189 research outputs found

    A Parallel Geometric Multigrid Method for Adaptive Finite Elements

    Get PDF
    Applications in a variety of scientific disciplines use systems of Partial Differential Equations (PDEs) to model physical phenomena. Numerical solutions to these models are often found using the Finite Element Method (FEM), where the problem is discretized and the solution of a large linear system is required, containing millions or even billions of unknowns. Often times, the domain of these solves will contain localized features that require very high resolution of the underlying finite element mesh to accurately solve, while a mesh with uniform resolution would require far too much computational time and memory overhead to be feasible on a modern machine. Therefore, techniques like adaptive mesh refinement, where one increases the resolution of the mesh only where it is necessary, must be used. Even with adaptive mesh refinement, these systems can still be on the order of much more than a million unknowns (large mantle convection applications like the ones in [90] show simulations on over 600 billion unknowns), and attempting to solve on a single processing unit is infeasible due to limited computational time and memory required. For this reason, any application code aimed at solving large problems must be built using a parallel framework, allowing the concurrent use of multiple processing units to solve a single problem, and the code must exhibit efficient scaling to large amounts of processing units. Multigrid methods are currently the only known optimal solvers for linear systems arising from discretizations of elliptic boundary valued problems. These methods can be represented as an iterative scheme with contraction number less than one, independent of the resolution of the discretization [24, 54, 25, 103], with optimal complexity in the number of unknowns in the system [29]. Geometric multigrid (GMG) methods, where the hierarchy of spaces are defined by linear systems of finite element discretizations on meshes of decreasing resolution, have been shown to be robust for many different problem formulations, giving mesh independent convergence for highly adaptive meshes [26, 61, 83, 18], but these methods require specific implementations for each type of equation, boundary condition, mesh, etc., required by the specific application. The implementation in a massively parallel environment is not obvious, and research into this topic is far from exhaustive. We present an implementation of a massively parallel, adaptive geometric multigrid (GMG) method used in the open-source finite element library deal.II [5], and perform extensive tests showing scaling of the v-cycle application on systems with up to 137 billion unknowns run on up to 65,536 processors, and demonstrating low communication overhead of the algorithms proposed. We then show the flexibility of the GMG by applying the method to four different PDE systems: the Poisson equation, linear elasticity, advection-diffusion, and the Stokes equations. For the Stokes equations, we implement a fully matrix-free, adaptive, GMG-based solver in the mantle convection code ASPECT [13], and give a comparison to the current matrix-based method used. We show improvements in robustness, parallel scaling, and memory consumption for simulations with up to 27 billion unknowns and 114,688 processors. Finally, we test the performance of IDR(s) methods compared to the FGMRES method currently used in ASPECT, showing the effects of the flexible preconditioning used for the Stokes solves in ASPECT, and the demonstrating the possible reduction in memory consumption for IDR(s) and the potential for solving large scale problems. Parts of the work in this thesis has been submitted to peer reviewed journals in the form of two publications ([36] and [34]), and the implementations discussed have been integrated into two open-source codes, deal.II and ASPECT. From the contributions to deal.II, including a full length tutorial program, Step-63 [35], the author is listed as a contributing author to the newest deal.II release (see [5]). The implementation into ASPECT is based on work from the author and Timo Heister. The goal for the work here is to enable the community of geoscientists using ASPECT to solve larger problems than currently possible. Over the course of this thesis, the author was partially funded by the NSF Award OAC-1835452 and by the Computational Infrastructure in Geodynamics initiative (CIG), through the NSF under Award EAR-0949446 and EAR-1550901 and The University of California -- Davis

    Efficient "black-box" multigrid solvers for convection-dominated problems

    Get PDF
    The main objective of this project is to develop a "black-box" multigrid preconditioner for the iterative solution of finite element discretisations of the convection-diffusion equation with dominant convection. This equation can be considered a stand alone scalar problem or as part of a more complex system of partial differential equations, such as the Navier-Stokes equations. The project will focus on the stand alone scalar problem. Multigrid is considered an optimal preconditioner for scalar elliptic problems. This strategy can also be used for convection-diffusion problems, however an appropriate robust smoother needs to be developed to achieve mesh-independent convergence. The focus of the thesis is on the development of such a smoother. In this context a novel smoother is developed referred to as truncated incomplete factorisation (tILU) smoother. In terms of computational complexity and memory requirements, the smoother is considerably less expensive than the standard ILU(0) smoother. At the same time, it exhibits the same robustness as ILU(0) with respect to the problem and discretisation parameters. The new smoother significantly outperforms the standard damped Jacobi smoother and is a competitor to the Gauss-Seidel smoother (and in a number of important cases tILU outperforms the Gauss-Seidel smoother). The new smoother depends on a single parameter (the truncation ratio). The project obtains a default value for this parameter and demonstrated the robust performance of the smoother on a broad range of problems. Therefore, the new smoothing method can be regarded as "black-box". Furthermore, the new smoother does not require any particular ordering of the nodes, which is a prerequisite for many robust smoothers developed for convection-dominated convection-diffusion problems. To test the effectiveness of the preconditioning methodology, we consider a number of model problems (in both 2D and 3D) including uniform and complex (recirculating) convection fields discretised by uniform, stretched and adaptively refined grids. The new multigrid preconditioner within block preconditioning of the Navier-Stokes equations was also tested. The numerical results gained during the investigation confirm that tILU is a scalable, robust smoother for both geometric and algebraic multigrid. Also, comprehensive tests show that the tILU smoother is a competitive method.EThOS - Electronic Theses Online ServiceEPSRCGBUnited Kingdo

    Efficient and robust monolithic finite element multilevel Krylov subspace solvers for the solution of stationary incompressible Navier-Stokes equations

    Get PDF
    Multigrid methods belong to the best-known methods for solving linear systems arising from the discretization of elliptic partial differential equations. The main attraction of multigrid methods is that they have an asymptotically meshindependent convergence behavior. Multigrid with Vanka (or local multilevel pressure Schur complement method) as smoother have been frequently used for the construction of very effcient coupled monolithic solvers for the solution of the stationary incompressible Navier-Stokes equations in 2D and 3D. However, due to its innate Gauß-Seidel/Jacobi character, Vanka has a strong influence of the underlying mesh, and therefore, coupled multigrid solvers with Vanka smoothing very frequently face convergence issues on meshes with high aspect ratios. Moreover, even on very nice regular grids, these solvers may fail when the anisotropies are introduced from the differential operator. In this thesis, we develop a new class of robust and efficient monolithic finite element multilevel Krylov subspace methods (MLKM) for the solution of the stationary incompressible Navier-Stokes equations as an alternative to the coupled multigrid-based solvers. Different from multigrid, the MLKM utilizes a Krylov method as the basis in the error reduction process. The solver is based on the multilevel projection-based method of Erlangga and Nabben, which accelerates the convergence of the Krylov subspace methods by shifting the small eigenvalues of the system matrix, responsible for the slow convergence of the Krylov iteration, to the largest eigenvalue. Before embarking on the Navier-Stokes equations, we first test our implementation of the MLKM solver by solving scalar model problems, namely the convection-diffusion problem and the anisotropic diffusion problem. We validate the method by solving several standard benchmark problems. Next, we present the numerical results for the solution of the incompressible Navier-Stokes equations in two dimensions. The results show that the MLKM solvers produce asymptotically mesh-size independent, as well as Reynolds number independent convergence rates, for a moderate range of Reynolds numbers. Moreover, numerical simulations also show that the coupled MLKM solvers can handle (both mesh and operator based) anisotropies better than the coupled multigrid solvers

    The Sixth Copper Mountain Conference on Multigrid Methods, part 2

    Get PDF
    The Sixth Copper Mountain Conference on Multigrid Methods was held on April 4-9, 1993, at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth

    A Multigrid Method for the Efficient Numerical Solution of Optimization Problems Constrained by Partial Differential Equations

    Get PDF
    We study the minimization of a quadratic functional subject to constraints given by a linear or semilinear elliptic partial differential equation with distributed control. Further, pointwise inequality constraints on the control are accounted for. In the linear-quadratic case, the discretized optimality conditions yield a large, sparse, and indefinite system with saddle point structure. One main contribution of this thesis consists in devising a coupled multigrid solver which avoids full constraint elimination. To this end, we define a smoothing iteration incorporating elements from constraint preconditioning. A local mode analysis shows that for discrete optimality systems, we can expect smoothing rates close to those obtained with respect to the underlying constraint PDE. Our numerical experiments include problems with constraints where standard pointwise smoothing is known to fail for the underlying PDE. In particular, we consider anisotropic diffusion and convection-diffusion problems. The framework of our method allows to include line smoothers or ILU-factorizations, which are suitable for such problems. In all cases, numerical experiments show that convergence rates do not depend on the mesh size of the finest level and discrete optimality systems can be solved with a small multiple of the computational cost which is required to solve the underlying constraint PDE. Employing the full multigrid approach, the computational cost is proportional to the number of unknowns on the finest grid level. We discuss the role of the regularization parameter in the cost functional and show that the convergence rates are robust with respect to both the fine grid mesh size and the regularization parameter under a mild restriction on the next to coarsest mesh size. Incorporating spectral filtering for the reduced Hessian in the control smoothing step allows us to weaken the mesh size restriction. As a result, problems with near-vanishing regularization parameter can be treated efficiently with a negligible amount of additional computational work. For fine discretizations, robust convergence is obtained with rates which are independent of the regularization parameter, the coarsest mesh size, and the number of levels. In order to treat linear-quadratic problems with pointwise inequality constraints on the control, the multigrid approach is modified to solve subproblems generated by a primal-dual active set strategy (PDAS). Numerical experiments demonstrate the high efficiency of this approach due to mesh-independent convergence of both the outer PDAS method and the inner multigrid solver. The PDAS-multigrid method is incorporated in the sequential quadratic programming (SQP) framework. Inexact Newton techniques further enhance the computational efficiency. Globalization is implemented with a line search based on the augmented Lagrangian merit function. Numerical experiments highlight the efficiency of the resulting SQP-multigrid approach. In all cases, locally superlinear convergence of the SQP method is observed. In combination with the mesh-independent convergence rate of the inner solver, a solution method with optimal efficiency is obtained

    Seventh Copper Mountain Conference on Multigrid Methods

    Get PDF
    The Seventh Copper Mountain Conference on Multigrid Methods was held on 2-7 Apr. 1995 at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection shows its rapid trend to further diversity and depth
    corecore