eine optische Verbindung bereitgestellt, nennt man dies Fiber-to-the-Building. Endet die Glasfaserverbindung an einem Versorgungsstandort, welcher die Haushalte eines ganzen Wohnviertels durch Kupferkabel versorgt, bezeichnet man dies als Fiber-to-the-Curb. Inhalt dieser Dissertation sind mathematische Optimierungsmodelle für die kosteneffiziente Planung von auf Glasfaser basierenden lokalen Zugangsnetzen. Diese Modelle decken mehrere Aspekte der Planung ab, darunter die Fiber-to-the-Curb-Strategie mit zusätzlichen Restriktionen betreffend Ausfallssicherheit, gemischte Fiber-to-the-Home und Fiber-to-the-Curb-Netze sowie die Kapazitätenplanung von Fiber-to-the-Curb-Netzen. Ergebnis dieser Dissertation sind die theoretische Analyse der beschriebenen Modelle sowie effiziente Lösungsalgorithmen. Es kommen Methoden der kombinatorischen Optimierung zum Einsatz, darunter Umformulierungen auf erweiterten Graphen, zulässige Ungleichungen und Branch-and-Cut-Verfahren.In recent years, telecommunication service providers started to adapt their local access networks to the steadily growing demand for bandwidth of internet-based services. Most existing local access networks are based on copper cable and offer a limited bandwidth to customers. A common approach to increase this bandwidth is to replace parts of the network by fiber-optic cable. This requires the installation of facilities, where the optical signal is transformed into an electrical one and vice versa. Several strategies are commonly used to deploy fiber-optic networks. Connecting each customer via a fiber-optic link is referred to as Fiber-to-the-Home. If there is a fiber-optic connection for every building this is commonly referred to as Fiber-to-the-Building. If a fiber-optic connection leads to each facility that serves an entire neighborhood, this is referred to as Fiber-to-the-Curb. In this thesis we propose mathematical optimization models for the cost-efficient design of local access networks based on fiber-optic cable. These models cover several aspects, including the Fiber-to-the-Curb strategy under additional reliability constraints, mixed Fiber-to-the-Home and Fiber-to-the-Curb strategies and capacity planning of links and facilities for Fiber-to-the-Curb networks. We provide a theoretical analysis of the proposed models and develop efficient solution algorithms. We use state-of-the-art methods from combinatorial optimization including polyhedral comparisons, reformulations on extended graphs, valid inequalities and branch-and-cut procedures

    Synthesis, Interdiction, and Protection of Layered Networks

    Get PDF
    This research developed the foundation, theory, and framework for a set of analysis techniques to assist decision makers in analyzing questions regarding the synthesis, interdiction, and protection of infrastructure networks. This includes extension of traditional network interdiction to directly model nodal interdiction; new techniques to identify potential targets in social networks based on extensions of shortest path network interdiction; extension of traditional network interdiction to include layered network formulations; and develops models/techniques to design robust layered networks while considering trade-offs with cost. These approaches identify the maximum protection/disruption possible across layered networks with limited resources, find the most robust layered network design possible given the budget limitations while ensuring that the demands are met, include traditional social network analysis, and incorporate new techniques to model the interdiction of nodes and edges throughout the formulations. In addition, the importance and effects of multiple optimal solutions for these (and similar) models is investigated. All the models developed are demonstrated on notional examples and were tested on a range of sample problem sets

    Marshall Space Flight Center Research and Technology Report 2019

    Get PDF
    Today, our calling to explore is greater than ever before, and here at Marshall Space Flight Centerwe make human deep space exploration possible. A key goal for Artemis is demonstrating and perfecting capabilities on the Moon for technologies needed for humans to get to Mars. This years report features 10 of the Agencys 16 Technology Areas, and I am proud of Marshalls role in creating solutions for so many of these daunting technical challenges. Many of these projects will lead to sustainable in-space architecture for human space exploration that will allow us to travel to the Moon, on to Mars, and beyond. Others are developing new scientific instruments capable of providing an unprecedented glimpse into our universe. NASA has led the charge in space exploration for more than six decades, and through the Artemis program we will help build on our work in low Earth orbit and pave the way to the Moon and Mars. At Marshall, we leverage the skills and interest of the international community to conduct scientific research, develop and demonstrate technology, and train international crews to operate further from Earth for longer periods of time than ever before first at the lunar surface, then on to our next giant leap, human exploration of Mars. While each project in this report seeks to advance new technology and challenge conventions, it is important to recognize the diversity of activities and people supporting our mission. This report not only showcases the Centers capabilities and our partnerships, it also highlights the progress our people have achieved in the past year. These scientists, researchers and innovators are why Marshall and NASA will continue to be a leader in innovation, exploration, and discovery for years to come

    Multi-level Facility Location Problems

    Get PDF
    We conduct a comprehensive review on multi-level facility location problems which extend several classical facility location problems and can be regarded as a subclass within the well-established field of hierarchical facility location. We first present the main characteristics of these problems and discuss some similarities and differences with related areas. Based on the types of decisions involved in the optimization process, we identify three different categories of multi-level facility location problems. We present overviews of formulations, algorithms and applications, and we trace the historical development of the field

    DEMAND-RESPONSIVE AIRSPACE SECTORIZATION AND AIR TRAFFIC CONTROLLER STAFFING

    Get PDF
    This dissertation optimizes the problem of designing sector boundaries and assigning air traffic controllers to sectors while considering demand variation over time. For long-term planning purposes, an optimization problem of clean-sheet sectorization is defined to generate a set of sector boundaries that accommodates traffic variation across the planning horizon while minimizing staffing. The resulting boundaries should best accommodate traffic over space and time and be the most efficient in terms of controller shifts. Two integer program formulations are proposed to address the defined problem, and their equivalency is proven. The performance of both formulations is examined with randomly generated numerical examples. Then, a real-world application confirms that the proposed model can save 10%-16% controller-hours, depending on the degree of demand variation over time, in comparison with the sectorization model with a strategy that does not take demand variation into account. Due to the size of realistic sectorization problems, a heuristic based on mathematical programming is developed for a large-scale neighborhood search and implemented in a parallel computing framework in order to obtain quality solutions within time limits. The impact of neighborhood definition and initial solution on heuristic performance has been examined. Numerical results show that the heuristic and the proposed neighborhood selection schemes can find significant improvements beyond the best solutions that are found exclusively from the Mixed Integer Program solver's global search. For operational purposes, under given sector boundaries, an optimization model is proposed to create an operational plan for dynamically combining or splitting sectors and determining controller staffing. In particular, the relation between traffic condition and the staffing decisions is no longer treated as a deterministic, step-wise function but a probabilistic, nonlinear one. Ordinal regression analysis is applied to estimate a set of sector-specific models for predicting sector staffing decisions. The statistical results are then incorporated into the proposed sector combination model. With realistic traffic and staffing data, the proposed model demonstrates the potential saving in controller staffing achievable by optimizing the combination schemes, depending on how freely sectors can combine and split. To address concerns about workload increases resulting from frequent changes of sector combinations, the proposed model is then expanded to a time-dependent one by including a minimum duration of a sector combination scheme. Numerical examples suggest there is a strong tradeoff between combination stability and controller staffing

    DEVELOPMENT OF A MIXED-FLOW OPTIMIZATION SYSTEM FOR EMERGENCY EVACUATION IN URBAN NETWORKS

    Get PDF
    In most metropolitan areas, an emergency evacuation may demand a potentially large number of evacuees to use transit systems or to walk over some distance to access their passenger cars. In the process of approaching designated pick-up points for evacuation, the massive number of pedestrians often incurs tremendous burden to vehicles in the roadway network. Hence, one critical issue in a multi-modal evacuation planning is the effective coordination of the vehicle and pedestrian flows by considering their complex interactions. The purpose of this research is to develop an integrated system that is capable of generating the optimal evacuation plan and reflecting the real-world network traffic conditions caused by the conflicts of these two types of flows. The first part of this research is an integer programming model designed to optimize the control plans for massive mixed pedestrian-vehicle flows within the evacuation zone. The proposed model, integrating the pedestrian and vehicle networks, can effectively account for their potential conflicts during the evacuation. The model can generate the optimal routing strategies to guide evacuees moving toward either their pick-up locations or parking areas and can also produce a responsive plan to accommodate the massive pedestrian movements. The second part of this research is a mixed-flow simulation tool that can capture the conflicts between pedestrians, between vehicles, and between pedestrians and vehicles in an evacuation network. The core logic of this simulation model is the Mixed-Cellular Automata (MCA) concept, which, with some embedded components, offers a realistic mechanism to reflect the competing and conflicting interactions between vehicle and pedestrian flows. This study is expected to yield the following contributions * Design of an effective framework for planning a multi-modal evacuation within metropolitan areas; * Development of an integrated mixed-flow optimization model that can overcome various modeling and computing difficulties in capturing the mixed-flow dynamics in urban network evacuation; * Construction and calibration of a new mixed-flow simulation model, based on the Cellular Automaton concept, to reflect various conflicting patterns between vehicle and pedestrian flows in an evacuation network

    Operational Research: Methods and Applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order
    corecore