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Abstract

In recent years, telecommunication service providers started to adapt their lo-
cal access networks to the steadily growing demand for bandwidth of internet-
based services. Most existing local access networks are based on copper cable
and offer a limited bandwidth to customers. A common approach to increase
this bandwidth is to replace parts of the network by fiber-optic cable. This
requires the installation of facilities, where the optical signal is transformed
into an electrical one and vice versa.

Several strategies are commonly used to deploy fiber-optic networks. Con-
necting each customer via a fiber-optic link is referred to as Fiber-to-the-
Home. If there is a fiber-optic connection for every building this is commonly
referred to as Fiber-to-the-Building. If a fiber-optic connection leads to each
facility that serves an entire neighborhood, this is referred to as Fiber-to-the-
Curb.

In this thesis we propose mathematical optimization models for the cost-
efficient design of local access networks based on fiber-optic cable. These
models cover several aspects, including the Fiber-to-the-Curb strategy under
additional reliability constraints, mixed Fiber-to-the-Home and Fiber-to-the-
Curb strategies and capacity planning of links and facilities for Fiber-to-the-
Curb networks.

We provide a theoretical analysis of the proposed models and develop
efficient solution algorithms. We use state-of-the-art methods from combi-
natorial optimization including polyhedral comparisons, reformulations on
extended graphs, valid inequalities and branch-and-cut procedures.
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Zusammenfassung

Viele heutzutage über das Internet angebotene Dienstleistungen benötigen
wesentlich höhere Bandbreiten als von bestehenden lokalen Zugangsnetzen
bereitgestellt werden. Telekommunikationsanbieter sind daher seit einigen
Jahren bestrebt, ihre zum Großteil auf Kupferkabeln basierenden Zugangs-
netze entsprechend zu modernisieren. Die gewünschte Erweiterung der bereit-
gestellten Bandbreiten wird oftmals erzielt, indem ein Teil des Kupfernetzes
durch Glasfaser ersetzt wird. Dafür sind Versorgungsstandorte notwendig, an
welchen die optischen und elektrischen Signale jeweils in einander umgewan-
delt werden.

In der Praxis gibt es mehrere Strategien für die Installation von opti-
schen Zugangsnetzen. Fiber-to-the-Home bezeichnet Netze, in denen jeder
Haushalt direkt per Glasfaser angebunden wird. Wird je Wohngebäude ei-
ne optische Verbindung bereitgestellt, nennt man dies Fiber-to-the-Building.
Endet die Glasfaserverbindung an einem Versorgungsstandort, welcher die
Haushalte eines ganzen Wohnviertels durch Kupferkabel versorgt, bezeich-
net man dies als Fiber-to-the-Curb.

Inhalt dieser Dissertation sind mathematische Optimierungsmodelle für
die kosteneffiziente Planung von auf Glasfaser basierenden lokalen Zugangs-
netzen. Diese Modelle decken mehrere Aspekte der Planung ab, darunter die
Fiber-to-the-Curb-Strategie mit zusätzlichen Restriktionen betreffend Aus-
fallssicherheit, gemischte Fiber-to-the-Home und Fiber-to-the-Curb-Netze so-
wie die Kapazitätenplanung von Fiber-to-the-Curb-Netzen.

Ergebnis dieser Dissertation sind die theoretische Analyse der beschrie-
benen Modelle sowie effiziente Lösungsalgorithmen. Es kommen Methoden
der kombinatorischen Optimierung zum Einsatz, darunter Umformulierun-
gen auf erweiterten Graphen, zulässige Ungleichungen und Branch-and-Cut-
Verfahren.
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Chapter 1

Introduction

The internet has been a success story, starting with its earliest predecessors
in the 1960s. Since the last restrictions on commercial traffic were removed
in 1995, it has made a significant impact on cultural and economic activities
around the world. Weblogs, e-mails, instant messaging and social platforms
have changed the way humans interact. Online shopping, auction websites
and advertisements are new and widely used ways of commerce. Permanent
and immediate access to music and films have changed the human cultural
habits.

Many of the aforementioned activities require the transfer of increasing
data volumes but the existing infrastructure in many places is neither de-
signed for nor capable of providing the required services. Decision makers
have recognized the economic and social importance of access to internet-
based services. The United Nations stated that internet access is a hu-
man right [30] and the European Commission underlined the importance
of communication tools provided by the internet in its Digital Agenda for
Europe [10]. This has triggered major efforts to improve the infrastructure
underlying the internet.

Regarding this infrastructure one can distinguish between two major
components. Backbone networks connect geographically separate regions
or cities. Local access networks (also known as Last Mile) connect end-
users (e.g., households) to the backbone network via a so-called central office.
Fiber-optic cables have been the standard medium for backbone networks for
considerable time. However, local access networks are still based on copper
wires of existing telephone lines. These provide only very limited bandwidths
and are therefore not suitable for many of today’s internet-based services.

In the last decade telecommunication providers started to make huge
efforts to improve their local access networks [6, 7]. These efforts lead to a
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number of complex planning problems. This work will focus on mathematical
models and their efficient solution for some of these problems.

1.1 Access networks based on optical fibers

In the last decade networks based on optical fibers have become the first
choice to replace existing local access networks based on copper cable [32].
The bandwidth provided by the newly deployed fiber-optic networks depends
on the extent to which the copper cable between an end-user and the central
office is replaced. We distinguish the following strategies:

Fiber-to-the-Curb (FTTC) The first part of the connection between
the central office and end-users is replaced by fiber-optic cable. A distance
of up to a few hundred meters between end-users and a cabinet are covered
by copper cable. The fiber-optic line terminates at the cabinet. A similar
strategy to FTTC is Fiber-to-the-Neighbourhood (FTTN), where the closest
cabinet is located up to 1500 meters from an end-user.

Fiber-to-the-Building (FTTB) An optical link leads to every building.
Cabinets are often placed in the basement of, e.g., an apartment building.

Fiber-to-the-Home (FTTH) Existing copper cable is entirely replaced.
The fiber-optic network is deployed all the way to the end-user.

Figure 1.1 (by kind permission of Peter Putz [24]) illustrates the different
strategies. The rectangle to the left represents the central office, solid lines
represent fiber-optic links and dashed lines represent copper links. Crossed
squares represent cabinets. On the right hand of the figure there are three
buildings, in each building there are four customers.

Common to all the illustrated approaches is that the optical signal has
to be transformed into an electrical signal at the locations where the optical
link is continued by existing copper wires. Dependent on the number of
connections that are served by one optical link, different devices are used to
transform the signal. These can be multiplexors or splitters.

Fiber-optic networks are based on either of two common architectures,
active optical networks (AONs) or passive optical networks (PONs). They
differ in the way the signals to different end-points are distributed. In AONs
a router or switch divides the signal such that each end-point only receives
the signal that is intended for it. In PONs the signals for several end-points
use the same fiber from the central office until close to the end-points. From
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(a) FTTC. Fiber optic connections from the central server
to two multiplexers and copper connections to the cus-
tomers.

(b) FTTB. Fiber optic connections from the central server
to the buildings that host the customers. Copper connec-
tions inside the buildings.

(c) FTTH. The entire connection from the central server to
the customers consists of optical fiber.

Figure 1.1: Illustration of FTTC, FTTB and FTTH strategies.
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there a splitter sends a copy of the signal to each end-point. There are
architectures that allow multiple splitters between the central office and each
end-point.

Another distinction is between greenfield and brownfield deployment.
The former term refers to networks that are designed and installed from
scratch, the latter indicates that existing infrastructure is taken into account.
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Chapter 2

Models for fiber-optic networks

The optimization literature on planning issues of local access networks is not
clearly structured. We will use the following notions in order to classify the
existing literature.

Decomposed vs. integrated Planning local access networks requires
several decision along the connection from the end-user to the central office:
a) the location of cabinets, b) the assignment of end-users to one of the
cabinets and c) the path of the optical link from the cabinet to the central
office. We use the term integrated planning if steps a), b) and c) are done at
once and decomposed if steps a) and b) are done separately from step c).

For FTTH and FTTB networks steps a) and b) can be omitted if there
is a separate fiber connecting each end-user to the central office, otherwise
cabinets host splitters where the fibers to multiple end-users are consolidated.
Some deployments technologies even allow multiple levels of splitters.

Tree vs. star topology In the literature two different topologies are con-
sidered for both the fiber-optic and the copper subnetworks. While some
models restrict the network topology to a star, others allow general trees.
While models with star topologies (e.g., facility location, p-median and p-
center) are often easier to solve, a tree topology allows a more detailed rep-
resentation of the infrastructure like a street networks, trenches and ducts.

Capacitated vs. uncapacitated Models that consider capacities provide
more detailed information but are usually much harder to solve. Also, the
introduction of capacities often changes the solution topology and thus pro-
hibits to use this additional information in solution algorithms. E.g., if it
is known in advance that the solution has a tree structure this information
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can be used to derive better models than it is the case if the solution could
contain cycles.

Several well-known problems have applications in telecommunication net-
work design. If the decomposed modeling approach is chosen, star topologies
can be modeled by the Capacitated or Uncapacitated Facility Location prob-
lem (CFLP, UFLP). There is wide range of literature on facility location
problems and we refer the reader to a survey by Gourdin et al. [13].

In the following we discuss recent literature that has a strong focus on
the application in the design of local access networks.

2.1 FTTH networks

If capacities are ignored, a common modeling approach for tree topologies is
the Steiner tree problem (STP). For a general discussion of the STP we refer
the reader to Du et al. [8].

Randazzo and Luna [26] consider a generalization of the STP that con-
siders flow costs. Their model considers costs for cables as well as infrastruc-
ture like ducts and trenches. They present three different solution algorithms
based on branch-and-bound, branch-and-cut and Benders decomposition. In
a recent work Orlowski et al. [22] use an extended Steiner tree problem to
give lower bounds on trenching costs for the installation of fiber-optic net-
works.

Li and Shen [16] consider the problem of optimally locating splitters in a
greenfield deployment scenario. They use a continuous location problem to
choose the location of one level of splitters. Their model takes into account
fiber length limitations and splitter capacities.

Kim et al. [15] consider up to two levels of splitters and propose a heuristic
to locate these splitters on a tree network. A more general approach is the one
of Chardy et al. [5]. The authors consider the problem of locating splitters
and routing fibers given the capacity limitations from existing infrastructure.
Multiple levels of splitters are considered and the approach does not need
additional assumptions on the structure of the underlying graph. The authors
propose efficient preprocessing techniques to reduce the graph size and the
number of customers. Their algorithm is based on a generalized flow problem.
Chardy and Hervet [4] extend the approach of [5] by considering restrictions
from operation, administration and maintenance of the resulting networks.

A different approach is the one of Gualandi et al. [14]. The authors con-
sider an FTTH network that has a star-star topology. They allow to choose
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between several central offices and require that each end-user is connected
to a cabinet which is itself connected to a central office. Their model is
closely related to a two-level facility location problem. The proposed so-
lution approaches are linear programming based rounding and local search
algorithms.

2.2 FTTC and FTTB networks

A large amount of research has been done on the decomposed solution ap-
proach for planning FTTC and FTTB networks. For the first step, i.e., the
location of cabinets and assignment of customers, there is a variety of models
in the literature. In most applications the existing copper cable infrastructure
can be used and facility location and p-median problems provide adequate
models.

Wassermann [31] gives a detailed analysis of practical issues of the de-
ployment of fiber-optic networks. The main focus from a modeling point of
view is the location of cabinets and the assignment of users to these cab-
inets. Many additional restrictions, like specific technical limitations and
budget constraints are considered. The author uses several variants of the
p-median problem. Some of them exploit the structure of the underlying
network infrastructure explicitly.

Once the location and capacities of cabinets are decided, the remaining
problem can be modeled as the Local Access Network Design problem (LAN).
The objective is to find a minimum cost routing of fibers from the central
office to the terminals. The terminals can be cabinets for FTTC networks,
basements for FTTB networks and end-users for FTTH networks. A thor-
ough discussion of the LAN is provided in the recent work of Putz [24]. Other
works that consider the LAN are by Salman et al. [28], Raghavan and Stano-
jević [25] and Ljubić et al. [20, 21].

If capacities are ignored, the integrated planning problem of FTTC and
FTTB networks can be modeled as the Connected Facility Location prob-
lem (ConFL). This problem gained the interest of the scientific community
much later than other problems that are common in the context of telecom-
munication network design. Early contributions were mainly from the theo-
retical computer science community. Various approximation algorithms with
steadily improved approximation guarantees were developed, the most recent
being due to Eisenbrand et al. [9]. Prior to this thesis there were only few
contributions of the Operations Research community. Heuristic algorithms
were proposed by Ljubić [17] and Tomazic and Ljubić [29], a dual-based local
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search was developed by Bardossy and Raghavan [3]. A detailed discussion
of the literature on the ConFL and related problems is provided in Paper 1,
which contains results of the master thesis of the author. It is included here
for convenient reference, since that work provides part of the foundations for
the developments constituting this PhD thesis.

2.3 Mixing FTTH and FTTC strategies

In its Digital Agenda the European Union recently announced the goal of
providing half the European households with a bandwidth of at least 100
MBit/s and the other half with at least 30 Mbit/s by 2020 [10]. In the light
of this policy mixed FTTH/FTTC networks seem to be a commendable alter-
native to pure FTTH or FTTC strategies. They enable telecommunication
providers to obtain the required FTTH coverage but also ensure that the
remaining households are not stuck with outdated copper connections that
only provide a small bandwidth.

If the decomposed approach is chosen, a mixed strategy of FTTH and
FTTC can be modeled as facility location problem together with the LAN.
However, for the integrated approach the literature is scarce. Randazzo et al.
[27] and Balakrishnan et al. [1, 2] consider a two-level network design problem
that allows a tree topology for the fiber-optic as well as the copper subnet-
works. However, all these approaches have the shortcoming of completely
ignoring the significant costs occasioned by the installation of cabinets. The
model of Gualandi et al. [14] allows to model mixed strategies but the as-
sumption of a star-star topology puts strong limitations on the accuracy of
the model. Further relevant literature for two level network design problems
is discussed in Paper 3.

2.4 Models considered in this thesis

The models considered in the papers constituting the key part of this thesis
extend the existing modeling approaches for fiber-optic local access networks
in several ways.

ConFL models a fiber-optic network where the subnetworks that consist
of copper have a star topology whereas the network connecting the installed
facilities has a tree structure. Capacities are not considered in this model. It
is suitable for designing networks if an existing copper infrastructure is used
to connect end-users to cabinets.
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In Paper 2 we consider a model for the integrated planning of FTTC
and FTTB networks under additional reliability constraints. The usual tree
topology of local access networks (e.g., ConFL) does not provide survivability
as it is the case for common models for backbone networks. Local access net-
works based on such a survivable topology (e.g., mesh, two-vertex-connected
or two-edge-connected) would incur significantly higher costs. Thus we im-
prove the reliability of the local access network provided by a ConFL solution
with the following additional restriction: We impose a limit on the number
of edges that are allowed on the path from the central office to each installed
facility. The problem obtained from this modeling approach was not studied
in the literature before and we refer to it as the Hop Constrained Connected
Facility Location problem (HC ConFL).

In Paper 3 we extend the modeling approaches for mixed FTTH and
FTTC strategies described in the literature [1, 2, 14, 27]. We consider a two-
level network design problem that explicitly models the costs for installing
cabinets. A tree topology is assumed for both, the primary (fiber-optic) and
secondary (copper) subnetworks. We refer to this model as the Two Level
Network Design Problem with Transition Facilities (TLNDF).

In Paper 4 we introduce a model that extends the existing approaches
in two ways. First, it extends the integrated modeling approach for FTTB
and FTTC networks offered by ConFL by considering the capacities of mul-
tiplexors and splitters as well as the limited capacity of the core network that
connects the chosen cabinets. It also combines the decomposed approaches
for cabinet location and customer assignment [31] and the design of the core
network interconnecting the cabinets [24]. Thereby this model offers greater
flexibility than existing models. We refer to it as Capacitated Connected
Facility Location problem (CapConFL).
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Chapter 3

Contribution and scope

In this chapter we outline the main results of the papers collected in this
thesis with respect to the models described in the preceding section. We
state the contributions of each co-author to each of the papers and report
the papers’ current status with respect to publication.

Paper 1: MIP Models for Connected Facility Location:
A Theoretical and Computational Study

This paper contains most results from the author’s master thesis. It has been
published in Computers & Operations Research [11]. As some of the results
presented there are highly relevant for Papers 2 and 4 it is included in this
dissertation.

The article comprises the first theoretical and computational study on
mixed integer programming (MIP) models for the Connected Facility Loca-
tion problem (ConFL). This problem combines facility location and Steiner
trees: given a set of customers, a set of potential facility locations and some
inter-connection nodes, ConFL searches for the minimum-cost way of as-
signing each customer to exactly one open facility, and connecting the open
facilities via a Steiner tree. The costs needed for building the Steiner tree,
facility opening costs and the assignment costs need to be minimized.

We propose several mixed integer programming models for ConFL, seven
of which are compact and three of which are of exponential size. We also
show how to transform ConFL into the Steiner arborescence problem by
splitting the nodes that are potential facility locations. A full hierarchy
of the models with respect to the bounds given by their respective linear
programming relaxations is provided. For two models with an exponential
number of constraints we develop a branch-and-cut algorithm. An extensive

11



computational study is based on two benchmark sets of randomly generated
instances with up to 1300 nodes and 115,000 edges. We empirically compare
the presented models with respect to the quality of obtained bounds and
the corresponding running time. We report optimal values for all but 16
instances for which the obtained gaps are below 0.6%.

Paper 2: Layered Graph Approaches to the Hop Con-
strained Connected Facility Location Problem

Preliminary results of this paper were published in the peer-reviewed con-
ference proceedings of the International Symposium on Combinatorial Op-
timization (ISCO) 2010 [18]. The paper was accepted for publication in
INFORMS Journal on Computing on December 8, 2011. It is available on-
line in the Articles in Advance section since April 11, 2012 [19].

This article provides a first theoretical and computational study for HC
ConFL. We propose two disaggregation techniques that enable the modeling
of HC ConFL: (i) As a directed (asymmetric) ConFL on layered graphs, or
(ii) as the Steiner arborescence problem (SA) on layered graphs. This allows
us to use the best known mixed integer programming models for ConFL or
SA to solve HC ConFL to optimality. In a polyhedral study we compare
the obtained models with respect to the quality of their linear programming
lower bounds. These models are finally computationally compared on a sub-
set of the benchmark instances considered in Paper 1. We report optimal
values for these instances with up to 1,300 nodes and 115,000 edges.

The layered graph models for HC ConFL were developed by Stefan Gol-
lowitzer (SG) and Ivana Ljubić (IL) in equal shares. The branch-and-cut
procedure was developed by IL. The computational experiments were car-
ried out by SG. Writing of the paper was evenly split between SG and IL.

Paper 3: Enhanced Formulations and Branch-and-Cut
for the Two Level Network Design Problem with Tran-
sition Facilities

Preliminary results of this paper were published in the peer-reviewed con-
ference proceedings of the International Network Optimization Conference
(INOC) 2011 [12]. The paper was submitted to the European Journal of
Operational Research on November 23, 2011 and is currently under revision.
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In this paper we first model the TLNDF on an extended graph where
an additional set of arcs corresponds to the installation of facilities and pro-
pose a cut set based model that is defined on this extended graph. We
present several theoretical results relating families of cut set inequalities on
the extended graph with subfamilies of cut set inequalities on the original
graph. We then show how a standard multi-commodity flow model defined on
the original graph can be strengthened using disaggregation by technology.
We prove that the disaggregated compact formulation on the original graph
provides the same lower bound as the cut set formulation on the extended
graph. We develop a branch-and-cut algorithm for solving the TLNDF. The
performance of this algorithm is improved by separating subfamilies of cut
set inequalities on the original graph. Our computational study confirms the
efficiency and applicability of the new approach.

The cut set-based models, the extended graph formulation and the the-
oretical results were jointly developed by SG, IL and Luis Gouveia (LG).
The flow models and corresponding theoretical results were obtained by SG.
The branch-and-cut framework was implemented by SG. The computational
study was planned by SG and IL and executed by SG. Writing of the paper
was evenly split among SG, LG and IL.

Paper 4: Capacitated Network Design with Facility Lo-
cation

This paper was submitted to Computational Optimization and Applications
on July 27, 2012.

The Capacitated Connected Facility Location problem (CapConFL) com-
bines the capacitated network design problem (CNDP) with the single-source
capacitated facility location problem (SSCFLP). In this paper we first de-
velop an integer programming formulation that uses the concept of single-
commodity flows. Based on valid inequalities for the subproblems, CNDP
and SSCFLP, we derive several (new) classes of valid inequalities for Cap-
ConFL. We use them in a branch-and-cut algorithm and show their applica-
bility on a set of realistic benchmark instances.

The basic model was developed by Bernard Gendron (BG) and IL. The
valid inequalities were developed by SG (65%) and IL (35%). The separation
procedures and implementation of the branch-and-cut algorithm were done
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by SG. The computational experiments were jointly designed by SG and IL
and executed by SG. Writing of the paper was evenly split among SG, BG
and IL.
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Chapter 4

Conclusions

In this thesis we proposed models for planning problems that arise in the
cost-optimal design of fiber-optic local access networks. Based on the au-
thor’s earlier work on the ConFL (Paper 1) we describe efficient exact solution
algorithms for several network design problems. Compared to the existing
literature these allow to model more reliable FTTC/FTTB networks based
on existing copper infrastructure (Paper 2), mixed FTTC/FTTH strategies
(Paper 3) and an integrated planning of FTTC/FTTB networks that consid-
ers the capacities of switchers, multiplexors and existing cable ducts (Paper
4).

Paper 1 provided an overview and comparison of different models for
the ConFL. The models were assessed from a theoretical point of view by
comparison of their linear programming bounds and their computational per-
formance was compared on a set of large-scale benchmark instances. Two
branch-and-cut algorithms, each based on a model with an exponential num-
ber of constraints, outperformed all compact models. This paper comple-
ments the existing literature on the ConFL that consists of approximation al-
gorithms and heuristics by providing efficient exact algorithms for the ConFL.

The layered graph approach described in Paper 2 enabled us to use an
arbitrary solution approach for ConFL to solve the more restricted prob-
lem with additional reliability constraints, HC ConFL. We compared several
models, based on two different variants of the layered graphs and the two
cut-based models from the paper on the ConFL. In addition, we provided
preprocessing techniques that reduce the size of the layered graph. This
allowed a faster solution of the more restricted HC ConFL, compared to
ConFL, if the reliability constraints are tight.

In Paper 3 we showed how a multi-commodity flow formulation of the
TLNDF can be disaggregated by technology such that the resulting formu-
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lation on the original graph provides the same linear programming bound
as the cut set formulation on the extended graph. We also related cut set
inequalities on the extended graph to cut set inequalities of different specific
forms on the original graph. This allowed us to improve the computational
performance of the cut set-based model by separating a subset of cut set
inequalities on the original graph instead of the larger extended graph.

Finally, in Paper 4 we extended the Connected Facility Location prob-
lem by considering capacities of splitters, multiplexors and cable ducts. We
combined valid inequalities for subproblems of the CapConFL and obtained
valid inequalities that utilize both aspects of the problem, facility location
and capacitated network design. Using these valid inequalities we strength-
ened a formulation based on single-commodity flows. Our computational
results on a new set of realistic benchmark instances proved the efficiency of
our approach.

As already indicated by Wassermann [31] the continuing improvement
of wireless telecommunication technologies will raise interest in hybrid net-
works, partially based on, e.g., fiber-optic cable and partially based on wire-
less technologies. The allocation of frequencies to wireless access points,
network robustness, the integration of mobile phone and other wireless net-
works are topics that do already or will soon raise the interest of the discrete
optimization community.
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Abstract

This article comprises the first theoretical and computational study on mixed integer programming
(MIP) models for the connected facility location problem (ConFL). ConFL combines facility lo-
cation and Steiner trees: given a set of customers, a set of potential facility locations and some
inter-connection nodes, ConFL searches for the minimum-cost way of assigning each customer to
exactly one open facility, and connecting the open facilities via a Steiner tree. The costs needed
for building the Steiner tree, facility opening costs and the assignment costs need to be minimized.

We model ConFL using eight compact and two mixed integer programming formulations of
exponential size. We also show how to transform ConFL into the Steiner arborescence problem.
A full hierarchy between the models is provided. For the two exponential size models we develop
a branch-and-cut algorithm. An extensive computational study is based on two benchmark sets of
randomly generated instances with up to 1,300 nodes and 115,000 edges. We empirically compare
the presented models with respect to the quality of obtained bounds and the corresponding running
time. We report optimal values for all but 16 instances for which the obtained gaps are below 0.6%.

Keywords: Facility Location, Steiner Trees, Mixed Integer Programming Models, LP-relaxations

1. Preliminary Discussion

Improving the quality of broadband connections is nowadays one of the highest priorities of
telecommunication companies. Solutions are sought that search for the optimal way of “pushing”
rapid and high-capacity fiber-optic networks closer to the customers. Developing respective models
and answering questions related to the design of “last-mile” networks defines a new challenging area
of computer science and operations research. The Connected Facility Location Problem (ConFL)
models the following telecommunication network design problem: Traditional wired local area net-
works require copper cable connections between end users. To reduce the signal loss, these lines
are limited by a maximum distance. To increase the quality of internet communications, telecom-
munication companies decide to partially or completely replace the existing copper connection by
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fiber-optic cables. In order to do so, different strategies, known as fiber-to-the-home (FTTH),
fiber-to-the-node (FTTN), fiber-to-the-curb (FTTC) or fiber-to-the-building (FTTB), are applied.

ConFL models the FTTN / FTTC strategy: Fiber optic cables run to a cabinet serving a
neighborhood. End users connect to this cabinet using the existing copper connections. Expensive
switching devices are installed in these cabinets. The problem is to minimize the costs by deter-
mining positions of cabinets, deciding which customers to connect to them, and how to reconnect
cabinets among each other and to the backbone.

1.1. What is Connected Facility Location? - Problem Definition
Gupta et al. [18] define the Connected Facility Location problem as follows: We are given a

graph G = (V,E) with a set of customers (R ⊆ V ), a set of facilities (F ⊆ V ) and a set of Steiner
nodes (S̃ ⊆ V ) such that S̃ ∩ F = ∅. For all e ∈ E we are given an edge cost ce ≥ 0 and for all
i ∈ F we are given facility opening costs fi ≥ 0. Then ConFL consists of finding an assignment
of each customer to exactly one facility and connecting these facilities via a Steiner tree. Thereby,
assignment costs cij , i ∈ F, j ∈ R are given as the shortest path distance between i and j in G.
The overall costs in this problem are defined as

∑
j ∈R djci(j)j +

∑
i∈F fi+

∑
e∈T Mce, where dj ≥ 1

is demand of customer j, i(j) denotes the facility serving j, F is the set of open facilities, T is the
Steiner tree connecting open facilities and M ≥ 1 is a constant.
Let S = S̃ ∪ F denote the set of core nodes. We observe that without loss of generality we can
assume that S ∩ R = ∅. Otherwise, we only need to replace each node u ∈ S ∩ R, with a pair of
nodes, u1 ∈ S and u2 ∈ R, connecting all i ∈ S, core neighbors of u, to u1, and all i ∈ F , facility
neighbors of u to u2, without changing the edge/assignment costs. Finally, if u ∈ F ∩ R, we need
to connect customer neighbors to u1 and add the service link {u1, u2} into E, set its costs to zero
and define fu1 = fu. We also observe that demands different from 1 can be set to 1 by adapting
the respective assignment costs. We set cij := djcij ∀j ∈ R,∀i ∈ F and reflect the demand in
the cost structure implicitly [28]. Alternatively, we can make dj copies of customer j, each with
demand equal to one (see, e.g., [13]).
For the development of approximation algorithms there are two usual assumptions: The parameter
M is used to distinguish between “cheap” assignment and “expensive” core network edges, and c
is assumed to be a metric. As we will see later, both these assumptions are not necessary in our
approaches. Therefore, we concentrate on a general cost structure.

Definition 1 (ConFL). For a given undirected graph (V,E) where {S,R} is a disjoint partition of
V with R ⊂ V being the set of customers, S ⊂ V the set of possible Steiner nodes and F ⊆ S the
set of facilities, edge costs ce ≥ 0, e ∈ E and facility opening costs fi ≥ 0, i ∈ F , in the Connected
Facility Location problem we search for a subset of open facilities such that:

• each customer is assigned to the closest open facility,

• a Steiner tree connects all open facilities, and

• the sum of assignment, facility opening and Steiner tree costs is minimized.

Optionally, a root r ∈ F may be considered as an open facility always included in the network.
In that case, we speak of the rooted ConFL. Obviously, every optimal ConFL solution will be a tree
in which customers (and possibly the root r) are leaves. In the telecommunications field a “central
office” connecting to the backbone network is often predefined and may be considered as a root
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node active in any feasible solution. Therefore, in the following we assume that the root is given
in advance. In Section 3 we show how to solve unrooted instances.

The remainder of this paper is organized as follows: The following section will provide an
exhaustive literature review on the topic. In Section 3 we propose ten mixed integer programming
models for ConFL and we show a transformation of ConFL into the Steiner Arborescence (SA)
problem. In Section 4 we provide a full hierarchy of the models based on the theoretical comparison
of the quality of their lower bounds. Section 5 describes a branch-and-cut (B&C) framework that
has been used to solve two formulations of exponential size. The computational results provided
in Section 6 are conducted on two sets of benchmark instances introduced earlier in the literature.

2. Literature Review

The Connected Facility Location Problem has lately started to attract stronger interest in the
scientific community. Compared to some closely related problem classes, there is just a small num-
ber of papers on the topic. A large share of publications about ConFL comes from the computer
science community who present approximation algorithms of different kinds and qualities. The
operations research community has developed a small number of heuristic methods. Preliminary
results of one of our exact approaches have been published in [28].

Approximation Algorithms. A majority of the publications about ConFL concentrates on approxi-
mation algorithms. However, not a single one contains computational results. Thus, no conclusion
can be drawn to the practical applicability of the described algorithms.

Karger and Minkoff [20] describe an adapted version of the Steiner tree problem. They consider
the distribution of single data items from a root to a set of clients. It is not known beforehand
which clients demand the data item in question. For each client, there is a known probability
to become active and request data. Consider caching nodes at a certain cost, i.e. nodes storing
the demanded data for resending it to clients becoming active later-on. The problem of finding a
tree with minimal expected cost is equal to the Connected Facility Location Problem. The authors
gather the clients into clusters connected to a common facility. Second, they connect these facilities
by a Steiner tree. They present a bicriterion approximation algorithm producing a solution of at
most 41 times the optimum cost.

Krick et al. [25] present a similar problem as the one in [20], although in an other context.
They consider a computer network where clients (corresponding to customers) issue read and write
requests. The data for the requests is stored in memory modules (facilities) at a certain cost. Read
and write requests are served by the nearest installed memory module for the respective client.
To keep data consistent throughout the network, all other memory modules are updated with the
latest version. This requires connectivity between the memory modules. Krick et al. give a constant
approximation algorithm with a larger constant than the one given by Karger and Minkoff [20].

In the context of reserving bandwidth for virtual private networks, Gupta et al. [18] introduce
the term Connected Facility Location. They give a proof for ConFL to be NP-hard. They present a
first cut-based integer programming formulation. Their formulation will be described and discussed
in detail in Section 3.2. Their approximation algorithm for ConFL has a constant factor of 10.66.
For the closely related rent-or-buy problem (RoB), in which all nodes are potential facilities with
opening costs equal to 0, the algorithm gives an approximation factor of 9.002.
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Swamy and Kumar [39] develop a primal-dual approximation algorithm for ConFL, RoB and
k-ConFL. The latter comprises the additional restriction that in an optimum solution at most k
facilities can be opened. The integer programming formulation used is the same as in Gupta et al.
[18]. As results the authors give approximation ratios of 8.55, 4.55 and 15.55 for ConFL, RoB and
k-ConFL, respectively.

The approximation factors have been successively improved in Jung et al. [19] and Williamson
and van Zuylen [41]. Finally, Eisenbrand et al. [13] combine approximation algorithms for the basic
facility location problem and the connectivity problem of the opened facilities by running a what
they call core detouring scheme. The randomised version of the approximation algorithm gives new
best expected approximation ratios for ConFL (4.00), RoB (2.92) and k-ConFL (6.85). The ratios
for the de-randomised version are 4.23, 3.28 and 6.98 respectively.

Heuristics and Exact Methods. Ljubić [28] describes a hybrid heuristic combining Variable Neigh-
borhood Search with a reactive tabu search method. The author compares it with an exact branch-
and-cut approach. The corresponding integer programming model for the branch-and-cut approach
will be explained in detail and compared to other formulations in Section 3. Ljubić [28] also presents
two classes of test instances as a result of combining Steiner tree and uncapacitated facility location
instances. Results for these instances with up to 1300 nodes are presented.

Tomazic and Ljubić [40] present a Greedy Randomized Adaptive Search Procedure (GRASP)
for the ConFL problem. Results for a new set of test instances with up to 120 nodes (facilities plus
customers) are presented.

2.1. Related Problems
The Connected Facility Location problem is a combination of two other well-known problems in

graph theory. These are the Steiner tree problem (STP) and the Uncapacitated Facility Location
problem (UFL). ConFL contains them both as special cases. For a set of possible facility locations
connected to a root via a star, we have UFL. In case each customer can only be served by one
predefined facility, we know the set of facilities that needs to be opened in advance. Thus, we then
have an STP to solve.

Rent-or-buy Problem (RoB). The rent-or-buy problem is often viewed as a special case of the
ConFL problem. In the RoB problem facility opening costs are 0 and facilities can be opened
anywhere. Thus, also customer nodes can act as facilities and have other customers assigned to
them. The cost for each edge in a solution to the RoB depends on its adjacent nodes. If an edge
is used to assign a customer to a facility, only assignment costs are incurred. If an edge connects
two facilities, a comparatively higher cost, i.e. M times the assignment cost, has to be paid for.

The (general) Steiner tree-star problem ((G)STS). The Steiner tree-star problem was introduced
by Lee et al. [26]. It arises in the design of some specific telecommunication networks, where
bridging occurs. The Steiner tree-star problem is the following: Given a graph with disjoint sets of
possible facility nodes and customers, we want to find a minimum cost tree such that each customer
is assigned to a facility and that all open facilities are connected by a Steiner tree. Facility opening
costs are incurred for any facility in the solution tree, regardless of whether any customers are
assigned to it or not.
Exact methods to solve the STS problem have been described by Lee et al. [26, 27], a tabu search
based heuristic was developed by Xu et al. [43]. Khuller and Zhu [21] introduced the general
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Steiner tree-star problem. There, the sets of possible facilities and customers must not be disjoint.
Nodes can act in both ways and an open facility can serve the customer in its own place at no
additional cost. Khuller and Zhu [21] derive two approximation algorithms for the general STS
with approximation factors of 5.16 and 5 respectively.

General Connected Facility Location (GConFL). Bardossy and Raghavan [4] develop a dual-based
local search (DLS) heuristic for a family of problems combining facility location decisions with con-
nectivity requirements, namely the (general) Steiner tree-star, ConFL and RoB. They introduce
the general ConFL problem, into which any of the aforementioned 4 problem classes can be trans-
formed. The presented DLS heuristic works in two phases. After applying dual-ascent in order to
get a lower and upper bound in the first phase, in the second phase a local search procedure is
carried out on the facilities and Steiner nodes selected before. Computational results for instances
with up to 100 nodes are presented. Running time and the quality of solutions of Ljubić’ VNS
heuristic and DLS are compared for the set of instances introduced in [28].

Tree of Hubs Location problem (THLP). Another related problem with a tree-star topology is the
tree of hubs location problem proposed by Contreras et al. [10]. This is a network hub location
problem with single assignment in which a fixed number of hubs needs to be located, with an
additional requirement that the hubs are connected by means of a tree. The sum of costs for
routing the flow between each pair of source-destination nodes is minimized. In [10] the authors
propose a compact MIP model, a number of valid inequalities and present computational results
for instances with up to 25 nodes. A tighter formulation, a bounding heuristic and a Lagrangian
relaxation approach are presented in [9]. The new approach solves instances with up to 100 nodes.

3. MIP Formulations for ConFL

It is well known that the MIP formulations for optimization problems with tree topology provide
stronger lower bounds when defined on directed graphs (see, e.g., [8, 16, 32]). In this section we will
first describe how to transform undirected instances for ConFL into directed ones. A range of MIP
formulations for the ConFL will be presented afterwards. As the exponential size formulations are
hard to implement by means of a modeling language, various compact MIP formulations will be
described in this section as well. They are either flow formulations or based on sub-tour elimination
constraints.

3.1. Transformation Into Directed Graphs
Throughout this paper, an arc from i towards j will be denoted by ij, and the corresponding

undirected edge by {i, j}. Let (V,E) be a given instance of ConFL with {S,R} being a partition
of V and F ⊆ S. This instance can be transformed into a bidirected instance (V,A) as follows
(cf. [40]):

• Replace core edges e ∈ E with e = {i, j}, i, j ∈ S by two directed arcs ij ∈ A and ji ∈ A
with cost cij = cji = ce. Since we are modelling an arborescence directed away from the root
node, edges {r, j} are replaced by a single arc rj only.

• Replace assignment edges e ∈ E with e = {j, k}, j ∈ F, k ∈ R by an arc jk ∈ A with cost
cjk = ce respectively.
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Rooting Unrooted Instances. To obtain an optimal solution for a directed, unrooted instance (V,A)
by solving a model for rooted instances we adapt the input instance and the corresponding model
as follows:

• Expand the set of facilities F by adding an artificial root r to V ′ = V ∪ {r} with cost fr = 0.

• Expand the set of arcs by adding an arc rj for all core nodes j ∈ F with crj = 0.

• Limit the number of arcs emanating from the root r to 1.

In the remainder of this paper we will refer to the Connected Facility Location problem on
directed graphs as the following:

Definition 2 (ConFL on directed graphs). We are given a directed graph (V,A) with edge costs
cij ≥ 0, ij ∈ A, facility opening costs fi ≥ 0, i ∈ F and a disjoint partition {S,R} of V with R ⊂ V
being the set of customers, S ⊂ V the set of possible Steiner tree nodes, F ⊂ S the set of facilities,
and the root node r ∈ F . Find a subset of open facilities such that

• each customer is assigned to exactly one open facility,

• a Steiner arborescence rooted in r connects all open facilities, and

• the cost defined as the sum of assignment, facility opening and Steiner arborescence cost, is
minimized.

To model the problem, we will use the following binary variables:

xij =

{
1, if ij belongs to the solution
0, otherwise

∀ij ∈ A zi =

{
1, if i is open
0, otherwise

∀i ∈ F

We will use the following notation: AR = {ij ∈ A | i ∈ F, j ∈ R}, AS = {ij ∈ A | i, j ∈ S}.
Furthermore, for any W ⊂ V we denote by δ−(W ) = {ij ∈ A | i 6∈ W, j ∈ W} and δ+(W ) = {ij ∈
A | i ∈W, j 6∈W}.

3.2. Cut-Based Formulations
There are two different formulations of exponential size for ConFL given in the literature. They

are both based on cut sets and differ in strength.

Cut Set Formulation of Gupta et al. [18]. Gupta et al. [18] first introduced an undirected ILP for-
mulation for ConFL. To ensure comparability, a directed version will be presented here. One might
think of any ConFL solution as a Steiner arborescence rooted at r with customers as leaves and with
node weights that need to be payed for any node that is adjacent to a customer. Therefore, instead
of requiring connectivity among open facilities and assignment of customers to open facilities, we
are going to ask for the solution that ensures a directed path between r and any customer j ∈ R,
using the arcs from A.

The cut-based model reads then as follows:
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(CUTR) min
∑
ij∈A

xijcij +
∑
i∈F

zifi

s.t.
∑

uv∈δ−(U)

xuv ≥
∑

j∈U :jk∈AR

xjk ∀U ⊆ S \ {r}, U ∩ F 6= ∅, ∀k ∈ R (1)

∑
jk∈AR

xjk = 1 ∀k ∈ R (2)

xjk ≤ zj ∀jk ∈ AR (3)
zr = 1 (4)
xij ∈ {0, 1} ∀ij ∈ A (5)
zi ∈ {0, 1} ∀i ∈ F (6)

The objective comprises the cost for the Steiner arborescence (
∑

ij∈AS
xijcij), the cost to connect

customers to facilities (that we also refer to as assignment cost, i.e.
∑

ij∈AR
xijcij) and the facility

opening cost (
∑

i∈F zifi). Constraints (2) ensure that every customer is connected to at least one
facility, constraints (3) ensure that each facility is opened if customers are assigned to it, equation
(4) defines the root node. Inequalities (1) represent the set of cuts. For every subset U ⊆ S \ {r}
and for each customer k ∈ R, an open arc from a facility in U toward j, necessitates a directed
path from r towards U . Constraints (2) can be replaced by inequality in case that cij ≥ 0, for all
ij ∈ AR. Furthermore, the same optimization problem with continuous assignment variables xij ,
for all ij ∈ AR, returns an optimal ConFL solution. This is because the underlying assignment
matrix is totally unimodular, whenever zi values are fixed to zero or one.

Observation 1. Using equations (2), we can re-write constraints (1) as follows:∑
uv∈δ−(U)

xuv +
∑

jk∈AR:j 6∈U
xjk ≥ 1, ∀U ⊆ S \ {r}, U ∩ F 6= ∅ ∀k ∈ R. (7)

Denote by W = S \ U , and let AWS := δ+(W ) ∩ AS and AWR = δ+(W ) ∩ AR. Now, we can
interpret these constraints as follows: every cut separating customer k from r (involving all arcs
from AS ∪AR) has to be greater than or equal to one, i.e.:∑

uv∈AW
S

xuv +
∑

jk∈AW
R

xjk ≥ 1, ∀W ⊆ S, r ∈W, W ∩ F 6= F, ∀k ∈ R.

Figure 1 illustrates an example of these cut set inequalities.

According to the result of Swamy and Kumar [39], the integrality gap of the LP-relaxation of
(CUTR) is not greater than 8.55, if c is a metric, and core costs are M times more expensive than
the assignment costs (M ≥ 1).

Ljubić’ Cut Set Formulation. Ljubić [28] presents a slightly different formulation where the cuts
are defined according to the open facilities:

(CUTF ) min
∑
ij∈A

xijcij +
∑
i∈F

zifi

s.t.
∑

uv∈δ−(W )

xuv ≥ zi ∀W ⊆ S \ {r}, ∀i ∈W ∩ F 6= ∅ (8)
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Figure 1: Graphic illustration for cut inequalities (2).
W = {r, 1, 2}, U = {3, 4}
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Figure 2: In this example the cost structure is as
follows: all facility opening and assignment costs are
1. crs = L and csi = K, for all i ∈ {1, . . . , n}.

(2) - (6)

Lemma 1. There are instances for which the values of the LP-relaxation of the CUTF model can
be as bad as 1

|F |−1OPT , where OPT denotes the integer solution value.

Proof. Figure 2 illustrates such a situation. In this example n := |F | − 1. The optimal solution
value for the LP relaxation of CUTF is υLP (CUTF ) = L

n +K + 3 and the optimal integer solution
value is OPT = L+K + 3. For K >> L, we get υLP (CUTF )

OPT ≈ 1
n .

3.3. Flow-Based Formulations
Extending flow formulations for the (prize-collecting) Steiner tree problem (see, e.g., [29, 38]),

several ways to model ConFL as a flow problem are possible. One option is to have a flow from
the root to each customer. Alternatively, flow can be allowed from the root node to open facilities
only, with additional constraints ensuring customers to be assigned to an open facility. Further
it is possible to consider just one single commodity or separate commodities for each customer or
facility respectively.
In the following we propose six different flow formulations for ConFL. The strength of the different
formulations is discussed later in Section 4.

Single-Commodity Flow Between Root and Facilities. This single commodity-flow formulation with
flow between root node and facilities is an extension of the single-commodity flow formulation for
the prize-collecting Steiner tree problem (see, e.g., Ljubić [29]). The amount of flow terminating in
a facility is linked to the variable indicating whether the facility is open or not. For all ij ∈ AS ,
continuous variable gij denotes the amount of flow that is simultaneously routed from r toward all

28



open facilities over arc ij.

(SCFF ) min
∑
ij∈A

xijcij +
∑
i∈F

zifi

s.t.
∑
ji∈AS

gji −
∑
ij∈AS

gij =


zk
−∑k∈F zk
0

i = k, k ∈ F
i = r
i ∈ S \ {F}

∀i ∈ S (9)

0 ≤ gij ≤ (|F | − 1) · xij ∀ij ∈ AS (10)

(2) - (6)

Constraints (9) ensure that each facility j ∈ F receives zj units of flow from the root. The coupling
constraints (10) ensure that on every arc ij, there is enough capacity to simultaneously route that
flow. They also force an arc ij to be installed if there is a flow sent through it. Model SCFF

comprises O(|A|) constraints and O(|A|) binary and continuous variables.
The following result is due to the usage of “big-M” constraints in (10):

Lemma 2. There are instances for which

a) the values of the LP-relaxation of the SCFF model can be as bad as 1
|F |−1OPT , and

b) the ratio υLP (SCFF )
υLP (CUTF ) ≈ 1

|F | .

Proof. a) The example given in Figure 2 provides υLP (SCFF ) = L
n + K

n + 3 which gives ratio
υLP (SCFF )

OPT ≈ 1
|F | .

b) If K >> L in the same example, we obtain υLP (SCFF )
υLP (CUTF ) =

L
n

+K
n

+3
L
n

+K+3
= 1
|F |−1 ≈ 1

|F | .

Single-Commodity Flow between Root and Customers. We now consider single commodity-flow
from the root node to each of the customers. At the expense of more flow variables this allows us
to drop constraints (2) used in SCFF :

(SCFR) min
∑
ij∈A

xijcij+
∑
i∈F

zifi

s.t.
∑
ji∈AS

fji −
∑
ij∈A

fij =


1
−|R|
0

i ∈ R
i = r
i ∈ S \ {r}

∀i ∈ V (11)

0 ≤ fij ≤ |R| · xij ∀ij ∈ A (12)

(3) - (6)

Constraints (11) ensure that each customer receives one unit of flow from the root node and con-
straints (12) are similar to (10). However, one easily observes that, although redundant for the
MIP formulation, assignment constraints (2) can strengthen the quality of lower bounds. We de-
note by SCF +

R the formulation SCFR extended by (2). Models SCFR and SCF +
R comprise O(|A|)

constraints and O(|A|) binary variables.
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Lemma 3. There are instances for which

a) the values of the LP-relaxation of the SCFR (SCF +
R) model can be as bad as 1

|R|OPT , and

b) the ratio υLP (SCFR)
υLP (CUTR) ≈ 1

|R| .

Multi-Commodity Flow with One Commodity per Facility. The two flow formulations presented
above can be improved by disaggregation of commodities.

Choosing one commodity per facility, each variable indicating an open facility is linked to a
distinct commodity. A multi-commodity flow formulation with one commodity per facility is given
by:

(MCFF ) min
∑
ij∈A

xijcij+
∑
i∈F

zifi

s.t.
∑
ji∈AS

gkji −
∑
ij∈AS

gkij =


zk
−zk
0

i = k
i = r
i 6= k, r

∀i ∈ S, ∀k ∈ F (13)

0 ≤ gkij ≤ xij ∀ij ∈ AS , ∀k ∈ F (14)

(2) - (6)

Equations (13) are the flow preservation constraints defining the flow from the root node to
each facility. These constraints ensure the existence of a connected path from r to every open
facility. The stronger coupling constraints ensure that the arc is open if a flow is sent through it.
Formulation MCFF comprises O(|AS ||F | + |AR|) constraints, O(|AS ||F |) continuous and O(|A|)
binary variables.

Multi-Commodity Flow with One Commodity per Customer. Another choice for the commodities
we use, is the set of customers. Assigning a commodity of size 1 to each customer allows to remove
the z variables from the flow preservation constraints. Using one commodity per customer, ConFL
can be stated as:

(MCFR) min
∑
ij∈A

xijcij +
∑
i∈F

zifi

s.t.
∑
ji∈A

fkji −
∑
ij∈A

fkij =


1
−1
0

i = k
i = r
i 6= k, r

∀i ∈ V, ∀k ∈ R (15)

0 ≤ fkij ≤ xij ∀ij ∈ A, ∀k ∈ R (16)

(3) - (6)

Formulation MCFR comprises O(|A||R|) constraints, O(|A||R|) continuous and O(|A|) binary
variables.

Observation 2. Variables xij, ij ∈ AR, are redundant in this formulation, as every LP-optimal
solution of MCFR also satisfies

f ljk =

{
xjk, if l = k

0, otherwise
∀l ∈ R, ∀jk ∈ AR.

Therefore, constraints (2) are redundant, for both, the MCFR model and its LP-relaxation.
However, we keep variables xij , ij ∈ AR in this model for better readability.
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3.3.1. Strong Formulations Comprising Common Flow Variables
Polzin and Daneshmand [38] have developed a formulation which they call Common Flow for-

mulation for the Steiner arborescence problem. It is based on a disaggregation of multi commodity-
flow formulation with additional 4-index variables. These variables indicate the common flow from
the root towards any pair of terminals. For ConFL this gives two choices on the common flows
considered, towards facilities or towards customers. The variant, in which common flows towards
facilities are considered, is an extension of MCFF , the other one is an augmentation of MCFR and
it is the strongest one among all formulations presented in this paper (see Section 4).

Common Flow Between Root and Facilities. Let ḡklij denote the common flow towards facilities k
and l, k, l ∈ F, k 6= l, over an arc ij. Then a MIP formulation of ConFL using common flows from
the root to facilities is given by:

(CFF ) min
∑
ij∈A

xijcij +
∑
i∈F

zifi

s.t.
∑
ji∈AS

gkji −
∑
ij∈AS

gkij =


zk
−zk
0

i = k
i = r
i 6= k, r

∀i ∈ S, ∀k ∈ F (17)

∑
ij∈AS

ḡklij −
∑
ji∈AS

ḡklji ≤
{

min(zk, zl)
0

i = r
i 6= r

∀i ∈ S, ∀k, l ∈ F, k 6= l (18)

0 ≤ ḡklij ≤ min(gkij , g
l
ij) ∀ij ∈ AS , ∀k, l ∈ F, k 6= l (19)

0 ≤ gkij + glij − ḡklij ≤ xij ∀ij ∈ AS , ∀k, l ∈ F, k 6= l (20)

(2)− (6)

Constraints (17) are flow preservation constraints as in MCFF . Constraints (18) ensure that
the common flow from the root toward facilities k and l is non-increasing. Inequalities (19) define
the relation between common flow and commodity flow variables. The coupling constraints (20)
ensure that the arc is installed whenever there is a flow sent through it. Inequalities (18) and (19)
are written in a compact way: min indicates that each of them is to be replaced by two constraints
with either of the min-arguments on the right hand side.
Formulation CFF comprises O(|AS ||F |2) constraints, O(|AS ||F |2) continuous and O(|A|) binary
variables.

Common Flow Between Root and Customers. Starting from the MCFR model, we can now derive
the other common flow formulation. Let f̄klij denote the common flow towards customers k and l,
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k 6= l. Then the common flow formulation with flows from the root to customers is given by:

(CFR) min
∑
ij∈A

xijcij +
∑
i∈F

zifi

s.t.
∑
ji∈A

fkji −
∑
ij∈A

fkij =


1
−1
0

i = k
i = r
i 6= k, r

∀k ∈ R (21)

∑
ij∈AS

f̄klij −
∑
ji∈AS

f̄klji ≤
{

1
0

i = r
i 6= r

∀i ∈ S, ∀k, l ∈ R, k 6= l (22)

0 ≤ f̄klij ≤ min(fkij , f
l
ij) ∀ij ∈ A, ∀k, l ∈ R, k 6= l (23)

0 ≤ fkij + f lij − f̄klij ≤ xij ∀ij ∈ A, ∀k, l ∈ R, k 6= l (24)

(3)− (6)

Constraints (21) are flow preservation constraints as in MCFR. Inequalities (22) ensure that
the common flow from the root to customers k and l is non-increasing. Constraints (23)-(24) are
equivalents of (19) - (20). In (23), min again indicates that the corresponding inequalities are to
be replaced by ones with either of the arguments on the right hand side.
Formulation CFR comprises O(|A||R|2) constraints, O(|A||R|2) continuous and O(|A|) binary vari-
ables.

3.4. Formulations Based on Sub-tour Elimination Constraints
Another well-studied group of MIP formulations for problems on graphs are based on sub-tour

elimination. We present here one compact and one exponential size model.

Miller-Tucker-Zemlin Formulation. One very simple strategy for sub-tour elimination was proposed
by Miller, Tucker and Zemlin [35] and has been applied to a number of problems, including (Asym-
metric) Traveling Salesman, Vehicle Routing, Minimum Spanning Tree and Steiner Tree Problem
[11, 12, 17, 36]. In addition to x and z variables, we now introduce level variables ui ≥ 0, for all
i ∈ S, determining the level of node i in the tree solution. The root node is assigned to the level
zero.

Using the lifted Miller-Tucker-Zemlin (MTZ ) constraints (see, e.g., [11]), ConFL can be stated
as:

(MTZ ) min
∑
ij∈A

xijcij +
∑
i∈F

zifi

s.t.
∑

i∈S\{k}
xij ≥ xjk ∀j ∈ S \ {r}, ∀k ∈ V (25)

|S| · xij + ui ≤ uj + |S| − 1 ∀ij ∈ AS (26)
ur = 0 (27)
ui ≥ 0 ∀i ∈ S \ {r} (28)

(2) - (6)
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Figure 3: In this example n := |F | − 1. The cost structure is as follows: all facility opening, arc opening and
assignment costs are 1, except for crs = L, where L� 0 is an arbitrarily large number.

Constraints (25) limit the out-degree of a node by its in-degree. Constraints (26) are Miller-
Tucker-Zemlin sub-tour elimination constraints, setting the difference uj − ui for an open arc ij to
at least 1, thereby eliminating cycles in the Steiner tree connecting the facilities. Constraint (27)
sets the level of the root node to zero.

Formulation MTZ comprises O(|A|) constraints, O(|S|) continuous and O(|A|) binary variables.
The formulation is small in the number of constraints and variables, compared to the aforementioned
formulations based on flows or cut sets. The quality of the lower bounds, i.e. the strength of the
formulations will be analyzed in the subsequent section.

Lemma 4. The values of the LP-relaxation of the MTZ model can be arbitrarily bad.

Proof. Consider the example in Figure 3: The LP-solution opens each facility with 1/n, and builds
one directed cycle of {s} ∪ {1, . . . , n} where for each arc ij in the cycle xij = 1/n. It assigns
υLP (MTZ ) = 4 + 1

n and OPT = L+ 4, which gives ratio υLP (MTZ )
OPT ≈ 1

L .

Note that for our computational experiments we replaced constraints (26) by the following
stronger ones:

(|S| − 2) · xji + |S| · xij + ui ≤ uj + |S| − 1 ∀ij ∈ AS
The polyhedral results in Section 4 are for the weaker model.

Formulation Based on Generalized Sub-tour Elimination Constraints. To model the Steiner tree in
the core network, one might consider another formulation extended by the following node variables:

wi =

{
1, if i belongs to the solution,
0, otherwise

∀i ∈ S

Such a model has been used for the node-weighted Steiner tree problems (see, e.g., [15, 31, 32]).
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(GSEC ) min
∑
ij∈A

xijcij +
∑
i∈F

zifi∑
uv∈A:u,v∈U

xuv ≤
∑

i∈U\{k}
wi ∀U ⊂ S, ∀k ∈ U (29)

∑
uv∈A

xuv =
∑

i∈S\{r}
wi (30)

wi ≥ zi ∀i ∈ F (31)
0 ≤ wi ≤ 1 ∀i ∈ S (32)

(2) - (6)

Equality (30) ensures that the set of edges is equal to the number of selected nodes minus
one. In order to ensure the tree structure, sub-tours are eliminated by deploying constraints (29).
Since facility nodes can also be used only as Steiner nodes, in which case wi = 1 and zi = 0,
inequalities (31) must hold.

We will see in the following section that the results known for Steiner trees with respect to
GSEC , directly apply to ConFL.

4. Polyhedral Comparison

In this section we provide a theoretical comparison of the MIP models described above with
respect to optimal values of their LP-relaxations. The examples given below are used in the proofs
of this section. These examples employ the following notation:

� represents the root node, ◦ represents a Steiner node,
�l represents a facility with label l, ? represents a customer.

Arc costs different from 1 are displayed next to the respective arc. Facility opening, assignment and
core costs are all 1 in all examples, unless stated differently. All the values of facility node variables
stated in the descriptions below refer to optimal LP solutions. The core network is presented as
undirected graph, except in Figure 6.

Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8
MTZ 16 18 20 9 10
SCFF 11 143

8 141
5 16 8

SCFR 71
4 181

8 7 171
4 31

4
SCF +

R 11 221
4 141

5 21 7
MCFF 16 18 22 26 10
MCFR 16 28 22 26 10
CFF 16 18 24 26 10
CFR 16 28 24 26 10

Table 1: Optimal LP solutions for examples in Figures 4 - 8
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Figure 4: This simple example demonstrates the
weakness of formulation SCFR. The facility node
variable is 1/4 for SCFR and 1 for all other models.
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Figure 5: This example is a small variant of the one in
Figure 2. It will show the weakness of models where
the flows are only defined on the core subgraph AS .
Facility node variables are 1/8 for SCFR and 1/2 for
all other models.
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Figure 6: In this example the core network is directed and there is exactly one customer that can be assigned to each
facility. Thus, every facility needs to be open in a feasible solution. Facility node variables are 1/5 for SCFR and 1
for all other models. A version of this example was described by Polzin and Daneshmand [38].
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Figure 7: This example demonstrates the weakness of
Miller-Tucker-Zemlin constraints. The facility node
variable is 1/4 for SCFR and 1 for all other models.
In the LP solution for model MTZ there is a cycle
consisting of the arcs of weight 1. The open facility
is not connected to the root.

?

? �

__@@@@@@@

��~~~~~~~
oo ◦ ◦ ◦ � // ?

?

Figure 8: This example demonstrates the weakness of
“big-M” constraints in the models comprising single
commodity flow. The facility node variable is 1/4 for
SCFR and 1 for all other models.
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Let υLP (.) denote the optimal solution value of the LP relaxation of a given model. By com-
paring the optimal LP solution values for the aforementioned examples, provided by the models in
Section 3, we can state the following result.

Lemma 5. The following pairs of formulations are incomparable with respect to the quality of lower
bounds:

a) MTZ and SCFF , d) SCFR (SCF +
R) and MCFF ,

b) MTZ and SCFR (SCF +
R), e) SCFR (SCF +

R) and CFF ,
c) SCFF and SCFR (SCF +

R), f) MCFR and CFF .

Proof. a) In Figure 4 we have υLP (SCFF ) = 11 < 16 = υLP (MTZ ) and in Figure 7 we have
υLP (MTZ ) = 9 < 10 = υLP (SCFF ).

b) In Figure 4 we have υLP (SCFR) = 7.25 < υLP (SCF +
R) = 11 < υLP (MTZ ) = 16 and in

Figure 7 we have υLP (MTZ ) = 9 < 17.25 = υLP (SCFR) < υLP (SCF +
R) = 21.

c) In Figure 5 we have υLP (SCFF ) = 14.325 < 18.125 = υLP (SCFR) and in Figure 8 we have
υLP (SCFR) = 3.25 < υLP (SCF +

R) = 7 < υLP (SCFF ) = 8.

d) For Figure 5 we have υLP (SCFR) = 18.125 > 18 = υLP (MCFF ). For Figure 4 we have
υLP (SCFR) = 7.25 < υLP (SCF +

R) = 11 < υLP (MCFF ) = 16.

e) For Figure 4 we have υLP (SCFR) = 7.25 < υLP (SCF +
R) = 11 < υLP (CFF ) = 16, for Figure 5

we have υLP (CFF ) = 18 < υLP (SCFR) = 18.125 < υLP (SCF +
R) = 22.25.

f) Consider Examples 5 and 6. For Figure 5 we have υLP (CFF ) = 18 < 28 = υLP (MCFR), for
Figure 6 we have υLP (MCFR) = 22 < 24 = υLP (CFF ).

Denote by P. the polytope of the LP-relaxation of any of the MIP models described above, and
with Projx,z(P.) the natural projection of that polytope onto the space of variables x and z.

Lemma 6. The following results hold:

a) Projx,z(PCFF
) ⊂ Projx,z(PMCFF

) ⊂ Projx,z(PSCFF
), and

b) Projx,z(PCFR
) ⊂ Projx,z(PMCFR

) ⊂ Projx,z(PSCF+
R

) ⊂ Projx,z(PSCFR
).

Proof. The results follow immediately from the corresponding results for Steiner trees, see e.g., [38].
Instances that prove the strict inclusion can be found in Table 1.

Lemma 7. The following results hold:

a) Projx,z(PMCFF
) = PCUTF

= Projx,z(PGSEC ), and

b) Projx,z(PMCFR
) = PCUTR

.

Proof.

a) The first equality follows from the min-cut max-flow theorem, the second one follows from
the related result for node-weighted Steiner trees, see e.g. [32].
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b) This result follows from the min-cut max-flow theorem.

Lemma 8. The following results hold:

a) Projx,z(PMCFR
) ⊂ Projx,z(PMCFF

) and

b) Projx,z(PCFR
) ⊂ Projx,z(PCFF

).

Proof.

a) According to Lemma 7, it is enough to show this relationship by comparing PCUTR
and

PCUTF
. Then it is easy to see that every solution (x′, z′) ∈ PCUTR

also belongs to PCUTF
.

Figure 5, with υLP (CUTR) = 28 > 18 = υLP (CUTF ), proves that the opposite is not true.

b) Projx,z(PCFR
) ⊆ Projx,z(PCFF

): Let (f ′, f̄ ′,x′, z′) be in PCFR
. We define the capacities

on the subgraph GS = (S,AS) as xij , for all ij ∈ AS . Since xij = maxk∈Rfkij , and
zi = maxij∈AR

xij , there will be enough capacity to independently route zi units of flow,
for all i ∈ F , such that zi > 0. Now, we are going to construct (g, ḡ,x, z) ∈ PCFF

as
follows: We fix the ordering of the outgoing arcs of every node i ∈ S and then apply an
adapted Ford-Fulkerson maximum flow algorithm. To define g, we send zi units of flow
from r towards i ∈ F , for all i ∈ F such that zi > 0. When searching for augmenting
paths, we always follow the fixed ordering. Therefore, the outgoing arcs of a node always
get saturated in the same order, independently on the commodity under consideration.
It follows directly from construction that the common flow ḡ for any pair of facilities k
and l, once it splits up, will never meet again, i.e., ineqalities (18) will be satisfied.

Projx,z(PCFF
) * Projx,z(PCFR

): Consider Figure 5, where υLP (CFR) = 28 > 18 = υLP (CFF ).

Lemma 9. Formulation GSEC (i.e., CUTF , MCFF ) is strictly stronger than formulation MTZ ,
i.e. Projx,z(PMCFF

) ⊂ Projx,z(PMTZ ).

Proof. Let CS denote the set of all cycles in S and let C be the set of arcs defining an arbitrary
cycle in CS . Padberg and Sung [37] show that, variables ui and constraints (26) can be projected
out by using the following set of cycle constraints:∑

ij∈C
xij ≤ |C| − |C||S| ∀C ⊆ CS (33)

It is not difficult to see that cycle constraints (33) are implied by the generalized sub-tour elimination
constraints (29), i.e.: ∑

ij∈C
xij ≤ |C| − 1 ≤ |C| − |C||S| ∀C ⊆ CS

For Figure 7 we have υLP (MTZ ) = 9 < 26 = υLP (GSEC ). Thus, Projx,z(PGSEC ) ⊂ Projx,z(PMTZ ).
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4.1. Reformulation as the Steiner Arborescence Problem
As we already observed in [40], the ConFL can be transformed into the Steiner Arborescence

Problem. This transformation is done by using the well-known node splitting technique that has
proven useful for different network design problems, see e.g., [3, 6].

To solve an instance of ConFL as SA, we use the following procedure:

• Generate a directed graph G̃ = (Ṽ , Ã) with costs c̃ : Ã 7→ R+
0 , as follows:

– Initialize Ṽ = V , Ã = A and c̃ = c.

– For any facility node i, add a node i′ to the graph, connect i to i′, and set c̃ii′ = fi.

– Replace arcs ik ∈ AR by i′k.

• Solve the Steiner arborescence problem on the transformed graph G̃ with customers as ter-
minals.

Recall that, given a directed graph G̃ = (Ṽ , Ã), with arc weights c̃ : Ã 7→ R, a root r ∈ Ṽ ,
and a set of terminal nodes R ⊂ Ṽ , the Steiner arborescence problem searches for the cheapest
subtree rooted at r that connects all terminals. Figure 9 shows a simple example that illustrates
the transformation of ConFL into the SA problem, according to the procedure described above:
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��
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FF�������������
?4

Figure 9: Initial undirected ConFL instance and transformed SA instance

For each facility i ∈ F , i corresponds to node’s function as Steiner node, while i′ corresponds
to its function as open facility. With this transformation we ensure that the arc ii′ belongs to a
solution if and only if facility i is open. Similarly, facility i is used as Steiner node if and only if
i belongs to the solution, but arc ii′ does not. A similar, but undirected transformation has been
used by Bardossy and Raghavan to transform (G)STS, ConFL and RoB into the GConFL [4].

To solve the SA problem as a MIP, let us define binary variables vij as follows:

vij =

{
1, if ij belongs to the solution
0, otherwise

, ∀ij ∈ Ã.

We extend the directed cut-based formulation for Steiner trees (originally proposed by Chopra and
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Rao [8]) by the root out-degree constraint as follows:

(SA) min
∑
ij∈Ã

c̃ijvij (34)

∑
ij∈δ−(W )

vij ≥ 1 ∀W ⊆ Ṽ \ {r},W ∩R 6= ∅ (35)

∑
ij∈δ−({j})

vij = 1 ∀j ∈ R (36)

vrr′ = 1 (37)

vij ∈ {0, 1} ∀ij ∈ Ã (38)

Let us denote by

Projx,z(PSA) = {(x, z) ∈ [0, 1]|A| × [0, 1]|F | | v ∈ PSA and

xkl = vkl ∀kl ∈ AS ; xij = vi′j ∀ij ∈ AR; zi = vii′ ∀i ∈ F},
the projection of the PSA polytope onto the space of variables (x, z).

We show the following result:

Lemma 10. The LP-relaxation of the Steiner arborescence formulation is equally strong as the
LP-relaxation of CUTR, i.e.:

Projx,z(PSA) = PCUTR
.

Proof. We prove equality by showing mutual inclusion.

Projx,z(PSA) ⊆ PCUTR
: Let v′ be a feasible solution of the LP-relaxation of SA, and (x′, z′) its

projection into Projx,z(PSA). Obviously, (1), (2) and (4) are satisfied by (x′, z′). It only
remains to show that x′ij ≤ z′i, ∀ij ∈ AR. Assume that there exist j ∈ F and k ∈ R such
that xjk > zj . From inequalities (36) follows

1 =
∑

i∈F\{j}
xik + xjk >

∑
i∈F\{j}

xik + zj =
∑

ij∈δ−(W )

vij

where W = {k, j′} in contradiction to constraints (35).

PCUTR
⊆ Projx,z(PSA): Let (x′, z′) be a fractional solution satisfying (1)-(4), and let us assume

that the corresponding solution v′ from PSA is not feasible. In other words, assume that
there exists a cut-set W̃ ⊆ Ṽ \{r}, W̃ ∩R 6= ∅, such that

∑
ij∈δ−(W̃ ) vij < 1. Obviously, there

must exist at least one i ∈ F \ {r}, such that ii′ ∈ δ−(W̃ ). We now construct a new cut-set
W̃n such that δ−(W̃n) = δ−(W̃ ) ∪ {i′j | j ∈ W̃} \ {ii′}. Obviously, if

∑
ij∈δ−(W̃ ) vij < 1, then

also δ−(W̃n) < 1. By repeating this procedure for all i ∈ F such that ii′ ∈ δ−(W̃ ), we end
up with a cut-set containing only arcs from AR ∪ AS , that violates inequality (35), which is
a contradiction.
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4.2. Full Hierarchy of Formulations
The hierarchical scheme given in Figure 10 summarizes the relationships between the LP re-

laxations of the MIP models considered throughout this paper. A filled arrow specifies that the
target formulation is strictly stronger than the source formulation. A dashed connection specifies
that the formulations are not comparable to each other.
Note that we do not display formulation SCF +

R separately, because it has the same relations as the
formulation SCFR.

Note that all three models SCFF , MCFF and CFF may have lower bounds as bad as OPT/|F |.
Model CFR is the strongest one among all considered throughout this paper. Observe that there
are several other tree models known for Steiner trees, that can directly be interpreted in ConFL
context. Therefore we do not mention them here, but refer the interested reader to Magnanti and
Wolsey [32] and Polzin and Daneshmand [38].

CFF
//

WWWWWWWWWWWWWWW CFR

GSEC ↔ MCFF ↔ CUTF
//

OO

WWWWWWWWWWWWWW
CUTR ↔ MCFR ↔ SA

OO

SCFF

OO

________________ SCFR
(+)

OO
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ccFFFFFFFFFFFFFFFFFFFFF

Figure 10: Relations between LP-relaxations of MIP models for ConFL

5. Branch-and-Cut Framework

We are going to calculate lower bounds and provably optimal solutions of CUTF and CUTR

models using the same branch-and-cut framework described below. The only difference is in the
separation of cut set inequalities. The main ingredients of our implementation are provided in this
section.

Initialization:. We initialize the LP with assignment, capacity- and root-inequalities (2)-(4). The
following flow-balance constraints introduced by Koch and Martin [22] are also introduced in the
initialization phase. These constraints ensure that the in-degree of each Steiner node is less or equal
than its out-degree: ∑

kl∈A
xkl ≤

∑
lk∈A

xlk, ∀l ∈ S \ F. (39)

These constraints are not induced by any of the MIP formulations presented above, i.e., they can
further strengthen the quality of lower bounds (see, e.g., [30, 38]).

Finally, we insert the following in-degree inequalities,∑
kl∈A

xkl ≤ 1 ∀l ∈ S \ {r}
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and the sub-tour elimination constraints of size two,

xkl + xlk ≤ 1 ∀{k, l} ∈ E, k, l ∈ S, k 6= r.

The latter two groups of constraints are not necessarily binding, but they can speed up the
cutting plane phase at the root node of the branch-and-bound (B&B) tree.

Branching:. Branching on single arc variables produces a huge disbalance in the branch-and-bound
tree. Whereas discarding an edge from the solution (setting xij to zero) doesn’t bring much, setting
the facility variable to one significantly reduces the size of the search subspace. Therefore we set
the highest branching priorities to variables zi, i ∈ F .

5.1. Separation
Separation of Cut Set inequalities (8):. In each node of the branch-and-bound tree we separate the
cut-inequalities (8). For a given LP-solution (x̂, ẑ), we construct a support graph GS = (S,AS , x̂)
with arc capacities set to x̂ij , for all ij ∈ AS . Then we calculate the maximum flow from the root
node r to each potential facility node i ∈ F such that ẑi > 0. If this maximum flow value is less
than zi, we have found a violated inequality (8), induced by the corresponding min-cut in the graph
GS , and we insert it into the LP. For the calculation of the maximum flow we used an adaptation
of Cherkassky and Goldberg’s maximum flow algorithm [7].

Separation of Cut Set Inequalities (1):. In order to separate cut set inequalities (1), we build a
support graph by copying G = (V,A). For a given fractional solution (x̂, ẑ), we set the capacities
to x̂ij , for all ij ∈ A. We then calculate the maximum flow that can be sent from r to each of
the customers j ∈ R. If there exists customer j such that the value of the maximum flow is less
than one, we obtain a cut set, say W ⊂ V , r ∈ W , such that capacity of δ+(W ) is less than
one. Obviously, W ∩ F 6= F , since all the cuts involving only arcs from AR are satisfied by (2).
According to Observation 1, the violated cut set inequality (1) induced by W can then be written
as:

∑
ij∈AW

S
xij +

∑
ij∈AW

R
xij ≥ 1.

Enhancing Separation. To improve computational efficiency, we search for nested, back and minimum-
cardinality cuts and insert at most 100 violated inequalities in each separation phase. For more
details, see our implementation of the B&C algorithm for the prize-collecting Steiner tree problem,
where the same separation procedure has been used [29, 30]. It is important to mention that the
performance of the branch-and-cut algorithm can further be improved if we permute the order in
which the minimum cuts between r and i ∈ F , zi > 0, in CUTF case, and between r and j, j ∈ R,
in CUTR case, are calculated. Since this permutation is done randomly, we fix the seed value for
the results reported in Section 6.

5.2. Primal Heuristic
The primal heuristic works as follows: First, we initialize the set of open facilities according

to fractional values zi: if zi > π, we label the facility as selected. Default value of π is set to 0.1.
Denote by F = {i ∈ F | zi > π}, the set of initially selected facilities. Starting with F , we then
calculate a feasible ConFL solution according to the pseudo-code provided in Algorithm 1. We use
the following notation:

• vector xS refers to the core tree structure, i.e., xSij = 1 if ij ∈ AS belongs to the solution, and
it is zero otherwise.
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• vector xA refers to assignment values, i.e., xAij = 1 if customer j is assigned to facility i and
xAij = 0, otherwise, for all ij ∈ AR.

• vector ẑ is set to one if facility i is open, and to zero otherwise.

• TS denotes the core Steiner tree (the set of nodes and edges) that is uniquely defined by xS.

Outline. The algorithm works in three phases: In the assignment phase (Assign), the cheapest
assignment of customers to facilities from F is found. If there are non-assigned customers, solution
is discarded. The set F is updated to contain only open facilities, i.e., those that serve at least
one customer. In the Steiner tree phase, the set of open facilities is connected by a Steiner tree.
For that purpose, we use the minimum spanning tree heuristic (MSTHeuristic) described below.
Finally, we apply a local improvement procedure (Peeling) that tries to remove leaves of the Steiner
tree in the core network and to re-assign customers to already open facilities, by decreasing the
overall costs.

Data: Binary vector ẑ: a facility i is selected if ẑi = 1.
Result: Locally improved solution (xS,xA, ẑ).

if Hash(ẑ) defined then
(xS,xA, ẑ) = Hash(ẑ);

else
if Assignment exists then

(xA, ẑ) := Assign(ẑ);
(xS, ẑ) := MSTHeuristic(ẑ);
(xS,xA, ẑ) := Peeling(xS,xA, ẑ);
Insert (xS,xA, ẑ) into Hash;

else
return infeasible;

end
end
return (xS,xA, ẑ);

Algorithm 1: The primal heuristic: calculation of the objective function for a given vector
ẑ.

Hashing. Given a vector of selected facilities, ẑ, we first check if the objective value for this config-
uration has been already calculated before (see, e.g., [24]). If so, we get the corresponding solution
(xS,xA, ẑ) from the hash-table Hash. Otherwise, we run a three-step procedure whose steps are
described below.

Detailed Description.

Step 1: (xA, ẑ) := Assign(ẑ): For each customer j ∈ R, we find the cheapest possible assignment
to a facility from ẑ. The assignment values are stored in vector xA. We close those facilities i
from F that do not serve any customer, i.e., we set ẑi := 0. If such assignment is not possible
(e.g., the subgraph induced by AR is not a complete bipartite graph), we discard the solution.
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This operation is calculated from scratch. Thus, the total computational complexity for
finding the cheapest assignment in the worst case is O(|F||R|).

Step 2: (xS, ẑ) := MSTHeuristic(ẑ): We consider the graph G′ = (S,ES) – a subgraph of G
induced by the set of facilities and Steiner nodes with the edge costs c. For G′, we generate
the so-called distance network2 - a complete graph whose nodes correspond to facilities i ∈ F ,
and whose edge-lengths lij are defined as shortest paths in G′, for all i, j ∈ F .

We use the minimum spanning tree (MST) heuristic [34] to find a spanning tree TS that
connects all open facilities (ẑi = 1).

1. Let G′′ be the subgraph of G′ induced by F .

2. Calculate the minimum spanning tree MST ′′G of the distance sub-network G′′.

3. On the subgraph of (S,ES) obtained by back-mapping the edges from MST ′′G, re-
calculate the minimum spanning tree (TS) to obtain vector xS.

Step 3: (xS,xA, ẑ) := Peeling(xS,xA, ẑ): We finally want to get rid of some of those facilities
that are still part of the Steiner tree, but that are not used at all. We do this by applying the
so-called peeling procedure. Our peeling heuristic tries to recursively remove all redundant
leaf nodes (including corresponding tree-paths) from the tree-solution defined by xS. Let k
denote a leaf node of TS , and let Pk be a path that connects k to the next open facility from
F , or to the next branch, towards the root r.

1. If the leaf node is not an (open) facility, i.e. if ẑk = 0, we simply delete Pk.

2. Otherwise, we try to re-assign customers (originally assigned to k) to already open
facilities (if possible). If such obtained solution is better, we delete Pk and continue
processing other leaves.

The main steps of this procedure are given in Algorithm 2.

If, for each customer, the set of facilities is sorted in increasing order with respect to its
assignment costs3, this procedure can be implemented very efficiently. Indeed, in order to
find an open facility from F , nearest to j and different from k (denoted by ik(j)), we only
need to proceed this ordered list starting from k until we encounter a facility i such that
ẑi = 1.

The algorithm stops when only one node is left, or when all the leaves from the tree have been
proceeded. Thus, the worst-case running time of the whole peeling method is O(|F||R|).

6. Computational Results

In our computational study, two groups of instances were considered:

2Calculation of the distance network is done only once, during the initialization of the branch-and-cut algorithm.
3Also sorting of these lists is done once, in the initialization phase of the branch-and-cut algorithm.
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Data: Assignment xA, open facilities ẑ and a Steiner tree TS corresponding to xS.
Result: Locally improved solution (xS,xA, ẑ).

for all leaves k in TS do
Determine path Pk and its costs c(Pk) :=

∑
e∈Pk

ce;
if ẑk = 0 then

TS := TS − Pk;
else

Rk := {j | j ∈ R, xAkj = 1};
ik(j) = arg min{cij | i ∈ F, ẑi = 1, i 6= k}, ∀j ∈ Rk;
if ∃j ∈ Rk : ik(j) = ∅ then

continue;
end
if
∑

j∈Rk
cik(j)j < fk + c(Pk) +

∑
j∈Rk

ckj then
ẑk := 0;
TS := TS − Pk;
xAkj := 0, xA

ik(j)j
:= 1, ∀j ∈ Rk;

end
end

end

Algorithm 2: Peeling procedure.

Randomly Generated Graphs From [40]. For this set of instances the parameters for the generation
were set as follows: |S| ∈ {20, 50, 100}, |R| ∈ {20, 50, 100}. Edges of the core network are generated
with probability p(S) ∈ {0.1, 0.5, 1}, while the connections between facilities and customers are
established with probability p(R) ∈ {0.18, 0.55, 1}. Edge weights were uniformly randomly set to
an integer value between 50 and 100. Finally, the facility opening costs were uniformly randomly
assigned to values between 150 and 200. Increasing only the core costs did not significantly change
the behavior of the GRASP algorithm for this set of instances. The core network was generated
by MAPLE [2], using the parameters given above. Finally, customers are randomly linked to the
existing nodes using the density values p(R).
As the original instances are unrooted we selected the facility with the highest index for the root
node respectively.

Graphs Derived From OR-library [5] and UflLib [33]. We consider another class of benchmark
instances, obtained by merging data from two public sources. In general, we combine an UFLP
instance with an STP instance, to generate ConFL input graphs in the following way: first |F |
nodes of the STP instance are selected as potential facility locations, and the node with index
1 is selected as the root. The number of facilities, the number of customers, opening costs and
assignment costs are provided in UFLP files. STP files provide edge-costs and additional Steiner
nodes.

• We consider two sets of non-trivial UFLP instances from UflLib [33]:
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– mp-{1,2} and mq-{1,2} instances have been proposed by Kratica et al. [24]. They are
designed to be similar to UFLP real-world problems and have a large number of near-
optimal solutions. There are 6 classes of problems, and for each problem |F | = |R|. We
took 2 representatives of the 2 classes MP and MQ of sizes 200 × 200 and 300 × 300,
respectively.

– The gs-{250,500}a-{1,2} benchmark instances were initially proposed by Koerkel [23]
(see also Ghosh [14]). Here we chose two representatives of the 250× 250 and 500× 500
classes, respectively. The authors drew uniformly at random connection costs from [1000,
2000], and the facility opening costs from [100, 200].

• STP instances: Instances {c,d}n, for n ∈ {5, 10, 15, 20} were chosen randomly from the OR-
library [5] as representatives of medium size instances for the STP. These instances define the
core networks with between 500 and 1000 nodes and with up to 25,000 edges.

Combined with assignment graphs, the largest instances of this data set contain 1,300 nodes and
115,000 edges.

All experiments were performed on a Intel Core2 Quad 2.33 GHz machine with 3.25 GB RAM,
where each run was performed on a single processor. For solving the linear programming relaxations
and for a generic implementation of the branch-and-cut approach, we used the commercial packages
IBM CPLEX (version 11.2) [1] and ILOG Concert Technology (version 2.7).

6.1. Testing Randomly Generated Instances
For the following tests we turn the primal heuristics off, in order to compare lower bounds of

all presented MIP formulations. Furthermore, our preliminary results have shown that turning
all CPLEX general purpose cuts off speeds up the performance. Therefore, and in order to avoid
biased results, all the results reported in this paper are obtained without usage of these cuts.

LP-gaps. We first test the performance and the quality of lower bounds for proposed formulations.
For that purpose, we run the models as linear programs. Table 3 provides the average gaps calcu-
lated as (OPT − υLP (.))/OPT , where optimal values are obtained by running the branch-and-cut
approach (see below). The set of 81 instances is divided into 3 groups according to the size of the
core- and the assignment-subgraph.

Not surprisingly, the worst gaps are obtained by running SCFR model in which “big-M” con-
straints affect all the arcs in G. Comparing gap values of SCFF model on these three groups, we
observe that the gap increases with the size of the nodes of the core network. This is also not
surprising, since “big-M” constraints of the SCFF model affect only the core network. We observe
that there is a correlation between the size of the two subgraphs and the quality of obtained lower
bounds for the other models as well. The gaps obtained by MTZ model are surprisingly good,
and very close to those obtained by MCFF . The best LP-gaps are obtained by MCFR model.
Interestingly, the most difficult instances for the latter three models appear to be those with the
equal number of facilities and customers.

Finally, we tried to make the same experiment with CFF and CFR models, but apparently in
almost all cases the execution has been terminated because of memory overconsumption.
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Solving MIPs. Table 2 shows the running times in seconds (t[s]) and the number of branch-and-
bound nodes (B&B) needed to solve this set of instances. Each row corresponds to three instances
generated according to the same probabilities p(R) and p(S). We provide values for t[s] and B&B
averaged over the respective group. We set the time limit to 1000 seconds. If at least one of the
three instances per group is not solved to optimality, we denote this by “-”.
As expected, due to the weak lower bounds of the SCF +

R, most of the instances could not be solved to
optimality within the given time limit. The exceptions are graphs with complete bipartite structure
of the assignment subgraph AR that appear to be easy for SCF +

R. The second worse performance
was shown by the MCFR model, which is easily explained by its huge number of variables.
This test gives two surprising results:

1. Despite the fact, that the integrality gap of model CUTF can be as bad as 1
|F | it outper-

forms even the strongest cut set based model CUTR with respect to the running time. On
average, the number of B&B nodes needed by CUTF is greater by a factor of 2.3 than the
corresponding number for CUTR. However, averaged over all 81 instances, CUTF is about
4.6 times faster than CUTR.

2. The compact MTZ model with arbitrarily bad lower bounds performs comparatively well. It
outperforms CUTR: The average running time over all instances for MTZ is 5.6% less than
the corresponding time for CUTR.
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Testing the influence of the factor M . In the following test, we multiply the costs of the core
network by a factor M ∈ {3, 5, 10}. Our goal is to test the influence of the cost structure of the
core network on the overall performance of proposed MIP models. For that purpose, we select
the best performing models according to the results obtained above, namely: MTZ , CUTF and
CUTR. As a reference value, we take the average running time the model CUTL needed to solve
the problems with M = 1 to optimality. For each of the three MIP models, and for each of possible
M values, we divide the corresponding average running time with the reference time to calculate
the so-called slow down factor shown in Figure 11.
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Figure 11: Results for randomly generated instances from [40]: Average slow-down factors for three MIP models and
for M ∈ {1, 3, 5, 10}.

The obtained slow down factors indicate that the MTZ model is the most affected by increasing
the costs of the core network: MTZ needs about 7 times more time to solve the instances to
optimality, if the costs of the core network are multiplied by factor M = 10. This result is due
to decreasing quality of lower bounds of the MTZ model with increasing M values. On the other
hand, models CUTF and CUTR are less affected by that effect: In the worst case, when M = 10,
the average running time increases by roughly a factor of 2.6 and 2.1 for CUTF and CUTR,
respectively. We also observe that CUTF outperforms MTZ by a factor of 5 for M = 1, and by a
factor of 16 for M = 10.

Branching. We also tested our branching strategy described in Section 5 against the CPLEX default
branching strategy. For each of the 27 density settings, Figure 12 shows the speed up factor obtained
by dividing two running times: one needed to solve the instance with default CPLEX setting to
optimality and the other one obtained with our branching strategy. The values are averaged over
three instances per setting. In most of the cases our branching strategy significantly reduces the
overall running time. On average over all 81 instances, our branching strategy outperforms CPLEX
default branching by a factor of 1.4, 3.3 and 2.9, when models MTZ , CUTF and CUTR are solved,
respectively.
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Figure 12: Results for randomly generated instances from [40]: Speed-up factors obtained by using branching priorities
for facility nodes against default branching times.

|S| |R| MTZ SCFF SCFR MCFF MCFR

20 100 1.36 % 5.44 % 96.24 % 1.33 % 0.73 %
50 50 2.57 % 7.33 % 93.28 % 2.51 % 1.36 %

100 20 2.48 % 8.33 % 85.19 % 2.43 % 1.22 %

Table 3: Average integrality gaps ((OPT − υLP (.))/OPT ) for selected MIP formulations
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6.2. Testing Larger Graphs
The set of instances is divided into three groups according to the underlying instance for the

assignment graph. We refer to them as mp, mq and gs group. Tables 4 and 5 report on the results
obtained through this experiment. Note that the optimal values, as well as lower bounds reported
in this paper differ from those reported in [28]. This is due to in-degree inequalities used in [28],
that turned out to model the Steiner tree star problem, instead of ConFL.

Comparing Two Branch-and-Cut Approaches:. First, we compare the two branch-and-cut ap-
proaches by running them with the proposed primal heuristic. Regarding 32 instances obtained by
combining stein and mp/q instances, CUTF solves all 32 instances to provable optimality within
213 seconds on average. The gaps we report for each model were calculated as

gap[%] =
UB − LB

UB
,

where UB and LB are the upper and lower bound obtained by the respective model. In addition,
we report on the running time in seconds (t [s]), the model CUTF needs to solve the instances of
the mp/q group to optimality. Note that CUTR solves only 7 out of 32 mp/q instances to optimality.
For the majority of instances CUTR does not branch at all, as it has not finished the cutting plane
phase at the root node of the branch-and-bound tree. This is because the assignment graphs for
these instances are complete bipartite, which means that many dense cuts of the CUTR model
need to be separated.

Comparing MIP Models Initialized with Best Upper Bound:. Second, we run all three models, MTZ ,
CUTF and CUTR, but we deactivate the primal heuristic. Instead, we initialize the models with
the best upper bound found in the previous setting. For the gs group of instances, the best lower
and upper bounds obtained with this setting can be found in the right hand half of Table 5. Each
of the models MTZ and CUTR solves only 8 instances to optimality. For the mp subgroup, MTZ
gives much smaller gaps though, on average 0.17% compared to 1.42% for CUTR. For the group of
mq instances MTZ also outperformes CUTR with an average gap of 1.86% vs. 3.18% for the latter.
In the last group of large scale instances derived from the gs group, the performance of MTZ is
comparatively better. CUTF obtains the smallest gap in 11 cases, but MTZ performs best on 7
instances. Not a single instance of gs group has been solved to optimality. Note that for this last
group of instances the cost structure is special. The factor M , describing the scale between core
and assignment costs is about 0.001.
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PH on, no UB given PH off, best UB given
CUTR CUTF MTZ CUTR CUTF

Stein UFL OPT gap[%] B&B gap[%] B&B t [s] gap[%] B&B gap[%] B&B gap[%] B&B t [s]

c05 mp1 2,691.5 0.00 13 0.00 27 73 0.34 605 0.00 23 0.00 33 50
c10 mp1 2,661.7 0.00 17 0.00 17 67 0.00 86 0.00 23 0.00 25 47
c15 mp1 2,634.7 1.45 1 0.00 15 100 0.15 1084 1.39 3 0.00 17 73
c20 mp1 2,618.7 1.91 3 0.00 33 185 0.00 58 1.50 1 0.00 11 104
d05 mp1 2,677.9 0.00 9 0.00 27 62 0.00 19 0.00 9 0.00 37 40
d10 mp1 2,676.5 2.39 0 0.00 21 92 0.24 542 2.39 1 0.00 21 66
d15 mp1 2,635.7 1.05 5 0.00 13 67 0.00 43 0.00 15 0.00 11 41
d20 mp1 2,619.7 1.59 0 0.00 27 229 0.06 49 1.59 1 0.00 15 82

c05 mp2 2,692.5 0.00 11 0.00 15 37 0.00 58 0.00 17 0.00 13 26
c10 mp2 2,661.5 0.00 9 0.00 5 27 0.00 97 0.00 7 0.00 11 23
c15 mp2 2,640.5 0.61 3 0.00 10 47 0.13 1772 0.89 0 0.00 5 28
c20 mp2 2,626.5 0.00 11 0.00 11 55 0.06 300 0.00 11 0.00 11 43
d05 mp2 2,710.6 0.00 25 0.00 19 41 0.00 1048 0.00 31 0.00 17 31
d10 mp2 2,682.5 1.14 0 0.00 29 50 0.26 574 0.94 3 0.00 27 50
d15 mp2 2,647.5 0.53 7 0.00 7 43 0.00 14 0.53 7 0.00 7 31
d20 mp2 2,628.5 2.14 0 0.00 11 222 0.09 70 2.14 0 0.00 11 142

c05 mq1 3,907.0 3.08 1 0.00 53 261 1.56 11 3.08 1 0.00 41 193
c10 mq1 3,866.5 4.12 0 0.00 35 214 1.49 20 4.12 0 0.00 37 146
c15 mq1 3,842.5 3.09 0 0.00 41 183 1.61 12 3.09 0 0.00 35 142
c20 mq1 3,826.5 3.08 0 0.00 33 289 1.43 7 3.08 0 0.00 35 173
d05 mq1 3,879.0 2.56 1 0.00 31 210 0.00 25 2.12 3 0.00 51 127
d10 mq1 3,869.1 2.99 0 0.00 43 242 1.72 15 2.92 0 0.00 29 156
d15 mq1 3,843.5 2.68 3 0.00 61 173 1.07 28 2.02 5 0.00 37 134
d20 mq1 3,828.5 2.80 0 0.00 45 483 1.87 5 2.80 0 0.00 39 387

c05 mq2 3,768.6 2.89 0 0.00 73 561 2.99 10 2.88 0 0.00 71 283
c10 mq2 3,732.6 5.14 0 0.00 63 320 2.99 9 5.14 1 0.00 50 190
c15 mq2 3,689.6 2.31 0 0.00 41 259 1.23 6 2.31 0 0.00 69 231
c20 mq2 3,686.5 4.58 0 0.00 45 620 2.33 3 4.03 0 0.00 27 317
d05 mq2 3,741.5 2.60 0 0.00 47 276 1.34 8 2.59 0 0.00 73 236
d10 mq2 3,720.9 4.24 0 0.00 31 285 4.07 6 2.52 0 0.00 43 396
d15 mq2 3,696.5 3.96 0 0.00 41 328 1.49 5 2.44 0 0.00 33 198
d20 mq2 3,685.5 5.73 0 0.00 27 727 2.60 2 5.73 0 0.00 33 402

Table 4: Results for large scale instances I: The best obtained gaps per setting and instance are shown in bold.
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7. Conclusion

We provide a first theoretical comparison of MIP models for ConFL. We show that there are
basically two groups of models, derived from the way the connectivity requirements in the whole
graph are defined. Our “F” models require connectivity among open facilities and the root node,
and in addition a proper assignment of customers. We derive the stronger “R” models by requiring
connectivity between customers and the root node. There is also the weak Miller-Tucker-Zemlin
formulation which follows a sub-tour elimination concept, instead of a connectivity-based one.
In contrast to known results for the traveling salesman problem [42], we show that MTZ is not
dominated by the two single commodity flow models. The second interesting result is that, in
general, the integrality gap of all “F” models is not a constant value.

In our computational study we also obtain two surprising results. First, the branch-and-cut
algorithm for the correspondingly weaker “F” cut-based model, significantly outperforms all other
models in practice. Second, the weak but small MTZ formulation performs comparatively well,
and in most cases outperforms even the branch-and-cut derived for the stronger “R” model.
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[40] A. Tomazic and I. Ljubić. A GRASP algorithm for the connected facility location problem.
In Proceedings of 2008 International Symposium on Applications and the Internet (SAINT),
pages 257–260. IEEE Computer Society, 2008.

[41] D. P. Williamson and A. van Zuylen. A simpler and better derandomization of an approx-
imation algorithm for single source rent-or-buy. Operations Research Letters, 35(6):707–712,
2007.

55



[42] R. T. Wong. Integer programming formulations of the traveling salesman problem. Proceedings
of the IEEE international conference of circuits and computers, pages 149–52, 1980.

[43] J. Xu, S. Y. Chiu, and F. Glover. Tabu search for dynamic routing communications network
design. Telecommunication Systems, 8(1):55–77, 1997.

56



Layered Graph Approaches to the Hop Constrained Connected Facility
Location ProblemI
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Abstract

Given a set of customers, a set of potential facility locations and some inter-connection nodes,
the goal of the Connected Facility Location problem (ConFL) is to find the minimum-cost way
of assigning each customer to exactly one open facility, and connecting the open facilities via a
Steiner tree. The sum of costs needed for building the Steiner tree, facility opening costs and
the assignment costs needs to be minimized. If the number of edges between a pre-specified node
(the so-called root) and each open facility is limited, we speak of the Hop Constrained Facility
Location problem (HC ConFL). This problem is of importance in the design of data-management
and telecommunication networks.
In this article we provide the first theoretical and computational study for this new problem that
has not been studied in the literature so far. We propose two disaggregation techniques that enable
the modeling of HC ConFL: i) as a directed (asymmetric) ConFL on layered graphs, or ii) as the
Steiner arborescence problem (SA) on layered graphs. This allows for usage of best-known MIP
models for ConFL or SA to solve the corresponding hop constrained problem to optimality. In our
polyhedral study, we compare the obtained models with respect to the quality of their LP lower
bounds. These models are finally computationally compared in an extensive computational study
on a set of publicly available benchmark instances. Optimal values are reported for instances with
up to 1300 nodes and 115 000 edges.

Keywords: Hop constrained Minimum Spanning trees, Hop constrained Steiner trees, Connected
Facility Location, Mixed Integer Programming Models, LP-relaxations

1. Introduction

The Connected Facility Location problem (ConFL) models a problem arising in the design of
local access telecommunication networks, more precisely, Fiber-to-the-Curb (FTTC) networks. In an

IReprinted by permission, Ljubić, I. S. Gollowitzer. 2012. Layered graph approaches to the hop constrained
connected facility location problem. INFORMS Journal on Computing, ePub ahead of print April 11, 2012,
http://dx.doi.org/10.1287/ijoc.1120.0500. Copyright 2012, the Institute for Operations Research and the Manage-
ment Sciences, 7240 Parkway Drive, Suite 300, Hanover, Maryland 21076 USA.

Email addresses: ivana.ljubic@univie.ac.at (Ivana Ljubić), stefan.gollowitzer@univie.ac.at (Stefan
Gollowitzer)
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FTTC network, fiber optic cables run from a central office to a cabinet serving a neighborhood. End
users connect to this cabinet using the existing copper connections. Expensive switching devices are
installed in these cabinets. Telecommunication companies work rapidly on the expansion of local
access networks by partially replacing the outdated copper technology using fiber optic cables.
Thereby, the underlying network design problem consists of determining positions of cabinets,
deciding to which cabinet customers are connected (via existing copper cables), and how to connect
the cabinets among each other and to the central office (i.e., to the backbone network).

ConFL also has applications in the design of content distribution networks (CDN). There are
two types of servers used by a CDN: origin and replica servers (see, e.g., [28]). An origin server
stores the definitive version of the content. A replica server stores a copy of the content and may
be used as a media server, web server or as a cache server. The origin server communicates with
replica servers located in the network, in order to update the content stored therein. ConFL models
the following network design problem in the context of CDNs: replica servers are to be located on
a network that will cache information. Demand nodes make requests for the information. Each
demand node is served from the one among the replica servers it can be assigned to at the least cost.
Updates to the information on the servers are made over time. Every piece of information that is
updated at a single server location, must also be updated at every other server on the network.
Therefore, we are looking for a network that opens a set of facilities such that each demand node
is assigned to exactly one facility and facilities can communicate to each other (and with the given
origin server). In Krick et al. [19], the authors considered the unrooted ConFL variant in which a
similar CDN problem arises without the existence of the origin server node.

If connection costs are non-negative, there always exists an optimal ConFL solution that obeys a
tree structure. In such simply connected graphs, reliability against a single edge/node failure is not
provided. More precisely, the probability that a session will be interrupted by a link/node failure
increases with the number of links/nodes in the path between the root and an installed facility. In
both CDN and telecommunication networks, economic arguments do not allow the installation of
more survivable networks with higher edge/node connectivity. Since paths with fewer hops have a
better performance, we model these reliability constraints by generalizing the ConFL problem to
the Hop Constrained ConFL problem (HC ConFL).

Problem Definition. ConFL is closely related to the Steiner tree problem in graphs. Given a graph
G = (V,E) with costs on the edges, a set of terminal nodes R ⊂ V and a set of intermediate
(Steiner) nodes V \ R, recall that the Steiner tree problem consists of finding a subtree of G that
connects all terminals at minimum cost. Thereby, Steiner nodes may be used to interconnect the
terminals, if this would produce a cheaper solution.

Assuming that a root facility is given and needs to be open in any feasible solution, ConFL can
now be stated as follows:

Definition 1 (Rooted ConFL). We are given an undirected graph (V,E) with a disjoint partition
{S,R} of V with R ⊂ V being the set of customers, F ⊆ S the set of facilities, S \ F the set of
Steiner nodes and the root node r ∈ F . The set of edges is partitioned into the set of core edges
ES ⊆ S × S and assignment edges ER ⊆ F × R (ER ∪ ES = E, ER ∩ ES = ∅). We are also given
costs of core edges ce ≥ 0, e ∈ ES , assignment costs ce ≥ 0, e ∈ ER and facility opening costs
fi ≥ 0, i ∈ F . The root node is always considered as an open facility. The goal is to find a subset
of open facilities such that:

• each customer is assigned to an open facility,
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• a Steiner tree (consisting of core edges) connects all open facilities, and

• the sum of assignment, facility opening and Steiner tree costs is minimized.

If a facility node i ∈ F is part of the core network without serving any customer, then i does not
incur any opening costs and is considered as a Steiner node.

In the tree representing a feasible ConFL solution, the number of edges on the path between
the root node and an open facility is usually called the number of hops. Based on this definition
the Hop Constrained Connected Facility Location Problem is:

Definition 2 (HC ConFL). Given an instance of the rooted ConFL, find a minimum-cost solution
that is valid for ConFL and in which there are at most H hops between the root and any open
facility.

An instance of HC ConFL is shown in Figure 1a). Figure 1b) illustrates a solution for H ≥ 2.
In this and all succeeding examples we use the following symbols: r represents the root node,

represents a Steiner node. i represents a facility i. represents a customer. In these examples
the default edge/arc values, facility opening and assignment costs are all set to one. Costs different
from one are displayed next to the respective arc/node. The core network is presented as an
undirected graph.

a)

r 1

2

3

4

5

10 2

b)

r 1

2

3

4

5

10

Figure 1: a) Original instance; b) Feasible solution.

Observation 1. Using the transformation given in [11], any (HC) ConFL instance, in which
S ∩R 6= ∅, can be transformed into an equivalent one such that {S,R} is a proper partition of V .

Computational Complexity of HC ConFL. A polynomial time algorithm M for an NP-hard min-
imization problem is an approximation algorithm with approximation ratio α > 1 if for every
instance I, c(M(I)) ≤ αOPT (I), where c(M(I)) is the objective value of the solution M(I), and
OPT (I) is the value of the optimal solution. APX is a class of NP-hard optimization problems for
which there exist polynomial-time approximation algorithms with approximation ratio bounded by
a constant.

Lemma 1. HC ConFL (H ≥ 2) is not in APX — it is at least O(log |V |)-hard to approximate HC
ConFL, unless P = NP . The result holds even if the edge weights are all equal to 1 (ce = 1, for
all e ∈ E) and, consequently, even if the edge weights satisfy the triangle inequality.

Proof. See Appendix.
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Observe that HC ConFL becomes the uncapacitated facility location problem for H = 1: Steiner
nodes can be removed, and weights of the edges between the root and each potential facility i can
be incorporated into facility opening costs. Hence, if the edge weights satisfy the triangle inequality
and H = 1, HC ConFL belongs to APX (see, e.g., an approximation algorithm given by Mahdian
et al. [24]).

Our Contribution. We describe the Hop Constrained Connected Facility Location problem, that
has not previously been considered in the literature. By extending the ideas given by Gouveia et al.
[15] we propose two possibilities for modeling the HC ConFL: i) as a directed (asymmetric) ConFL
on layered graphs, or ii) as the Steiner arborescence (SA) (i.e., a directed Steiner tree) problem
on layered graphs. This allows for using the best-performing mixed integer programming (MIP)
models for ConFL or SA in order to solve HC ConFL to optimality. Our layered graphs correspond
to two different levels of disaggregation of MIP variables. In a polyhedral comparison we show that
the strongest models on different layered graphs provide lower bounds of the same quality. Hence,
we use the layered graph with less edges and facilities to conduct our computational study. In an
extensive computational study, we compare the performance of several branch-and-cut algorithms
developed to solve the proposed MIP models. This is a first theoretical and computational study
on MIP models for this challenging combinatorial optimization problem.

Preliminary results of this paper appeared in the Proceedings of the International Symposium
on Combinatorial Optimization (ISCO), 2010 ([22]).

The remainder of this paper is organized as follows: The following section provides a literature
review on some problems related to HC ConFL. In Section 3 we describe MIP formulations for
HC ConFL based on the concept of layered graphs. In Section 4 a polyhedral comparison of these
formulations is given. Section 5 describes the implementation of branch-and-cut algorithms that are
used to compare these models computationally. Section 5 also contains an extensive computational
study conducted on a set of publicly available benchmark instances. In Section 6 we discuss variants
of HC ConFL obtained from applications other than the ones arising in the telecommunications,
and in Section 7 we provide some concluding remarks.

2. Literature Review

The Hop Constrained Connected Facility Location Problem is closely related to two well-known
network design problems: the Connected Facility Location problem and the Steiner tree problem
with hop constraints.

The Connected Facility Location problem. Early work on ConFL mainly includes approximation
algorithms. The problem can be approximated within a constant ratio and the currently best-known
approximation ratio is provided by [10]. Ljubić [21] describes a hybrid heuristic combining Variable
Neighborhood Search with a reactive tabu search method. The author compares it with an exact
branch-and-cut approach, using two new classes of test instances. Results for these instances with
up to 1300 nodes are presented. Tomazic and Ljubić [30] present a Greedy Randomized Adaptive
Search Procedure (GRASP) for the ConFL problem and results for a new set of test instances with
up to 120 nodes. The authors also provide a transformation that enables solving ConFL as the
Steiner arborescence problem. Bardossy and Raghavan [4] develop a dual-based local search (DLS)
heuristic for a generalization of the ConFL problem. The presented DLS heuristic computes lower
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and upper bound using a dual-ascent and then improves the solution with a local search procedure.
Computational results for instances with up to 100 nodes are presented. In Leitner and Raidl [20],
the authors present a branch-and-cut-and-price approach for a variant of ConFL with capacities on
facilities.

In [11] we study MIP formulations for ConFL, both theoretically and computationally. We
provide a complete hierarchy of ten MIP formulations with respect to the quality of their LP-
bounds. We describe two cut-set based formulations (among others) for the (directed) ConFL
problem. The models differ in the way they make use of the connectivity concept. In the first
one, connectivity is ensured between the root and any open facility, and additional assignment
constraints are required between the facilities and customers. The second model uses cut-sets
that ensure connectivity between the root and every customer. We show that the second model
provides theoretically stronger lower bounds, but is outperformed by the first model in practice. In
the computational study, instances with up to 1300 nodes and 115 000 edges have been solved to
optimality using a branch-and-cut approach.

The Hop Constrained Steiner tree problem (HCSTP). In the hop constrained Steiner tree problem,
the goal is to connect a given subset of customers at minimum cost, while using a subset of Steiner
nodes, so that the number of hops between a root and each terminal does not exceed H. A large
body of work has been done for the Hop Constrained Minimum Spanning Tree problem (HCMST),
a special case of the HCSTP where each node in the graph is a terminal. A recent survey for the
HCMST can be found in [9]. Gouveia et al. [15] use a reformulation on layered graphs to develop
the strongest MIP models known so far for the HCMST.

Much less has been said about the Hop Constrained Steiner tree problem. The problem was first
mentioned by [13], who develops a strengthened version of a multi-commodity flow model for the
HCMST and HCSTP. The LP lower bounds of this model are equal to the ones from a Lagrangean
relaxation approach of a weaker MIP model introduced in [12]. Results for instances with up to
100 nodes and 350 edges are presented.

[31] presents MIP formulations based on Miller-Tucker-Zemlin subtour elimination constraints.
The models are then strengthened by disaggregation of variables indicating used arcs. The author
develops a simple heuristic to find starting solutions and improves these with an exchange procedure
based on tabu search. Numerical results are given for instances with up to 2500 nodes and 65 000
edges. [14] gives a survey of hop-indexed tree and flow formulations for the hop constrained spanning
and Steiner tree problem.

Costa et al. [7] give a comparison of three heuristic methods for a generalization of the HCSTP,
namely the Steiner tree problems with revenues, budget and hop constraints (STPRBH). The
considered methods comprise a greedy algorithm, a destroy-and-repair method and a tabu search
approach. Computational results are reported for instances with up to 500 nodes and 12 500 edges.
In Costa et al. [8] the authors introduce two new MIP models for the STPRBH. They are both
based on the generalized sub-tour elimination constraints and a set of hop constraints of exponential
size. The authors provide a theoretical and computational comparison with the two models based
on Miller-Tucker-Zemlin constraints presented in Voß [31] and Gouveia [14].

3. (M)ILP Formulations for HC ConFL

In this section we will show several ways of modeling HC ConFL as a mixed integer linear
program. MIP formulations for trees on directed graphs often give better lower bounds than their
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undirected counterparts (see, e.g., [23]). By replacing each core edge e between nodes i and j from
S by two directed arcs ij and ji and each assignment edge between a facility i ∈ F and a customer
k ∈ R by an arc ik without changing the edge costs, undirected instances can be transformed into
directed ones. In the remainder of this paper we will focus on the Hop Constrained Connected
Facility Location problem on the directed graph G = (V,A) obtained that way.

It is well-known that compact MIP formulations based on flow variables can be used to model
hop constrained network design problems in general. In the case of HC ConFL, the corresponding
flow-based models can be derived from the formulations for related hop constrained problems
presented in Balakrishnan and Altinkemer [3], Gouveia [12] and Gouveia [13]. In this work, we
are not going to consider such formulations. According to our computational experience for the
much simpler ConFL problem (see, Gollowitzer and Ljubić [11]), flow-based MIP formulations are
of limited usage if they are simply plugged into a MIP solver without using advanced decomposition
techniques (e.g., column generation, Lagrangean relaxation or Benders decomposition). In this work
we will use the cutting plane method as a decomposition technique for models with an exponential
number of constraints. These models are developed on layered graphs that implicitly model hop
constraints.

For comparison purposes, in Section 3.3 we will also present a three-index model with a polyno-
mial number of variables and constraints. This model, according to our preliminary computational
results, performs best in practice, as far as compact models are concerned.

Notation. To model the problem, we will use the following binary variables:

xij =

{
1, if ij belongs to the solution
0, otherwise

∀ij ∈ A zi =

{
1, if i is open
0, otherwise

∀i ∈ F

Some of the MIP models provided below do not explicitly use variables x and z. The variables
are rather provided in an extended space of layered graphs, and the values of their corresponding
counterparts are projected back into the space of (x, z).

We will use the following notation: AR = {ij ∈ A | i ∈ F, j ∈ R}, AS = {ij ∈ A | i, j ∈ S}. We
will refer to AR as assignment arcs and to AS as core arcs. Consequently, subgraphs induced by AR
and AS will be referred to as core and assignment graph, respectively. For any W ⊂ V we denote
by δ−(W ) = {ij ∈ A | i 6∈ W, j ∈ W}, δ+(W ) = {ij ∈ A | i ∈ W, j 6∈ W} and x(D) =

∑
ij∈D xij ,

for every D ⊆ A.
Unless explicitly provided in the text below, the proofs of the lemmata in the subsequent sections

are given in the Appendix.

3.1. Modeling Hop Constraints on Layered Graphs
We develop two variants of a layered graph to model HC ConFL as ConFL on a directed graph.

In the first variant we build a layered graph, denoted by LGx,z, by a disaggregation of both the
core and the assignment graph. In the second variant we transform only the core graph into the
layered graph, define nodes at the level H as potential facilities and leave the assignment graph
unchanged. We denote this graph by LGx.
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3.1.1. Layered Core and Assignment Graph LGx,z

Consider a graph LGx,z = (Vx,z, Ax,z) defined as an instance of directed ConFL with the set of
potential facilities Fx,z and the set of core nodes Sx,z given as follows:

Vx,z := {r} ∪ Sx,z ∪R where Fx,z = {(i, p) : i ∈ F \ {r}, 1 ≤ p ≤ H},
Sx,z = Fx,z ∪ {(i, p) : 1 ≤ p ≤ H − 1, i ∈ S \ F} and

Ax,z :=
5⋃
i=1

Ai where A1 = {(r, (j, 1)) : rj ∈ AS},

A2 = {((i, p), (j, p+ 1)) : 1 ≤ p ≤ H − 2, ij ∈ AS},
A3 = {((i,H − 1), (j,H)) : ij ∈ AS , i ∈ S \ {r}, j ∈ F \ {r}},
A4 = {rk : rk ∈ AR}
A5 = {((i, p), k) | ik ∈ AR, (i, p) ∈ Fx,z, k ∈ R}.

The cost of an arc from A1∪A2∪A3 and A4∪A5 is set to the cost of the corresponding arc from AS
and AR, respectively. The facility opening costs are fi for all (i, p) with p = 1, . . . ,H, i ∈ F \ {r}.
A node (i, p) will also be referred to as “node i at level p”.

Lemma 2. Given the graph transformation from G to LGx,z described above, there always exists
an optimal solution of the directed ConFL on LGx,z that can be transformed into a ConFL solution
on G with at most H hops and the same cost. Conversely, every feasible HC ConFL solution on
G corresponds to a directed ConFL solution on LGx,z.

Figure 2 illustrates the layered graph LGx,z = (Vx,z, Ax,z): Figure 2a) shows the complete lay-
ered graph LGx,z = (Vx,z, Ax,z) for the instance depicted in Figure 1a) and H = 3; Figure 2b) shows
the layered graph after the preprocessing; The optimal solution on LGx,z is shown in Figure 2d).
The projection onto the original graph G = (V,A) of the solution in d) is shown in Figure 1b).

Preprocessing. The following three preprocessing steps may significantly reduce the size of a layered
graph.

1. Without loss of generality, all arcs ((j, p), k) with j ∈ F \ {r} and k ∈ R such that crk < cjk
can be removed from LGx,z, for all p = 1, . . . ,H.

2. A node (i, p) ∈ Sx,z whose in-degree is zero, can be removed from LGx,z. The removal is
performed starting from level 1 to H.

3. A node (i, p) ∈ Sx,z whose out-degree is zero, cannot be part of any cost-optimal solution to
ConFL on LGx,z. The removal of those redundant nodes is performed starting from level H
to 1.

We perform these steps iteratively in the order given above.

We will associate binary variables to the arcs in Ax,z as follows: X1
rj corresponds to (r, (j, 1)) ∈

A1, Xp
ij to ((i, p − 1), (j, p)) ∈ A2, XH

ij to ((i,H − 1), (j,H)) ∈ A3, X1
rk to rk ∈ A4 and Xp

ik

corresponds to ((i, p), k) ∈ A5.
Let X[δ−(W )] denote the sum of all variables X in the cut δ−(W ) in LGx,z defined by W ⊆

Vx,z \ {r}. In Gollowitzer and Ljubić [11] we describe two cut-set based formulations for the
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Figure 2: LGx,z for the example shown in Figure 1a) and H = 3: a) LGx,z before, and b) after preprocessing; c) The
optimal LP-solution for CUTF

x,z – dashed and solid arcs take LP-value of 1/2 and 1, respectively; d) The optimal
LP-solution for CUTR

x which is already MIP-optimal; Figure 1b) shows the projection of the solution in e) back onto
the original graph.

(directed) ConFL problem. In the model called CUTF , connectivity is ensured between the root
and any open facility, and additional assignment constraints are required between the facilities and
customers. The second model, referred to as CUTR, uses cut-sets that ensure connectivity between
the root and every customer.

We now use these two models to derive corresponding cut-set formulations on LGx,z, denoted
by CUTF

x,z and CUTR
x,z. For notational convenience we will also introduce the following variables:

• Xp
ri, for ri ∈ A, p = 2, . . . ,H,

• X1
ij for ij ∈ AS , i 6= r, and

• XH
ij for ij ∈ AS , j ∈ S \ F .

These variables will be fixed to zero (see constraints (5) below).

Connectivity Cuts Between Root and Facilities. The model CUTF
x,z reads as follows:
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(CUTF
x,z) min

∑
ij∈A

cij

H∑
p=1

Xp
ij +

∑
i∈F\{r}

fi

H∑
p=1

Zpi + frzr

X[δ−(W )] ≥ Zpi ∀W ⊆ Sx,z \ {r}, (i, p) ∈ Fx,z ∩W (1)∑
jk∈AR

H∑
p=1

Xp
jk = 1 ∀k ∈ R (2)

Xp
jk ≤ Zpj ∀jk ∈ AR, p = 1, . . . ,H, j 6= r (3)

zr = 1 (4)

Xp
ij = 0 ij ∈ A,


i = r, p = 2, . . . ,H
i 6= r, j 6∈ R, p = 1
j ∈ S \ F, p = H

(5)

Xp
ij ∈ {0, 1} ∀ij ∈ A, p = 1, . . . ,H (6)

Zpi ∈ {0, 1} ∀(i, p) ∈ Fx,z (7)

Constraints (1) are connectivity cuts on LGx,z between the root r and each open facility i at a
level p, (i, p) ∈ Fx,z. Equalities (2) are assignment constraints. They ensure that each customer
k ∈ R is assigned to exactly one facility from Fx,z ∪ {r}. Inequalities (3) are coupling constraints
- they necessitate a facility j at a level p to be open if a customer is assigned to it. Equation (4)
forces the facility at the root node to be open. In this model, both arc- and facility variables are
disaggregated, and their projection into the space of (x, z) variables is given as: xij :=

∑H
p=1X

p
ij ,

for all ij ∈ A and zi :=
∑H

p=1 Z
p
i , for all i ∈ F \ {r}.

One observes that, since fi ≥ 0 for all i ∈ F \ {r} and cij ≥ 0 for all ij ∈ AR, there always
exists an optimal solution on LGx,z that also satisfies

H∑
p=1

Zpi ≤ 1 ∀i ∈ F \ {r}.

The validity of this claim follows from Lemma 10 (see Appendix) and from the fact that for each
i ∈ F , Zpi ≤ X[δ−({(i, p)})], for all p = 1, . . . ,H. Consequently, we can show the following

Lemma 3. In the model CUTF
x,z, connectivity cuts (1) can be replaced by the following stronger

ones:

X[δ−(W )] ≥
H∑
p=1

Zpi ∀W ⊆ Sx,z \ {r}, i ∈ F \ {r} (8)

Proof. For all i ∈ F each facility in the corresponding set of facility nodes, Fi = {(i, p) | p =
1, . . . ,H}, in LGx,z serves the same subset of customers with the same assignment costs. Therefore,
there always exists an optimal solution for which at most one among the facilities of the same group
Fi is opened, which explains the validity of these constraints.

The new MIP formulation, in which (1) is replaced by (8) will be denoted by CUTF+
x,z .
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Connectivity Cuts Between Root and Customers. By replacing (1) and (2) in the model CUTF
x,z

with the following inequalities,

X[δ−(W )] ≥ 1 ∀W ⊆ Vx,z \ {r},W ∩R 6= ∅, (9)

we obtain a new model that we denote by CUTR
x,z.

Inequalities (9) are connectivity cuts on LGx,z between sets containing the root and a customer
respectively. Our study on ConFL in Gollowitzer and Ljubić [11] has shown that these connectivity
constraints ensure stronger lower bounds than the bounds obtained using the connectivity cuts
between the root and facilities.

In a recent study by Gouveia, Simonetti, and Uchoa [15], it has been shown that cut-set based
MIP models on layered graphs represent the tightest formulations known so far for modeling the
HCMST. In a similar way, one can show that the same holds for HC ConFL. Layered graph models
dominate not only extended formulations (derived by using flow variables, hop-indexed trees or
Miller-Tucker-Zemlin constraints mentioned above), but also formulations projected in the space of
(x, z) variables based on exponentially many path or jump inequalities (see Costa et al. [8] and Dahl
et al. [9], respectively).

3.1.2. Layered Core Graph LGx

In this section we will show an alternative way of building a layered graph to model the
HC ConFL problem. In this new layered graph only the core network will be disaggregated while
the assignment graph will be left unchanged. Consider a graph LGx = (Vx, Ax) representing an
instance of directed ConFL with the set of customers R defined as above and the set of potential
facilities Fx and the set of core nodes Sx defined as follows:

Vx := {r} ∪ Sx ∪R where Fx = {(i,H) : i ∈ F \ {r}} ,
Sx = Fx ∪ {(i, p) : 1 ≤ p ≤ H − 1, i ∈ S \ {r}} and

Ax :=
4⋃
i=1

Ai ∪A6 ∪A7 where A1, A2, A3 and A4 are defined as for Ax,z,

A6 = {((i, p), (i,H)) : 1 ≤ p ≤ H − 1, i ∈ F \ {r}} and
A7 = {((j,H), k) : jk ∈ AR, j 6= r}

The facility opening and assignment costs are left unchanged. Set ASx := A1 ∪ A2 ∪ A3 ∪ A6

determines the layered core graph. The cost of an arc from A1 ∪ A2 ∪ A3 and A4 ∪ A7 is set to
the cost of the corresponding arc from AS and AR, respectively. Arcs between (i, p) and (i,H) are
assigned costs of 0 for all p = 1, . . . ,H − 1 and i ∈ F .

One observes that the preprocessing rules explained for LGx,z also apply to LGx and we can
show the following

Lemma 4. Given the graph transformation from G to LGx described above, there always exists an
optimal solution of the directed ConFL on LGx that can be transformed into a ConFL solution on
G with at most H hops and the same cost. Conversely, every feasible HC ConFL solution on G
corresponds to a directed ConFL solution on LGx.

Figure 3 illustrates the transformation of an original HC ConFL instance given in Figure 1a) into
an instance for directed ConFL on LGx, before and after preprocessing.

66



a) r

1,1

1,2

2,1

2,2

2,3

3,1

3,2

3,3

4,1

4,2

4,3

b) r

1,1

2,2

2,33,3

4,2

4,3

105

2

Figure 3: Layered graph LGx for the instance given in Figure 1a) obtained a) before and b) after preprocessing.

We will associate binary variables to the arcs in Ax as follows: X1
rj corresponds to (r, (j, 1)) ∈ A1,

Xp
ij to ((i, p−1), (j, p)) ∈ A2, XH

ij to ((i,H−1), (j,H)) ∈ A3, Xp
ii to ((i, p−1), (i,H)) ∈ A6. Again,

for notational convenience, we will also introduce the following binary variables:

• Xp
ri, for ij ∈ AS , p = 2, . . . ,H, and

• X1
ij , for ij ∈ AS , i 6= r

and fix them to zero. Since the assignment graph is left unchanged, we will associate the cor-
responding x variables to the assignment graph in LGx, i.e.: xjk to ((j,H), k) ∈ A7 and xrk to
rk ∈ A4. For the same reason, we link binary variables zi to each (i,H) in Fx. The corresponding
projection of a feasible solution (X′,x′, z′) into the space of (x, z) variables is given as follows:
xij :=

∑H
p=1X

′p
ij for all ij ∈ AS , xjk := x′jk for all jk ∈ AR and zi := z′i for all i ∈ F .

Connectivity Cuts Between Root and Facilities/Customers. Let Xx[δ−(W )] denote the sum of all
X and x variables in the cut δ−(W ) in LGx defined by W ⊆ Vx \ {r}. We now develop the MIP
model for directed ConFL on LGx with connectivity cuts involving node-variables as follows:

(CUTF
x ) min

∑
ij∈AS

cij

H∑
p=1

Xp
ij +

∑
jk∈AR

cjkxjk +
∑
i∈F

fizi

Xx[δ−(W )] ≥ zi ∀W ⊆ Sx \ {r}, W ∩ Fx 6= ∅ (10)∑
jk∈AR

xjk = 1 ∀k ∈ R (11)

xjk ≤ zj ∀jk ∈ AR (12)

Xp
ij = 0 ij ∈ AS ,

{
i = r, p = 2, . . . ,H
i 6= r, p = 1

(13)

zr = 1 (14)
Xp
ij ∈ {0, 1} ij ∈ AS , p = 1, . . . ,H (15)

zi ∈ {0, 1} ∀i ∈ F \ {r} (16)
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xjk ∈ {0, 1} ∀jk ∈ AR (17)

Constraints (10) are connectivity cuts on LGx between sets containing the root and a facility i
respectively. Equations (11) are the assignment constraints, and inequalities (12) are the coupling
constraints.

Similarly, if we now replace constraints (10) and (11) by the following ones, we obtain a stronger
formulation that we denote by CUTR

x :

Xx[δ−(W )] ≥ 1 ∀W ⊆ Vx \ {r},W ∩R 6= ∅ (18)

One observes that, if constraints (17) are relaxed to xjk ≥ 0, for all jk ∈ AR, the optimal solution
remains integral. Although constraints (11) are redundant (provided that the vectors c and f in
the objective function are non-negative), we will explicitly use them in the computational study
given in Section 5.

3.2. Modeling HC ConFL as Steiner Arborescence on Layered Graphs
In general, every (directed) ConFL problem can be modeled as the Steiner arborescence problem

(see [11]). The transformation works as follows: Each potential facility node i is split into i and i′

and replaced by a directed arc from i to i′ of cost fi. Assignment arcs ik ∈ AR are then replaced
by i′k. That way, by solving the Steiner arborescence problem on the transformed graph, we
distinguish between the following two situations:

1. arc ii′ is taken into a Steiner arborescence, i.e., the potential facility node i is used as an open
facility in a ConFL solution, or

2. only node i is taken into a Steiner arborescence, i.e., i is used only as a Steiner node in the
corresponding ConFL solution.

Hence, by applying this transformation to both LGx and LGx,z we can reformulate the HC ConFL
as the Steiner arborescence problem on even larger layered graphs. This transformation increases
the number of nodes by |F |, but does not provide stronger lower bounds for the corresponding
cut-set formulation (see [11]).

Steiner Arborescence Model on LGx. We now show an alternative and simpler way of modeling
HC ConFL as the Steiner arborescence problem on the layered graph LGx. The main difference
between ConFL and the (node-weighted) Steiner tree problem is that it is not known in advance
whether the opening costs of a potential facility node are going to be paid or whether it will be
used only as a Steiner node. However, looking at LGx, one observes that in any optimal solution
of the directed ConFL on LGx, the only Steiner nodes that are taken into an optimal solution are
at levels 1, . . . ,H − 1. In other words, if a facility node (i,H) belongs to an optimal solution, it
serves only to connect the root with a customer, i.e., every node (i,H) that belongs to an optimal
solution is an open facility. Because the in-degree of every (facility) node in an optimal solution is
at most one, facility opening costs can now be integrated into ingoing arcs as follows:

• for each arc from ASx connecting a node (j,H − 1) to (i,H) we set its cost to cji + fi

• for each arc from ASx connecting a node (i, p) (1 ≤ p ≤ H − 1) to (i,H) we set its cost to fi.

We will denote the layered graph LGx with the new cost structure as LGsa .
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Lemma 5. Every optimal solution of the Steiner arborescence problem on LGsa , with R being
the set of terminals, can be transformed into a ConFL solution on G with at most H hops that
incurs the same cost. Conversely, every feasible HC ConFL solution on G corresponds to a Steiner
arborescence solution on LGsa .

The corresponding MIP model reads then as follows:

(CUT sa) min
∑
ij∈AS

cij

H−1∑
p=1

Xp
ij +

∑
jk∈AR

cjkxjk +
∑
i∈F

fi

H−1∑
p=1

Xp
ii +

∑
ij∈AS ,j∈F

(cij + fj)XH
ij + fr

(11), (13), (15), (17), (18)

One observes that the given transformation works only for the graph LGx, but not for LGx,z. In
Section 5, we will provide computational results for the given cut-set formulation CUT sa.

3.3. Hop-indexed Tree Formulations
The following three-index model can be seen as a compact MIP formulation for HC ConFL

on LGx. A hop-indexed tree model has been originally proposed by [14] for solving the Hop
Constrained STP. [31] has observed that this formulation is a disaggregation of a formulation
based on Miller-Tucker-Zemlin constraints. Costa et al. [8] have extended this model with valid
inequalities to solve the hop constrained STP with profits. We will now extend the ideas of using
the hop-indexed tree variables to model HC ConFL. We model constraints for core and assignment
graphs separately. Variables Xp

ij indicate whether an arc ij ∈ AS is used at the p-th position from
the root node. Variables xjk indicate whether customer k ∈ R is assigned to facility j ∈ F . We
link core and assignment graphs by variables zj , indicating whether a facility is installed on node
j ∈ F . Using the variables described above we can formulate the HC ConFL as follows:

(HOP) min
H∑
p=1

∑
ij∈AS

cijX
p
ij +

∑
jk∈AR

cjkxjk +
∑
i∈F

fizi∑
i∈S\{k}:
ij∈AS

Xp−1
ij ≥ Xp

jk ∀jk ∈ AS , j 6= r, p = 2, . . . ,H (19)

∑
ij∈AS

H∑
p=1

Xp
ij ≥ zj ∀j ∈ F\{r} (20)

(11)− (17)

Constraints (19) are connectivity constraints given in a compact way – comparing HOP with the
model CUTF

x , we observe that the former one is obtained by replacing constraints (10) by (19)
and (20). Constraints (19) ensure that for every arc on level p leaving out a node j, there is at
least one arc at the level p− 1 entering j. Similarly, inequalities (20) link opening facilities to their
in-degree, i.e., if facility j is open, at least one of the arcs on levels p ∈ {1, . . . ,H} needs to enter it.
Using the same arguments as for the construction of the graph LGsa , one could replace inequalities
in (20) by equations, and consequently eliminate z variables.

To model HC ConFL, there are actually two options for the hop-indexed variables. We propose
to separate core and assignment graph and link them by the z-variables indicating the use of
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facilities. Alternatively, we can define hop-indexed variables on the whole graph G, modeling
connectivity between the root and each customer node. It can be shown that the latter model in
which hop-indexed variables are introduced for both, the core and assignment graph, provides the
same lower bounds as the model HOP , while exhibiting a much larger number of variables and
constraints. Hence, this alternative approach will not be considered throughout this paper.

4. Polyhedral Comparison

In this section we provide a theoretical comparison of the MIP models described above with
respect to the optimal values of their LP-relaxations. Denote by P. the polytope and by υLP (.)
the value of the LP-relaxation of any of the MIP models described above. We call a formulation
R1 stronger than a formulation R2 if the optimal value of the LP-relaxation of R1 is no less than
that of R2 for all instances of the problem. If R2 is also stronger than R1, we call them equivalent,
otherwise we say that R1 is strictly stronger than R2. If neither is stronger than the other one,
they are incomparable.

Lemma 6. Formulation CUTF+
x,z is strictly stronger than formulation CUTF

x,z. Furthermore, there

exist HC ConFL instances for which υLP (CUTF+
x,z )

υLP (CUTF
x,z)
≈ H − 1.

Lemma 7. Formulation CUTF
x is strictly stronger than formulation HOP.

Lemma 8. The following results hold:

1. The formulation CUTR
x is strictly stronger than CUTF

x . Furthermore, there exist HC ConFL
instances such that υLP (CUTR

x )

υLP (CUTF
x )
≈ |F | − 1.

2. The formulation CUTR
x,z is strictly stronger than CUTF

x,z. Furthermore, there exist HC

ConFL instances such that υLP (CUTR
x,z)

υLP (CUTF
x,z)
≈ (|F | − 1)|H|.

Lemma 9. Formulations CUTR
x,z and CUTR

x are equivalent.

The table in Figure 4 gives an overview of the models described and the chart illustrates their
relationships as shown in this section. In the chart an arrow denotes that the LP bound of its apex
is greater or equal than the LP bound of its origin. A grey background indicates the formulations
tested in the computational experiments whose results are provided in the next section.

HOP Compact formulation on graph LGx

CUTF
x Facility-based cuts on graph LGx

CUTR
x Customer-based cuts on graph LGx

CUTF
x,z Facility-based cuts on graph LGx,z

CUTF+
x,z Stronger facility-based cuts on graph LGx,z

CUTR
x,z Customer-based cuts on graph LGx,z

CUT sa Customer-based cuts on graph LGsa
HOP CUTF

x,z

CUTF+
x,z

CUTR
x,zCUT sa

CUTF
x

CUTR
x

Figure 4: Summary and relationships between the LP lower bounds of the presented formulations.
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5. Computations

In this section we present a computational comparison of the MIP models for solving HC
ConFL given above. According to Lemma 9 and the theoretical analysis given in the previous
section, transformations of G into LGx,z and LGx provide the two strongest MIP formulations
known until know. These formulations have the same quality of lower bounds. Therefore, we
concentrate on models derived from the layered graph LGx, which comprises a smaller number of
edges and facilities. The computational comparison is conducted on three branch-and-cut (B&C)
algorithms derived for MIP models with an exponential number of variables, and on one compact
model, HOP (cf. Section 3.3).

5.1. Branch-and-Cut: Implementation Details
We implemented B&C algorithms for solving HC ConFL using the following MIP models:

CUTF
x , CUTR

x and CUT sa. The ingredients of our branch-and-cut schema are outlined below. We
used the commercial package IBM CPLEX (version 11.2) and IBM Concert Technology (version
2.7), for solving the LP-relaxations, as well as a generic implementation of the branch-and-cut
approach. All experiments were performed on a Intel Core2 Quad 2.33 GHz machine with 3.25
GB RAM, where each run was performed on a single processor. Separated cut-set inequalities are
treated globally. The separation routine is called at every node of the B&C tree.

Initialization. Each branch-and-cut algorithm is initialized with the assignment and coupling con-
straints, (11) and (12), respectively. In addition, the following flow-balance inequalities are used.
Let Xx[δ+(W )] denote the sum of all variables Xp

ij in the cut δ+(W ) in LGx defined by W ⊆ Sx\{r}.
The flow-balance inequalities ensure that Steiner nodes i ∈ Sx cannot be leaves in the core graph:

Xx[δ−({i})] ≤ Xx[δ+({i})] ∀i ∈ Sx.

These inequalities are also known to strengthen the quality of lower bounds of cut-based models in
general (see, e.g., [16]).

Separation. Separation of cut-set inequalities (10) and (18) is done in polynomial time by running
the maximum-flow algorithm of Cherkassky and Goldberg [6] on the corresponding support graphs.
In the case of inequalities (10), the maximum flow is calculated between the root node and any
facility i such that zi > 0. Inequalities (18) are separated by calculating the flow between the root
and any customer j ∈ R. Separation is performed at each node of the branch-and-cut tree.

Since the computation of an LP-relaxation may be a time-consuming task, and the maximum-
flow computation can be performed relatively efficiently, we would like to detect more than one
violated inequality each time the separation routine is executed. To this end, we use the techniques
of nested and backward cuts which are described below.
Nested cuts: Each time a violated cut-set is detected, we update the capacities on the links of that
set and re-run the maximum flow algorithm in order to find the next violated inequality with a
disjoint set of variables. This process is repeated until a maximal allowed number of cuts (Mcut) is
inserted or until no more violated cuts are found. At the end of this process, the LP-relaxation of
the problem with the newly added set of inequalities is resolved.
Backward cuts: Once the maximum flow on a graph is calculated, we are able to detect up to
two different minimum cuts induced by the flow. More precisely, the maximum flow algorithm of
Cherkassky and Goldberg labels the nodes with three labels: “lr” - reachable from the root node,
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“lt” - reachable from the target node, and “l0” - not reachable. All nodes labeled by lr form a
cut set Lr such that outgoing arcs are saturated by the flow, while all arcs into Lr are completely
unused. Similarly, the nodes labeled by lt form a cut set Lt such that all ingoing arcs are saturated
by the flow and all outgoing arcs are completely unused. Hence, the first minimum cut is obtained
by running the breath-first search (BFS) starting from the root and visiting all nodes labeled by
lr, the other one is obtained by running the BFS starting from the target and visiting all nodes
labeled by lt. Those two cut-sets are identical only in the case that the minimum cut in the graph
is unique (in which case none of the nodes is labeled l0).

The two features, nested and backward cuts are combined with each other, i.e., we are “nesting”
both, forward and backward cuts.

Finally, in order to favor sparse cuts, we add a small ε value to the capacity of each arc, before
running the maximum-flow algorithm. Hence, in the case of several minimum cuts of the same
weight, the ones with the least number of variables will be detected earlier.

Figures 5 and 6 show the pseudo-codes of the separation algorithms for detecting violated
inequalities of type (10) and (18), respectively. Thereby, Pool represents a pool of valid inequalities
that are added to the LP-model at the end of the separation procedure. For a directed graph G with
non-negative arc capacities c, the procedure maxflow(G, c, r, i) returns the value of the maximum
r-i flow. For a directed graph G with the flow f , procedures forward() and backward() return
the set of arcs composing the forward and backward minimum cuts as described above.

Algorithm 5.1: FacilityCuts(LGcore
x , X, z)

for each a ∈ ASx

do ca ← Xa + ε
Pool ← ∅
for each i ∈ Fx s.t. zi > 0

do



f ← maxflow(LGcore
x , c, r, i)

while f < zi and |Pool | < Mcut

do



Afw ← forward(f)
Abw ← backward(f)
Pool ← Pool ∪ {Xx[Afw] ≥ zi} ∪ {Xx[Abw] ≥ zi}
for each a ∈ Afw ∪Abw

do ca ←∞
f ← maxflow(LGcore

x , c, r, i)
Add Pool to the LP and resolve it.

Figure 5: Pseudo-code for separating inequalities (10) on the graph LGcore
x .

Observe that the separation of (10) is done using only the core of the layered graph LGcorex =
(Sx, Ax) while the separation of (18) is conducted on the whole layered graph LGx.

Branching and Enumeration. Among all binary variables, the biggest influence on the structure of
the solution is due to facility location variables zi. Therefore, in our default branch-and-bound im-
plementation, the highest branching priority is assigned to these variables. The default enumeration
strategy of CPLEX is used.

72



Algorithm 5.2: CustomerCuts(LGx, X)

for each a ∈ Ax
do ca ← Xa + ε

Pool ← ∅
for each j ∈ R

do



f ← maxflow(LGx, c, r, j)
while f < 1 and |Pool | < Mcut

do



Afw ← forward(f)
Abw ← backward(f)
Pool ← Pool ∪ {Xx[Afw] ≥ 1} ∪ {Xx[Abw] ≥ 1}
for each a ∈ Afw ∪Abw

do ca ←∞
f ← maxflow(G, c, r, j)

Add Pool to the LP and resolve it.

Figure 6: Pseudo-code for separating inequalities (18) on the graph LGcore
x .

5.2. Data Set
We consider a class of benchmark instances, originally introduced in Ljubić [21], and also used

by Tomazic and Ljubić [30] and Bardossy and Raghavan [4]. The ConFL instances are obtained by
merging data from two public sources. In general, one combines an instance for the Uncapacitated
Facility Location problem (UFLP) with an STP instance, to generate ConFL input graphs in the
following way: Nodes indexed by 1, . . . , |F | in the STP instance are selected as potential facility
locations, and the node with index 1 is selected as the root. The number of facilities, the number
of customers, opening costs and assignment costs are provided in UFLP files. STP files provide
edge costs and Steiner nodes.

• As UFLP data we chose a set of non-trivial instances from UflLib (see [27]): Instances mp{1,2}
and mq{1,2} have been proposed by [18]. They are designed to be similar to UFLP real-world
problems and have a large number of near-optimal solutions. There are 6 classes of problems,
and for each problem |F | = |R|. We took 2 representatives per each of the 2 classes mp and
mq. The instances from mp are of size 200× 200 and the ones from mq are of size 300× 300.

• As STP instances we chose a set from the OR-library (see [5]): Instances {c,d}n, for
n ∈ {5, 10, 15, 20} were chosen as representatives of medium size instances for STP. These
instances define the core networks with between 500 and 1000 nodes and with up to 25 000
edges.

For the instances described above Table 1 shows: the name of the original STP and UFLP instance
it is derived from; the number of customers (|R|); the number of facilities (|F |), the number of
nodes in the core graph (|V \R|); the number of edges in the core graph (|ES |) and the number of
assignment edges (|ER|). Combined with assignment graphs, the largest instances of this data set
contain 1300 nodes and 115 000 edges.
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STP UFLP |R| |F | |V \R| |ES | |ER|
c5 mp{1,2} 200 200 500 625 40000
c5 mq{1,2} 300 300 500 625 90000
c10 mp{1,2} 200 200 500 1000 40000
c10 mq{1,2} 300 300 500 1000 90000
c15 mp{1,2} 200 200 500 2500 40000
c15 mq{1,2} 300 300 500 2500 90000
c20 mp{1,2} 200 200 500 12500 40000
c20 mq{1,2} 300 300 500 12500 90000
d5 mp{1,2} 200 200 1000 1250 40000
d5 mq{1,2} 300 300 1000 1250 90000
d10 mp{1,2} 200 200 1000 2000 40000
d10 mq{1,2} 300 300 1000 2000 90000
d15 mp{1,2} 200 200 1000 5000 40000
d15 mq{1,2} 300 300 1000 5000 90000
d20 mp{1,2} 200 200 1000 25000 40000
d20 mq{1,2} 300 300 1000 25000 90000

Table 1: Basic properties of benchmark instances.

5.3. Comparison of Formulations
In the first step of our computational study we compare the performance of four proposed

formulations, the compact formulation HOP and three cut-set based formulations CUTF
x , CUTR

x

and CUT sa. More detailed computational results are provided in the Appendix (Tables 4 - 7).

5.3.1. Overall Performance
In Table 2 we show the number of instances that were solved to optimality by each of the

tested approaches. We did not impose a time limit. For the instances not solved to optimality the
memory requirements of the LP exceeded the 3.25 GB of memory available. In the leftmost column
we show the value of H, in the second column the group of instances is specified. We combine every
instance of this group with every instance in the set m{p,q}{1,2}, thus each line corresponds to 16
instances.

H CUTF
x CUTR

x CUT sa HOP
3 c{5,10,15,20} 16 16 16 16

d{5,10,15,20} 16 16 16 16
5 c{5,10,15,20} 16 16 16 14

d{5,10,15,20} 16 16 16 12
7 c{5,10,15,20} 16 16 16 12

d{5,10,15,20} 16 16 16 10
10 c{5,10,15,20} 16 16 16 10

d{5,10,15,20} 12 12 12 10

Table 2: Number of instances solved to optimality per group of 16.

In Figure 7 we compare the relative running times of the tested approaches. We chose the
running time of model CUTF

x as reference and display the speedup or slowdown factors for the
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other models obtained as tM
t
CUTF

x

where M ∈ {CUTR
x ,HOP ,CUT sa}. Observe that in Figure 7

some entries are missing, in particular when considering model HOP for H ≥ 5 and the other two
models for H = 10. This is because even the LPs of the corresponding formulations could not be
solved due to the memory limitations.

Table 3 compares the four models with respect to the following key figures: Number of enu-
merated Branch-and-bound nodes (BB), number of cuts added (Cuts) and running time (t [s]).
The number of instances that could be solved by all four approaches is given in column InstOPT .
The numbers shown are averages over the set of these instances, calculated separately for each
value of H. In addition to the calculated arithmetic means (µa), in order to avoid dominance of
either the harder or the easier instances in the results, we also provide shifted geometric means
µs (cf. Achterberg [1]) with s = 1. For non-negative values vi, i ∈ {1, . . . , k} the shifted geometric
mean for s ≥ 1 is defined as

µs(v1, . . . , vk) =
k∏
i=1

(vi + s)1/k − s.

Instances for which at least one of the models ran out of memory were not considered in the
calculation. In the last rows (#Best) we count the number of instances (out of 32) for which each
approach performed best with respect to the corresponding key figure. Note that two or more
approaches can perform equally well on one instance, thus the values for #Best do not necessarily
add up to 32. In each row we mark the entry of the best approach in bold.

Table 3 clearly indicates that regarding the overall running time, CUTF
x dominates the other

approaches. While for H = 10 model HOP appears to be faster on the instance set InstOPT , CUTF
x

(HOP) solves 8 (0) of the remaining 12 instances to optimality. Table 7 in the Appendix shows that
for H = 10, four instances remain unsolved by our approaches. Regarding the number of separated
cuts, CUTF

x also dominates CUTR
x and CUT sa. The number of branch-and-bound nodes varies

between the models and does not show any pattern. We recall that we used the default branching
strategy of CPLEX enhanced by higher priorities associated to facilities.

CUT F
x CUT R

x CUT sa HOP
H InstOPT BB Cuts t [s] BB Cuts t [s] BB Cuts t [s] BB t [s]
3 32 µa 18.0 6 36.0 16.0 138 114.6 17.0 111 99.9 15.0 54.5
3 32 µs, s = 1 8.3 2 13.4 7.5 37 33.8 8.0 32 31.5 7.7 33.3
5 26 µa 19.0 55 57.5 19.0 371 291.1 18.0 317 241.0 19.0 90.0
5 26 µs, s = 1 14.9 18 30.0 15.4 243 112.4 15.3 215 102.1 15.0 61.0
7 22 µa 30.0 216 164.7 24.0 722 992.9 21.0 584 726.8 26.0 121.2
7 22 µs, s = 1 24.4 115 82.5 21.2 642 450.9 17.6 517 354.9 22.8 92.8

10 20 µa 37.0 509 580.9 26.0 1220 4128.4 28.0 1064 3730.8 55.0 176.4
10 20 µs, s = 1 31.3 469 367.2 21.7 1081 2321.4 23.7 970 2228.8 39.5 148.5
3 32 #Best 14 32 28 19 7 2 21 7 2 19 0
5 26 #Best 16 32 30 12 1 0 11 1 0 10 2
7 22 #Best 5 26 21 12 4 1 11 2 0 7 10

10 20 #Best 6 27 12 12 0 0 11 1 0 1 16

Table 3: Comparison chart for models CUTF
x , CUTR

x , CUT sa and HOP .

The maximum LP gaps over all models, instances and values for the hop limit were less than
5%. For all but 8 instances model CUTR

x gave a strictly better LP bound than CUTF
x . We observe
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that the obtained gaps are far below the gaps of the worst-case examples provided in Section 4.

5.3.2. Separation algorithms
In Figure 8 we compare the time spent for separation compared to the total running time of

models CUTF
x and CUTR

x . The lower value shown indicates the time spent for separation and the
upper value indicates the total running time.

Figure 8 shows that typically the amount of time needed for the separation of facility based
connectivity cuts is by 1 to 2 orders of magnitude smaller than the corresponding time needed to
separate customer based cuts. This can be explained by two factors. One is the size of the core
graph (Sx, ASx) versus the size of the complete layered graph (Vx, Ax). The other factor is the
number of maximum flow calculations, that are carried out in each iteration. While this number in
case of model CUTF

x corresponds to the number of non-zero variables zi, i ∈ F , it is always equal
to the number of customers in case of CUTR

x or CUT sa. The difference between these two values is
up to 2 orders of magnitude as indicated by the values of |F0| given in Tables 4 - 7 in the Appendix.
F0 is the set of non-zero facility variables after solving the LP relaxation at the root node.

The instances in Figure 8 were chosen randomly. The models show a behaviour similar to the
one described above on the remaining instances as well.
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Figure 8: Comparison of the time spent for separation and the total running time for selected instances and H = 5.

5.4. Size of the Layered Graph
One of the potential drawbacks of layered graph models might be the size of the underlying

graph LGx. We now study the growth of the size of the layered graph in relation with the number of
allowed hops H and in relation with the density of the core graph. Figure 9 shows the relative size
of the layered graph, dependent on the value of H, for 4 different instances. We chose one UFLP
instance (mp1) and combine it with four STP instances of different densities: c5, c10, c15, c20.
For each of the four instances, we report the following two quotients: |Vx|/|V | and |ASx |/|AS |, for
H = 3, . . . , 10. Note that all reported values for |Vx| and |ASx | are obtained after the preprocessing
described in Section 3.1.1.
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One observes that for sparse graphs (c5, c10) and smaller values of H, the graph LGx is
significantly smaller than G. This explains the efficacy of models on LGx in these cases. The
reason why the layered graph is sometimes much smaller than G is the sparsity of the core graph.
Many facilities and Steiner nodes might be removed during the preprocessing steps because for
small values of H they are not reachable within the given hop limit.

Solving HC ConFL for H ∈ {3, 5} is in most cases even faster than solving the ConFL problem
without any hop constraints (cf. the running times for ConFL given in Gollowitzer and Ljubić [11]).
As the density of the graph or the value of H increases, the layered graph may become ten times
as large as the original graph G (for example, for c20mp1 and H = 10). This suggests that layered
graph models are better suited for sparse core graphs and smaller values of H. We recall that the
density of the assignment graph does not influence the size of the layered graph LGx.
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c5mp1 c10mp1 c15mp1 c20mp1

Figure 9: Size of Vx and ASx compared to size of V and A, respectively.

6. Diameter and Delay Constrained ConFL

Throughout this paper we make the assumption that one node of the solution is known in
advance. However, this assumption is not valid for all applications. For example, in the information
distribution networks considered by Krick et al. [19] no root node is given. Thus, to ensure reliability,
the hop distance between each pair of installed facilities is limited, leading to a diameter constraint
(DiaC). Another critical aspect of modern telecommunication networks is signal delay (e.g., for video
conferences) or signal attenuation (e.g., in long distance fiber-optic cables). Such applications lead
to models with a delay constraint (DelC), i.e., a limit on the delay along the longest path in the
network (cf. [17]).

There are recent contributions on layered graph approaches to both of these variants of the
Minimum Spanning and Steiner tree problems. Ruthmair and Raidl [29] extend known layered
graph models for the Delay constrained Minimum Spanning and Steiner tree problems. They
improve this approach by developing an Adaptive Layers Framework that is adjusted continuously
during the solution process of a Mixed Integer Program. Gouveia et al. [15] describe how the
layered graph for the HCMST can be adapted to model the Diameter constrained MST with either
odd or even diameter. This adapted layered graph involves an artificial root node (even diameter)
and an additional artificial layer (odd diameter).
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To solve the diameter constrained ConFL, we implemented the ideas presented in [15] and ran
some computations on the smallest (700 nodes and 40625 edges) instances of the benchmark set
described in Section 5. These instances were much larger than those considered by [15] (at most
161 nodes and 12880 edges) and turned out to increase the problem complexity significantly. Model
CUTF

x with the diameter constraint set to 6 took more than 45 minutes of running time and 100
Branch-and-Bound nodes (compared to less than 3 seconds and less than 12 nodes for H = 3) for
instances c5mp1, c5mp2 and c5mq1 respectively. Not even within 1 hour instance c5mq2 was solved
to optimality. Considering the difference in size of the used benchmark instances and the fact that
HC ConFL generalizes the HCMST these results are not too surprising.

There are two explanations for such a performance:

• The layered graph obtained by the transformation suggested in [15] is much larger than the
graph LGx. In particular, due to insertion of additional level(s), the preprocessing of nodes
with in-degree equal to zero has no effect at all.

• Cut set models on layered graphs for DiaC and DelC problems contain a lot of symmetries.
The presented approach is not developed to cope with these.

Therefore, we conclude that, in addition to the MIP models considered throughout this paper,
efficient approaches for the DiaC or DelC ConFL on larger instances require further investigation
on symmetry breaking techniques, preprocessing or adaptive layered graph frameworks.

7. Conclusions

Presently the strongest MIP models for the HCMST are obtained on layered graphs (see Gou-
veia, Simonetti, and Uchoa [15]). Following this concept, we described two possibilities to develop
the strongest MIP models for the HC ConFL so far by modeling it as the directed ConFL problem
on layered graphs. In the first transformation, a disaggregation of both the core and the assign-
ment graphs leads towards the corresponding strong MIP models. In the second transformation,
we disaggregate only the core graph, and then show that the best MIP formulation on that graph
provides the same strong lower bounds to the optimal integer solution value, while saving a signifi-
cant number of variables. We finally propose a simpler way of modeling HC ConFL as the Steiner
arborescence problem on the latter layered graph.

In the computational study, we show that the proposed layered graph models are computa-
tionally tractable. The model based on connectivity cuts between the root and open facilities
computationally outperforms its stronger counterpart with connectivity cuts between the root and
each customer. Surprisingly, the compact three-index model performs comparatively well but shows
certain limitations due to its memory requirements. The size of the layered graph may drastically
increase with the density of the core graph and with the number of allowed hops.
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Appendix

Proof of Lemma 1. The result can be obtained by applying an error-preserving polynomial reduc-
tion from SET COVER. Any SET COVER instance can be reduced into a HC ConFL instance in
polynomial time, as follows. We first reduce the SET COVER instance into a hop constrained
Steiner tree instance in which all edge weights are set to 1 (see Manyem and Stallmann [26]
or Manyem [25]). We then reduce such obtained hop constrained Steiner tree instance into a
HC ConFL instance as follows: For each terminal i in the hop constrained Steiner tree we define
a potential facility in HC ConFL. Then, for each such facility i, we add a customer node ci. Each
customer ci is connected only to facility i with an edge of weight 1. The result follows immediately
from the fact that SET COVER cannot be approximated in polynomial time within any factor
smaller than c lnn (c is a constant given by Alon et al. [2] and n is the number of items to be
covered) unless P = NP .

For the proof of Lemma 2 we need the following

Lemma 10. There always exists an optimal solution (V 0
x,z, A

0
x,z) of directed ConFL on the layered

graph LGx,z such that
H∑
p=1

|δ−{(i, p)} ∩A0
x,z| ≤ 1 ∀i ∈ F \ {r} (21)

and
H−1∑
p=1

|δ−{(i, p)} ∩A0
x,z| ≤ 1 ∀i ∈ S \ F. (22)

Proof. Assume that, w.l.o.g., there exists a node j ∈ S, whose in-degree over all levels is equal to
2, i.e., there exist p and q (1 ≤ p < q ≤ H) such that in-degree of (j, p) and (j, q) is equal to one.
Denote by T qj the optimal sub-tree rooted at (j, q). We transform the solution as follows: a) We
move the core arcs in T qj up by q − p levels, such that the obtained tree is then rooted in (j, p).
We then refer to it as T pj . b) For customers assigned to open facilities (i, l), q ≤ l ≤ H in T qj , we
assign them to facility (i, l− q+p) instead. c) Finally, starting from (j, q) towards r, we recursively
remove nodes with out-degree 0 from the solution.

By repeating this procedure for all nodes whose respective in-degree is greater than 1, we
obtain a solution with the desired property. As we remove arcs with non-negative cost and reassign
customers without incurring additional cost, the obtained solution is at most as expensive as the
original one.

Proof of Lemma 2. We associate binary variables to the arcs in Ax,z as follows: X1
rj corresponds

to (r, (j, 1)) ∈ A1, Xp
ij to ((i, p − 1), (j, p)) ∈ A2, XH

ij to ((i,H − 1), (j,H)) ∈ A3, X1
rk to rk ∈ A4

and Xp
ik corresponds to ((i, p), k) ∈ A5.

We prove the lemma as follows: We first show that every feasible solution (x, z) of HC ConFL
on G can be mapped onto a feasible solution (X,Z) of the directed ConFL problem on the according
layered graph LGx,z. Then we show that an optimal solution of the directed ConFL problem on
LGx,z with the property of Lemma 10 can be mapped onto a feasible solution of HC ConFL on G.
We prove optimality of this solution by contradiction.
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Consider a solution (x, z). We label the nodes in S in this solution according to their respective
hop distance from the root. For core arcs ij ∈ AS such that xij = 1 and such that i and j are
labelled p− 1 and p respectively, we set Xp

ij = 1. For nodes i such that zi = 1 we set Zpi = 1 for p
equal to the label of node i. For assignment arcs jk ∈ AR such that xjk = 1 and node j has label
p we set Xp

jk = 1. This mapping preserves a feasible assignment of customers to open facilities as
well as connectivity among those chosen facilities. Thus, the solution corresponding to (X,Z) is
feasible for the directed ConFL problem on LGx,z. By the cost structure of LGx,z it also incurs
the same cost as (x, z).

Consider now a cost-optimal solution (X,Z) on LGx,z with the property of Lemma 10. Ignoring
the second index on the nodes of that solution, we obtain a feasible HC ConFL solution (x, z) in G
(i.e., a ConFL solution with at most H hops). By the cost structure of LGx,z (x, z) has the same
objective function value as (X,Z). Assume now, that (x, z) is not optimal on G, i.e., there exists
a solution (x′, z′) with a strictly lower cost. We can project this solution onto a solution (X′,Z′)
on LGx,z as described above. (X′,Z′) then has a lower cost than (X,Z) which is a contradiction
to (X,Z) being optimal.

Figures 2d) and 1b) illustrate this mapping for one instance.

Proof of Lemma 4. We will associate binary variables to the arcs in Ax as follows: X1
rj corresponds

to (r, (j, 1)) ∈ A1, Xp
ij to ((i, p − 1), (j, p)) ∈ A2, XH

ij to ((i,H − 1), (j,H)) ∈ A3, Xp
ii to ((i, p −

1), (i,H)) ∈ A6.
The proof follows the same idea as the proof of Lemma 2.
A mapping of a solution (x, z) in G onto a solution (X̄, x̄, z̄) in LGx is the following: We label

the nodes in S in this solution according to their respective hop distance from the root. For core
arcs ij ∈ AS such that xij = 1 and such that i and j are labelled p − 1 and p respectively, we set
X̄p
ij = 1. For nodes i such that zi = 1 we set z̄i = 1. If the label of such a node i is p < H we

set X̄p+1
ii = 1 in addition. For assignment arcs jk ∈ AR such that xjk = 1 we set x̄jk = 1. This

mapping preserves the assignment of customers to open facilities and provides connectivity among
those chosen facilities, possibly using additional arcs in A6. Thus, the solution corresponding to
(X̄, x̄, z̄) is feasible for the directed ConFL problem on LGx,z. By the cost structure of LGx (arcs
in A6 have a cost of 0) it also incurs the same cost as (x, z).

Consider now a cost-optimal solution (X̄, x̄, z̄) on LGx with the property of Lemma 10 but
where arcs in A6 are ignored in the summation terms. Removing the arcs in A6 and ignoring the
second index on the nodes of that solution, we obtain a feasible HC ConFL solution (x, z) in G
(i.e., a ConFL solution with at most H hops). By the cost structure of LGx (x, z) has the same
objective function value as (X̄, x̄, z̄). Assume now, that (x, z) is not optimal on G, i.e., there exists
a solution (x′, z′) with a strictly lower cost. We can project this solution onto a solution (X̃, x̃, z̃)
on LGx,z as described above. (X̃, x̃, z̃) then has a lower cost than (X̄, x̄, z̄) which is a contradiction
to (X̄, x̄, z̄) being optimal.

Proof of Lemma 6. Constraints (8) dominate constraints (1). Thus, formulation CUTF+
x,z is at least

as strong as CUTF
x,z. The strict relation holds because of the example in Figure 10. To show an

instance for which υLP (CUTF+
x,z )

υLP (CUTF
x,z)
≈ H − 1 holds, we generalize the above example. The subgraph

induced by nodes {1, 2, 3} is replaced by the subgraph containing nodes {1, . . . ,H − 1} being the
Steiner nodes and a node H, being the facility node. This subgraph is connected as follows: Node H
is connected to all i = 1, . . . ,H−1 with an edge of cost ciH = H−i. For each i = 1, . . . ,H−1, node
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i is connected to i+ 1 with an edge of cost ci,i+1 = 1. In the LP-relaxation of the model CUTF
x,z,

all facilities (H, p) at levels p = 2, . . . ,H will be open with ZpH = 1/(H − 1), and consequently,
X1
r1 = 1/(H − 1), so that υLP (CUTF

x,z) ≈ L/(H − 1). In contrast, the optimal LP-value of the
model CUTF+

x,z is υLP (CUTF+
x,z ) ≈ L, which proves the claim.

a) b) c)r

1

2 3

r

1,1

2,2 3,2

3,3

r

1,1

2,2 3,2

3,3

L

2

LL

2 2

Figure 10: a) Instance on G with H = 3; b) LP optimal solution for CUTF
x,z. Dashed and solid arcs take LP-values

equal to 1/2 and 1, respectively. υLP (CUTF
x,z) = L/2 + 4 ; c) LP optimal solution for CUTF+

x,z with cost L+ 4.

Proof of Lemma 7. We first show that υLP (CUTF
x ) ≥ υLP (HOP) and then give an example for

which the strict inequality holds:

υLP (CUTF
x ) ≥ υLP (HOP): It is enough to show that an optimal LP-solution of the formulation

CUTF
x is also feasible for the model HOP . For that purpose we will use the max-flow min-cut

theorem. A flow formulation on the graph G which is equivalent to the CUTF
x formulation

is given below. It comprises additional flow variables fkpij , for all ij ∈ AS , and k ∈ F \ {r},
p = 1, . . . ,H, representing the flow of commodity k on arc ij at the p-th position from the
root node. We denote this formulation by MCFF :∑

ji∈AS

fk,p−1
ji −

∑
ij∈AS

fkpij = 0 ∀k ∈ F \ {r}, i ∈ S \ {r, k}, p = 2, . . . ,H (23)

∑
rj∈AS

fk1rj = zk ∀k ∈ F \ {r} (24)

H∑
p=1

∑
jk∈AS

fkpjk = zk ∀k ∈ F \ {r} (25)

0 ≤ fkpij ≤ Xp
ij ∀ij ∈ AS , k ∈ F \ {r}, p = 1, . . . ,H (26)

(11)− (17)

Let (X′,x′, z′, f ′) be an optimal LP-solution for MCFF and (X′,x′, z′) its projection into the
space of (X,x, z) variables. We will show that (X′,x′, z′) ∈ PHOP . Constraints (20) are
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directly implied by inequalities (23)-(26). To show that constraints (19) are also satisfied, we
first observe that, for every Xp

jl, jl ∈ AS , p = 1, . . . ,H, there exists a commodity k ∈ F \ {r}
such that constraint (26) is tight, i.e., Xp

jl = fkpjl . From the flow conservation constraints (23)-
(25), it follows:

X ′pjl = f ′kpjl ≤
∑

i∈S\{k}:
ij∈AS

f ′k,p−1
ij ≤

∑
i∈S\{k}:
ij∈AS

X ′p−1
ij

and thus, inequalities (19) hold for (X′,x′, z′).

υLP (CUTF
x ) > υLP (HOP): Consider an example given in Figure 11. LP-solution for HOP shown

in Figure 11b) is not feasible for LGxCUTF and the strict inequality regarding the LP-values
holds.

a) b)

r r

Figure 11: a) Instance G with H = 3. b) An optimal LP-solution for HOPF in which dashed arcs take value 1/2.

Proof of Lemma 8. The result given in Gollowitzer and Ljubić [11] shows that the relative gap
between the LP-values of models CUTF and CUTR can be as large as |F | − 1, where |F | is the
number of facilities of a ConFL instance. Since the number of facilities in LGx is |F | and the
number of facilities in LGx,z is (|F | − 1)|H|+ 1, the result follows immediately.

Proof of Lemma 9. To prove this claim, we describe mappings between corresponding LP-solutions
as follows.

υLP (CUTR
x,z) ≥ υLP (CUTR

x ): Let (X,Z) be an optimal LP-solution of the model CUTR
x,z. We

project (X,Z) into a solution (X′,x′, z′) and show that it is feasible for the model CUTR
x .

We set X ′pij := Xp
ij for all arcs in A1, A2 and A3; X ′pjj := Zpj (= maxk∈RX

p
jk) for all arcs

in A6; x′jk :=
∑H

p=1X
p
jk for all arcs in A7; x′rk := X1

rk for all arcs in A4; zi :=
∑H

p=1 Z
p
i .

All the remaining X′ values are set to zero. Obviously, constraints (12)-(13) are satisfied, it
only remains to show that (X′,x′, z′) satisfies (18). Denote by δ−(W )|D = {ij ∈ δ−(W ) |
ij ∈ D}. Then, Xx[δ−(W )] = Xx[δ−(W )|∪4

i=1Ai
] + Xx[δ−(W )|A6∪A7

] = X[δ−(W )|∪4
i=1Ai

] +
Xx[δ−(W )|A6∪A7

] ≥ X[δ−(W )|∪4
i=1Ai

] +X[δ−(W )|A5
] = X[δ−(W )] ≥ 1.

υLP (CUTR
x ) ≥ υLP (CUTR

x,z): Let (X′,x′, z′) be an optimal LP-solution of the model CUTR
x . We

project this vector into (X,Z) as follows: Xp
ij := X ′pij for all arcs in A1, A2 and A3; X1

rk := x′rk
for all arcs in A4. Furthermore, we set Zpj := X ′pjj , for all arcs from A6, for p = 1, . . . ,H − 1,
and ZHj := z′j−

∑H−1
p=1 Zpj , for all j ∈ F \{r}. We then recursively define Xp

jk := min(Zpj , x
′
jk−∑H

q=p+1X
q
jk) starting from p = H, . . . , 1. By definition, (X,Z) satisfies constraints (2)-(6).

To show that constraints (9) are satisfied as well, observe that arc capacities defined as (X′,x′)
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enable for each commodity k ∈ R one unit of flow to be sent from r to k in LGx. By using
the above mapping of arcs and their capacities from LGx to LGx,z, we also ensure that one
unit of flow can be sent from the root to each commodity k ∈ R in the graph LGx,z which
concludes the proof.

In the following 4 tables we show detailed computational results. For each of the approaches
CUTF

x , CUTR
x and CUT sa and HOP and for each instance we show: the number of nodes in

the branch and bound tree (BB) and the total running time (t[s]). In addition, for the first three
approaches, we also provide: the number of user cuts added (Cuts), and the time needed to separate
them (tsep).
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CUTF
x CUTR

x CUT sa HOP
Inst. OPT |F0| BB Cuts tsep t [s] BB Cuts tsep t [s] BB Cuts tsep t [s] BB t [s]

c5mp1 2907.96 6 5 0 0.0 1.4 5 7 2.8 4.8 5 10 3.5 5.5 5 8.8
c5mp2 2912.63 4 3 0 0.0 1.3 3 0 1.2 2.4 3 0 1.2 2.4 3 8.5
c5mq1 4505.04 7 11 0 0.0 2.5 11 18 20.3 22.9 9 23 21.1 24.0 11 19.5
c5mq2 4082.42 0 0 0 0.0 2.3 0 0 1.1 4.1 0 0 1.1 3.7 0 19.5
c10mp1 2861.05 12 39 3 0.1 6.8 38 261 25.3 34.7 62 272 30.3 40.7 34 15.6
c10mp2 2760.27 10 3 0 0.0 2.1 3 108 7.5 10.0 3 92 7.0 10.0 3 11.1
c10mq1 4092.95 12 17 0 0.0 13.1 23 190 91.6 105.7 16 133 52.5 63.3 13 28.1
c10mq2 3946.52 13 29 3 0.1 15.3 29 169 78.8 96.8 21 108 57.3 69.7 29 34.1
c15mp1 2668.48 20 9 2 0.1 13.5 9 224 24.7 34.6 7 118 12.4 22.4 9 28.1
c15mp2 2679.63 14 9 0 0.0 20.9 13 271 28.3 43.1 9 177 18.9 37.4 9 32.6
c15mq1 3861.57 7 25 1 1.4 82.1 17 254 132.1 183.7 21 241 119.0 152.6 21 143.3
c15mq2 3694.56 16 63 6 1.2 130.9 27 315 183.8 250.0 27 214 126.2 172.1 23 136.6
c20mp1 2618.66 17 11 14 0.3 24.7 9 130 50.5 71.6 11 131 56.5 87.8 13 46.8
c20mp2 2630.46 14 7 36 0.4 33.2 5 69 28.4 44.3 9 86 34.5 50.7 9 37.4
c20mq1 3828.50 15 45 36 1.0 80.5 53 305 452.4 622.3 39 204 302.0 482.2 43 137.8
c20mq2 3687.49 20 37 36 1.1 149.3 27 190 293.4 427.4 35 181 296.3 482.7 27 226.9
d5mp1 2846.01 0 0 0 0.0 2.5 0 0 0.2 2.1 0 0 0.3 1.8 0 9.2
d5mp2 2847.68 5 3 0 0.0 2.2 3 1 1.0 2.3 3 1 1.2 2.5 5 9.0
d5mq1 4190.20 0 0 0 0.0 2.9 0 0 1.1 4.2 0 0 1.1 4.0 0 19.4
d5mq2 3978.17 0 0 0 0.0 2.8 0 0 1.1 3.5 0 0 1.1 3.6 0 19.6
d10mp1 2970.53 0 0 0 0.0 2.4 0 0 0.3 1.7 0 0 0.3 2.0 0 9.5
d10mp2 2941.59 0 0 0 0.0 1.9 0 0 0.2 1.4 0 0 0.2 1.4 0 9.9
d10mq1 4212.81 9 7 0 0.0 3.1 3 43 15.8 18.7 3 48 20.3 23.2 3 21.4
d10mq2 3979.59 5 3 0 0.0 3.3 3 2 8.3 11.4 3 1 7.9 11.0 3 20.9
d15mp1 2805.22 21 123 0 0.4 62.4 76 540 68.3 124.6 61 330 37.4 78.4 75 71.0
d15mp2 2692.85 10 11 0 0.1 12.6 11 116 14.0 19.8 11 56 7.8 12.4 11 17.1
d15mq1 3890.39 12 19 0 0.0 34.5 15 216 94.8 116.6 11 156 67.6 93.4 17 62.2
d15mq2 3788.07 20 25 0 0.6 82.2 17 386 177.8 214.1 51 236 132.7 180.5 27 83.5
d20mp1 2621.66 17 11 12 0.3 23.9 9 82 34.3 60.4 31 148 74.0 109.9 13 61.8
d20mp2 2632.46 13 5 22 0.3 18.7 6 130 54.2 75.9 11 198 81.7 98.2 9 49.9
d20mq1 3830.50 14 49 18 0.8 107.0 51 224 362.9 531.0 55 282 428.4 538.7 39 136.2
d20mq2 3687.49 19 38 12 1.6 210.1 49 182 350.3 520.0 31 114 204.3 329.2 31 210.2

Table 4: Comparison of models CUTF
x , CUTR

x , CUT sa and HOP for H = 3. The best running times are shown in
bold.
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CUTF
x CUTR

x CUT sa HOP
Inst. OPT |F0| BB Cuts tsep t [s] BB Cuts tsep t [s] BB Cuts tsep t [s] BB t [s]

c5mp1 2839.80 15 33 3 0.1 4.8 27 137 11.6 16.4 25 156 12.8 17.4 27 17.1
c5mp2 2839.05 14 15 0 0.1 3.8 19 154 13.0 16.4 17 133 11.9 15.4 15 15.2
c5mq1 3986.08 0 0 0 0.0 3.5 0 0 1.2 4.7 0 0 1.1 4.9 0 31.5
c5mq2 3928.49 12 23 4 0.0 8.4 29 251 77.3 89.4 17 273 79.6 91.5 15 38.0
c10mp1 2683.48 18 11 24 0.2 28.6 17 547 49.1 89.3 17 388 37.9 68.6 13 57.5
c10mp2 2663.46 12 7 25 0.1 14.0 5 256 18.6 39.1 8 193 16.7 33.1 7 40.0
c10mq1 3867.57 15 27 15 1.2 114.0 31 526 272.4 383.2 31 368 178.2 283.8 29 183.2
c10mq2 3733.85 20 57 30 1.1 170.4 37 850 432.2 691.6 33 453 220.0 332.0 33 333.1
c15mp1 2637.66 18 17 166 1.2 48.0 19 486 120.1 220.1 21 611 159.2 318.0 31 59.3
c15mp2 2644.46 14 10 136 0.8 22.7 11 597 151.7 216.7 9 467 104.8 188.1 15 38.3
c15mq1 3846.50 15 39 249 2.3 107.4 43 1038 923.5 1542.0 34 810 626.5 1037.0 53 177.4
c15mq2 3692.56 20 25 203 1.8 111.0 29 879 761.7 1207.0 21 717 566.7 807.4 30 218.8
c20mp1 2618.66 17 11 83 8.2 130.7 11 126 201.4 309.0 19 96 163.0 282.2 19 177.8
c20mp2 2626.46 14 6 37 3.3 71.0 13 85 170.4 232.0 9 75 112.3 177.3 9 114.0
c20mq1 3826.50 14 44 193 20.7 324.5 42 307 1098.0 1786.0 71 279 1107.0 1394.0 - -
c20mq2 3686.49 20 31 150 16.8 475.5 54 219 926.4 1258.0 41 198 701.1 1064.0 - -
d5mp1 2766.52 11 9 6 0.1 5.5 9 126 7.3 11.2 9 121 6.5 10.0 9 15.7
d5mp2 2795.15 10 11 6 0.0 5.3 9 82 6.8 10.2 5 70 4.4 8.0 9 15.4
d5mq1 4124.65 15 13 5 0.1 10.9 15 292 70.4 87.0 17 199 47.2 59.3 15 42.8
d5mq2 3826.77 11 9 4 0.1 7.1 7 112 27.0 36.5 9 155 37.8 48.6 11 38.3
d10mp1 2759.67 22 13 8 0.1 11.6 11 325 17.9 30.0 13 393 20.9 32.7 11 34.5
d10mp2 2782.68 18 37 0 0.1 29.3 23 382 27.6 44.9 29 334 26.6 39.5 15 32.4
d10mq1 3892.51 14 9 5 0.5 102.4 7 210 63.8 90.9 21 160 59.5 93.4 7 81.6
d10mq2 3760.49 20 17 12 2.1 93.9 31 446 147.2 204.8 35 514 194.0 284.3 23 110.3
d15mp1 2643.66 18 21 80 0.9 56.8 15 368 92.9 276.9 17 286 68.4 215.4 21 54.1
d15mp2 2647.46 13 9 44 0.5 23.1 9 253 53.8 127.6 7 251 56.5 149.0 7 39.9
d15mq1 3850.06 14 53 210 2.0 99.0 45 558 506.4 744.2 37 430 361.2 660.5 51 143.5
d15mq2 3702.56 20 23 100 2.5 211.9 43 576 499.9 846.8 31 601 541.5 1009.0 23 229.5
d20mp1 2619.66 17 21 59 17.5 161.2 21 128 406.4 582.5 23 182 485.3 726.7 - -
d20mp2 2628.46 14 7 40 12.6 102.3 7 85 273.7 375.6 7 64 204.5 324.3 - -
d20mq1 3828.50 14 46 246 81.1 828.9 71 500 2762.0 3681.0 60 383 2077.0 2496.0 - -
d20mq2 3685.49 20 35 36 18.5 733.1 35 170 966.5 1507.0 39 126 735.6 1120.0 - -

Table 5: Comparison of models CUTF
x , CUTR

x , CUT sa and HOP for H = 5. The best running times are shown in
bold.
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CUTF
x CUTR

x CUT sa HOP
Inst. OPT |F0| BB Cuts tsep t [s] BB Cuts tsep t [s] BB Cuts tsep t [s] BB t [s]

c5mp1 2703.97 18 13 14 0.1 9.9 21 331 25.8 43.2 9 210 11.5 22.4 13 31.1
c5mp2 2736.55 17 25 17 0.1 9.1 21 481 35.7 52.5 15 417 26.2 42.2 15 35.6
c5mq1 3906.98 14 29 17 0.2 36.8 21 452 119.7 194.5 19 366 101.5 153.6 23 93.7
c5mq2 3842.99 24 49 42 0.3 73.2 59 1037 345.6 559.2 41 963 309.8 441.0 45 198.5
c10mp1 2661.66 19 25 287 1.0 54.6 17 801 115.1 411.1 15 732 83.1 731.7 12 66.2
c10mp2 2663.46 13 9 187 0.4 42.8 7 476 52.5 242.9 11 430 49.4 214.9 25 39.8
c10mq1 3867.57 16 51 317 1.6 132.2 31 1154 616.6 1292.0 45 715 416.5 948.1 31 171.5
c10mq2 3733.85 19 47 499 2.8 250.5 49 1888 1176.0 4192.0 53 1146 686.8 1400.0 41 320.8
c15mp1 2634.66 17 17 473 8.9 162.7 19 744 345.1 927.6 19 822 363.2 944.7 68 92.8
c15mp2 2640.46 14 12 336 4.7 88.2 11 396 172.5 385.9 9 381 168.0 351.0 51 56.3
c15mq1 3844.50 15 53 617 15.3 358.9 41 1134 1434.0 2695.0 47 954 1095.0 2207.0 52 217.5
c15mq2 3689.56 20 70 718 23.8 747.8 42 762 1013.0 1642.0 33 742 939.0 1978.0 29 253.1
c20mp1 2618.66 17 35 186 146.7 552.1 45 217 803.1 990.5 59 174 654.9 842.3 - -
c20mp2 2626.46 14 12 93 49.2 206.8 41 137 536.7 655.9 28 184 622.9 762.3 - -
c20mq1 3826.50 14 37 230 149.7 1352.0 27 186 1042.0 1338.0 77 255 1490.0 2276.0 - -
c20mq2 3686.49 20 269 335 195.5 1677.0 53 278 1728.0 2283.0 64 456 2417.0 3665.0 - -
d5mp1 2685.94 10 10 25 0.1 9.3 7 346 19.6 32.7 3 183 9.0 18.2 11 26.3
d5mp2 2761.15 8 22 55 0.3 17.1 19 351 27.2 48.0 13 272 20.4 37.3 21 32.1
d5mq1 3903.51 11 21 13 0.8 107.0 33 336 128.0 212.7 19 328 100.3 173.7 15 133.3
d5mq2 3744.49 20 17 33 0.2 45.6 11 424 117.2 173.0 15 278 79.7 126.6 13 154.3
d10mp1 2685.54 19 17 120 0.5 78.4 13 625 65.9 419.1 19 813 93.3 612.2 21 75.0
d10mp2 2693.46 14 13 102 0.5 46.8 11 690 79.8 400.3 13 648 81.5 359.9 13 58.4
d10mq1 3873.06 16 33 157 0.7 280.6 27 861 385.8 1757.0 35 783 374.9 1840.0 33 206.1
d10mq2 3724.49 21 90 266 4.4 727.4 31 962 434.3 2358.0 19 820 313.7 1949.0 23 257.6
d15mp1 2639.66 17 41 276 7.3 233.3 15 527 295.3 922.0 17 491 265.3 893.9 32 81.9
d15mp2 2647.46 14 7 189 3.3 110.7 42 1112 821.1 2883.0 5 369 204.1 544.1 5 63.6
d15mq1 3847.06 14 49 434 17.9 877.6 63 1303 1969.0 4742.0 56 1288 1777.0 4331.0 - -
d15mq2 3698.49 20 45 528 19.6 821.9 44 966 1552.0 3994.0 89 818 1430.0 3181.0 - -
d20mp1 2619.66 16 38 216 237.3 1171.0 37 203 1097.0 1475.0 47 212 1311.0 1608.0 - -
d20mp2 2628.46 13 18 184 117.5 354.0 28 118 688.7 841.3 26 129 748.0 895.4 - -
d20mq1 3828.50 14 118 365 320.1 1419.0 136 417 4641.0 5671.0 48 291 2371.0 3044.0 - -
d20mq2 3685.49 20 59 84 102.6 1375.0 61 109 1535.0 2301.0 25 104 1030.0 1733.0 - -

Table 6: Comparison of models CUTF
x , CUTR

x , CUT sa and HOP for H = 7. The best running times are shown in
bold.
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CUTF
x CUTR

x CUT sa HOP
Inst. OPT |F0| BB Cuts tsep t [s] BB Cuts tsep t [s] BB Cuts tsep t [s] BB t [s]

c5mp1 2692.66 19 23 275 0.8 89.0 13 907 75.7 711.5 33 913 87.6 780.9 33 102.0
c5mp2 2692.46 16 27 287 0.7 68.4 7 687 53.8 393.3 15 638 63.0 412.2 17 60.2
c5mq1 3906.98 12 62 337 1.7 196.0 70 1569 655.1 2064.0 59 1271 539.9 2897.0 54 222.4
c5mq2 3769.56 23 95 353 2.0 309.0 35 1837 731.3 2316.0 35 1601 607.8 1756.0 59 422.9
c10mp1 2661.66 18 41 731 8.0 778.0 19 1503 419.2 5641.0 26 1555 417.9 6585.0 31 97.5
c10mp2 2661.46 15 21 567 4.3 337.0 15 1160 321.5 2878.0 7 909 222.4 1799.0 84 60.7
c10mq1 3867.57 14 35 678 10.2 836.8 47 2063 1728.0 5759.0 47 1395 1023.0 3704.0 47 197.8
c10mq2 3732.56 20 91 926 18.8 1201.0 57 2530 2445.0 6202.0 37 1850 1643.0 4884.0 62 331.3
c15mp1 2634.66 17 35 798 35.4 892.2 18 905 666.8 1808.0 15 714 491.2 1374.0 215 170.4
c15mp2 2640.46 14 7 320 9.7 190.0 11 433 299.2 601.8 17 472 356.4 664.5 160 107.1
c15mq1 3842.50 14 37 937 46.4 1005.0 53 1040 1650.0 3298.0 51 1250 1956.0 4342.0 - -
c15mq2 3689.56 20 61 370 23.1 616.1 45 820 1515.0 2607.0 45 890 1679.0 3210.0 - -
c20mp1 2618.66 16 46 127 67.9 550.5 67 291 1940.0 2268.0 54 215 1216.0 1475.0 - -
c20mp2 2626.46 14 23 122 53.0 220.0 40 159 966.9 1172.0 44 169 1077.0 1242.0 - -
c20mq1 3826.50 14 55 225 134.5 987.0 39 264 2689.0 3404.0 63 293 2818.0 3904.0 - -
c20mq2 3686.49 20 128 287 226.2 1143.0 136 352 4305.0 5300.0 98 403 3951.0 5454.0 - -
d5mp1 2677.94 20 23 344 1.2 98.2 11 743 79.5 574.8 9 801 90.3 736.8 11 79.9
d5mp2 2713.63 15 23 349 1.3 72.2 13 625 79.8 280.5 29 724 114.9 823.7 15 78.5
d5mq1 3878.98 17 33 326 1.5 278.6 29 679 272.9 2037.0 25 656 249.0 1747.0 33 232.2
d5mq2 3741.49 20 25 372 1.9 503.2 23 1214 504.8 4373.0 31 982 432.1 3314.0 27 311.3
d10mp1 2678.94 19 21 659 7.0 450.3 33 1756 575.0 9055.0 45 1511 458.6 7673.0 55 113.2
d10mp2 2682.46 15 21 494 4.7 364.8 11 1055 310.8 2542.0 15 1012 307.6 2712.0 15 74.0
d10mq1 3869.06 16 69 850 12.9 1908.0 45 1846 1399.0 15560.0 67 1789 1475.0 14080.0 77 246.6
d10mq2 3724.49 22 65 794 13.3 2211.0 35 1769 1333.0 16310.0 33 1514 1201.0 15950.0 77 327.7
d15mp1 2635.66 17 23 367 28.8 487.8 19 586 849.1 2046.0 15 512 638.8 1709.0 19 151.7
d15mp2 2647.46 14 15 367 20.6 346.8 13 549 691.9 1416.0 7 467 467.2 1013.0 11 139.6
d15mq1 3844.50 14 43 872 66.6 1223.0 39 1040 2519.0 4710.0 67 1227 2816.0 9154.0 - -
d15mq2 3698.49 20 32 659 57.8 1395.0 29 799 1816.0 3873.0 53 717 1787.0 3338.0 - -
d20mp1 - - - - - - - - - - - - - - - -
d20mp2 - - - - - - - - - - - - - - - -
d20mq1 - - - - - - - - - - - - - - - -
d20mq2 - - - - - - - - - - - - - - - -

Table 7: Comparison of models CUTF
x , CUTR

x , CUT sa and HOP for H = 10. The best running times are shown in
bold.
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[18] Kratica, J., D. Tošić, V. Filipović, I. Ljubić. 2001. Solving the simple plant location problem
by genetic algorithms. RAIRO - Oper. Res. 35(1) 127–142.
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Abstract

We consider a new combinatorial optimization problem that combines network design and facility
location aspects. Given a graph with two types of customers and two technologies that can be
installed on the edges, the objective is to find a minimum cost subtree connecting all customers
while the primary customers are served by a primary subtree that is embedded into the secondary
subtree. In addition, besides fixed link installation costs, facility opening costs, associated to each
node where primary and secondary subtree connect, have to be paid. The problem is called the
Two Level Network Design Problem with Transition Facilities (TLNDF).

We first model the problem on an extended graph where an additional set of arcs corresponds to
the installation of node facilities and propose a cut set based model for the TLNDF that is defined
on this extended graph. We present several theoretical results relating families of cut set inequalities
on the extended graph with subfamilies of cut set inequalities on the original graph. We then show
how a standard multi-commodity flow model defined on the original graph can be strengthened
using disaggregation “by technology”. We prove that the disaggregated compact formulation on
the original graph provides the same lower bound as the cut set formulation on the extended graph.

We develop a branch-and-cut algorithm for solving the TLNDF. The performance of this al-
gorithm is improved by separating subfamilies of cut set inequalities on the original graph. Our
computational study confirms the efficiency and applicability of the new approach.

Keywords: OR in telecommunications, Integer programming, Linear programming relaxations,
Hierarchical network design, Tree-tree networks, Network design and facility location

1. Introduction

The Multi-Level Network Design Problem (MLND) has been originally defined by Balakrishnan
et al. [1]: We are given an undirected graph with a set of nodes partitioned into L levels and a set of
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edges such that along each edge one of L different technologies can be installed, with higher grade
technologies inducing higher fixed costs. The goal is to find a (spanning) subtree and decide which
technology to install along each edge, so that all customers at level ` can communicate with each
other along a path using technology of grade ` or higher. We extend the definition of the MLND
by introducing the fixed costs for transition nodes, i.e., the nodes where a change of technology
takes place, and by considering so-called potential Steiner nodes which are nodes that need not be
included in the solution. In this problem, which we denote by Multi-Level Network Design Problem
with Transition Facilities, the overall goal is to find a MLND subtree that minimizes the sum of
fixed edge and facility installation costs. In this paper we study the case with L = 2, which we will
denote by the Two Level Network Design Problem with Transition Facilities (TLNDF).

TLNDF arises in the topological design of hierarchical communication, transportation, and
electric power distribution networks. One of the most important applications of TLNDF is in the
context of telecommunication networks, where networks with two cable technologies, fiber optic
and copper, are built. Telecommunication companies distinguish between primary and secondary
customers. The switching centers, important infrastructure nodes and small businesses are consid-
ered as primary customers (i.e., those to be served by fiber optic connections). Single households
are not considered as being consumers of a high potential and hence they only need to be supplied
using copper cables. The secondary technology is much cheaper, but the guaranteed quality of the
connections and bandwidth is significantly below the quality provided by the primary technology.
The goal is to build a network (with tree topology) such that there is a fiber optic connection be-
tween each primary customer and a designated root node (e.g., a central office), and each secondary
customer is connected to the root along a path using either of the two technologies. Typically, at
transition nodes, expensive switching devices need to be installed to transmit the electrical into
optical signal, and the respective purchasing and equipment operating costs are not negligible.
This particular application involves two new features that have not been considered in the previ-
ous literature (see, e.g., Balakrishnan et al. [2], Duin and Volgenant [10]). First, the application
considers additional transition costs due to the presence of two technologies on the network. Sec-
ond, in graphs that represent telecommunication networks nodes like street intersections need to
be considered as well, i.e., we need to allow that the set of primary and secondary customers is a
proper subset of the set of nodes, and a subset of remaining nodes may be a part of the solution, if
it helps in establishing a cheaper connection. Those remaining nodes will be referred to as potential
Steiner nodes.

More formally, the problem can be defined as follows:

Definition 1 (TLNDF). We are given an undirected graph G = (V,E) with a set of customers
R ⊆ V . To each edge e ∈ E we associate two installation costs, c1e ≥ c2e ≥ 0. These correspond
to the primary and secondary technology, respectively. The set of customers, R, is partitioned into
the sets of primary and secondary customers P and S, respectively (P ∩ S = ∅, P ∪ S = R). We
are also given a root node r ∈ V , otherwise we choose one of the primary customers as such. To
each node i ∈ V we associate facility opening cost di ≥ 0 that needs to be paid if i is used as a
transition node.

Our goal is to determine a subtree T (built of a set of primary and secondary edges, T1 and T2,
respectively) with the set F of transition nodes (i.e., nodes that are adjacent to edges from both
T1 and T2), satisfying the following properties:

(P) Each primary node in P is connected to the root node by a path that consists of T1 edges
only,
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(S) each secondary node in S is connected to the root by a path consisting of edges from T1 ∪ T2,

(F) facilities need to be open at each transition node i ∈ F and

(M) the sum of fixed edge and facility installation costs∑
e∈T1

c1e +
∑
e∈T2

c2e +
∑
i∈F

di

is minimized.

Figure 1 illustrates a solution of the TLNDF. It uses the following symbols: Squares represent
primary customers, triangles represent secondary customers, dots represent potential Steiner nodes.
A grey fill indicates a transition node. Solid lines indicate the installation of primary edges (e.g.,
fiber-optic technology) and grey dotted lines indicate the installation of secondary edges (e.g.,
copper wires).

Figure 1: Example of a TLNDF solution

The following observation can be made about optimal solutions of the TLNDF: i) Since c1e ≥ c2e
for all e ∈ E, there always exist an optimal solution in which the subgraph induced by T1 is a
rooted subtree of T (primary subtree) and the subgraph induced by T2 is a forest (a union of
secondary subtrees) attached to it. ii) If facility opening costs are uniform for all nodes, leaves
of the primary subtree are nodes from P ∪ S. In addition, any leaf of the primary subtree that
has a secondary subtree attached to it will be a primary node. iii) Otherwise, if facility opening
costs are location-dependent, placing facilities at locations of Steiner nodes or secondary customers
may provide cheaper solutions, i.e., a secondary subtree can be attached to any node from V , and
henceforth, a leaf of the primary subtree can be any node from V .

Notice also that our general definition covers the case in which potential facility locations are a
true subset of V (which can be modeled by setting di :=∞ for the non-facility locations).

This important problem generalizes problems with tree-star and star-tree topologies including
connected facility location, hierarchical network design, Steiner trees and uncapacitated facility
location.
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Overview of the paper. In Section 2 we model the TLNDF in an extended graph, where an additional
set of arcs corresponds to the installation of node facilities. We present several theoretical results
relating families of cut set inequalities on the extended graph with special families of cut set
inequalities on the original graph. Cut set inequalities on the extended graph can be separated
in polynomial time using maximum flow algorithms. We also study special classes of cut set
inequalities that are obtained by projecting subsets of constraints of the extended graph formulation
on the original graph. In Section 4 we show how these can be separated efficiently on the original
graph extended by a single node. Our computational study, reported in Section 5, confirms the
efficiency and applicability of these separation procedures.

It is quite straightforward to model the TLNDF on the original graph with a standard multi-
commodity flow model. The linear programming (LP) relaxation of the cut set model on the
extended graph is easily shown to dominate the LP relaxation of this flow model. This dominance
result is also known from similar problems (see, e.g., [4]). In this paper (cf. Section 3), we show
that by disaggregating the previous multi-commodity flow formulation by technology we obtain a
formulation on the original graph that provides the same lower bound as the cut set formulation
on the extended graph. Our result also extends to the two level network design problem without
transition nodes and, as far as we know, this is the first time a compact formulation on the original
graph is given that provides the same LP bound as the cut set formulation on the extended graph.
Preliminary results of this work appeared in Gollowitzer et al. [11].

1.1. Literature review
The concept of two level network design problems (more precisely, two-level spanning trees) has

been developed in the 80’s and early 90’s.

Hierarchical network design (HNDP). The hierarchical network design problem, in which R = V
and |P | = 2, was the “initial” variant of the TLND introduced by Current et al. [8]. The authors
proposed an integer programming model based on subtour elimination constraints and a heuristic
for the problem. Later, Duin and Volgenant [9] proved structural properties of HNDP that enable
reductions of the problem graph and elimination of variables from an integer programming model.
Pirkul et al. [22] derived a heuristic based upon a Lagrangian relaxation of a flow-based formulation
for the problem. A dynamic programming procedure that finds suboptimal solutions was then
proposed by Sancho [24]. Recently, Obreque et al. [21] proposed a branch-and-cut algorithm for
this problem.

Two level network design (TLND). This problem, a generalization of HNDP in which |P | ≥ 2
and R = V , was introduced by Duin and Volgenant [10]. Balakrishnan et al. [2] proposed several
network flow based models for TLND and compared the LP bounds of the proposed formulations.
The same authors also proposed a composite heuristic that provides an approximation ratio of
4/3 if the embedded Steiner tree is solved to optimality and c1e/c

2
e = q > 1 for all e ∈ E. The

approximation ratio is 4
4−ρ if the Steiner tree problem is solved with an approximation ratio of

ρ < 2. For non-proportional edge costs, this ratio becomes ρ + 1. Balakrishnan et al. [1] tested a
dual ascent method derived on the strongest formulation proposed in [2] (which is a directed multi-
commodity flow formulation on G, cf. Section 3). Gouveia and Telhada [15] proposed another
formulation in which the primary subtree is modeled as a directed arborescence embedded into the
secondary spanning arborescence. The authors proposed to solve the problem using a Lagrangian
relaxation based method. In a later paper, Gouveia and Telhada [16] improved this formulation by
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using a “reformulation by intersection” concept to derive a new compact formulation whose lower
bounds are at least as strong as the strongest ones proposed in [2]. In a recent work, Chopra and
Tsai [4] developed a branch-and-cut approach for a generalization of the TLND with more than
two levels.

Hierarchical network design with transshipment facilities (HNDF). The HNDP was introduced
by Current [6]. In this problem additional transshipment costs need to be paid for each node of the
primary path whenever a change of technology takes place. The main difference between the HNDF
and the TLNDF, besides the restriction |P | = 2 and R = V , is that secondary nodes included in
the primary path are not considered as “served”, and therefore they also need to be connected by a
(possibly empty) path to a transshipment facility. In addition, the union of primary and secondary
edge sets may form a cycle, i.e., the optimal solution is not necessarily a tree.

Current [6] proposed a heuristic approach to HNDF in which, for a given root r and terminal
node t, K shortest paths are calculated. For each of these paths an auxiliary problem is constructed,
in which the nodes of the path are connected to a dummy root node by edges whose weights are set
to their facility opening costs. The edges of the path are deleted and in the graph obtained by this
procedure a minimum spanning tree using secondary edge costs is calculated. Later, Current and
Pirkul [7] described a new formulation of the problem based on the introduction of the dummy root
node (as above) and provided computational results for two Lagrangian based heuristics derived
from this model.

Combined network design and facility location and other related problems. A large body of literature
exists on problems that combine network design and facility location decisions. Contreras and
Fernández [5] give a unifying framework for many well-studied problems including the p-median
problem, hub location problems and the ring-star problem. They give an exhaustive overview of the
existing literature and analyze modeling aspects and algorithmic ideas. Most problems considered
there satisfy the assumption that nodes are customers, potential facility location or both. Among
the problems combining network design and facility location, the connected facility location problem
(ConFL) (see, e.g., [12]) is the closest to the TLNDF. More precisely, ConFL is a special case of the
TLNDF where the secondary subtrees are stars. The TLNDF problem also belongs to a class of
problems with a tree-tree topology. The reader is referred to a survey by Gourdin et al. [13], who
describe several variants of related problems such as star-tree, tree-star and star-star problems as
well as other variants of tree-tree problems.

1.2. Notation
It is known that for rooted spanning or Steiner tree problems, modeling the problem on a

directed graph provides models whose LP bounds are stronger than the bounds of their undirected
counterparts (see, e.g., [19]). Henceforth we will consider a directed graph G = (V,A) that is
obtained from the original undirected graph G = (V,E) as follows: Instead of each edge e =
{i, j} ∈ E we use two arcs ij and ji in A, both of which are assigned the cost of the original edge.
Since a solution on the undirected graph corresponds to an arborescence directed away from the
root node, edges {r, j} are replaced by a single arc rj.
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In our models we will use the following binary variables:

x1
ij =

{
1, if the primary technology is installed on arc ij
0, otherwise

∀ij ∈ A

x2
ij =

{
1, if the secondary technology is installed on arc ij
0, otherwise

∀ij ∈ A, j 6∈ P

zi =

{
1, if a facility is installed on node i
0, otherwise

∀i ∈ V

Observe that no feasible solution will contain secondary arcs pointing to a primary node (i.e.,
x2
ij = 0 for j ∈ P ). We will ignore the variables corresponding to these arcs in our models but, to

simplify the notation, we will allow them in the indexation of the summation terms.
For a set W ⊆ V , we will write z(W ) =

∑
i∈W zi. For any W ⊂ V we denote its complement set

by W c = V \W . For any M,N ⊂ V , M ∩N = ∅, we denote the induced cut set of arcs by (M,N) =
{ij ∈ A | i ∈M, j ∈ N}. In particular, let δ−(W ) = (W c,W ) and δ−(i) = (V \ {i}, {i}). For a set
of arcs Â ⊆ A, we will write x`(Â) =

∑
ij∈Â x

`
ij , for ` = 1, 2, and (x1 + x2)(Â) =

∑
ij∈Â(x1

ij + x2
ij).

We will describe models based on these variables, but in the next sections several models using
other variables will be described as well. In order to relate all of these models, for a mixed integer
programming model M let Pa1,...,an(M) denote the orthogonal projection of the convex hull of LP
solutions of M onto the space defined by variables a1, . . . , an.

The illustrations in the next sections use the following symbols in addition to the ones previously
described: r represents the root node and, whenever we solve a problem as the Steiner tree problem,
terminals are denoted by ♦.

2. Cut set-based formulations

In Gollowitzer et al. [11] we show that the TLNDF can be modeled as a Steiner arborescence
problem on an extended graph with additional node degree constraints. In this section we first
recall a cut set formulation on the original graph, then we provide the definition of the extended
graph and state the most important results taken from [11]. Finally, we present a new result that
characterizes the inequalities obtained by projecting cut set constraints from the extended graph
into the natural space of variables (x1,x2, z).

2.1. The cut set formulation on the original graph
We recall the following formulation of the TLNDF, that we first introduced in [11].

(TLNDF ) min
∑
ij∈A

(c1ijx
1
ij + c2ijx

2
ij) +

∑
i∈V

dizi

x1(δ−(W )) ≥ 1 ∀W ⊆ V \ {r}, W ∩ P 6= ∅ (x1)

(x1 + x2)(δ−(W )) ≥ 1 ∀W ⊆ V \ {r}, W ∩ S 6= ∅ (x12)

(x1 + x2)(δ−(i)) ≤ 1 ∀i ∈ V \ {r} (1)

zj +
∑

ij∈A,i 6=k
x2
ij ≥ x2

jk ∀jk ∈ A, k 6∈ P (2)
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x1
ij , x

2
ij ∈ {0, 1} ∀ij ∈ A (3)

zi ∈ {0, 1} ∀i ∈ V (4)

The primary connectivity constraints (x1) ensure that for every primary node i, there is a path
between r and i containing only primary arcs. The secondary connectivity constraints (x12) ensure
that every secondary node is connected to the root by a path containing primary and/or secondary
arcs. The in-degree constraints (1) ensure that the overall solution is a subtree. Together with
connectivity constraints (x12), the basic coupling constraints (2) guarantee that if a facility is
installed at node j, then j is the root of a secondary subtree.

2.2. The cut set formulation on the extended graph
The extended graph GNS = (VNS , ANS ), with the root r′ and the set of terminals RNS , is defined

as follows:

VNS :=V ′ ∪ V ′′ ∪ S where ANS :=A′ ∪A′′ ∪Az ∪AS where
V ′ := {i′ | i ∈ V }, A′ := {i′j′ | ij ∈ A},
V ′′ := {i′′ | i ∈ V }, A′′ := {i′′j′′ | ij ∈ A},
S is the set of secondary nodes; Az := {i′i′′ | i ∈ V },

RNS :=P ′ ∪ S where AS := {i′i | i′ ∈ V ′, i ∈ S}
P ′ = {i′ | i′ ∈ V ′, i ∈ P}; ∪ {i′′i | i′′ ∈ V ′′, i ∈ S}.

The graph GNS consists of several components:

i) A subgraph G′ = (V ′, A′) corresponds to the primary network. It contains nodes and arcs
that may be included in the primary subtree.

ii) A subgraph G′′ = (V ′′, A′′) corresponds to the secondary network. It contains nodes and arcs
that may be contained in the secondary subtrees.

iii) Arcs linking nodes in G′ to the corresponding copy in G′′ represent potential facilities.

iv) An additional copy of the secondary nodes (with arcs pointing from their representatives in
graphs G′ and G′′) represents terminals that will make sure that each secondary node is either
a part of the primary or the secondary network.

Arc costs Cuv for uv ∈ ANS are defined as follows:

Cuv =


c1ij , u = i′, v = j′, ij ∈ A,
c2ij , u = i′′, v = j′′, ij ∈ A,
di, u = i′, v = i′′, i ∈ V,
0, otherwise,

uv ∈ ANS

We observe that if, for a primary node i ∈ P , its copy i′′ ∈ V ′′ belongs to the optimal solution
on the extended graph, then no ingoing arc of i′′, except for the facility arc i′i′′, will be used. Thus,
we reduce the size of GNS by removing all the arcs, except i′i′′, leading into primary customer
nodes in V ′′. Notice that a third copy of secondary nodes in GNS , namely the set S, is needed,
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since the secondary customers can either be part of the primary subtree or be part of one of the
secondary subtrees. The copies of secondary customers in G′ and G′′ are considered as potential
Steiner nodes, with their third copy being a terminal. To ensure the tree topology, we will impose
a restriction that for each node i ∈ V at most one of the copies i′ and i′′ is allowed to have its
x1- and x2-in-degree equal to one. Figure 2b) illustrates GNS corresponding to the original graph
shown in Figure 2a). We have the following result:

Lemma 1 ([11]). The TLNDF problem can be modeled as the Steiner arborescence problem with
additional node in-degree constraints on some node pairs on the graph GNS with the root r′ and
terminal set RNS .

a) b)
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Figure 2: a) Instance of TLNDF ; b) Transformed Steiner arborescence instance on GNS .

To obtain an integer programming (IP) model, we assign binary variables Xij to all arcs ij ∈
ANS . Let X(δ−(W̃ )) denote the sum of X variables that are in the directed cut set (W̃ c, W̃ ) in
GNS . Based on the classical cut set model for Steiner trees (cf. [3]) we derive the following IP
formulation:

(SA) min
∑

ij∈ANS

CijXij

s.t. X(δ−(W̃ )) ≥ 1 ∀W̃ ⊆ VNS \ {r′}, W̃ ∩RNS 6= ∅ (5a)∑
ij∈A

(Xi′j′ +Xi′′j′′) ≤ 1 ∀j ∈ V \ {r} (5b)

Xij ∈ {0, 1} ∀ij ∈ ANS (5c)

Constraints (5a) are connectivity cuts between the root node and each terminal. Inequalities (5b)
ensure that any solution of SA does not contain the copies i′ and i′′ of i ∈ V at the same time,
unless the facility arc i′i′′ is part of the solution.

Lemma 2 ([11]). Cut set inequalities (5a) such that δ−(W̃ ) ∩ AS 6= ∅ are redundant in the model
SA.

A straightforward algorithmic approach based on the separation of inequalities (5a) might prove
to be computationally expensive, since the separation of inequalities (5a) requires the solution of
maximum flow problems on the graph GNS with up to to 3|V | nodes and 2|A| + 3|V | arcs. This
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has motivated us to investigate and implement a two-phase separation method where we start
by separating cut set inequalities on the original graph and only then move to separation on the
extended graph. The reason for this two-phase approach is that the corresponding maximum flow
algorithm for the cut set constraints on the original graph is applied to a much smaller graph.

To find these sets of inequalities on the original graph we add the following constraints to the
model SA. They link the variables on the extended graph and the variables on the original graph.

x1
ij = Xi′j′ ∀ij ∈ A, i′j′ ∈ A′, (6a)

x2
ij =

{
Xi′′j′′

0
∀ij ∈ A,

{
i′′j′′ ∈ A′′,
otherwise

(6b)

zi = Xi′i′′ ∀i ∈ V, i′i′′ ∈ Az. (6c)

Adding these equalities to the model SA will not alter its LP value but will allow us to characterize
Px1,x2,z(SA).

Lemma 3. Px1,x2,z(SA) = P(CUT ) where P(CUT ) is given by the set of vectors (x1,x2, z) satis-
fying

(x1 + x2)(δ−(i)) ≤ 1 ∀i ∈ V \ {r} (7)

and

x1(δ−(W ′)) + x2(δ−(W ′′)) + z(W ′′ \W ′) ≥ 1
r 6∈W ′,W ′ ∩W ′′ ∩ S 6= ∅
or W ′ ∩ P 6= ∅. (x12-z)

where W ′ = {i ∈ V | i′ ∈ W̃} and W ′′ = {i ∈ V | i′′ ∈ W̃} for an arbitrary cut set W̃ ⊆ VNS \ {r′}
such that W̃ ∩RNS 6= ∅ and δ−(W̃ ) ∩AS = ∅.

Constraints (x12-z) and (7) correspond to non redundant cut sets (5a) and constraints (5b) on
the extended graph, respectively.

The following sets of inequalities are special cases of constraints (x12-z) (see Figure 3).

i) If W ′ = W and W ′′ = ∅, we obtain primary connectivity constraints:

x1(δ−(W )) ≥ 1 ∀W ⊆ V \ {r}, W ∩ P 6= ∅ (x1)

ii) For W ′′ = V and W ′ = W we obtain constraints of the form

z(W c) + x1(δ−(W )) ≥ 1 ∀W ⊆ V \ {r},W ∩ S 6= ∅ (x1-z)

iii) For W ′ = W ′′ = W , we obtain secondary connectivity cuts:

(x1 + x2)(δ−(W )) ≥ 1 ∀W ⊆ V \ {r}, W ∩ S 6= ∅ (x12)

iv) For W ′ = {k}, k ∈ S, and W ′′ = W ∪ {k} we obtain constraints of the form

z(W ) + x1(δ−(k)) + x2(δ−(Wk)) ≥ 1 ∀k ∈ S,W ⊆ V \ {k},Wk = W ∪ {k} (x2-z)
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Figure 3: a) Illustration of inequalities (x1) for W = {1}, (x12) for W = {3, 4}, and (x12-z) for W ′ = {1, 2},
W ′′ = {r, 1, 2, 3}. b) Illustration of inequalities (x1-z) for W = {2, 3, 4} and (x2-z) for W = {4} and k = 3.

Constraints (x1) ( (x12)) are connectivity cuts for primary (secondary) customers and ensure a
path that consists of primary (primary and secondary) edges between the root node and each
primary (secondary) customer. They have already been stated in [1] for the related problem without
transition nodes. The remaining constraints involving z variables are new. Constraints (x1-z) state
that for any subset of nodes that contains a secondary customer, there must either be an ingoing
primary arc or an installed node facility in its complement. The interpretation of (x2-z) is not
straightforward. However, these constraints were “found” in an indirect way. By subtracting
x1(δ−(k)) and x2(W c, k) on both sides we obtain

z(W ) + x2(W c
k ,W ) ≥ x2(W, {k}) ∀k ∈ S, W ⊆ V \ {k},Wk = W ∪ {k}. (x2-z’)

Constraints (x2-z’) are a generalization of inequalities suggested in [14] for models with node tran-
sition variables. These inequalities state that if there is a secondary arc leading into node k from
a node in a given node set W , then either there is a facility installed in a node in W or there is a
secondary arc leading into W from the complement of W ∪ {k}.

The four sets of constraints just described are the constraints that will be separated in the
first phase of our branch-and-cut algorithm. Separation algorithms for these will be described in
Section 4. Clearly, there are other constraints included in the general description given by (x12-z)
that do not correspond to any constraint of these four sets. For these remaining constraints, it is
not clear how to separate them in the original space. This is precisely the set of constraints that
will be separated in the larger extended graph.

It is obvious that the model defined by (7) and (x12-z) gives a valid model for the TLNDF
defined only on variables x1, x2 and z. Notice that another valid model is obtained by only
considering the inequalities (x1), (x12) and the family (x2-z) for singleton sets W instead of the
whole set (x12-z). In the next section we will present a multi-commodity flow formulation whose
LP relaxation is equivalent to the LP relaxation of this latter model. However, our computational
experiments (cf. Section 5) will show that this model provides much weaker bounds than the model
with all general cut set inequalities (x12-z).

3. Flow-based formulations

In this section we will present a compact multi-commodity flow formulation that extends the
strongest model proposed in [2] by introducing node transition variables. As we shall show later,
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the LP relaxation bound of this model is not as good as the one provided by the cut set model
on the extended graph (presented in Lemma 3). A similar dominance result is known for the
TLNDF problem without node transition costs and is given in Chopra and Tsai [4]. Therefore, we
propose a new model based on multi-commodity flows that is obtained from the previous one by
disaggregating the variables and constraints ”by technology”. We show that the LP relaxation of
the new disaggregated model is equally strong as the LP relaxation of the cut set model on the
extended graph.

3.1. Multi-commodity flow formulation
Let us define the following flow variables: fkij ≥ 0 corresponds to the flow from r to the

commodity k ∈ R, using arc ij ∈ A. A multi-commodity formulation for the classical two level
network design problem (without transition nodes) is the following (cf., e.g., [1]):

(MCF ) min
∑
ij∈A

c1ijx
1
ij+

∑
ij∈A

c2ijx
2
ij

∑
ji∈A

fkji −
∑
ij∈A

fkij =


1
−1
0

i = k
i = r
i 6= k, r

∀i ∈ V, ∀k ∈ R

0 ≤ fkij ≤ x1
ij ∀ij ∈ A, k ∈ P

0 ≤ fkij ≤ x1
ij + x2

ij ∀ij ∈ A, k ∈ S
x1
ij , x

2
ij ∈ {0, 1} ∀ij ∈ A

An extension to model transition node costs is obtained by changing the objective function to

min
∑
ij∈A

c1ijx
1
ij +

∑
ij∈A

c2ijx
2
ij +

∑
i∈V

dizi

and adding the following, previously described compact sets of constraints to MCF :

(x1 + x2)(δ−(i)) ≤ 1 ∀i ∈ V \ {r}
zj +

∑
ij∈A,i 6=k

x2
ij ≥ x2

jk ∀jk ∈ A, k 6∈ P

zi ∈ {0, 1} ∀i ∈ V

For simplicity we maintain the same designation MCF for this model.

3.2. Disaggregated multi-commodity flow formulation
We now show how to strengthen the MCF model by disaggregating the variables fk by tech-

nology. Consider the following two types of flow variables: f1k
ij ≥ 0 (f2k

ij ≥ 0) correspond to the
primary (secondary) flow from r to the commodity k ∈ R, using arc ij ∈ A.
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Consider then the following model, which extends a model described in Gouveia and Janssen
[14] by node transition variables.

(dMCF ) min
∑
ij∈A

c1ijx
1
ij+

∑
ij∈A

c2ijx
2
ij +

∑
i∈V

dizi

s.t.
∑
ji∈A

f1k
ji −

∑
ij∈A

f1k
ij =


1
−1
0

i = k
i = r
i 6= k, r

∀i ∈ V, ∀k ∈ P (8a)

∑
ji∈A

(f1k
ji + f2k

ji )−
∑
ij∈A

(f1k
ij + f2k

ij ) =


1
−1
0

i = k
i = r
i 6= k, r

∀i ∈ V, ∀k ∈ S (8b)

zi +
∑
ji∈A

f2k
ji ≥

∑
ij∈A

f2k
ij ∀k ∈ S,∀i ∈ V, i 6= k (8c)

(x1 + x2)(δ−(i)) ≤ 1 ∀i ∈ V (8d)

0 ≤ f1k
ij ≤ x1

ij ∀ij ∈ A, k ∈ R (8e)

0 ≤ f2k
ij ≤ x2

ij ∀ij ∈ A, k ∈ S (8f)

zi, x
1
ij , x

2
ij ∈ {0, 1} ∀i ∈ V, ij ∈ A (8g)

In the context of this model the flow variables f1k and f2k can be reinterpreted as indicating
whether arc ij has technology 1 or 2 installed and whether it is in the path to node k. The new
constraints (8c) state that a facility needs to be installed when the technology used on the arcs
changes on the path to node k.

Equations (8a) and (8b) ensure one unit of primary (primary or secondary) flow to primary
(secondary) customer nodes. Constraints (8d) limit the number of ingoing arcs for each node to
one and inequalities (8e) and (8f) link the flow variables and design variables.

3.3. Polyhedral comparison
Next we will show that formulation dMCF on the original graph G provides the same LP

bound as the cut set model on the extended graph given in Section 2.2. To prove this result we will
introduce an auxiliary model and prove that the two models, the cut set model on the extended
graph and the flow model dMCF provide the same LP bound as the auxiliary model.

The auxiliary model is a straightforward multi-commodity flow reformulation of the cut set
model on the extended graph. To define this model we consider the following sets of variables. i)
Flow variables f1k

ij and f2k
ij , that correspond to the flow from r to the commodity k ∈ R, using arcs

i′j′ ∈ A′ or i′′j′′ ∈ A′′, respectively. ii) Variables yki correspond to the flow of commodity k sent
through i′i′′ ∈ Az. iii) Finally, for all k ∈ S, we also define f1k

k and f2k
k to be the flow values on

arcs k′k and k′′k in AS , respectively. Obviously, f1`
k = f2`

k = 0 for all k 6= `.

(MCFNS) min
∑
ij∈A

c1ijx
1
ij+

∑
ij∈A

c2ijx
2
ij +

∑
i∈V

dizi

s.t. (8a), (8d), (8e), (8f), (8g),

ykr +
∑
rj∈A

f1k
rj = 1 ∀k ∈ S (9a)
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ykr −
∑
rj∈A

f2k
rj = 0 ∀k ∈ S (9b)

∑
ji∈A

f1k
ji −

∑
ij∈A

f1k
ij − yki = 0 ∀k ∈ S, i ∈ V \ {r, k} (9c)

yki +
∑
ji∈A

f2k
ji −

∑
ij∈A

f2k
ij = 0 ∀k ∈ S, i ∈ V \ {r, k} (9d)

∑
jk∈A

(f1k
jk + f2k

jk ) = 1 ∀k ∈ S (9e)

0 ≤ yki ≤ zi ∀i ∈ V, k ∈ R (9f)

Using the linking constraints (6) and Xi′i = x1(δ−(i)) and Xi′′i = 1−Xi′i for all i ∈ S, the max-flow
min-cut theorem implies the following

Lemma 4. P(SA) = PX(MCFNS).

We can also show the following

Lemma 5. Px1,x2,z,f1,f2(MCFNS) = P(dMCF ).

Proof. We show the claim by mutual inclusion:
Let (x1,x2, z, f1, f2,y) ∈ P(MCFNS). Then (x1,x2, z, f1, f2) ∈ P(dMCF ): By eliminating

yki from (9a) and (9b) ((9c) and (9d)) we obtain constraints (8b) for the case i = r (i 6= k, r).
Constraints (8b) for i = k are equivalent to (9e). Limiting yki from above in (9b) and (9d) using (9f)
we obtain (8c).

Let now (x1,x2, z, f1, f2) ∈ P(dMCF ) and variables yki be defined as follows.

yki :=
∑
ij∈A

f2k
ij −

∑
ji∈A

f2k
ji ∀k ∈ S, i ∈ V \ {r, k} and

ykr :=
∑
j∈A

f2k
rj ∀k ∈ S.

Then one can easily verify that (x1,x2, z, f1, f2,y) ∈ P(MCFNS).

The two preceding lemmata imply the following

Theorem 1. Px1,x2,z(dMCF ) = Px1,x2,z(SA).

4. Branch-and-cut framework

Since our models comprise an exponential number of constraints, we solve them using the
cutting plane technique embedded into a branch-and-bound framework, commonly known as the
branch-and-cut approach. Non-standard ingredients of our approach are described below. The
primal heuristic that we use is described in [11].
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4.1. Initialization
To reduce the number of separated cut set constraints and improve the general performance,

in our computational experiments we initialize all models with degree constraints (1), coupling
constraints (2) and the following sets of inequalities:

(x1 + x2)(δ−(j)) ≤ (x1 + x2)(δ+(j)) ∀j ∈ V \R (10a)∑
ij∈A,i 6=k

x1
ij ≥ x1

jk ∀jk ∈ A, j ∈ V \ {r} (10b)

Inequalities (10a) are strengthening degree balance constraints for potential Steiner nodes. Inequal-
ities (10b) guarantee that for each outgoing primary arc of a node j ∈ V \ {r} there is at least one
primary arc entering this node.

4.2. Cut separation
In Section 2 we have proposed several classes of valid cut set inequalities for the TLNDF. In

this section we will show that the separation of some of them can be done on the original graph G,
extended by an extra node, while only the more general (x12-z) inequalities need to be separated
on the extended graph.

Separation of constraints (x1) and (x12) is performed on the original graph G: we solve a
maximum flow problem between the root and each i ∈ P and i ∈ S, respectively, using the values
of x1 and x1 + x2 as arc capacities. To separate the more general constraints (x12-z), we build the
extended graph GNS , set the arc capacities on G′ and G′′ to x1 and x2, respectively, and capacities
of arcs k′k′′ to zk, for all k ∈ F . To make sure that only non-redundant cuts between the root and
a secondary node i ∈ S are separated, we set the capacities of arcs i′i and i′′i to M > 1, for each
i ∈ S. We will now describe how constraints (x1-z) and (x2-z) can be separated on graphs that are
much smaller than the extended graph GNS .

Lemma 6. Inequalities (x1-z) can be separated by solving the maximum flow problem on a graph
with |V |+ 1 nodes and |A|+ |V | arcs.

Proof. For each k ∈ S we generate a graph Gt = (V ′ ∪ {t}, A′ ∪At) with weights wuv as follows:

1. V ′ and A′ are defined as in Section 2.2

2. At = {(i′, t) | i′ ∈ V ′}
3. wi′j′ := x1

ij , i
′j′ ∈ A′ and wi′t := zi, i ∈ V \ {k} and wk′t := 1.

Then each (r′, t)-cut in Gt with a weight of less than 1 corresponds to a violated (x1-z) inequality
for k ∈W ∩ S.

Lemma 7. Inequalities (x2-z) can be separated by solving the maximum flow problem on a graph
with |V |+ 1 nodes and |A|+ |V | arcs.

Proof. For each k ∈ S we generate a graph Gs = (V ′′ ∪ {s}, A′′ ∪As) with weights wuv as follows:

1. V ′′ and A′′ are defined as in Section 2.2

2. As = {(s, i′′) | i′′ ∈ V ′′}
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3. wi′′j′′ := x2
ij , i

′′j′′ ∈ A′′, wsi′′ := zi, i ∈ V \ {k} and wsk′′ := x1(δ−(k)).

Then each (s, k′′)-cut in Gs with a weight of less than 1 corresponds to a violated (x2-z) inequality
for k ∈W ∩ S.
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Figure 4: a) Illustration of Gt for k = 3 and inequality (x1-z) for W = {2, 3, 4}. b) Illustration of Gs for k = 2 and
inequality (x2-z) for W = {1, 3}.

We separate violated cut set inequalities in every node of the the branch-and-bound tree (B&B).
To improve the computational efficiency of the separation, for each family of cuts we search for
nested minimum cardinality cuts. To do so, all capacities in the respective separation graph are
increased by some ε > 0. Thus, every detected violated cut contains the least possible number
of arcs. We resolve the linear program after adding at most 50 violated inequalities of any class.
Finally, we randomly choose the target nodes to search for violated cuts. To ensure comparability,
we fix the seed value for the computational results reported.

As mentioned in Section 2, we propose a two-phase approach to separate the cut set inequalities.
In the first phase we add violated inequalities that can be separated on G or on G extended by a
single node. Only when no more violated inequalities of these types can be found, we resort to the
separation on the extended graph.

The constraint sets (x1-z), (x12) and (x2-z) can be ordered with respect to pairwise inclusion
of the corresponding sets W ′ and W ′′: Consider an inequality (x1-z). By removing the set V \W ′
from W ′′ we obtain an inequality of the form (x12). By removing all but a single node k ∈ S from
W ′ we obtain an inequality of the form (x2-z). Thus we will always detect violated inequalities in
the following order: (x1) - (x1-z) - (x12) - (x2-z) - (x12-z).

In our computational study (see Section 5) we choose different subsets of the mentioned four
families for the separation in phase one. The four different strategies we experiment with are given
in Table 1.

Strategy EG+ has the advantage of providing the strong lower bounds of the extended graph
model but performs the computationally demanding separation of general cut sets (x12-z) only
when it is needed. Strategy EG provides the same lower bounds as EG+, but it is a more naive
implementation of the previous strategy. The whole separation procedure (except for the (x1)
cuts) is performed on the extended graph. For the last two strategies, denoted by OG and OG+,
separation is performed on the original graph G or G extended by an extra node, respectively.
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Phase 1 Phase 2
Model (x1) (x1-z) (x12) (x2-z) (x12-z)
EG+ X X X X X
EG X X
OG+ X X X X
OG X X

Table 1: Constraint subsets in Phase 1 and 2

Strategy OG+ derives slightly weaker lower bounds than EG+ and EG because we refrain from
the separation of the general family of cut sets (x12-z) and insert only four special subfamilies,
namely (x1), (x1-z), (x12) and (x2-z). Finally, the weakest lower bounds are obtained using the
strategy OG that separates only connectivity cuts for primary and secondary nodes, and uses a
compact constraint set to model the transition nodes. Inequalities (2)used in the initialization
phase of the branch-and-cut procedure guarantee the feasibility of this model.

5. Computational Study

In this section we report on our computational experience with the four MIP strategies described
above. All experiments were performed on a desktop machine with an 8-core Intel Core i7 CPU at
2.80 GHz and 8 GB RAM. Each run was performed on a single processor. We used the CPLEX [17]
branch-and-cut framework, version 12.2. All cutting plane and heuristic routines provided by
CPLEX are turned off, the other parameters are set to their default values. We set the optimal
solution value as global cutoff value in the first and second part of our computations. The primal
heuristic was not used in that case.

5.1. Instances
For our computational study we transform instances of the Steiner tree problem (STP) using

the following procedure: 30% of STP terminals are chosen as primary customers, the remaining
70% are selected as secondary customers. The primary customer with the lowest index is chosen
as root node. The potential Steiner nodes in the STP instance are potential Steiner nodes in the
TLNDF instance. We allow installation of a facility in every node of the graph. Primary edge
costs equal edge costs of the STP instance. For each secondary edge e, the cost c2e is defined as
qc1e, where q is uniformly randomly chosen from [0.25, 0.5]. Facility opening costs are uniform and
equal 0.5 times the average primary edge costs.

The parameters for generating instances have been chosen so that trivial solutions (e.g., optimal
solutions that do not contain secondary subtrees) are avoided. In our computational study we also
tested the effect of alterations of the above given parameters. We use sets B, C and D of the Steinlib
library [18] with 50-100, 500 and 1000 nodes and up to 200, 12500 and 25000 edges, and the sets
of random graphs named K and P proposed by Minkoff and Karger [20], with a street-like structure
and up to 400 nodes and 1576 edges. The latter instances are available online at [23].

5.2. Results
Preliminary tests showed that all instances from groups B, K100 and P100 can be solved in less

than two seconds by all of the four tested approaches. Of the instances in these three groups only
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b11 and b15 were not solved to optimality at the root node of the branch-and-bound tree, but
required to examine two branch-and-bound nodes each.

To avoid possibly misleading conclusions from large relative but small absolute deviations in
the running time, we do not consider these three instance groups in the following.

5.2.1. Comparing lower bounds and running times
We perform the first part of our computational study on the set of 18 instances with 200 and

400 nodes from test sets K and P. Our goal was to test whether the theoretical results presented
in Section 3 are supported by computational experience. Since among the four MIP approaches
presented above, EG and EG+ provide the same LP bounds υLP and differ only in the separation
strategy, we performed this test using only three out of the four approaches, namely, EG , OG+

and OG . We set the default time limit to 10 minutes. For each of these approaches, and for
each of the 18 instances, Table 2 reports the following values: the optimal integer solution value
(OPT ), the running time (in seconds) needed to solve the LP relaxation (tLP [s]), the LP gap
(calculated as Gap [%]=(OPT −υLP )/OPT ), the running time (in seconds) of the integer program
(tIP [s]), and the number of enumerated branch-and-bound nodes (#BnB). A dash denotes that
the respective model could not solve the instance within the given time limit. In that case, column
#BnB indicates the number of nodes enumerated until then.

tLP [s] Gap [%] tIP [s] #BnB
Instance OPT EG OG+ OG EG OG+ OG EG OG+ OG EG OG+ OG

K200 385.9 4.3 5.3 2.9 0.00 0.05 2.63 4.6 5.6 355.9 0 1 6832
K400 383.5 36.7 38.9 22.5 0.00 0.37 4.07 38.3 47.4 - 0 7 1033
K400-1 474.2 50.1 48.2 33.5 0.02 0.34 2.46 51.8 58.9 - 0 8 1151
K400-2 456.5 46.3 41.0 26.8 0.00 0.04 2.91 48.2 45.1 - 0 2 1007
K400-3 431.5 43.5 42.2 28.8 0.00 0.05 2.62 45.3 43.2 - 0 1 1075
K400-4 394.4 45.3 40.9 21.8 0.03 0.05 2.20 47.0 42.9 - 1 2 1070
K400-5 539.0 147.3 112.7 98.5 0.00 0.07 2.57 149.0 123.2 - 0 5 495
K400-6 449.5 84.9 82.1 56.2 0.13 0.16 2.25 97.0 89.9 - 5 5 755
K400-7 468.1 57.5 64.4 29.7 0.00 0.49 3.68 59.5 206.9 - 0 172 998
K400-8 459.4 70.1 75.5 73.0 0.00 0.00 1.61 71.5 76.6 - 0 0 879
K400-9 480.5 104.6 95.0 75.2 0.23 0.33 3.29 128.4 153.7 - 13 43 780
K400-10 330.7 20.3 21.2 12.8 0.00 0.12 2.29 21.3 22.9 - 0 3 1888
P200 1051.7 5.5 3.9 2.8 0.00 0.00 0.04 5.9 4.2 2.9 0 0 1
P400 2085.7 35.8 34.8 11.7 0.11 0.11 0.63 42.6 38.4 30.3 3 3 8
P400-1 2183.8 32.5 26.4 24.3 0.00 0.00 0.34 35.2 28.1 118.1 0 0 38
P400-2 2239.2 20.2 18.6 9.3 0.00 0.00 0.20 22.5 20.1 9.7 0 0 0
P400-3 2636.9 40.1 35.6 22.2 0.05 0.05 0.19 42.6 37.3 37.6 1 1 6
P400-4 2104.8 24.6 19.4 18.2 0.00 0.00 0.10 26.4 20.6 18.5 0 0 1

Table 2: Running times of IP and LP, LP gaps and number of enumerated branch-and-bound nodes for three
approaches of different strength.

The values in Table 2 confirm the relations stated in Section 3. While the strongest model,
EG , solves to optimality a majority of the instances already at the root node of the branch-and-
bound tree, the LP relaxations of the two weaker models provide weaker lower bounds (see column
Gap [%]) and thus require to enumerate a significantly larger number of nodes before possibly
reaching optimality. The running times of the LP relaxations show that separating violated in-
equalities from the “small” constraint sets (x1) and (x12) (model OG) can indeed be accomplished
faster than separating inequalities from a larger subset including (x1-z) and (x2-z) (model OG+)
or even the complete set (x12-z) (model EG). When comparing the running times for the complete
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integer programs we see that there is a tradeoff between faster separation and stronger bounds.
Whenever there is a significant difference in the enumerated number of branch-and-bound nodes,
the stronger model EG using the slower separation is faster overall.

In the second part of our computational study we assess whether the cut separation on graph G
in the first phase (EG+) speeds up the overall performance of the model containing all constraints
in (x12-z) (EG). Since the approach OG has shown to be computationally inferior (cf. Table 2),
this study compares only strategies EG+, EG and OG+. We group the instances in sets C and
D according to the number of customers (first two blocks) and the number of edges in the graph
(last two blocks). For each of these groups we calculate the geometric mean of the running time
(tIP [s]) and the number of cuts added (#Cuts). To take into account the values equal to 0 we
resort to the shifted geometric mean for presenting the number of enumerated branch-and-bound
nodes (#BnB) and LP gaps (Gap [%]). We use the arithmetic mean as shift.3

tIP [s] #BnB #Cuts Gap [%]
Inst. EG EG+ OG+ EG EG+ OG+ EG EG+ OG+ EG OG+

c{01,06,11,16} 3.7 2.8 2.5 1.0 1.0 1.5 133 125 118 0.73 0.84
c{02,07,12,17} 7.0 5.5 4.6 0.0 0.0 0.0 294 262 245 0.00 0.00
c{03,08,13,18} 63.3 62.8 51.8 4.1 3.7 3.5 2239 2041 1683 0.09 0.11
c{04,09,14,19} 65.4 49.4 50.4 0.4 0.1 0.1 2309 2160 1835 0.00 0.00
c{05,10,15,20} 83.3 99.0 102.6 1.5 1.8 2.3 2708 2816 2579 0.04 0.04

d{01,06,11,16} 7.6 7.2 6.6 0.1 0.1 1.0 167 163 159 0.00 2.25
d{02,07,12,17} 17.9 13.0 13.9 0.4 0.0 0.6 343 264 287 2.28 4.21
d{03,08,13,18} 381.0 349.1 362.4 5.1 3.7 6.9 4800 4880 4036 0.09 0.11
d{04,09,14,19} 311.5 332.7 312.1 0.4 0.5 0.4 4948 4977 4053 0.01 0.01
d{05,10,15,20} 879.3 842.5 925.3 14.0 11.9 13.5 8231 7443 7282 0.09 0.10

c{01-05} 4.8 4.5 3.8 0.1 0.1 0.1 737 738 632 0.04 0.07
c{06-10} 8.4 7.6 6.8 0.4 0.4 0.4 786 742 666 0.00 0.00
c{11-15} 36.8 30.0 28.6 1.6 1.6 1.1 935 780 730 0.04 0.04
c{16-20} 243.4 214.0 211.5 3.3 2.8 4.5 1136 1140 1004 0.51 0.54

d{01-05} 21.4 17.3 18.0 0.5 0.5 0.5 1487 1318 1243 0.01 0.01
d{06-10} 49.2 45.5 45.9 1.1 0.7 0.7 1863 1697 1569 1.62 1.69
d{11-15} 122.5 124.1 99.9 2.5 1.3 1.5 1363 1387 1168 0.02 0.02
d{16-20} 1032.0 957.6 1179.7 10.7 8.9 17.1 1830 1666 1700 0.10 3.23

Table 3: Comparison of the 3 selected approaches. The best running times and least number of enumerated branch-
and-bound nodes are shown in bold.

The running times indicate that for most groups the separation on the smaller graph G is
beneficial. While EG+ is faster than EG on 15 groups, it’s the other way around for only 3
groups. The performance of approach OG+ is surprisingly good. Even though the gaps are slightly
larger, omitting the costly separation on GNS leads to better overall running times, especially on
the instances of set C with only few customers (c{1,6,11,16}, c{2,7,12,17}). However, for the
instance group with the largest sets of edges and customers (d{16-20}) the significantly larger gap
requires the enumeration of a lot more branch-and-bound nodes and leads to a performance worse
than the one of the stronger models EG and EG+. We believe that approach OG+ is suitable for
small to medium instances (with a small number of customers), but does not scale well to dense

3 For non-negative values vi, i ∈ {1, . . . , k} the shifted geometric mean for shift s > 0 is defined as µs(v1, . . . , vk) =
(
Qk

i=1(vi + s)1/k)− s.
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graphs with large customer sets.
The average values for the number of enumerated branch-and-bound nodes are unexpectedly

uncorrelated with the strength of the underlying lower bounds. For some instance groups the
“weaker” approach OG+ enumerated less nodes before reaching optimality, even though it provides
the weaker LP bounds. This can be explained by the fact that we use CPLEX’ default branching
strategy. Thus the variables selected for branching and the order in which the nodes are explored
might differ.

An interesting aspect of the results in Table 3 are the number of constraints detected by the
separation procedures. In approach OG+ the least number of cuts is added to the LP and optimality
is enforced by extensive branching. This is as expected, as in OG+ inequalities of the general
set (x12-z) are not separated. The number of cuts added by EG and EG+ indicate another
advantage of the latter approach. The inequalities that can be separated on the smaller graphs
are more likely to be binding in the optimal LP solution of each branch-and-bound node than
some of those detected on the extended graph. Thus, the linear programs in the branch-and-bound
tree need less memory, allowing EG+ better scalability when system memory becomes the limiting
factor.

5.2.2. Influence of instance size on algorithmic performance
To assess the influence of the instance size on the running time we compare the running times

of approach EG+ on all instances in testsets C and D in Tables 4 and 5, respectively. We conclude
that a larger number of nodes and edges in G as well as a larger number of customers lead to
longer running times. This is not surprising as our approach spends most of the time solving linear
programs or separating violated constraints, i.e. calculating maximum flows. The only instance
that is not solved within one hour of running time is d20 with 1000 nodes, 500 customers and 25000
edges. We conclude that for instances with a low density our approach scales well.

|E|
|P ∪ S| 625 1000 2500 12500

5 0.9 0.6 2.5 46.6
10 1.4 2.1 6.5 48.4
83 9.2 16.5 207.8 494.3

125 10.2 25.4 53.3 431.1
250 15.5 49.5 134.3 933.2

Table 4: Average running times (in seconds) of ap-
proach EG+ for the instances in testset C grouped by
the number of edges and the number of customers

|E|
|P ∪ S| 1250 2000 5000 25000

5 1.0 6.5 5.7 73.8
10 5.5 2.0 34.4 76.1

167 58.9 220.6 436.8 2616.6
250 49.4 195.7 600.4 2110.3
500 97.2 349.2 571.7 25963.8

Table 5: Average running times (in seconds) of ap-
proach EG+ for the instances in testset D grouped by
the number of edges and the number of customers

5.2.3. Influence of instance parameters on algorithmic performance
In the last part of our study we assess the effect of changes of the parameters used to generate

the test instances. We compare the performance of EG+ on instance sets generated using the
default parameters to the performance when these parameters are altered.

The following choices of parameters were tested:

• Higher and lower facility opening costs (0.75 and 0.25 times the average primary edge costs),
indicated by d ↑ and d ↓, respectively.
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• Higher and lower secondary edge costs (q ∈ [0.5, 1) and q ∈ [0.125, 0.25]), indicated by c2 ↑
and c2 ↓, respectively.

• Higher/lower facility opening costs combined with lower/higher secondary edge costs.

• Restricting potential facilities to the customer nodes R = P ∪ S (cf. [11]).

In Table 6 we report results aggregated over the 18 instances listed in Table 2. We report first,
second and third quartile (Q1, Q2 and Q3) of the running times (tIP [s]) and number of cuts added
(#Cuts), the number of instances solved to optimality at the root node of the branch-and-bound
tree (#OptLP ) and the shifted geometric mean of the LP gaps (Gap [%], where we once again
use the arithmetic mean as shift). For the default setting indicated by EG+ we report absolute
numbers. For all other parameter settings we report absolute numbers for #OptLP and Gap [%].
For the runtime tIP [s] and the number of added cuts #Cuts we report the increase or decrease
compared to the respective value for EG+ in per cent.

tIP [s] #Cuts
Setting Q1 Q2 Q3 Q1 Q2 Q3 #OptLP Gap [%]
EG+ 23.8 43.4 63.0 1817 2215 2897 13 0.04
d ↑ 0.0 34.2 29.2 3.0 16.1 12.0 11 0.06
d ↓ -3.4 -31.0 -28.7 -14.0 -12.9 -12.0 16 0.01
c2 ↑ 31.9 -2.5 6.3 11.0 6.7 13.0 11 0.14
c2 ↓ 2.9 17.5 27.6 -8.0 10.9 1.0 7 0.08
d ↑ c2 ↓ 24.8 71.1 70.3 -5.0 35.3 14.0 5 0.12
d ↓ c2 ↑ 33.2 -11.2 -12.9 -2.0 -3.6 -5.0 13 0.02
F = R -55.5 -34.8 -44.1 -58.0 -38.2 -42.0 12 0.05

Table 6: The influence of variations from the initial parameter settings for generating TLNDF instances.

We observe that increasing facility opening costs and lowering secondary edge costs leads to a
significant increase of the running times. The effects add up when the two deviations are combined.
Reducing the facility opening costs has the opposite effect of increasing facility opening costs and
reduces the running times. Higher secondary edge costs do not show a similar opposite effect of
lowering secondary edge costs.

Reducing the number of possible facility locations reduces the problem complexity and leads to
shorter running times. This is not surprising as the variable space and the separation graphs for
subsets of constraints involving variables z are much smaller in this case.

For all parameter settings (except for combined high facility opening and low secondary edge
costs), the first, second and third quartile of the running time never increases by more than 35%
compared to our default setting. We conclude that the cost structure of the instance has only little
influence on the overall performance of our model.

The key values other than the running times reported in Table 6 confirm that increased solution
time comes along with more detected violated inequalities, a larger LP gap and less instances for
which the LP relaxation of our model provides the optimal integer solution.

To see the effect of different cost parameters on the solution structure consider Figure 5. Fig-
ure 5(a) shows the optimal solution for the default setting (which is the same as the optimal solution
for d ↑, c2 ↓ and F = R). Figure 5(b) shows the optimal solution for d ↑ c2 ↓. Even though the
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facility on the right hand side becomes more expensive in d ↑ the solution does not change. Lower-
ing secondary edge costs makes it profitable to change the path to the secondary customer at the
bottom and to open one facility less. Figure 5(c) shows the optimal solution for c2 ↑ and d ↓ c2 ↑.
It illustrates that less difference between primary and secondary edge costs will reduce the size and
number of secondary customers in the secondary subforest. Finally, Figure 5(d) shows the optimal
solution for d ↓. Lowering facility opening costs leads to an additional open facility and increases
the number of subtrees in the secondary forest.

6. Conclusions

We introduced a new combinatorial optimization problem combining facility location and net-
work design decisions. We considered several mixed integer programming formulations for the
problem. Besides formulations derived on the space of original design variables, we also provided
three extended formulations: two of them use a flow and a disaggregated flow concept, respectively,
and the third one uses a reformulation of the problem on an extended graph in which facility nodes
are modeled as arcs.

We provided a theoretical comparison of those models, with respect to the strength of their LP
bounds, and in particular showed that the LP bound of the new model based on flows “disaggregated
by technology” equals the LP bound of the cut set model on the extended graph. The extensive
computational study compares and shows the applicability of the cutting-plane-based counterparts
of these models.

Further interesting topics on TLNDF that have not been covered by this article include char-
acterizations of facets of the TLNDF polytope, development of approximation algorithms and/or
efficient (meta)heuristics. Furthermore, TLNDF can be extended for modeling networks in several
stages. Multi-period or two-stage stochastic or recoverable robust approaches are natural extensions
of this problem of great relevance in practice.
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Abstract

We consider a network design problem that arises in the design of last mile telecommunication
networks. It combines the capacitated network design problem (CNDP) with the single-source
capacitated facility location problem (SSCFLP). We will refer to it as the Capacitated Connected
Facility Location Problem (CapConFL). We develop a basic integer programming model based on
single-commodity flows. Based on valid inequalities for the subproblems, CNDP and SSCFLP, we
derive several (new) classes of valid inequalities for the CapConFL. We use them in a branch-and-cut
framework and show their applicability on a set of real-world instances.

Keywords: Capacitated Network Design, Facility Location, Connected Facility Location, Mixed
Integer Programming Models, Telecommunications

1. Introduction

Given a set of customers, a set of potential facility locations and some inter-connection nodes,
the goal of the Connected Facility Location problem (ConFL) is to find the minimum-cost way of
assigning each customer to exactly one open facility, and connecting the open facilities via a Steiner
tree. The sum of costs for the Steiner tree, the facility opening costs and the assignment costs needs
to be minimized. This problem has been used to model a network design problem that arises in
the design of last mile telecommunication networks when the fiber to the curb (FTTC) deployment
strategy is applied (see, e.g., [17]). Contrary to the fiber to the home strategy, where each customer,
i.e., household, has its own fiber-optic uplink, in the FTTC strategy some of the existing copper
wire infrastructure is used. More precisely, in an FTTC network, fiber optic cables run from a
central office to a cabinet serving a neighborhood. End users connect to this cabinet using the
existing copper connections. Expensive switching devices are installed in these cabinets. The usage
of the last d meters of copper wire between the customer and a switching device may significantly
reduce deployment costs while still enabling broadband connections of reasonable quality.

In more detailed planning of FTTC networks, capacities of the links and of multiplexor devices
are limited and this aspect was not captured by the ConFL variants studied in the literature so

Email addresses: stefan.gollowitzer@univie.ac.at (Stefan Gollowitzer), gendron@iro.umontreal.ca
(Bernard Gendron), ivana.ljubic@univie.ac.at (Ivana Ljubić)
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far. In this paper we consider a new capacitated variant of the ConFL problem, that we will refer
to as the Capacitated Connected Facility Location Problem (CapConFL).

In a typical application from telecommunications, demands of customers are given as the number
of twisted copper lines that are to be “served” at the respective customer location. Switching (or
multiplexor) devices have both capacity and demand. Capacity is defined in terms of the number of
twisted copper lines a device can serve. The demand of a switching device is defined as the number
of fiber-optic uplinks required to connect the device to the central office (which is further connected
to the backbone network). The number of uplinks is fixed for each device and independent of the
number of customers that are finally assigned to it. The CapConFL consists of deciding on the
location of switching devices, the assignment of customers to these devices and the routing of the
uplinks from the switching devices to the central office, while minimizing the overall investment
costs.

1.1. Problem definition
More formally, CapConFL can be defined as follows. The input is a graph G = (V,ES∪AR) with

the set of nodes V partitioned into the set of customers (R), the set of potential facility locations
(F ) and the set of potential Steiner nodes (V \ (F ∪ R)). A root node r ∈ V \ (F ∪ R) represents
the connection to a higher order (e.g., backbone) network. The network GS = (VS , ES), where
VS := V \ R and ES := {e = {i, j} ∈ E | i, j ∈ VS} is called the core network. The assignment
network GR = (F ∪R,AR) consists of directed arcs between potential facilities and customers, i.e.,
AR = {(i, k) | i ∈ F, k ∈ R}. The following input parameters are associated to the network:

• Facility opening cost fi ≥ 0, capacity vi > 0 and demand di > 0 for each i ∈ F .

• Arc cost ce ≥ 0 and capacity ue > 0 for each e ∈ ES .

• Assignment cost cij ≥ 0 for each (i, j) ∈ AR.

• Customer demand bk > 0 for each k ∈ R.

The goal is to find a subnetwork of G consisting of the set of open facilities F ′, the set of core edges
E′S and the set of assignment arcs A′R such that:

(P1) Each customer is assigned to exactly one open facility using arcs from A′R.

(P2) The sum of customers’ demands assigned to a facility i does not exceed its capacity vi.

(P3) In the core subnetwork induced by E′S , we can simultaneously route the flow from the root
node to satisfy the demand of all open facilities, without violating the edge capacities.

(P4) The sum of assignment, facility opening and edge costs, given by
∑

e∈E′S ce +
∑

i∈F ′ fi +∑
(i,j)∈A′R cij , is minimized.

Obviously, by setting capacities ue = ∞, for all e ∈ ES and vi = ∞, for all i ∈ F , we obtain
the previously studied ConFL problem. Figure 1 illustrates solutions for ConFL and CapConFL.
Squares and triangles denote facilities and customers, respectively. A black fill indicates that a
facility is open. A diamond denotes the root node. Solid edges are in the core network, dotted
edges represent the assignments. In the CapConFL the limited facility capacities require two
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(a) ConFL solution (b) CapConFL solution

Figure 1: Feasible solutions of the ConFL and CapConFL problem, respectively.

additional open facilities and a different assignment of customers to facilities. The limited edge
capacities require additional edges in the core network.

Notice that ConFL combines the Steiner tree problem and the uncapacitated facility location
problem. On the other hand, CapConFL combines the capacitated network design problem with
the single-source capacitated facility location problem. To see this, consider a feasible CapConFL
instance whose core graph has a star topology. One can easily transform this input graph into an
instance of the single-source capacitated facility location problem: the facility opening costs for each
i ∈ F are now defined as ce + fi where ce is the corresponding adjacent edge, and the assignment
graph remains unchanged. Similarly, a feasible CapConFL instance in which the assignment arcs
are such that each customer is adjacent to exactly one facility can be reduced into an instance of
the single-source capacitated network design problem.

1.2. Literature review
Since CapConFL has not been considered before, we provide a detailed literature overview of

three closely related problems: connected facility location, capacitated network design and single-
source capacitated facility location.

Connected Facility Location. Early work on ConFL mainly includes approximation algorithms.
ConFL can be approximated within a constant ratio and the currently best-known approximation
ratio is provided by Eisenbrand et al. [13]. Recently, heuristic approaches have been proposed
by Ljubić [25] and Bardossy and Raghavan [3]. Gollowitzer and Ljubić [17] present and compare
several formulations for ConFL, both theoretically and computationally. Some of these results will
be discussed and related to the CapConFL later on. Arulselvan et al. [2] consider a time-dependent
variant of the ConFL and present a branch-and-cut approach based on cover, cut set cover and
degree balance inequalities. Leitner and Raidl [24] propose a branch-and-cut-and-price approach
for a variant of ConFL with capacities on facilities. Cutting planes are used to ensure paths
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between the root and open facilities, while column generation is used for selecting open facilities
and assigning customers to them.

(Single-Source) Capacitated Network Design Problems (CNDP). In a typical CNDP setting, a net-
work is given with a limited capacity available on each edge. A subset of edges of minimum cost
needs to be installed in the network such that commodities with multiple origins and multiple
destinations can be routed through the network without violating installed edge capacities. There
exists a large body of work on the CNDP and related problems.

It includes exact methods based on Lagrangian relaxation or decomposition [14, 19, 9, 23],
heuristic methods based on tabu search, neighbourhood search, slope scaling and Lagrangian relax-
ation [8, 15, 16, 10]. Recent developments comprise a theoretical study and comparison of Benders,
metric and cut set inequalities [7] and a hybrid method combining mathematical programming
and neighbourhood search techniques [18]. Finally, Chouman et al. [5] present a branch-and-cut
approach that compares several families of valid inequalities for the CNDP.

A generalization of the single-source CNDP is the Local Access Network Design problem (LAN).
In this problem multiple copies of each edge are available. The Local Access Network Design
problem was studied by Raghavan and Stanojević [27], Salman et al. [28] and Ljubić et al. [26].

The Single-Source Capacitated Facility Location Problem (SSCFLP). Aardal et al. [1] and Deng and
Simchi-Levi [11] proposed MIP models and studied the corresponding polyhedra of the SSCFLP and
related problems. Holmberg et al. [20] present a branch-and-bound method based on a Lagrangean
heuristic, Diaz and Fernández [12] develop a branch-and-price approach based on a decomposition
of the SSCFLP and Contreras and Dı́az [6] propose a scatter search heuristic. Ceselli et al. [4] give
an exhaustive computational evaluation of branch-and-cut and branch-and-price approaches for a
general class of facility location problems that includes the SSCFLP.

1.3. Contribution and outline
In Section 2 we introduce a basic integer programming model for CapConFL and discuss the

relation of CapConFL and the Connected Facility Location problem. In particular, we show that a
domination result between two sets of valid inequalities for ConFL does not hold for CapConFL. In
Section 3 we derive cover and extended cover inequalities for the various knapsack type constraints
in our model. In addition, we provide two generalizations of recently proposed cut-set-cover inequal-
ities and cover inequalities for single cut sets. Separation procedures for these valid inequalities
are discussed in Section 4. In Section 5 we illustrate the effectiveness of the proposed model and
the valid inequalities by computational experiments on a set of new, realistic benchmark instances
based on real data. We conclude the paper in Section 6.

2. Mixed integer programming models

In this section we introduce a first basic model for the CapConFL. It is based on models familiar
in the context of the SSCFLP and the CNDP. We then strengthen this model using concepts known
from the Connected Facility Location problem [17].

Since all demands of open facilities have to be routed from a single source node, it can be shown
(see, e.g., [26]) that without loss of generality we can replace the undirected core network GS by a
bidirected graph in which each edge e ∈ ES is replaced by two directed arcs, except for the edges
adjacent to the root node, where it is sufficient to consider outgoing arcs from r. The set of arcs
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of the bidirected core network will be denoted by AS . Since the flow routed through an edge will
always be routed in one of the two opposite directions, we define cost and capacities as cij = ce and
uij = ue, respectively, for each e = {i, j} in ES . The union of core and assignment arcs is denoted
by A = AS ∪AR. For a set of customers J ⊂ R we denote the set of facilities that can serve these
customers by F (J) =

⋃
k∈J F (k), where F (k) := {i ∈ F : (i, k) ∈ AR}. Likewise, for I ⊂ F we

denote by R(I) =
⋃
i∈I R(i) where R(i) := {k ∈ R : (i, k) ∈ AR}. For W ⊂ V we denote the set of

ingoing arcs by δ−(W ).

2.1. The basic MIP model
In our models we will use the following binary decision variables:

xij =

{
1, if arc (i, j) is installed
0, else

(i, j) ∈ A

zi =

{
1, if facility i is installed
0, else

i ∈ F

In addition, continuous flow variables gij indicate the total amount of the flow between the root r
and all open facilities in F routed through the arc (i, j) ∈ A.

The following model combines the single-commodity flow (SCF) formulation for the CNDP (see,
e.g., [27, 28]) with a formulation for the SSCFLP (see, e.g., [20]):

(SCF ) min
∑
ij∈A

cijxij+
∑
i∈F

fizi

s.t.
∑
ji∈AS

gji −
∑
ij∈AS

gij =


dlzl
−∑

l∈F dlzl
0

i = l
i = r
else

i ∈ VS (1a)

0 ≤ gij ≤ uijxij (i, j) ∈ AS (1b)∑
k∈R(i)

bkxik ≤ vizi i ∈ F (1c)

xik ≤ zi i ∈ F, k ∈ R(i) (1d)∑
i∈F (k)

xik = 1 k ∈ R (1e)

xij ∈ {0, 1} (i, j) ∈ A (1f)
zi ∈ {0, 1} i ∈ F (1g)

Constraints (1c)-(1e) are the strong relaxation of the SSCFLP. The assignment constraints (1e)
model the property (P1) and constraints (1c)-(1d) ensure the property (P2). In constraints (1a)-
(1b) we use the single-commodity flow variables to ensure the property (P3). This model is intuitive,
but it provides weak lower bounds, due to the following facts: 1) big-M constraints (1b) are used
to model the arc capacities, and 2) the connectivity between the root and the open facilities, rather
than between the root and the customers, is required. The model is impractical to solve in a
branch-and-bound framework, even for medium sized instances.
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Using the following capacitated cut set inequalities we can project out the flow variables from
the previous model and replace the constraints (1a)-(1b) by the following ones (see, e.g., Ljubić
et al. [26]): ∑

ij∈δ−(W )

uijxij ≥
∑

l∈F∩W
dlzl W ⊆ VS \ {r} (CutSCF )

The obtained model contains an exponential number of inequalities and provides the same lower
bounds as the corresponding flow model. However, inequalities (CutSCF ) can be strengthened as
follows: ∑

ij∈δ−(W )

min(uij ,
∑

l∈F∩W
dl)xij ≥

∑
l∈F∩W

dlzl W ⊆ VS \ {r}

2.2. Relations to Connected Facility Location and cut set inequalities
In [17] we studied MIP formulations for ConFL and provided a complete hierarchy of several

MIP formulations with respect to the quality of their LP-bounds. Among others, we described two
cut set-based formulations for ConFL. The models differ in the way they require connectivity.

In the first model, connectivity is ensured between the root and any open facility as follows:∑
ij∈δ−(W )

xij ≥ zl W ⊆ VS \ {r}, l ∈W ∩ F (CutZ)

These inequalities state that for each open facility the edges on at least one path between the
root node and the respective facility need to be installed. Additional assignment constraints (1d)
and (1e) are required between the facilities and customers.

The second model replaces constraints (CutZ) by the following cut set inequalities that ensure
connectivity between the root and every customer:∑

ij∈δ−(W )

xij ≥ 1 W ⊆ V \ {r},W ∩R 6= ∅ (CutX)

We showed that for ConFL the second model provides theoretically stronger lower bounds, but
is computationally outperformed by the first model on the set of benchmark instances considered
there.

Both sets of inequalities, (CutZ) and (CutX) are also valid for CapConFL. It is interesting to
mention that, unlike for the ConFL, for which the inequalities (CutZ) are implied by the model
with (CutX) constraints, the two families of inequalities can be used complementary to each other
for CapConFL:

Lemma 1. Inequalities (CutZ) and (CutX) both strengthen the LP-relaxation of the basic model
(SCF). However, the MIP models (SCF)+(CutX) and (SCF)+(CutZ) are incomparable w.r.t. the
quality of their LP-bounds.

Proof. It is not difficult to see that inequalities (CutZ) and (CutX) both strengthen the LP-
relaxation of (SCF). To see that (CutZ) inequalities are not implied by (SCF)+(CutX), consider the
example shown in Figure 2. A vector (x, z) that satisfies (CutSCF ) is x12 = 0.75, x23 = x24 = 0.25,
z3 = z4 = 0.75, x35 = x46 = 0.75 and x45 = x36 = 0.25. This solution is cut off by the (CutX) con-
straints x23+x24 ≥ 1 and x12 ≥ 1. Finally, inequalities (CutZ) are not redundant for (SCF)+(CutX)
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since they ensure x23 + x24 ≥ 1.5 which further strengthens the model.
Conversely, the model (SCF)+(CutZ) does not imply (CutX) constraints, which follows from the
previous results for ConFL in [17], i.e., a CapConFL instance with sufficiently large capacities on
arcs and facilities will have the desired property.
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b5 = 6

b6 = 6

v3 = 8

v4 = 8

d3 = 2

d4 = 2

u = 4

u = 6

u = 6

Figure 2: Example for comparison of cut set inequalities

3. Valid Inequalities

For the well-known subproblems of CapConFL, SSCFLP and CNDP, several sets of strength-
ening valid inequalities are known. We will review ideas that seem relevant in the context of the
CapConFL and propose several sets of new valid inequalities based on the combination of the
facility location and network design aspect.

3.1. Cover inequalities for single facilities
Deng and Simchi-Levi [11] proposed cover inequalities for the SSCFLP with uniform capaci-

ties. These inequalities are better known in the context of general mixed integer programming to
strengthen knapsack-type constraints. We will use the concept of extended cover inequalities (see,
e.g., the recent work of Kaparis and Letchford [22]).

Consider an arbitrary potential facility node i ∈ F . We call a set R′ ⊆ R(i) a cover for i ∈ F if∑
k∈R′ bk > vi and minimal if

∑
k∈R′ bk − b` ≤ vi for all ` ∈ R′. We call it a minimal cover if it is

minimal and a cover. For a minimal cover R′, we define E(R′) = {k ∈ R(i) \ R′ : bk ≥ b∗}, where
b∗ = maxk∈R′ bk.

Let the set of all minimal covers of i ∈ F be denoted by MC(i). Then the following extended
knapsack cover inequalities are valid for the CapConFL:∑

j∈R′∪E(R′)

xij ≤ (|R′| − 1)zi R′ ∈MC(i), i ∈ F (EKS)

3.2. Inequalities involving multiple facilities
We derive two new families of inequalities that are implied by the limited capacities of facilities

and the limited number of assignments edges in AR.
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Minimum cardinality inequalities on facilities. For a given set of customers J ⊂ R and the cor-
responding subset of facilities F (J), let p(J) be the minimum number of facilities in F (J) that
is required to assign the customers in J in a feasible way, i.e., by respecting the allowed possible
assignments and satisfying the capacity constraints on the facilities in F (J). In other words, p(J)
is the optimum solution of a capacitated bin-packing problem with the set of bins F (J), capacities
vi for i ∈ F (J), the set of items J , demands bj for j ∈ J and such that each item j ∈ J is only
allowed to be assigned to bins in F (j). W.l.o.g. we can assume that bk ≤ vi for all (i, k) ∈ AR and
thus p({k}) = 1 for all k ∈ R and p(J) ≤ min{|F (J)|, |J |} for all J ⊆ R.

Then the following minimum cardinality inequalities are valid for the CapConFL:∑
i∈F (J)

zi ≥ p(J) J ⊆ R (MCF )

(Extended) Cover inequalities on facilities. Next we apply the idea of cover inequalities to the
relation of facility capacities and customer demands. Let again J ⊆ R. We call a set F ′ ⊂ F (J) a
capacity cover with respect to J if

∑
i∈F (J)\F ′ vi < b(J) and we call it minimal if vk+

∑
i∈F (J)\F ′ vi ≥

b(J) for all k ∈ F ′. Let CC(F (J)) denote the set of all such capacity covers of F (J). We call the
following set of constraints cover inequalities on facilities:∑

i∈F ′
zi ≥ 1 F ′ ∈ CC(F (J)), J ⊆ R (2)

Similar to the cover inequalities for single facilities we can extend the covers and obtain stronger
inequalities. Let v∗ = maxi∈F ′ vi and let E(F ′) = {i ∈ F (J) \ F ′ : vi ≥ v∗} be the set of remaining
facilities from F (J) with a capacity of at least v∗. We refer to the following inequalities as extended
cover inequalities on facilities:∑

i∈F ′∪E(F ′)

zi ≥ 1 + |E(F ′)| F ′ ∈ CC(F (J)), J ⊆ R (CovF )

To see that these inequalities are valid we can rewrite inequalities (2) as
∑

i∈F ′(1− zi) ≤ |F ′| − 1.
The corresponding extended cover inequality is then∑

i∈F ′∪E(F ′)

(1− zi) ≤ |F ′| − 1.

Rewriting this inequality gives (CovF ).

The sets of inequalities (MCF ) and (CovF ) do not contain each other as the following coun-
terexamples show. In the example in Figure 3(a) a valid (CovF ) inequality is z1 + z2 ≥ 2, while
the (MCF ) inequalities only ensure z1 + z2 + z3 ≥ 2. On the contrary, for the example given in
Figure 3(b) the (CovF ) inequalities are z1 +z2 ≥ 1 and z1 +z3 ≥ 1, but they are strictly dominated
by the (MCF ) inequality z1 + z2 + z3 ≥ 2 that also implies z2 + z3 ≥ 1.

General representation of cover inequalities on facilities. Consider now a general valid inequality
of type ∑

i∈F̂
zi ≥ p (3)
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(b) Example 2

Figure 3: Counterexamples for comparison of (MCF ) and (CovF )

defined for a set F̂ ⊆ F and p ≥ 1. For p = 1 we have the simple cover inequalities (2) (i.e.,
F̂ ∈ CC(F (J))) and, for p ≥ 2, inequalities of type (MCF ) and (CovF ) belong to this family, i.e.,
we have F̂ ∈ F (J) ∪ {F ′ ∪ E(F ′) | F ′ ∈ CC(F (J))}, for J ⊆ R. The following family of general
cover inequalities on facilities is then also valid for our problem:∑

i∈F̃
zi ≥ 1 F̃ ⊆ F, |F̃ ∩ F̂ | ≥ |F̂ | − p+ 1 (Covgen)

It is not difficult to see that the latter inequalities are implied by (3). However, they are of particular
interest when combined with cut set inequalities, as explained below.

3.3. Cut-set-cover inequalities
This new family of valid inequalities combines cut set inequalities with the general cover in-

equalities for facilities of the form (Covgen). Inequalities (Covgen) state that at least one facility
in F̃ needs to be opened in a feasible solution. Consequently, for every subset of nodes W ⊂ V
containing all nodes in F̃ , at least one ingoing arc needs to be installed. Let F denote the family
of all subsets of facilities for which (Covgen) is valid, i.e.:

F =
⋃
J⊆R

F (J) ∪ {F ′ ∪ E(F ′) | F ′ ∈ CC(F (J))}

and let

p(F̂ ) =

{
1 + |E(F ′)|, F̂ = F ′ ∪ E(F ′), F ′ ∈ CC(F (J))
p(J), F̂ = F (J)

for all F̂ ∈ F . The following cut-set-cover inequalities are valid for CapConFL and not implied by
any of the previously described sets of constraints:∑

ij∈δ−(W )

xij ≥ 1 F̃ ⊆W ∩ F, |F̃ ∩ F̂ | ≥ |F̂ | − p(F̂ ) + 1, F̂ ∈ F (CutCov)

Inequalities (CutCov) are a generalization of the previously introduced cut-set-cover inequalities
for the incremental ConFL studied in Arulselvan et al. [2]. Figure 4 illustrates inequalities (CutCov)
for two different subsets W and a cover inequality z1 + z2 ≥ 1 of type (CovF ). Figure 5 illustrates
inequalities (CutCov) for the minimum cardinality inequality z1 + z2 + z3 ≥ 2.
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Figure 4: Example for cut-set-cover inequali-
ties (CutCov) derived from an inequality (CovF ).
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Figure 5: Example for cut-set-cover inequali-
ties (CutCov) derived from an inequality (MCF ).

3.4. Cover inequalities for single cut sets
The following set of valid inequalities generalizes the cover inequalities known for the capacitated

network design problem studied in Chouman et al. [5]. Consider a (CutSCF ) cut set inequality∑
ij∈δ−(W ) uijxij ≥

∑
l∈F∩W dlzl defined by a cut set δ−(W ) for W ⊆ V \ {r}. Let F ′ ⊆ F ∩W

and d(F ′) =
∑

l∈F ′ dl. A set C ⊂ δ−(W ) is called a cover with respect to δ−(W ) and F ′, if∑
ij∈δ−(W )\C uij < d(F ′) and a minimal cover if, in addition,∑

ij∈δ−(W )\C
uij + ulk ≥ d(F ′) for all lk ∈ C.

Let MC(W,F ′) denote the set of all minimal covers with respect to δ−(W ) and F ′. Then the
following cover inequalities on single cut sets are valid for the CapConFL:∑

ij∈C
xij ≥ 1 +

∑
l∈F ′

(zl − 1) ∀C ∈MC(W,F ′). (Covδ−(W ))

Figure 6 illustrates inequalities (Covδ−(W )). Edge (b, d) is a cover with respect to W =
{1, 2, 3, d, e, f} and F ′ = {2, 3}.

r

1

2

3

e

c

b

f
d

d1 = 5

d2 = 7

d3 = 12
u = 7

u = 9

u = 30

Figure 6: Illustration of cut set cover inequalities

4. Separation procedures

In this section we describe the separation procedures used in our branch-and-cut algorithm. We
refer to the variable values of the current fractional solution by (x̄, z̄).
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4.1. Separation of inequalities (CutSCF ) and (CutZ)
Inequalities (CutSCF ) can be separated in polynomial time (see also Ljubić et al. [26]). We define

the support graph G′ = (V ′, A′) where V ′ := VS ∪ t with an additional sink node t, A′ := AS ∪At
and At := {(i, t) | i ∈ F, z̄i > 0}. We define capacities on arcs as uij x̄ij for each arc ij ∈ AS and
diz̄i for each arc it ∈ At. We calculate the minimum cut between r and t in G′. Let δ−(W ) denote
the arcs of this cut. If δ−(W )∩AS 6= ∅ and

∑
ij∈δ−(W )∩AS

uij x̄ij <
∑

i∈W∩F diz̄i we have detected
a violated inequality (CutSCF ).

Inequalities (CutZ) can be separated in similar fashion (see also Gollowitzer and Ljubić [17]).
The support graph in this case is the bidirected core network (VS , AS) with arc capacities set to
x̄ij for each arc ij ∈ AS . A minimum cut in AS between r and l ∈ F with a weight of less than z̄l
corresponds to a violated inequality (CutZ).

4.2. Separation of inequalities (CutX)
For the separation of (CutX) inequalities we define a support graph Gj for each j ∈ R. Thereby,

Gj = (V ∪ {j},AS ∪ Aj) where Aj = {(i, j) | i ∈ F (j)}. Capacities on the arcs from AS ∪ Aj are
set to x̄ij . Each minimum cut in Gj between r and j ∈ R whose weight is less than 1 corresponds
to a violated inequality (CutX).

If the number of customers is large, complete separation of inequalities (CutX) is very time-
consuming. We therefore reduce the set of customers considered in the separation to a subset that
still ensures all violated inequalities are identified. A customer c1 ∈ C is ignored if there exists
another customer c2 ∈ C such that F (c2) ⊂ F (c1). If F (ci) are identical for all ci ∈ C̄ ⊆ C only
one customer in C̄ is considered.

4.3. Separation of inequalities (EKS)
For a fractional point (x̄, z̄) and for each i ∈ F̄ = {i ∈ F | z̄i > 0}, the separation of (simple,

non-extended) inequalities (EKS) is equivalent to solving a knapsack problem which is described
by the following integer program:

min z =
∑
j∈R

(z̄i − x̄ij)sj

s.t.
∑
j∈R

bjsj > vi

sj ∈ {0, 1} ∀j ∈ R

If z < z̄i a simple, non-extended cover inequality is violated.
Instead of solving the separation problem exactly (e.g., using a dynamic programming proce-

dure), we restrain to a heuristic separation which was proposed by Kaparis and Letchford [22].
Their efficient and fast separation heuristic detects extended knapsack cover inequalities. Adapted
to our (EKS) inequalities, this procedure consists of the following steps, executed for each i ∈ F :

1. Sort the items in R(i) in non-decreasing order of (z̄i − x̄ij)/bj , and store them in a list L.
Initialize the cover R′ as the empty set and initialize b∗ = vi.

2. Remove an item from the head of the sorted list L. If its weight is larger than b∗, ignore it,
otherwise insert it into R′. If R′ is now a cover, go to step 4.

3. If L is empty, stop. Otherwise, return to step 2.
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4. If the extended cover inequality corresponding to R′ is violated by (x̄, z̄), output it.
5. Let k∗ = arg maxj∈R′ bj be the customer in R′ with the highest demand. Set b∗ = bk∗ and

delete k∗ from R′. Return to step 2.

In fact, we perform two variants of this algorithm. The one stated above and one where the
customers are sorted in non-increasing order of x̄ij .

4.4. Separation of inequalities (MCF ) and (CovF )
We consider subsets of facilities F ′ ∈ FC := F1 ∪ F2, where F1 := {F (k) | k ∈ R} and

F2 := {F (k1) ∪ F (k2) | |F (k1) ∩ F (k2)|/min(|F (k1)|, |F (k2)|) ≥ 0.5, k1, k2 ∈ R}, i.e., F2 contains
unions of F (k1) and F (k2) such that at least half the facilities of either F (k1) or F (k2) are common
to both these sets. For each F ′ we define the subset of customers to be considered in the separation
of (MCF ) and (CovF ) inequalities as J(F ′) := {k′ ∈ R | F (k′) ⊆ F ′}.
Separation of inequalities (MCF ). We calculate p(J) for J and F (J) by solving a bin-packing
problem with assignment restrictions and non-uniform bin capacities:

p(J) = min
∑

i∈F (J)

ti

s.t.
∑
k∈R(i)

bksik ≤ viti i ∈ F (J)

sik ≤ ti k ∈ J, i ∈ F (k)∑
i∈F (k)

sik = 1 k ∈ J

sik ∈ {0, 1} k ∈ J, i ∈ F (k)
ti ∈ {0, 1} i ∈ F (J)

We consider F ′ ∈ FC as candidate sets for F (J) and determine J = J(F ′) as described in the
previous paragraph. The values of p(J) are calculated for all such J during preprocessing. In the
separation procedure we repeatedly check whether the current fractional solution violates any of
the stored inequalities (MCF ). By doing so we consider at most |FC | ≤ |R| + |R|2 inequalities of
type (MCF ).

Separation of inequalities (CovF ). Given J ⊆ R and F (J), the separation of (simple, non-extended)
covers on facilities (2) is equivalent to solving the following knapsack problem:

min z =
∑

i∈F (J)

z̄isi

s.t.
∑

i∈F (J)

visi >
∑

i∈F (J)

vi − b(J)

si ∈ {0, 1} i ∈ F (J)

If z < 1, an inequality (2) is violated.
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We consider F (J) for J = J(F ′) and F ′ ∈ FC . To find covers in CC(F (J)) we use the
separation procedure described in Section 4.3 with the following modifications: The facilities in
F (J) are ordered according to z̄i/vi in non-decreasing fashion and b∗ is initialized with the maximum
capacity of the facilities in F (J).

4.5. Separation of inequalities (CutCov)
In the separation of (CutCov) we consider all inequalities of the form (3) that were found by

the separation procedure for (CovF ) and (MCF ). For the corresponding set of facilities F̂ and
right-hand side p we randomly generate up to p sets F̄ ⊆ F̂ such that |F̄ | = |F̂ | − p + 1. We
separate inequalities (CutCov) by running a maximum flow algorithm on graph G′ defined as in
Section 4.1, but with capacities of 1 on arcs it if i ∈ F̄ and 0 if i 6∈ F̄ .

4.6. Separation of inequalities (Covδ−(W ))
Given a cut set W ⊆ V \ {r} and the set of facilities contained in that cut set, F ′ = W ∩ F , a

violated cut set cover inequality is detected by solving the following integer program:

min z =
∑

ij∈δ(W )

x̄ijsij −
∑
l∈F ′

(z̄l − 1)tl

s.t.
∑

ij∈δ−(W )

uijsij +
∑
l∈F ′

dltl >
∑

ij∈δ−(W )

uij

sij ∈ {0, 1} ij ∈ δ−(W )
tl ∈ {0, 1} l ∈ F ′

A (Covδ−(W )) inequality is violated if z < 1.
We separate inequalities (Covδ−(W )) as follows: All cut sets W that are obtained during the

separation of inequalities (CutSCF ) are kept in a pool. We choose F ′ = {l ∈ F ∩W | z̄l > 0.1}.
Then we use the following heuristic procedure to find minimal covers C ∈ MC(W,F ′′), where
F ′′ ⊆ F ′:

1. Sort the items in δ−(W ) and F ′ in non-decreasing order of (1− z̄i)/di and x̄ij/uij and store
them in a list L. Initialize the cover C and F ′′ as empty sets and initialize b∗ =

∑
ij∈δ−(W ) uij .

2. Remove an item from the head of the sorted list L.
(a) If it is an arc and its weight is larger than b∗, ignore it, otherwise insert it into R′.
(b) If it is a facility insert it into F ′′.

If C is now a cover with respect to δ−(W ) and F ′′, go to step 4.
3. If L is empty, stop. Otherwise, return to step 2.
4. If the cover inequality corresponding to C ∈MC(W,F ′′) is violated by (x̄, z̄), output it.
5. Let ij∗ = arg maxij∈C uij be the arc in C with the highest capacity. Set u∗ = uij∗ and delete
ij∗ from C. Return to step 2.

5. Computational results

In this section we report the results of our computational experiments. They were performed
on a desktop machine with an 8-core Intel Core i7 CPU at 2.80 GHz and 8 GB RAM. Each run
was performed on a single processor. We used the CPLEX [21] branch-and-cut framework, version
12.2. All cutting plane generation procedures provided by CPLEX are turned off unless stated
explicitly. All heuristics provided by CPLEX are turned off. The other parameters are set to their
default values.
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5.1. Branch-and-cut framework
The settings described in this section are the result of our preliminary testing.
To reduce the number of constraints that need to be identified by our separation routines we

add degree balance constraints and subtour elimination constraints for cycles of size two to our
model:

xji ≤ x(δ+(i)) + zi (j, i) ∈ AS , i ∈ F (4a)
xji ≤ x(δ+(i)) (j, i) ∈ AS , i ∈ VS \ (F ∪ {r}) (4b)
zi ≤ x(δ−(i)) i ∈ F (4c)
xij ≤ x(δ−(i)) (i, j) ∈ AS , i ∈ VS \ {r} (4d)

xij + xji ≤ 1 (i, j) ∈ AS , i < j, i, j 6= r (4e)

In order to reduce the size of the linear programs solved throughout the process we relax
constraints (1d) and add them only if they are violated. Separation procedures are called in
the following order: (EKS) - (CovF ) - (MCF ) - (1d) - (Covδ−(W )) - (CutCov) - (CutZ) - (CutX)
- (CutSCF ). To prevent a tailing off effect of the separation procedures we stop separating valid
inequalities if the lower bound has improved by less than 0.05% for the last 10 calls of the separation
procedures. We apply this rule in each node of the branch-and-bound tree.

Inequalities (CovF ), (MCF ), (Covδ−(W )), (CutCov) and (CutSCF ) are only separated at the
root node of the branch-and-bound tree. Inequalities (EKS) and (1d) are separated at every node,
separation of (CutX) is done at every 10th node and separation of (CutZ) is done at every 100th
node. In all nodes of the branch-and-bound tree we ensure the feasibility of our model by testing
potential integer solutions for violation of inequalities (CutSCF ).

To improve the computational efficiency of the separation procedures for cut set inequalities,
we search for nested minimum cardinality cuts. To do so, all capacities in the respective separation
graph are increased by some ε > 0. Thus, every detected violated cut contains the least possible
number of arcs. We resolve the linear program after adding at most 30 violated inequalities of any
class. Finally, we randomly choose the target nodes to search for violated cuts.

5.2. Instances
We generated a set of realistic benchmark instances derived from real world data we were given.

The real world data contain most of the information needed for complete CapConFL instances: The
sets of facilities, Steiner nodes and edges of the core network; a set of customers with associated
demands; a set of assignment arcs connecting customers and facilities, including their distance and
an estimate of the bandwidth provided by the respective assignment arc; lengths of core edges and
assignment arcs. These inputs define five graphs with different topologies that will be denoted by
A, B, C, D and E. To complete the instances with respect to the input required by CapConFL we
applied the following steps:

• For each instance a minimum customer bandwidth is selected, assignment arcs that provide
less than this bandwidth are removed. We chose 20, 25 and 30 MBit/s and denote this by
20, 25 and 30 in the instance label.

• At most 20 assignment arcs per customer are considered.

• Customers without assignment arcs are removed and facilities without assignment arcs are
replaced by Steiner nodes.
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• Steiner nodes with a degree of two and their adjacent edges are replaced by a single edge.

• A technology for each facility is randomly selected. For FTTB instances we consider the
following combinations of capacity, demand and cost: (32, 4, 4000), (64, 5, 6000), (128, 7, 8000).
For FTTC instances we choose between (64, 4, 13000), (128, 4, 16000) and (192, 4, 20000).

• Edge capacities are uniformly randomly selected from [0.7µ, 1.3µ], where µ is equal to the
demand of the smallest set of facilities needed to feasibly assign the customers, given the
facility capacities chosen before [9].

The key figures for the instances we use are listed in Table 1.

5.3. Comparison against basic model and general purpose solver
In the first part of our computational study we assess the influence of the cutting plane gener-

ation procedures built into CPLEX compared to the influence of the valid inequalities proposed in
this work. To this end we ran our model with the following different settings: Basic is the cut set
based model corresponding to SCF, i.e., the model consisting of constraints (1c)-(1g), (CutSCF )
and (4a)-(4e). Basic+CPX is the basic model with all CPLEX cuts turned on. All VI is the basic
model with all valid inequalities from Section 3 added. All VI+CPX is the basic model with all
valid inequalities and CPLEX cuts turned on.

In Table 1 we compare the LP gaps (gLP ) and time to solve the LP relaxation (tLP ) for these
four models. We calculated the gaps as (UB − LB)/UB , where UB is the best known integer
solution found in all our tests and LB is the solution value of the LP relaxation of the respective
model. In the last two lines we show the mean and median of the values in the respective column.
The best LP gap of the four models is shown in bold.

From the results in Table 1 we conclude that the model without valid inequalities provides a
weak LP bound with an LP gap of 14.28% on average over the considered instance set. The cutting
planes provided by CPLEX can reduce the LP gaps of the basic model by almost one half to an
average of 7.23%. This average gap is still substantial compared to 1.31% obtained by the model
that is strengthened by the valid inequalities proposed in this paper. Using CPLEX cuts in addition
only improves the average gap to 1.13%.

5.4. Influence of different sets of valid inequalities
In the second part of our computational study we assess the influence of the different sets of

valid inequalities proposed in this work. We compare five different settings that differ by the sets
of valid inequalities considered. For each setting we add a subset of valid inequalities to the basic
model described above. Settings (CutZ), (CutX) and (CutZ)+(CutX) are self-explaining. Setting
All VI is defined as above and setting Most VI uses inequalities (CutZ), (CutX), (EKS), (CovF )
and (MCF ).

For each of these settings, Table 2 shows the gap of the linear programming relaxation, gLP ,
calculated as in Table 1, the time needed to solve linear programming relaxation, tLP , and the
number of cutting planes added, Cuts. In the last two lines we show the mean and median of the
values in the respective column. The best LP gap of all models is shown in bold.

We would like to point out several interesting aspects. The LP gaps of setting (CutZ) are sub-
stantially larger than the ones of all other settings. Surprisingly the same does not hold for setting
(CutX), which on average gives even stronger LP bounds than setting (CutZ)+(CutX). We trace
the difference between the gaps of (CutX) and (CutZ)+(CutX) to the criteria we used to prevent
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a tailing off effect during separation. A comparison of the running times shows that separating
valid inequalities with a different structure improves the overall running time of the LP relaxation.
Approaches (CutZ) and (CutX) need 110 and 90 seconds on average, respectively whereas approach
(CutZ)+(CutX) only takes 46 seconds to compute approximately the same lower bounds as (CutX).
The separation routines in approaches Most VI and All VI require an additional 10 and 12 seconds
on average. Thereby, the average LP gaps are improved from 1.44% ((CutZ)+(CutX)) to 1.31%
(Most VI and All VI ). However, All VI does not improve upon Most VI significantly.

There is a notable difference in the numbers of valid inequalities that were detected during the
LP relaxations of the different settings. By far the most inequalities are found by setting (CutZ),
even though the obtained LP bound is comparably weak. This is consistent with the long running
time of the LP relaxation of setting (CutZ). Rather surprising is the fact, that setting All VI
obtains the same LP bound as setting Most VI for 28 out of 30 settings but the number of valid
inequalities found by All VI is smaller for 22 and larger for only 2 instances.

Table 3 shows the respective gap of the five different settings after 3, 10, 30 and 60 minutes.
For these results we calculate the gaps as (UB t−LB t)/UB t where UB t is the best integer solution
found by the respective setting after t minutes and LB t is the lower bound after t minutes. For each
instance and running time the smallest gap of all five settings is indicated in bold. If no integer
solution is available after t minutes we indicate this by a dash in the respective column. For each
setting and time t the last three lines of the table indicate the mean and median of gaps over the
instance set and how often the respective approach gives the smallest gap of all settings.

Contrary to what the LP gaps in Table 2 suggest the setting All VI with all valid inequalities
enabled outperforms the other settings on a majority of instances. The performance of setting Most
VI is only slightly worse (0.09%, 0.07% and 0.05% larger gap after 10, 30 and 60 minutes). The
other settings perform significantly worse with between 0.46% and 2.58% larger gaps on average.

In Figures 7 and 8 we give a graphical illustration of the numbers reported in Table 3. The
coordinates of each mark indicate how many out of 30 instances (ordinate axis) were solved within
a given optimality gap (abscissa). Figure 7 shows the performance after 3 and 10 minutes and
Figure 8 shows the performance after 30 and 60 minutes.

6. Conclusions

In this paper we introduce the Capacitated Connected Facility Location problem. We introduce
various sets of cut set, minimum cardinality, cover and cut-set-cover inequalities to strengthen a
basic integer programming model. After a detailed discussion of separation procedures we report
the results of our computational experiments. These confirm that the proposed approach finds
solution within a small optimality gap averaging to less than 2% for a set of realistic new benchmark
instances.
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Figure 7: Performance chart for 3 minutes (top) and 10 minutes (bottom) runtime
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Figure 8: Performance chart for 30 minutes (top) and 60 minutes (bottom) runtime
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