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Efficient “black-box” multigrid solvers for convection-dominated

problems,

by Glyn Owen Rees.

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy,

August 2011.

The main objective of this project is to develop a “black-box” multigrid precon-
ditioner for the iterative solution of finite element discretisations of the convection-
diffusion equation with dominant convection. This equation can be considered a
stand alone scalar problem or as part of a more complex system of partial differential
equations, such as the Navier-Stokes equations. The project will focus on the stand
alone scalar problem.

Multigrid is considered an optimal preconditioner for scalar elliptic problems. This
strategy can also be used for convection-diffusion problems, however an appropriate
robust smoother needs to be developed to achieve mesh-independent convergence.
The focus of the thesis is on the development of such a smoother. In this context a
novel smoother is developed referred to as truncated incomplete factorisation (tILU)
smoother. In terms of computational complexity and memory requirements, the
smoother is considerably less expensive than the standard ILU(0) smoother. At the
same time, it exhibits the same robustness as ILU(0) with respect to the problem and
discretisation parameters. The new smoother significantly outperforms the standard
damped Jacobi smoother and is a competitor to the Gauss-Seidel smoother (and in a
number of important cases tILU outperforms the Gauss-Seidel smoother). The new
smoother depends on a single parameter (the truncation ratio). The project obtains
a default value for this parameter and demonstrated the robust performance of the
smoother on a broad range of problems. Therefore, the new smoothing method can
be regarded as “black-box”. Furthermore, the new smoother does not require any
particular ordering of the nodes, which is a prerequisite for many robust smoothers
developed for convection-dominated convection-diffusion problems.

To test the effectiveness of the preconditioning methodology, we consider a number
of model problems (in both 2D and 3D) including uniform and complex (recirculat-
ing) convection fields discretised by uniform, stretched and adaptively refined grids.
The new multigrid preconditioner within block preconditioning of the Navier-Stokes
equations was also tested. The numerical results gained during the investigation
confirm that tILU is a scalable, robust smoother for both geometric and algebraic
multigrid. Also, comprehensive tests show that the tILU smoother is a competitive
method.

11



Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

12



Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he

has given The University of Manchester certain rights to use such Copyright,

including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or elec-

tronic copy, may be made only in accordance with the Copyright, Designs and

Patents Act 1988 (as amended) and regulations issued under it or, where appro-

priate, in accordance with licensing agreements which the University has from

time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproductions”),

which may be described in this thesis, may not be owned by the author and may

be owned by third parties. Such Intellectual Property and Reproductions can-

not and must not be made available for use without the prior written permission

of the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property

and/or Reproductions described in it may take place is available in the Univer-

sity IP Policy (see http://www.campus.manchester.ac.uk/medialibrary/

policies/intellectual-property.pdf), in any relevant Thesis restriction

declarations deposited in the University Library, The University Librarys regu-

lations (see http://www.manchester.ac.uk/library/aboutus/regulations)

and in The Universitys policy on presentation of Theses.

13



Acknowledgement

I would like to thank my principal supervisor Milan Mihajlović for his continual
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Chapter 1

Introduction

The convection-diffusion equation is used in flow modelling. Ocean modelling, flow

through a porous media, ground water pollution, air pollution, river dynamics or sedi-

ment transport [42, p.133] are some examples where the convection-diffusion equation

provides an important part of the mathematical model for these types of flows. For

fluid mechanical engineering Wesseling [91] suggests that static diffusion, anisotropic

diffusion and convection-diffusion are key test problems.

In the project we use the finite element (FE) method to discretise the convection-

diffusion equation. The resulting sparse system of linear equations is then iteratively

solved by a Krylov subspace method preconditioned by multigrid. The main focus

in the thesis is on the development of an efficient multigrid preconditioner for the

discrete problem.

The convection-diffusion equation involves two parameters that can be manip-

ulated to form a plethora of interesting and physically relevant instances (cases/

scenarios). The parameters that influence the convection-diffusion problem are the

relative strength of convection and the structure of the convection field (including

uni-directional, recirculating (vortex) and multi-vortices). An increase in the spacial

dimension of the problem also has an impact to the properties of the resulting discrete

problem and thus the solution methods. These are referred to as problem parameters.

A further consideration is that the sparse system of linear equations is also influenced

by discretisation parameters (the mesh spacing). Within the thesis we refer to dis-

cretisation parameters as: the level of grid refinement (problem size) and type of grid

refinement (uniform, stretched and adaptively refined grids). With such a wealth of

parameters, the multigrid preconditioned Krylov solver can give poor performance

(e.g converge, if at all, in a large iteration count, high storage requirements and/or

large execution time).

Throughout the thesis an iterative solver is referred to as “robust” if its perfor-

mance is consistent (based on the numbers of iterations), irrespective of the problem

15



16 CHAPTER 1. INTRODUCTION

size, the structure of convection field and the relative strength of convection. As

all these conditions are difficult to achieve simultaneously in practice we will define

robustness with respect to individual parameters; we consider h-robustness as con-

sistent performance with respect to the problem size (h), Pe-robustness as consistent

performance with respect to the relative strength of convection and ~w-robustness as

consistent performance with respect to the convection fields. Also, if the storage re-

quirements and execution time of an iterative solver scale linearly (O(n)) with respect

to the problem size (n), the iterative solver is referred to as optimal. A “black-box”

preconditioner, within the context of the project, is a method for accelerating the

convergence of Krylov subspace iterative methods, that either has no tuning param-

eter or uses a set of default parameters that make the solver robust over a wide range

of problems and discretisations.

Simple point iterative methods are not robust in general as they fail to reduce

consistently the entire Fourier spectrum (frequencies) of the solution error. Multigrid

(MG) is a method that is made up of a nested sequence of progressively finer grids

(MG hierarchy). One important component of MG is a method of approximating

the discrete problem at each level. To keep computational costs low simple point

iterative methods (smoothers) are commonly used for that purpose. A smoother is

referred to as robust if its use results in a robust solution strategy.

“A good convergence with a small Krylov subspace means, in practice, that the

multigrid preconditioner must be as ‘good as possible’. It is, for example, not possible

to get a convergence acceleration from a small subspace if a smoother is used that

does not reduce a large number of frequencies well” [70].

To achieve a more efficient MG preconditioner we develop a new, robust and com-

putationally effective smoother (with good parallel scalability) suitable for convection-

dominated problems. A robust optimal solver strategy for the discrete diffusion prob-

lem is MG preconditioned Conjugate Gradient Krylov method. Due to the symmetric

positive definite (SPD) properties of the linear system, simple (point) smoothers such

as damped Jacobi or Gauss-Seidel are robust. However for the discrete convection-

diffusion problems, especially for large convection strength and/or complex convec-

tion fields, standard MG methods are not robust. Research into the development of

robust smoothing techniques for MG preconditioning of the convection-diffusion equa-

tion attracts considerable interest. However, the main issues with robust smoothers

for convection-dominated problems currently available in the literature is that they

usually require explicit knowledge of geometric information, are frequently difficult to

implement than standard point smoothers and are more expensive in terms of compu-

tational time and storage costs. This adversely affects the performance of execution

(poor caching, poor parallel scalability).
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The project will focus on the ILU(0) smoother and attempt to reduce its compu-

tational cost (which is considerable, as ILU is regarded as one of the most expensive

smoothers) while at the same time trying to retain its robustness. In this context a

modification of the standard ILU(0) smoother is developed, based on static trunca-

tion of the non-zero entries in the coefficient matrices within the MG hierarchy. In the

convection-diffusion case the truncation criterion can also pick local properties of the

convection field which may be missed by the standard point smoothers. Also, as the

coefficients of the matrix are h-dependent (see Section 2.4) the new method results

in a variable smoother, where typically more entries are truncated at the finer grids.

This makes the smoother computationally effective, in some cases even reducing to

a damped Jacobi smoother. The new truncated ILU(0) smoother is referred to as

tILU.

In the thesis we perform Fourier analysis of the new smoothing methodology for a

special case (uni-directional wind). Also, we examine the solver strategy’s efficiency

and parallel performance for both geometric (GMG) and algebraic (AMG) multigrid

on a range of physically important flow problems in both two and three spacial

dimensions.

The numerical results show that tILU is a superior smoother with regards to

storage cost, compared to ILU(0), as well as being competitive with respect to the

execution time to Gauss-Seidel smoother. Parallel scaling of the AMG method with

tILU smoother is comparable to that of using a damped Jacobi smoother (which is

inherently parallel) and significantly better than using Gauss-Seidel as a smoother. In

summary the numerical results obtained during the investigation confirm that tILU

is a scalable, robust and an effective smoother. Furthermore, the results shows that

unlike Gauss-Seidel, effectiveness of the tILU smoother is not significantly affected

by ordering of the unknowns. Thus, it can also be regarded as a “black-box” method.

A comprehensive set of numerical results showing the robustness of tILU, can be

found in [74].



Chapter 2

The Convection-Diffusion Problem

The physical process of diffusion is the model of a slow isotropic change of a certain

physical quantity. Convection describes the physical process of directional change

governed by existence of the convection field. The combination of these two processes

are modelled mathematically by a convection-diffusion equation. The flow of a viscous

fluid under an external force, describes the overall process of a convection-diffusion

problem. An external force may be regarded as mixing or thermal effects that bring

about convection [16] [75, p.1.4].

A convection-diffusion equation is an instance of a partial differential equation

(PDE). These equations can be solved analytically, in some cases, or numerically.

Numerical modelling involves the development of algorithms and techniques, to com-

pute an approximate solution of continuous problems. This is achieved by introducing

some form of problem discretisation. As a consequence such discrete models can be

simulated efficiently on modern computers.

This chapter gives an introduction into the convection-diffusion equation and

describes the Galerkin approximation method for its discretisation. The discrete

problem will be represented as a system of linear equations. Towards the end of the

chapter we examine the properties of the discrete convection-diffusion operator.

The convection-diffusion equation appears either as a scalar problem or as a com-

ponent part of a more complex multiphysics problems. Examples of multiphysics

problems that include convection-diffusion as a component are; Navier-Stokes prob-

lems [31, p.313], Boussinesq problems [22, p.95, p.96] [93, p.235].

2.1 The continuous problem

The diffusion process can be very slow depending on the density of the material. The

slow rate (time scale) of diffusion is relevant when it occurs concurrently with other

phenomena, in our case the convection. When diffusion is the slowest process in the

18
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overall combination, it limits the overall rate of the process. In practice this can result

in limits to the efficiency of commercial distillation, the speed with which an acid and

a base will react and the rate of corrosion in steel [16, Chapter 1]. If a numerical

simulation of a composite process which includes diffusion is considered, then the slow

characteristic of the diffusion process may limit the size of the time step produced

by the adaptive time-stepping algorithm, for example [40], thus increasing the overall

computational cost. The convection process represents the bulk directional flow of a

physical quantity.

Definition 2.1.1 (Continuous function [79]). A real function f is mapping which

assigns a unique real number to every point in a domain, f : Ω → R

• C0(Ω) is the set of all continuous functions defined on Ω.

• C1(Ω) is the set of all continuous functions whose 1st derivatives are also con-

tinuous over Ω.

• C2(Ω) is the set of all continuous functions whose 1st and 2nd derivatives are

also continuous over Ω.

The classical formulation of a convection-diffusion equation is:

Find u ∈ C2(Ω) such that

−ε∇2u + ~w · ∇u = f in Ω ⊂ Rd. (2.1)

In (2.1) the variable (d = 2 (3)) represents the spacial dimension, ∇2 ≡ ∇ · (∇) =
∂2

∂x2 + ∂2

∂y2 +( ∂2

∂z2 ) the Laplace operator, and ∇ ≡ ( ∂
∂x

, ∂
∂y

, ( ∂
∂z

))T the gradient operator.

A vector-value function ~w :Rd 7→ Rd with ~w = (wx, wy, (wz)) is referred to as the

convection field, or the “wind”, and defines the direction of the convection. The

right hand side term f is the external forcing term. The parameter variable ε > 0,

represents the viscosity or diffusivity.

If (2.1) is posed with no boundary conditions, it has infinitely many solutions.

For a problem, such as (2.1) these solutions represent a family of functions that differ

by an additive constant. A particular solution from that family is selected by fixing

its values at the boundary ∂Ω of Ω [31, p.10]. The most general form of boundary

conditions (BCs) suitable for (2.1) is of the form

β1u + β2
∂u

∂n̂
= g on ∂Ω, (2.2)

where ∂u
∂bn denotes the normal derivative (the flux) of u, i.e the derivative with respect

to the outward pointing normal on ∂Ω.
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A boundary value problem (BVP) consists of two equations (2.1) and (2.2). The

solution u that satisfies the BVP (2.1)–(2.2) is referred to as the classical solution

[31, p.14], given the domain boundary is a sufficiently smooth function. The general

type BC (2.2) allows a number of different combinations of BCs to be introduced

into the model. Dirichlet boundary conditions are introduced when β2 = 0. On the

other hand, when β1 = 0 the boundary conditions are referred to as pure Neumann.

In cases when β1 = 0 the problem does not have a unique solution, (it is unique up

to an additive constant) [31, p.10]. A more complex BC (2.2) is when the boundary

is divided into two disjoint parts. One part Neumann, denoted by ∂ΩN , and the

remaining boundary, Dirichlet, denoted by ∂ΩD. The whole boundary is now repre-

sented by ∂ΩD

⋃
∂ΩN = ∂Ω with ∂ΩD

⋂
∂ΩN = ∅. Finally the Dirichlet part of the

boundary must be of finite length
∫

∂ΩD
ds 6= 0, to ensure a unique solution. Explicit

BCs for this case are

u = gD on ∂ΩD ,
∂u

∂n̂
= gN on ∂ΩN . (2.3)

There are two possible cases of the computational domain: open domain and

closed domain. In the former case (open domain) only part of a larger domain is

modelled, concentrating on some interesting features of the solution. The charac-

teristics of this case is that not all of the domain boundaries are rigid boundaries.

An example of such a domain can be encountered in flow-through problems, where

one part of the boundary represents an inflow and (to satisfy the incompressibility

condition) another part of the boundary represents the outflow boundary [31, p.117].

In the latter case we have an enclosed domain. An example of such a domain can be

encountered in enclosed flow problems, such as flow inside a cavity [31, p.119].

In the case of a convection-diffusion problem we can distinguish three different

types of boundary, depending on the relative positions of the vectors ~w and n̂ (see

Figure 2.1) [31, p.113][32, p.455]. In particular

Outflow boundary : ∂Ω+ = {x ∈ ∂Ω | ~w · n̂ > 0},
Characteristic boundary : ∂Ω0 = {x ∈ ∂Ω | ~w · n̂ = 0},
Inflow boundary : ∂Ω− = {x ∈ ∂Ω | ~w · n̂ < 0}.

(2.4)

To obtain a non-dimensional quantity that gives a relative measure of the con-

vection and the diffusion in the problem, the convection-diffusion equation (2.1) is

normalised. By normalising the convection-diffusion equation with respect to the

domain of characteristic size L, the diffusivity parameter ε and the magnitude of the

wind W (~w = W ~w∗, given W ≥ 0 and a unit wind vector || ~w∗||1 = 1), gives [31,
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Figure 2.1: Flow through a domain showing three different types of boundaries,
relative to the wind ~w, corresponding to (2.4).

p.115]

−∇2u(
x

L
,
y

L
) + (

WL

ε
) ~w∗ · ∇u(

x

L
,
y

L
) =

L2

ε
f. (2.5)

In equation (2.5) there is only one positive non-dimensional quantity,

Pe =
WL

ε
> 0, (2.6)

referred to as the Peclet number.

We now restate the dimensional version of the BVP problem (2.1)–(2.2) with

β2 = 0: Find u ∈ C2(Ω) such that

−ε∇2u + ~w · ∇u = f in Ω ⊂ Rd, u = g on ∂Ω. (2.7)

A scalar convection-diffusion equation represents a singular perturbation of the

second-order scalar elliptic problem (the Poisson problem). Singular perturbation of

the second-order derivative is when there are lower order terms and a small param-

eter that at its limit changes the characteristics of the problem. In the case of the

convection-diffusion equation, an elliptic problem changes into a hyperbolic one as

ε → 0 (Pe →∞) [76, pp.xiii–xvi].

The convection component of the problem is represented by the term (~w ·∇u) and

the diffusion component by (∇2u). In this work we restrict ourselves to modelling

the convection-diffusion problems of cases that consist of slow moving fluids, i.e fluids

that have a velocity much smaller that the speed of sound (Mach number ¿ 1) [42].

This implies the incompressibility of the convection field, which can be expressed as

∇· ~w = 0 (for the case of Stokes and Navier-Stokes problems this is the mathematical

expression of the mass conservation law)[42] [31, p.214]. For a scalar convection-

diffusion problem the convection flow ~w is predefined (but assumed incompressible).

The unknown function u can represent the temperature of a fluid moving along

a boundary such as a heated wall, or the transportation of a pollutant concentration

moving down a river with velocity ~w subject to diffusion [66]. Also, a well known
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convection-diffusion model is the movement of a concentration of smoke in the sur-

rounding area coming out of a chimney subject to the external wind governed by ~w

[73].

2.2 The Galerkin approximation method

The Galerkin method is an example of a general approximation procedure for the

solution of PDEs. To use this method a continuous problem (a PDE) must be re-

placed by its integral counterpart (referred to as the weak formulation) obtained by

introducing a space of test functions.

The approximate solution of the weak problem (the weak solution) is sought in

a finite-dimensional space, with the solution accuracy correlated to the dimension of

this space. Depending on the choice of the solution (trial) space and the space of

test functions, there are different instances of the Galerkin method. For example the

spectral element method [58], the finite element method (FEM) or the finite volume

method (FVM) [77, Section 2.5]. The difference between these methods is based on

the support for the basis set.

To derive a weak formulation of the BVP (2.7), we need to define the space of

test functions and the trial space. A Sobolev space H1(Ω) is defined as [31, p.16]

H1(Ω) = {u |u,∇u ∈ L2(Ω)} ,

where L2(Ω) is the space of square integrable functions u:

L2(Ω) =

{
u |

∫

Ω

u2 dΩ < ∞
}

.

Thus, the Sobolev space H1(Ω) is the space of functions defined on Ω which are,

together with their first partial derivatives, square integrable. Test and trial spaces

in the variational form of (2.7) will be suitable subspaces of the space H1(Ω). The

test space H1
0 (Ω) is a subspace of H1(Ω), whose elements satisfy the homogeneous

Dirichlet BCs on ∂Ω:

H1
0 (Ω) =

{
v | v ∈ H1(Ω) , v = 0 on ∂Ω

}
.

The trial space H1
D(Ω) is also a subspace of H1(Ω), whose elements satisfy the same

Dirichlet BCs as in the classical solution (2.7):

H1
D(Ω) =

{
u | u ∈ H1(Ω) , u = g on ∂Ω

}
.
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With the test and trial space selected, the first step in the Galerkin approximation

method is to derive a weak formulation of (2.7). This is achieved by multiplying (2.7)

by the test function v, from the test space H1
0 (Ω) and integrating over the domain

Ω, i.e:

Find u ∈ H1
D(Ω), such that

−ε

∫

Ω

∇2uv dΩ +

∫

Ω

(~w · ∇u)v dΩ =

∫

Ω

fv dΩ, ∀v ∈ H1
0 (Ω). (2.8)

The condition u ∈ H1
D(Ω) only guarantees that the integral in (2.8) are well-

defined for functions and their first derivative in L2(Ω). This is not fulfilled for the

first integral on the left-hand side of (2.8). To get around this problem, Green’s

theorem [7, p.31] is applied to reduce the order of derivatives u, from a second order

to a first order, at a consequence of increasing the smoothness requirement for v.

Thus, we obtain

ε

∫

Ω

∇u · ∇v dΩ− ε

∫

∂Ω

∇u · n̂ v ds +

∫

Ω

(~w · ∇u)v dΩ

=

∫

Ω

fv dΩ, ∀v ∈ H1
0 (Ω),

(2.9)

where the second integral in (2.9) is a line integral along the boundary ∂Ω.

The benefit of moving from a continuous form to a weak form is that, the weak

form has less stringent requirements for the continuity of the solution than the classi-

cal problem (2.7) as, C2(Ω) ⊂ H1(Ω). If a classical solution u ∈ C2(Ω) to the problem

(2.7) exists, then it is also a weak solution of (2.9). Conversely this may not always

be the case [31, p.15], as the weak solution may not be smooth enough to be the

classical solution. As the continuity requirements for the data in (2.9) are much less

stringent than in (2.7) (by means C2(Ω) ⊂ H1(Ω)), the weak form can allow treat-

ment of certain physically relevant cases (for example [31, Example 1.1.4]) which do

not have a classical solution [31, p.14].

By substituting (∇u · n̂ = ∂u
∂bn) into (2.2) and noting that v ∈ H1

0 (Ω) we obtain

∫

∂Ω

∇u · n̂v ds =

∫

∂Ω

∂u

∂n̂
v ds = 0.

Rearranging (2.9): Find u ∈ H1
D(Ω), such that

ε

∫

Ω

∇u · ∇v dΩ +

∫

Ω

(~w · ∇u) v dΩ =

∫

Ω

fv dΩ, ∀v ∈ H1
0 (Ω). (2.10)

The Sobolev space H1(Ω) is infinitely-dimensional, which mean that the weak

problem (2.10) is continuous. A finite-dimensional representation of the problem
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(2.10) can be achieved by taking a subspace Sh(Ω) of the Sobolev space H1(Ω). That

is the trial space Sh
D ⊂ H1

D(Ω) and the test space Sh
0 ⊂ H1

0 (Ω) can be characterised

by their basis sets:

Sh
D = span{ϕj}NI+ND

j=1 , Sh
0 = span{ϕi}NI

i=1. (2.11)

In (2.11) NI is the number of basis functions in the interior of the domain, and ND

is the number of basis functions necessary to characterise Dirichlet boundary data.

By enforcing (2.10) over the finite-dimensional test and trial spaces, we obtain

the discrete weak formulation of the convection-diffusion problem:

Find uh ∈ Sh
D ⊂ H1

D satisfying

ε

∫

Ω

∇uh · ∇vh dΩ +

∫

Ω

(~w · ∇uh) vh dΩ

=

∫

Ω

fvh dΩ, ∀vh ∈ Sh
0 ⊂ H1

0 (Ω).
(2.12)

By substituting each test function vh = {ϕi}NI
i=1 into (2.12) we obtain a system of

NI equations

ε

∫

Ω

∇uh · ∇ϕi dΩ +

∫

Ω

(~w · ∇uh) ϕi dΩ =

∫

Ω

fϕi dΩ, i = 1, ..., NI . (2.13)

From uh ∈ Sh
D it follows that uh can be uniquely expressed as a linear combination

of the basis set uh =
NI+ND∑

j=1

xjϕj (where xj ∈ R, j = 1, ..., NI are the unknown

coefficients, and j = NI + 1, ..., NI + ND are the known coefficients that interpolate

the Dirichlet boundary data, that determine Galerkin’s approximation). Substituting

this expression into (2.13), we obtain

NI+ND∑
j=1

xj

[
ε

∫

Ω

∇ϕj · ∇ϕi dΩ +

∫

Ω

(~w · ∇ϕj) ϕi dΩ

]

=

∫

Ω

fϕi dΩ, i = 1, ..., NI .

(2.14)

By rearranging the terms in (2.14), so the boundary conditions are all on the right

hand side

ϑi =

NI+ND∑
j=NI+1

(g)j

[
ε

∫

Ω

∇ϕj · ∇ϕi dΩ +

∫

Ω

(~w · ∇ϕj) ϕi dΩ

]
, (2.15)
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we obtain
NI∑
j=1

xj

[
ε

∫

Ω

∇ϕj · ∇ϕi dΩ +

∫

Ω

(~w · ∇ϕj) ϕi dΩ

]

=

∫

Ω

fϕi dΩ− ϑi, i = 1, ..., NI .

(2.16)

The equation (2.16) represents a system of NI linear equations for the unknown

coefficients xj (j = 1, ..., NI). It can be rewritten in a matrix notation as

Ax̄ = b̄, b̄, x̄ ∈ RNI , A ∈ RNI×NI , (2.17)

where A is a coefficient matrix that has two physical components A = (ε · D + C):

the discrete diffusion operator D ∈ RNI×NI , and the discrete convection operator

C ∈ RNI×NI .

• The properties of a diffusion matrix. If the test and trial spaces have the same

basis, the diffusion matrix D is symmetric and positive definite [31, p.18], and

has the elements

D = [dij] =

∫

Ω

∇ϕj · ∇ϕi dΩ i, j = 1, ..., NI . (2.18)

• The properties of the convection matrix. If the test and trial spaces have the

same basis (when ∇ · ~w = 0), the convection matrix C is skew-symmetric [31,

p.120], and has the elements

C = [cij] =

∫

Ω

(~w · ∇ϕj) ϕi dΩ i, j = 1, ..., NI . (2.19)

By definition skew-symmetry means that the transpose of the matrix is equal to the

negative of the initial matrix, for example

cij =

{
−cji if i 6= j

0 if i = j.

The components of the right-hand side vector b ∈ RNI are given by

bi =

∫

Ω

fϕi dx− ϑi i = 1, ..., NI . (2.20)

Finally, x̄ ∈ RNI is a vector of unknown coefficients that define the Galerkin solution.
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2.2.1 The finite element method

The FEM is an instance of the Galerkin method where for the basis sets ϕi we adopt

piecewise polynomials associated with the subdivision of Ω into disjoint subdomains

Ωi called the finite elements (FE). There are a number of different ways to perform

the subdivision into FEs, that is, there is a trade-off between numerical accuracy of

the approximation and computational efficiency.

We restrict ourselves to the case of quadrilateral elements and bilinear (Q1) basis

set. Each element will have four local basis functions associated to its four nodes

(that is each basis function is equal to one, at one node, and zero at the remaining

nodes).

To compute each element contribution to the global Galerkin matrix, a mapping

is formed from the reference element ¤∗ = [−1, 1]2 to the given element ¤h shown in

Figure 2.2 [31, pp.22–24]. Each point (x, y) ∈ ¤h is mapped onto a point (ξ, η) by

x(ξ, η) =
4∑

i=1

xiχi(ξ, η), (2.21)

y(ξ, η) =
4∑

i=1

yiχi(ξ, η), (2.22)

where
χ1(ξ, η) = (ξ − 1)(η − 1)/4,

χ2(ξ, η) = −(ξ + 1)(η − 1)/4,

χ3(ξ, η) = (ξ + 1)(η + 1)/4,

χ4(ξ, η) = −(ξ − 1)(η + 1)/4,

are the Q1 basis functions for the reference element ¤∗ [31, p.31]. The contributions

to the elemental diffusion and convection matrices for (2.18)–(2.19) are calculated:

dh
ij =

m∑
t=1

m∑

l=1

κtl|Jh(ξt, ηl)|
{

∂ϕi,¤∗
∂x

∂ϕj,¤∗
∂x

+
∂ϕi,¤∗

∂y

∂ϕj,¤∗
∂y

}
|(ξt,ηl) i, j = 1, ..., 4 ,

ch
ij =

m∑
t=1

m∑

l=1

κtl|Jh(ξt, ηl)|
{

~w(
∂ϕj,¤∗

∂x
+

∂ϕj,¤∗
∂y

)ϕi,¤∗

}
|(ξt,ηl) i, j = 1, ..., 4 ,

where κ is the tensor product of the weights associated with the classical one-

dimensional quadrature rule [31, p.32] and Jh is the Jacobian matrix representing

the mapping from ¤∗ to ¤h [31, p.31]:

Jh =
∂(x, y)

∂(ξ, η)
=

[ ∑4
i=1 xi

∂χi

∂ξ

∑4
i=1 yi

∂χi

∂ξ∑4
i=1 xi

∂χi

∂η

∑4
i=1 yi

∂χi

∂η

]
.
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Figure 2.2: Q1 mapping from the reference element to a arbitrary element [31, p.24].

The accuracy of the Galerkin method for a convection-diffusion problem (2.7) is

bounded by [31, p.135]:

||∇(u− uh)|| ≤ Chmax||D2u||, (2.23)

where C is a constant proportional to the mesh Peclet number [31, p.135], hmax is

the largest element length, and ||D2u|| = (
∫
Ω

(
(∂2u

∂x2 )
2 + ( ∂2u

∂x∂y
)2 + (∂2u

∂y2 )2
)
)

1
2 measures

the H2 regularity [31, Definition 1.9] of the solution uh. For a Poisson problem the

accuracy of the Galerkin method is bounded by (2.23) when C is a constant only

[31, p.45]. If the convection-diffusion and diffusion equation is H2 regular then (2.23)

suggests that uh → u as hmax → 0. The upper bound for the accuracy of the Galerkin

method (2.23) is considered an optimal estimate when the mesh Peclet number ≤ 1

and there are no layers [31, p.136]. For elements that lie within the solution layers

the term, ||D2u|| rapidly increases as ε → 0 [31, p.136]. Furthermore as the constant

C in (2.23) is proportional to the mesh Peclet number, we would find that as the

problem becomes more convection-dominated the upper bound of the solution error

may become prohibitively large.

If standard Galerkin FEM is used to discretise a convection-dominated convection-

diffusion equation (2.7), layers can occur due to a discrepancy between the boundary

conditions that are suitable for second order problem and the solution u that satisfies

the first order problem. Layers can manifest themselves when there is a difference be-

tween Dirichlet inflow and outflow boundary conditions, or in cases when the Dirichlet

inflow and outflow boundary conditions are the same but are different from those at

the characteristic boundaries [30]. On the other hand the discretisation by Galerkin

FEM for a diffusion-dominated problem is relatively trouble free. Therefore oscilla-

tions occur due to a rapid rate of change in the flow direction, which are too large to

be dealt with by the current mesh size. Using Galerkin FEM to approximate a solu-

tion to a convection-diffusion problem where steep layers occur can cause difficulties

if the mesh is not refined sufficiently in parts of the domain where the layers occur.
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The difficulties manifest themselves as non-physical oscillations or “wiggles” in the

solution u over the whole domain.

The local element Peclet number is defined as (Pe)h = hk||~wk||
2ε

, where hk is the size

of element k in the direction of the wind, and || ~wk|| is the norm of the wind at the

centre of the element [31, p.132]. Gresho et al. [42, p.127] characterizes the boundary

layer thickness (asymptotic width of the layer) as ε
||~wk|| < hk

2
. This, in turn, relates to

(Pe)h > 1. To obtain an accurate Galerkin FE approximation, one needs to create

a mesh with a characteristic mesh width that is smaller than the layer width. Thus,

if the element Peclet number satisfies (Pe)h > 1 oscillations will occur, if (Pe)h À 1

oscillations will become more widespread [42, p.127, p.230].

Example 2.2.1. A convection-diffusion equation (2.7) with vertical wind ~w = (0, 1)

on a square domain Ω = [−1, 1]2, with the following boundary conditions [31, p.116]:

u(x,−1) = x; u(−1, y) = −1;

u(x, 1) = 0; u(1, y) = 1.

.

A very accurate solution to Example 2.2.1 is shown in Figure 2.3(a) [31, p.116].

Near the outflow y = 1 there is an exponential boundary layer where the solution

is attempting to satisfy the boundary condition. In Figure 2.3(b) the Galerkin FE

solution for Example 2.2.1, obtained on a coarse uniform grid is presented. By com-

paring Figure 2.3(a) and Figure 2.3(b) it is clear that there is a global discrepancy in

Figure 2.3(b). This global discrepancy originates from the steep gradient area near

y = 1. The reason for this is down to the mesh being too coarse around an area

that requires an exponentially fine mesh. A boundary layer near y = 1 then acts as

a catalyst which spreads oscillations throughout the whole domain [31, p.124].

There are a number of techniques to resolve the problem of layers. The least

creative is to uniformly refine the mesh over the entire domain until (Pe)h < 1 in

each element. In the case of three-dimensional domains, this approach can become

prohibitively expensive very quickly. Moreover, as the Pe number increases i.e. the

convection term becomes more dominant, and the equation moves closer to a hyper-

bolic equation, increasingly more levels of refinement are needed to obtain an accurate

solution. However Gresho et al. [42, p.132] believe that uniform refinement should be

used for convection-dominated flows if there are no obstructions, with hard Dirichlet

BC, put in front of the flow.

A more effective alternative in dealing with layers is to refine the mesh only

in local areas of the domain where layers occur. One method to achieve this is

through incorporating a mesh grading system, through the use of a posteriori error
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(a) (b)

Figure 2.3: FE solution obtained from a convection-diffusion equation with vertical
wind ~w = (0, 1) and BC’s u(x,−1) = x, u(x, 1) = 0, u(−1, y) ≈ −1, u(1, y) ≈ 1. (a)
stretched grid around the boundary area y = 1,−1 [31, p.116], (b) coarse grid [31,
p.124].

analysis [31, Section 3.4.2]. This is an example of adaptive mesh refinement. The

disadvantage of this method is that the problem must be solved at each refinement

to allow error analysis. An additional difficulty with adaptive grid refinement is that

the resulting linear systems can be very ill-conditioned and the coefficient matrices

are poorly scaled. The advantage of using this approach is that the same level of

global accuracy is possible to achieve with fewer degrees of freedom than in the case

of uniform refinement. This can lead to a smaller computational time. Gresho et al.

[42, p.133] see the use of targeted mesh refinement as a tool for convection-dominated

flows where obstructions, with hard BC’s, are put in front of the flow that can lead

to layers in the solution error.

Given (2.23), the Galerkin approximation in the case of convection-dominated

problems will give a poor approximation [31, p.135], if the grids are not sufficiently

refined. Another alternative to solving the problem of layers is to use an arbitrary grid

size and stabilise the solution by using a modification of the Galerkin approximation,

referred to as the streamline upwind Petrov-Galerkin approximation method (SUPG)

[31, pp.125–130] [30].

2.3 The Petrov-Galerkin (SUPG) approximation

The concept of SUPG is to add artificial diffusion, in the direction of the convection,

to the original problem. This addition of diffusion will “smooth” any sudden changes

that are caused by convection. This modification is incorporated by modifying the

test space, and is called a Petrov-Galerkin method. While the Galerkin method has

the same choice of test and trial space, in the Petrov-Galerkin method these choices
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are independent of each other.

The test space for v that will be used consists of streamline upwind functions:

H
1

0(Ω) =
{
v + δ ~w · ∇v | v ∈ H1

0 (Ω)
}

,

where δ > 0 is regarded as a constant stabilisation parameter. When δ = 0, SUPG

is reduced to the Galerkin method. The weak formulation of the problem (2.7) is to

find u ∈ H1
D(Ω) such that

− ε

∫

Ω

∇2u(v + δ ~w · ∇v) dΩ +

∫

Ω

(~w · ∇u)(v + δ ~w · ∇v) dΩ

=

∫

Ω

f(v + δ ~w · ∇v) dΩ, ∀v ∈ H1
0 (Ω).

(2.24)

Applying Green’s theorem to the diffusion term in (2.24) and splitting the integrals

of the sums into separate parts, we obtain:

Find uh ∈ Sh
D ⊂ H1

0 (Ω) such that

ε

∫

Ω
∇uh · ∇vh dΩ +

∫

Ω
(~w · ∇uh)vh dΩ + δ

∫

Ω
(~w · ∇uh)(~w · ∇vh) dΩ

− δ · ε
∫

Ω
∇2uh(~w · ∇vh) dΩ

=
∫

Ω
f(vh + δ ~w · ∇vh) dΩ, ∀vh ∈ Sh

0 ⊂ H1
0 (Ω).

(2.25)

The term δ · ε ∫
Ω
∇2uh(~w ·∇vh) dΩ is non-conformal in H1(Ω), as it contains a second

order derivative. The issue here is that uh ∈ Sh
D ⊂ H1

D(Ω) does not guarantee the

integral is finite. However,

δ

∫

Ω

∇2uh(~w · ∇vh) dΩ =
∑

k

δk

∫

Ωk

∇2uh(~w · ∇vh) dΩ, (2.26)

that is, the integration can be performed elementwise k (where δk is defined in (2.32)).

This implies that in cases when ϕj consists of either linear or bilinear functions, each

of the elemental integrals will be zero, and this term can be omitted from (2.25).

However, if a higher order FE approximation is used, this integral has to be taken

into account and computed by (2.26)[31, p.131].

With linear/bilinear approximation of the solution (2.25) simplifies to

NI+ND∑
j=1

xj

[
ε

∫

Ω

∇ϕj · ∇ϕi dΩ +

∫

Ω

(~w · ∇ϕj) ϕi dΩ

+ δ

∫

Ω

(~w · ∇ϕj)(~w · ∇ϕi) dΩ

]

=

∫

Ω

fϕi dΩ +

∫

Ω

f(δ ~w · ∇ϕi) dΩ, i = 1, ..., NI .

(2.27)
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Rearranging (2.27) to move the Dirichlet BC terms to the right hand side gives

$i =

NI+ND∑
j=NI+1

(g)j

[
ε

∫

Ω

∇ϕj · ∇ϕi dΩ +

∫

Ω

(~w · ∇ϕj) ϕi dΩ

+ δ

∫

Ω

(~w · ∇ϕj)(~w · ∇ϕi) dΩ

]
,

NI∑
j=1

xj

[
ε

∫

Ω

∇ϕj · ∇ϕi dΩ +

∫

Ω

(~w · ∇ϕj) ϕi dΩ

+ δ

∫

Ω

(~w · ∇ϕj)(~w · ∇ϕi) dΩ

]

=

∫

Ω

f ϕi dΩ +

∫

Ω

f(δ ~w · ∇ϕi) dΩ− $i, i = 1, ..., NI .

(2.28)

As in the Galerkin case, (2.28) represents a system of linear equations of the size NI

for the unknowns {xi}NI
i=1. The coefficient matrix of the linear system now has an

additional component (compared with (2.16)), which is called the streamline diffusion

(stabilisation) matrix S:

(ε · D + C + S)x̄ = b̄. (2.29)

The diffusion matrix D and the convection matrix C are represented by (2.18) and

(2.19) respectively.

• The properties of the streamline diffusion matrix S are that it is symmetric and

positive definite.

S = [sij] = δ

∫

Ω

(~w · ∇ϕj)(~w · ∇ϕi) dΩ i, j = 1, ..., NI . (2.30)

From (2.30) it follows that the additional term in the SUPG method represents

the diffusion operator in the direction of the convection, that is, along the

streamlines of the flow ~w.

However, if δ is defined locally the streamline diffusion matrix S is only sym-

metric and positive semi-definite, as some rows correspond to nodes associated

with element patches where no stabilisation is needed (this is represented by a

zero row) [31, p.152]:

S = [sij] =
∑

k

δk

∫

Ωk

(~w · ∇ϕj)(~w · ∇ϕi) dΩ i, j = 1, ..., NI . (2.31)

The stabilisation parameter δ from (2.30), controls the amount of artificial diffusion

being added. It is calculated locally, at the element level. In this way we can account

for different strengths and directions of convection in different parts of the domain Ω,
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and add just the “correct” amount of stabilisation for this element. The stabilisation

parameter δ at an element (local) level is δk, and is given by

δk =





hk

2|| ~wk||(1−
1

(Pe)h

) if (Pe)h > 1,

0 if (Pe)h ≤ 1.
(2.32)

It can be concluded that an element stabilisation is added if hk > 2 ε|| ~wk||. This

strategy is optimal for quadrilateral elements, as it is a generalisation of the one-

dimensional case [31, p.132].

If Example 2.2.1 is discretised by a uniform tensor product grid of size h, the

stabilisation parameter δk can be further simplified to resemble,

δk =
h

2
(1− 1

(Pe)h

) =
1

2
(h− 2 ε). (2.33)

This means that if the mesh size h in a particular part of the domain is greater than

2 ε, then stabilisation is needed on that element. Gresho [41] discusses eliminating

oscillations “wiggles” through using mesh refinement. If a mesh size in part of the

domain where a boundary layer exists is at most half of the layer’s size, i.e. if there

are at least two grid points within the width of the solution layer, the oscillations

in Galerkin FEM solution will not exist. As the asymptotic width of the solution

boundary layer in this case is ∼ ε, it follows that the formula (2.33) and Gresho’s

method are complementary: in the former case if h > 2 ε we need to apply the

stabilisation, while in the latter case we need to refine the grid locally and sufficiently

many times until the condition h < 2 ε is met.

When (Pe)h ≤ 1 no stabilisation is needed. If this condition is satisfied for

every element in the mesh, then the SUPG method reduces to the standard Galerkin

method, δ = 0 in (2.30). That is, S ≡ 0. Therefore, (2.32) is the optimal choice

(2.23) for (Pe)h ≤ 1. On the other hand as (Pe)h → ∞ the stabilisation parameter

δk → hk

2|| ~wk|| . This is considered optimal value for the convection limit [32, p.463] [31,

p.133].

In Figure 2.4 we see that SUPG with an optimal choice of stabilisation parameter

gives a satisfactory solution (blue). One the other hand, the Galerkin solution (green)

shows large oscillations throughout. If a non-optimal choice of the stabilisation pa-

rameter is used, this can lead to either an oscillatory behaviour of the solution (gray)

or the over smoothing of the solution (red). Galerkin approximation in comparison to

SUPG for a convection-diffusion problem with (Pe)h À 1 and coarse mesh discreti-

sation is known to be inaccurate [31, p.197] [42, p.201]. This can be seen numerically

in [31, pp.139–141].
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Figure 2.4: Convection-diffusion equation with a domain Ω = [−1, 1]2 where y = −1
is the only heated wall, and a wind ~w = (0, 1). One-dimensional slice at x = 0 of the
solution to the convection-diffusion problem with NI = 49 and Pe = 1000. Problem
discretisation is performed with Q1 Galerkin FEM (green) and Q1 SUPG FEM with
different values of the stabilisation parameter: δk = δopt ∗ 0.5 (grey), δk = δopt (blue),
δk = δopt ∗ 5 (red), where δopt is given by (2.32).

The disadvantage with the SUPG method is that the upwind stabilisation suggests

to the user that the solution is accurate. While the computed solution may be accu-

rate globally, the main issue is the local accuracy of the obtained FE approximation.

By adding too much diffusion the boundary layers become wider, in comparison to an

exact solution (the SUPG method over smoothes the solution) [31, p.161]. However

the advantage of SUPG is that it does reduce the damage that is caused by boundary

layer oscillations, making the solution more accurate in comparison to using Galerkin

approximation on an inappropriately coarse mesh [31, p.134].

Stabilisation is only relevant when the mesh is insufficiently refined. By using

Fourier analysis, on a stencil level, it can be shown that for (Pe)h > 1 oscillations can

occur in the solution when using Galerkin approximation [31, p.158]. Furthermore,

by using SUPG there is a reduced risk of oscillations occurring [31, p.160].

The solution outside the boundary layer is qualitatively accurate, in most cases,

where the layers are not always fully resolved [31, p.140]. This is shown clearly from

[31, p.141, Table 3.2], where the residual error is roughly resolved by SUPG on all

refinement levels. By contrast, the Galerkin approximation is slow to reduce the

residual error, as the mesh becomes finer, until a point where the mesh is sufficiently

refined to resolve the oscillations. A further advantage of using SUPG is that it

can be used in conjunction with mesh refinement techniques, therefore SUPG can be

controlled and used in circumstances when in certain parts of the domain the mesh

has not yet been correctly refined. This will be an essential concept in the following
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chapter when multiple levels of mesh refinement are introduced in the context of a

MG [31, p.195].

2.4 Properties of the discrete operator

In this section we give details on the properties of the coefficient matrix A obtained

from either Galerkin or SUPG FEM discretisation of the convection-diffusion problem

(2.7) (the equations (2.16) and (2.28) respectively). The discrete convection-diffusion

matrix consists of the diffusion matrix D (scaled by ε), the convection matrix C,

and, in the case of the SUPG method, the streamline diffusion matrix S (2.29). We

examine the matrix properties of A by considering the matrix stencil of each of the

components. Matrix stencils depict matrix coefficients in a particular row of the

global matrix as a function of the connectivity in the underlying FE mesh. Matrix

stencils are simple in the case of uniform, tensor product grids, where there exists a

fixed connectivity pattern between the nodes in the grid.

The stencils of the matrices D, C and S, connectivity pattern in the case of a
2D tensor product grid and bilinear approximation, can be represented as [31, p.154]:

D ∼ 1
3
×

¡
¡¡

@
@@

¡
¡¡

@
@@

−1

−1

−1

−1

−1 ,

−1
−1

−1

8 C ∼ h
12
×

¡
¡¡

@
@@

¡
¡¡

@
@@

−4wx

−wx + wy
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wx + wy

4wx ,

wx − wy

−4wy

−(wx + wy)

0

S ∼ δ×
¡

¡¡
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¡
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3
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3
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y

−1
6
(w2

x + w2
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y

−1
6
(w2
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y)− 1

2
(wxwy)
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3
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3
w2

y ,

−1
6
(w2

x + w2
y) + 1

2
(wxwy)

1
3
w2

x − 2
3
w2

y

−1
6
(w2

x + w2
y)− 1

2
(wxwy)

4
3
(w2

x + w2
y)

where ~w = (wx, wy) is the wind function at a particular (stencil) point.

These stencils can be greatly simplified, depending on the wind function. For the

simple case introduced by Example 2.2.1 with vertical wind ~w = (0, 1), the stencils

of the component matrices become:
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D ∼ 1
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×
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From the simple Example 2.2.1 we see that the convection matrix stencil is a

function of the discretisation parameter h, while the diffusion matrix has a constant

stencil (in 2D). This means that diagonal dominance, and therefore the effectiveness

of the solvers, is dependent on h. Furthermore, it is easy to understand that for a fixed

h, the increase in the value Pe (i.e ε → 0) will lead to the situation where the matrix

A loses its diagonal dominance. This has implications for the choice of iterative

method suitable for the systems (2.16) or (2.28). The example also demonstrates

the stabilising effect that the matrix S has in such circumstances, whereby it has

increased the symmetric part of A (Definition 2.4.7).

Diagonal dominance of the coefficient matrix is crucial for the convergence of

simple-point iterations which are, in turn, a key ingredient of MG methods (see

Chapter 3).

Definition 2.4.1 ([77]). Matrix A is strictly diagonal dominant when

|aii| >
NI∑
j=1
i 6=j

|aij| i = 1, ..., NI .

Definition 2.4.2 ([77]). Matrix A is weakly diagonal dominant when

|aii| ≥
NI∑
j=1
i6=j

|aij| i = 1, ..., NI .
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Definition 2.4.3 ([37]). Condition number of matrix A:

κ(A) = ||A|| · ||A−1||,

where the matrix norm || · || is consistent with any vector norm.

Example 2.4.1. We demonstrate the diagonal dominance of the coefficient matri-

ces for different values of h and Pe for Example 2.2.1 discretised on a sequence of

uniform tensor product grids, with each finer level obtained by a uniform refinement

of the previous coarse grid. Discretisation of the convection-diffusion problem (2.7)

is performed by SUPG FEM with Q1 elements. From Table 2.1 it can be seen that

as the Peclet number increases and/or the mesh becomes more coarse (h increases)

the diagonal dominance (Definition 2.4.2) of the coefficient matrix is lost. This is an

important feature in a multilevel context, as on coarse grids, iterative methods may

fail to converge. .

Table 2.1: Diagonal dominance of the coefficient matrix A from (2.29) as a function of the grid size
h and the Peclet number Pe in the case of a constant wind from Example 2.4.1. Here ‘1’ denotes the
cases when the coefficient matrix is weakly diagonally dominant (Definition 2.4.2) and ‘0’ denotes
the cases when this property is lost. The shaded areas in the table correspond to the cases when
h > 2 ε.

N 9 49 225 961 3,969 16,129 65,025
Pe=40 0 0 0 1 1 1 1
Pe=100 0 0 0 0 1 1 1
Pe=200 0 0 0 0 0 1 1
Pe=500 0 0 0 0 0 0 0
Pe=1000 0 0 0 0 0 0 0

The main property of the convection-diffusion coefficient matrix, obtained from

FE discretisation, is its sparsity. Sparsity is broadly defined as “a matrix is sparse

if there is an advantage in exploiting its zeros” [23, p.1]. In addition, coefficient

matrices arising in FE discretisations are known to be ill-conditioned. The extent of

this ill-conditioning is dependent on the type of problem, the type of discretisation,

the problem parameters used and the discretisation parameter h [32, p.112].

The main difficulty with the discrete convection-diffusion problem is that the

matrix is non-normal [84, Chapter 12]. This property has a profound effect on the

choice of iterative method used for the solution of the system and its accuracy. To

give some insight into this issue, we need to introduce some definitions.

Definition 2.4.4 ([77]). Matrix A ∈ RNI×NI is an M-matrix if

1. A is nonsingular,
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2. ai,j ≤ 0 for i 6= j,

3. (A−1)i,j ≥ 0,

4. ai,i > 0.

However, conditions 1 and 3 from Definition 2.4.4 can be replaced by σ(B) < 1,

where σ(B) is the spectral radius of B and B = I −D−1A [77, p.28].

Definition 2.4.5 ([77]). Matrix A is Hermitian if

AH = A,

or AT = A if A is a real matrix.

Definition 2.4.6 ([77]). Matrix A is normal if it satisfies the relation

AHA = AAH .

The matrix is referred to as non-normal if a matrix of order NI does not have NI

eigenvectors (complete set) or the eigenvectors do not form an orthogonal set. By

contrast, the diffusion matrix D (which is a symmetric positive definite matrix) has

a complete orthogonal set of eigenvectors. Non-normality of a convection-diffusion

matrix increases with Pe [42, p.212]. This has an effect on the accuracy of the

iterative solutions and the choice of the stopping criterion for a iterative solver.

Definition 2.4.7. The symmetric part of matrix A:

H =
A + AT

2
.

Definition 2.4.8. The skew-symmetric part of matrix A:

F =
A− AT

2
.

2.5 The Navier-Stokes problem

The steady state Navier-Stokes equations in two spacial dimensions is defined as:

Find (~u, p) ∈ ([C2(Ω)]2 × C1(Ω)) such that

−ε∇2~u + ~u · ∇~u +∇p = ~f

∇ · ~u = 0

}
in Ω. (2.34)
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where ~u = [ux; uy] is the velocity, p represents the pressure and ε > 0 is the molecular

viscosity which is inversely proportional to the Reynolds number (Re) in a non-

dimensional form of the equations [31, p.314]. The first equation in (2.34) is referred

to as the momentum equation (Newton’s second law). That is, an external force ~f

(such as gravity [31, p.3]) is balanced by the diffusive force −ε∇2~u, pressure gradient

∇p and convection ~u·∇~u. The second equation in (2.34) is referred to as the continuity

equation and is an expression for the conservation on mass (or incompressibility

constraint). This can be seen if the divergence theorem [31, p.1] is applied to the

continuity equation. That is, the total flux of the fluid through the boundaries of any

enclosed part of the domain Ω is equal to zero, which implies that the volume of fluid

entering the domain is equal to the volume of fluid leaving the domain [31, p.215].

The Navier-Stokes equations (2.34) contains the convection-diffusion equation

(2.7) ∇2~u + ~u · ∇~u, as part of the momentum equation, with velocity playing the

role of the convective field. The convection term ~u · ∇~u is nonlinear [31, p.313], this

makes the entire Navier-Stokes problem nonlinear. Therefore, the discretisation re-

sults in a system of nonlinear equations, which needs to be solved iteratively (by, for

example, Picard’s [31, p.326] or Newton’s method [31, p.325]). At each iteration, a

linearised version of the problem (in the case of Picard’s method [31, p.326], Oseen’s

problem) must be solved.

As was the case with convection-diffusion for Pe, when Re ≤ 1 we have a diffusion-

dominated problem and Re À 1 we have a convection-dominated problem [31, p.314].

As Re →∞ following the same pattern as a convection-diffusion problem the Navier-

Stokes equations tends to a hyperbolic problem (the incompressible Euler equation

[31, p.314]).

There are two main groups of fluid flow problems with respect to the boundary

conditions: enclosed flow problems implied by imposing Dirichlet boundary condi-

tions for both components of the velocity on the boundary ∂Ω, and flow-through

problems. In the latter case we can distinguish three parts on the boundary: the in-

flow, the characteristic, and the outflow boundary (similar to (2.4) in the convection-

diffusion case). Using the notation ∂ΩD for the Dirichlet part of the boundary and

∂ΩN for the Neuman part, the typical BCs considered for the Navier-Stokes problem

(2.34), on a two-dimensional domain, are of the form

~u = ~w on ∂ΩD, ε
∂~u

∂n̂
− ~np = ~0 on ∂ΩN , (2.35)

where ∂~u
∂bn denotes the normal derivative of ~u, i.e the derivative with respect to the

normal direction on ∂Ω (~n is the unit normal vector in an outward direction to the

boundary) [31, p.214, p.313]. As there are no BCs associated with the pressure, the
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pressure solution in the case of enclosed flow problems is unique up to a constant [31,

p.313, p.314].

To derive a weak formulation of the BVP (2.34)–(2.35), we need to define the

space of test functions and the trial space. The test space H1
0(Ω) is a subspace of

H1(Ω) = [H1(Ω)]2, with elements that satisfy the homogeneous Dirichlet boundary

conditions on ∂ΩD:

H1
0(Ω) =

{
~v |~v ∈ H1(Ω) , ~v = ~0 on ∂ΩD

}
.

The trial (solution) space H1
D(Ω) is also a subspace of H1(Ω), with elements that

satisfy the same Dirichlet BCs as (2.35):

H1
D(Ω) =

{
~u | ~u ∈ H1(Ω) , ~u = ~w on ∂ΩD

}
.

The weak formulation (in residual form) is derived as follows [31, p.319]:

Find ~u ∈ H1
D(Ω) and p ∈ L2(Ω), such that

RU = −ε

∫

Ω

∇~u : ∇~v dΩ +

∫

Ω

(~u · ∇~u) · ~v dΩ +

∫

Ω

p(∇ · ~v) dΩ

−
∫

Ω

~f · ~v dΩ = ~0 ∀~v ∈ H1
0(Ω),

RP =

∫

Ω

q(∇ · ~u) dΩ = 0 ∀q ∈ L2(Ω),

(2.36)

where ∇~u : ∇~v = ∇ux · ∇vx +∇uy · ∇vy.

The FE discretisation of the problem (2.36) is achieved using a mixed method.

A mixed method means that the approximation spaces of the velocity and pressure

components of the solution can be selected to be two independent function spaces.

However, not all combinations of the approximation spaces lead to a stable approxi-

mation. The condition that needs to be fulfilled for a stable approximation is referred

to as the inf-sup (LBB) condition (see [31, p.224, p.228]). In the case of enclosed

flow, satisfying the LBB condition is sufficient for the pressure to be unique up to a

constant. The mixed FE approximation spaces used within the project for the Navier-

Stokes problem (Section 4.6) are isoparametric LBB stable Q2 − Q1, also known as

Taylor-Hood elements. That is, bi-quadratic Q2 finite elements for the velocity ~u and

bi-linear Q1 finite elements for pressure p. The combination of these rectangular ele-

ments are known to be stable [31, Chapter 5.3.1]. An alternative stable mixed finite

element approximation available in the OOMPHLIB library is Crouzeix-Raviart [45].

If we denote by ϕj the global bi-quadratic basis function associated with the node
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j and ~ϕj represents either [0 ; ϕj] or [ϕj ; 0] [31, p.226]. If we denote ~uh the FE

approximation of the velocity, the approximation of the velocity can be defined as

a linear combination of the vector basis functions and associated coefficient velocity

components U
x ∈ RNu and U

y ∈ RNu (where U = [U
x
; U

y
] ∈ R2Nu) by1,

~uh =
2Nu∑
j=1

U j ~ϕj, (2.37)

and the approximation of the pressure field ph represented as a linear combination,

using a bi-linear basis function ψj and Pj ∈ RNp , j = 1, . . . , Np,

ph =

Np∑
j=1

Pjψj. (2.38)

In (2.37) and (2.38) Nu denotes the number of unknowns representing the velocity

and Np denotes the number of unknowns representing the pressure field.

The error of the Q2 − Q1 FE approximation of the Navier-Stokes problem is

bounded by [31, p.332]:

||∇(~u− ~uh)||+ ||p− ph|| ≤ Ch2
max(||D3~u||+ ||D2p||), (2.39)

where C is a constant.

Stable FE discretisation of the Navier-Stokes problem must have a velocity space

“richer” (of higher dimensions) than the pressure approximation space [31, p.229].

If the approximation spaces do not satisfy the discrete inf-sup stability condition

[31, p.224, p.228], some form of stabilisation must be added (such as to relax the

incompressibility constraint) [31, Chapter 5.3.2].

Finite element discretisation of the Navier-Stokes problem results in a system

of nonlinear equations, which is solved in OOMPHLIB iteratively using Newton’s

method. Denote the nonlinear residual of the Navier-Stokes system as R = [RU ; RP ]

which corresponds to the current approximation to the solution X = [U ; P ]. The

procedure is summarised in Algorithm 2.1.

When Newton’s method is applied to a linear system, Algorithm 2.1 will terminate

after one Newton iteration. For the nonlinear system of equations Newton’s method

will converge quadratically, given that the initial approximation is sufficiently close

to the fixed-point [31, p.326].

By applying Newton’s method to the Navier-Stokes system, at each iteration the

1The boundary conditions are not included for simplicity.
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Algorithm 2.1 Newton method [54] [45]

Given an initial approximation for the unknowns X0; k = 0
Compute the nonlinear residuals R(X0)
do while (||R(Xk)|| ≥ eN)

Assemble the Jacobian matrix J(Xk) = ∂R
∂Xk

Solve the linear system J(Xk) δXk = R(Xk)
Correct the current approximation Xk+1 = Xk − δXk

Compute the nonlinear residual R(Xk+1); k = k + 1
end while

following block linear system is obtained [31, pp.328–330]:

J(X) δX R(X)︷ ︸︸ ︷[
F + W BT

B 0

] ︷ ︸︸ ︷[
δU

δP

]
=

︷ ︸︸ ︷[
RU

RP

]
,

(2.40)

where F is the momentum block, which represents a block-diagonal matrix with scalar

convection-diffusion operators, and B ∈ RNp×2Nu is the discrete divergence operator.

The scalar convection-diffusion operators in the momentum block F are comprised

of the discrete diffusion operator D ∈ R2Nu×2Nu and the discrete convection operator

C ∈ R2Nu×2Nu . The block contributions to the coefficient matrix in (2.40) are defined

as follows:

• The Laplacian matrix has the elements [31, p.225]:

D = [dij] =

∫

Ω

∇~ϕj : ∇~ϕi dΩ i, j = 1, ..., Nu. (2.41)

• The convection matrix has the elements [31, p.328]:

C = [cij] = Re

∫

Ω

( ~uh · ∇~ϕj) ~ϕi dΩ i, j = 1, ..., Nu. (2.42)

• The divergence matrix has the elements [31, p.225]:

B = [bij] = −
∫

Ω

ψi∇ · ~ϕj dΩ i = 1, . . . , Np, j = 1, ..., Nu. (2.43)

• The term W is a contribution that arise from the application of Newton’s

method called the Newton derivative matrix, and has the elements [31, p.328]:

W = [wij] = Re

∫

Ω

(~ϕj · ∇~uh)~ϕi dΩ i, j = 1, . . . , Nu. (2.44)



Chapter 3

Methods for Solving Linear

Algebraic Systems

The discretisation of the convection-diffusion equation, by either Galerkin or the

SUPG approximation method, leads to a non-symmetric sparse system of linear equa-

tions with a non-normal coefficient matrix. The solution of this system represents

computationally the most demanding, and algorithmically the most challenging part,

of the overall simulation process.

Two strategies are often considered when solving a linear system. Gauss elimi-

nation is a direct method that works equally well for any type of system. However,

making it work efficiently for sparse systems is an additional challenge. For systems

with dense coefficient matrices the asymptotic complexity of Gauss elimination is

known in advance (the computational cost of the algorithm is O(n3) and memory

cost O(n2)). This is not the case for systems with sparse matrices, where the algo-

rithmic complexity depends on the sparsity pattern, the number of non-zero entries

and other matrix properties such as diagonal dominance and positive definiteness

[64, Chapter 3]. A direct method is designed to produce an accurate solution up to

computational round-off error (provided the coefficient matrix is not ill-conditioned).

To alleviate this problem, reordering techniques and graph reduction techniques

are used to exploit sparsity patterns to lessen the potential increase in storage and

computational costs [20, Chapter 6]. However the amount of “fill-in” (newly gener-

ated non-zero entries that do not exist in the coefficient matrix) grows rapidly with

the number of degrees of freedom and spacial dimension of the continuous problem.

The sparsity pattern also becomes more complex, even in cases of regular tensor

product grids. When solving large systems that arise in the discretisation of 3D

problems, direct solvers are faced with a considerable challenge [77, p.xvii]. This is

the reason for looking at alternatives, namely iterative methods. Iterative methods

offer the prospect of optimal scaling. This optimality is achieved through performing

42
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only sparse matrix-vector products and a few vector updates. The storage cost of

iterative methods typically includes the sparse coefficient matrix and a small number

of auxiliary vectors.

Saad and van der Vorst [78] present the historical development of iterative solvers

in the last 100 years. The survey covers the general progression of iterative solvers,

starting with simple-point iterations and covering Krylov methods and MG. In [78]

the authors relate rapid development of iterative solvers to the rise in applications, in

particular the FE discretisation of PDEs and the development of computer systems.

In this chapter we give an overview of several different types of iterative methods

for the solution of sparse linear systems. In particular, we cover details of simple iter-

ations (referred to as simple-point iterations or smoothers), Krylov subspace solvers

and MG. We then discuss the concept of preconditioning as a means of improving

the speed of convergence of Krylov iterative methods and the use of MG in this

context. The main aim of this project is the development of efficient smoothing

techniques for multigrid preconditioning of the discrete convection-diffusion problem.

In this context, we cover different smoothing techniques, starting from simple point

smoothers with the default ordering of nodes, followed by different strategies for the

lexicographical and downwind nodal ordering. We also cover more complex smooth-

ing strategies, in particular, the incomplete factorisation smoothers, that forms the

basis for a novel smoothing technique introduced in this thesis, which is based on

incomplete factorisation of truncated matrices.

3.1 Basic iterative methods

We want to solve a system of linear equations

Ax̄ = b̄, (3.1)

where A ∈ Rn×n is a large, sparse, in general, non-symmetric matrix; b̄ ∈ Rn is the

right-hand vector, and x̄ ∈ Rn is a vector of unknowns. Although the presentation

in this section is general, we can think of (3.1) as a system that arises from the

discretisation of PDEs, such as (2.28).

An iterative method for solving linear systems starts with a suitable guess for the

solution x0 (where in the absence of a better initial guess a zero vector is used), which

is then improved at each iteration, until the desired solution xk is “sufficiently close”

to the true solution x [64, p.1].

The criteria for a good iterative method are [80]:

• The computational cost of moving from xk to xk+1 should be “cheap” with
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respect to the cost of solving the linear system.

• The rate of convergence to a given tolerance should be “fast”.

It is useful to be able to monitor the progress a solver makes towards the solution

at each iteration. Two quantities that describe the quality of the approximate solution

xk are the solution error and the residual. The solution error at the kth iteration is

defined as

ek = x− xk, or ek = A−1b− xk. (3.2)

As the true solution x is not known in advance, the solution error cannot be

computed directly and hence is of little practical use. On the other hand, if one

computes the solution using a direct method one can use this as a reference solution

x, to assess the accuracy of an iterative method on small problem sets. Calculating

the forward error of ||xk||, ||x−xk||
||x|| [52, p.12], is a method to measure or estimate how

accurate xk is with respect to x.

The residual rk at the kth iteration is defined as

rk = b− Axk, (3.3)

where xk is the kth approximation to the solution.

The residual is a measure of how close Axk is to b. However, the accuracy of

the residual (3.3) is scalar-dependent. That is, if A and b are multiplied by β, r is

multiplied by β. An alternative, to make the residual scalar-independent, is to use

the relative residual
||b− Axk||

||b|| , x0 = 0. (3.4)

Convergence of an iterative method is defined by ||ek|| → 0 as k → ∞. As the

residual is the only information that is known at each iteration, the following linear

relationship between the solution error and the residual, referred to as the residual

equation [10, p.8], is necessary:

Aek = rk. (3.5)

From (3.5) it follows that the error can be reduced by selecting a matrix M , referred

to as a preconditioning matrix or a preconditioner, such that

ek = M−1rk, or ek = M−1(b− Axk). (3.6)

Equation (3.6) implies that a good reduction in the solution error requires that the

matrix M be “close” in some sense to the matrix A. In an ideal case M = A, e = 0,

but then the inverse M−1 is computationally as expensive to compute as finding the
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A−1. In practice (3.6) is solved approximately, with the choice of M as a trade-off

between numerical and computational efficiency.

A systematic approach of using (3.6) to improve the accuracy of the current

iteration xk is to perform a splitting of matrix A as A = M + N , and construct the

iteration

xk+1 = xk + M−1rk, k = 0, 1, . . . . (3.7)

Equation (3.7) can also be written as

Mxk+1 = −Nxk + b, k = 0, 1, ... (3.8)

where M is a non-singular matrix that is easier to invert than A, and N is the

remainder matrix. In addition, when M−1 and −N are non-negative (a non-negative

matrix is a matrix whose entries are non-negative [77, p.25]) this is known as a regular

splitting iteration [77, p.115].

By representing the matrix splitting as A = D + L + U where D is the diagonal,

L strictly lower and U is the strictly upper parts of A, well known instances of the

splitting iteration method can be introduced [77]:

M = D (Jacobi)

M = D + L (Gauss-Seidel)

M = L̃Ũ (ILU(0))

M = I (Richardson),

(3.9)

where L̃ and Ũ are lower and upper incomplete factors of A.

3.1.1 The Jacobi method

The Jacobi method is the simplest and the computationally cheapest simple-point

iterative method [77, Chapter 4] [64, Chapter 5], where M is represented by the

diagonal entries of A. The storage cost of implementing the Jacobi method is O(n),

and includes the storage for the vector xk ∈ Rn, the storage for the updated vector

xk+1 ∈ Rn and the storage for M = D ∈ Rn.

The component-wise formula for Jacobi updates is

xk+1
i =

1

aii

(bi −
n∑

j=1
j 6=i

aijx
k
j ) i = 1, . . . , n. (3.10)

The nature of the Jacobi method, is that each update of the vector component in xk+1
i

relies only on the same previous component in xk
i . This allows for simplicity during
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parallel computation of the solution components (the method is highly parallel) [86,

p.214].

The simplicity of the choice M = D in many cases leads to a rather poor ap-

proximation of the matrix A. This results in slow convergence. The introduction

of a damping constant allows some flexibility into the Jacobi method. If the Jacobi

method converges then the damped Jacobi method will also converge [98, p.107].

However the opposite may not be true. Damping the Jacobi iteration can result in

an increase in the efficiency of the method, compared to standard Jacobi. Given an

appropriate damping constant γ ∈ [0, 1], the damped Jacobi method is

xk+1 = xk + γD−1rk, k = 0, 1, . . . . (3.11)

However the optimal value of γ for a particular problem is not known in advance. It is

possible to tune the damped Jacobi method for certain problems and purposes. Also,

it is possible to obtain an optimal value of γ based on Fourier analysis [93, Chapter 7,

p.98] to make damped Jacobi effective in eliminating certain error components (see

Section 3.3). A final point, is that the Jacobi method should be used on isotropic

meshes, as a large aspect ratio can have a detrimental effect on convergence as the

mesh width h decreases [86, p.215].

3.1.2 The Gauss-Seidel method

In the Gauss-Seidel method [77, Chapter 4][64, Chapter 5] we choose M = D +L for

(3.7), thus obtaining the following iteration

xk+1 = xk + (D + L)−1rk, k = 0, 1, . . . . (3.12)

The computational cost of a Gauss-Seidel iteration is that of a forward substitution.

The storage requirements of the Gauss-Seidel method is O(n), as only the lower

triangular parts of A plus two additional vectors need to be stored.

The component-wise formula for Gauss-Seidel updates is

xk+1
i =

1

aii

(bi −
i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j ) i = 1, . . . , n. (3.13)

Gauss-Seidel benefits from an improved convergence, because for each iteration com-

ponent the entry xk+1
i is updated with the previously updated entries xk+1

j for i > j

(3.13). This updating procedure is very useful for reducing the storage requirements,

by overwriting the old values by the new ones.

The improved convergence characteristics of Gauss-Seidel compared to the Jacobi
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method are attributed to the improved preconditioner M (MJ = D, MGS = D + L).

The “closer” matrix M becomes to A, consequently the “smaller” N becomes, the

faster the method will converge [98, p.77]. However, calculating the M−1 is computa-

tionally more expensive for (3.12) than (3.11). A further attribute to Gauss-Seidel is

that the order with which the updates is performed will also have an important con-

sequence to the convergence [10, p.11]. In the Jacobi method the order of performing

the updates is irrelevant.

The main drawback of the Gauss-Seidel method (3.12) is that it is inherently

sequential [64, p.221], in the sense that a new iteration cannot start on some com-

ponents of the solution before the current iteration is completely finished. Efficient

parallelisation of this method involves subdivision of the unknowns into disjoint sub-

sets, for example a red-black split of the unknowns into x2i+1 and x2i (odd and even)

components. The Gauss-Seidel method then applies concurrently to disjoint sets

[64, p.222]. This decoupling will neglect all the non-zero entries in L that connect

the unknowns from different sets. This will lead to a deterioration of convergence

properties. As a final point the Gauss-Seidel method will perform better and to a

larger aspect ratio than the Jacobi method, however the convergence rate will begin

to deteriorate as the mesh width h decreases [86, p.215].

Line Gauss-Seidel method

For convection-dominated problems line Gauss-Seidel is an efficient solver, where the

unknowns on the same grid line are relaxed simultaneously. However, the efficiency of

the method as a solver, is dependent on the ordering of the nodes in the linear system

[31, p.179, p.180]. Ordering in a downwind direction will improve the convergence

rate [31, p.181].

For complex convection flow, such as recirculating wind or a wind that changes

both its magnitude and direction throughout the domain, it is difficult to order the

unknowns in the direction of the wind. To tackle this problem, multiple sweeps of

line Gauss-Seidel can be performed along the lexicographical ordering of the nodes,

namely bottom to top, left to right, top to bottom and right to left [31, p.191]. The

disadvantage with line ordering is that it can be as expensive as using the ILU method.

If line ordering was performed in all four directions the computational and storage

cost grows by a factor of 4. However for the case studied in [31, p.192], there is a

significant reduction in the iteration count for multiple-directional line Gauss-Seidel

when compared to line Gauss-Seidel in one Cartesian direction.
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3.1.3 Convergence of splitting iterations

By substituting (3.2) into (3.8) we get the relationship between the errors at two

successive iterations ek = (Eamp) ek−1, where the error amplification matrix Eamp is

defined as

Eamp = M−1(−N) = I −M−1A. (3.14)

The equation (3.14) indicates that a splitting iteration method will converge de-

pending on the norm of Eamp, called the contraction number [93, p.38]. In (3.15) this

error is bounded by powers (k) of Eamp [84, p.231].

||ek|| = ||(Eamp)
ke0|| ≤ ||(Eamp)

k|| ||e0||. (3.15)

The condition lim
k→∞

||(Eamp)
k|| = 0 will be satisfied if and only if σ(Eamp) < 1 [10, p.17],

where σ(Eamp) is the modulus of the largest eigenvalue of Eamp (i.e. spectral radius).

In the context of iterative methods, the spectral radius here is also known as the

asymptotic convergence factor, and − log10(σ(Eamp)) is referred to as the asymptotic

convergence rate [10, p.17] [93, p.41]. This is summarised in the following theorem.

Theorem 3.1.1 ([64]). A stationary iterative method is convergent, if and only if

the spectral radius σ(Eamp) < 1.

Theorem 3.1.2 ([80]). As σ(·) ≤ || · || for every matrix norm || · ||, a sufficient

criteria for convergence of an iterative method is ||Eamp|| < 1 for any matrix norm

|| · ||.
The speed of convergence, of splitting iterations, is directly related to size of

σ(Eamp), where fast convergence is obtained when σ(Eamp) is close to zero [80]. There

is also a direct relationship between diagonal dominance and convergence of the

splitting iteration [73].

Theorem 3.1.3 ([64]). If matrix A is strictly diagonal dominant (Definition 2.4.1)

then (3.8) will converge for Jacobi and Gauss-Seidel.

Furthermore, if A is irreducible1 and is weakly diagonally dominant (Defini-

tion 2.4.2), except for a single row where strict inequality is satisfied, then the Jacobi

and Gauss-Seidel methods converge [77, p.118] [98, p.108]. For non-normal matrices

it is sometimes the case that σ(Eamp) < 1 < ||Eamp|| [38, p.28]. The practicality of

this result is that the spectral radius does not determine the initial convergence rate,

but it will determine the asymptotic convergence rate.

In the case when (Theorem 3.1.1) is true for the Jacobi algorithm, we can say

that if A is (aii > 0 and aij ≤ 0, ∀ i 6= j) then A must be an M -matrix [64, p.212].

1Matrix A is irreducible if and only if the graph G(A) is connected [77, p.26, p.89] [43, p.146].
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Theorem 3.1.4 ([93]). If A is an M-matrix (Definition 2.4.4) and M and N are

formed through regular splitting, then (3.8) will always converge.

To study the efficiency of Gauss-Seidel point iterative solvers, ordering of the un-

knowns is analysed in [24] [25] for the one-dimensional convection-diffusion equation.

The resulting coefficient matrix is tridiagonal where A is banded by tri[−b a − c]

(with different values of coefficients). In the case when ordering of the unknowns is

against the direction of the wind there is a lower bound of ||Ek
amp||1 ≥ (1− c2)k−1(1−

cn−(k−1)), k < n. As c → 0 (i.e. the problem is convection-dominated), ||Ek
amp||1 ≈ 1.

This indicates that the Gauss-Seidel method in this case will have a latency of n− 1

before convergence. When ordering of the unknowns is along the flow of the wind

there is an upper bound of ||Ek
amp||1 ≤ (1− bn)(1− bn−1)k−1, favouring no latency in

convergence. This latency is caused by non-normality in the matrix [84, pp.232–241].

3.1.4 Incomplete LU (ILU) factorisation

The Gauss elimination process is subdivided into two main stages: transforming the

original system to an equivalent linear system, that has the same solution, but with

a coefficient matrix which has an upper triangular form. The second stage is finding

the solution by applying backward substitution. An LU factorisation is a numerically

equivalent procedure to Gauss elimination. The idea is to decompose the original ma-

trix into a product of a lower triangular matrix and upper triangular matrix. The

upper triangular matrix in this decomposition is the same as an upper triangular

matrix obtained by Gauss elimination, while the lower triangular matrix with a unit

diagonal contains the elimination coefficients obtained during the elimination process

[59, p.70, p.71] [80]. In the case of LU factorisation the solution of the system is

obtained by the forward substitution followed by the backward substitution. How-

ever the computational cost of LU factorisation is twice as large as that of Gauss

elimination (but both methods have the same asymptotic cost).

The LU factorisation of sparse matrices can lead to a considerable increase in

the density of the computed matrix factors compared to the sparsity of the original

matrix i.e. nnz(L)+nnz(U)
nnz(A)

À 1, where nnz(·) is the number of non-zeros. This “fill-in”

factor is a function of the problem size, ordering of the unknowns and density of the

original matrix. As we move from 2D to 3D problems the density of the coefficient

matrix A will increase, increasing the amount of “fill-in”. This is the main hinderance

that prevents direct methods from achieving optimal scaling when applied to sparse

linear systems obtained from discretisation of PDEs.

Incomplete LU factorisation (ILU(p)) is derived from LU factorisation, where the
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value of p controls the level of “fill-in” generated during factorisation. ILU factorisa-

tion is an approximate method for the solution of linear systems, where the precon-

ditioning matrix M is taken to be the product of the incomplete factors M = L̃Ũ .

There is a trade-off between numerical efficiency and computational complexity in

the algorithm.

In Algorithm 3.1 the entries of original matrix A are represented by ai,j initially.

Upon completion of Algorithm 3.1, ai,j(i ≤ j) will hold the elements of the factor Ũ

and ai,j(i > j) the elements of the factor L̃, where the unit diagonal of L̃ is implicitly

assumed. The set P represents the zero entry pattern of the matrix A, which is used

Algorithm 3.1 Algorithm ILU [77, p.289]

Set ai,j = 0, for each (i, j) ∈ P
for k = 1 : n− 1 do

for i = k + 1 : n do
if (i, k) /∈ P then

ai,k = ai,k/ak,k

for j = k + 1 : n do
if (i, j) /∈ P then

ai,j = ai,j − ai,k ∗ ak,j

end if
end for

end if
end for

end for

to control “fill-in”. The only restriction is that the diagonal entries of A must be

always present, that is: P ⊂ {(i, j)|i 6= j; 1 ≤ i, j ≤ n} [77, p.289]. In the cases

where the zero entries of A all belong to P we would achieve ILU(0). This is the

simplest case where no “fill-in” is allowed. Standard LU factorisation would contain

no zero-patten, therefore the conditional statements P in Algorithm 3.1 would be

omitted.

The value of p, in a general algorithm ILU(p), determines the rank of an element

in the elimination process, from which “fill-in” is allowed. When p = 0, no “fill-in” is

allowed, therefore the factors preserve the sparsity pattern of the original coefficient

matrix. If p = 1 only the “fill-in” created by the original elements in the coefficient

matrix is allowed, not the “fill-in” created by the already created “fill-in”. For p = 2,

the “fill-in” is allowed only if created by the original elements and the “first generation

fill-in”. Example 3.1.1 illustrates this point.

Example 3.1.1. A simple example of “fill-in” is taken from [64, Chapter 3.2], where
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matrix A is structurally symmetric, and 4 represents the non-zero entries.




4 4 0 4 0

4 4 4 0 0

0 4 4 0 4
4 0 0 4 0

0 0 4 0 4




.

The “fill-in” is defined by the symbol ?.

“first generation” “second generation” “third generation”




4 4 0 4 0

0 4 4 ? 0

0 4 4 0 4
0 ? 0 4 0

0 0 4 0 4




,




4 4 0 4 0

0 4 4 ? 0

0 0 4 ? 4
0 0 ? 4 0

0 0 4 0 4




,




4 4 0 4 0

0 4 4 ? 0

0 0 4 ? 4
0 0 0 4 ?

0 0 0 ? 4




.

The “fill-in” element at coordinate (4, 3) in the second generation matrix is generated

using the “fill-in” element at coordinate (4, 2) produced during the elimination of the

element 4 at coordinate (2, 1). This would only be allowed if p ≥ 1.

In the final generation an LU factorisation is produced:

L =




1 0 0 0 0

4 1 0 0 0

0 4 1 0 0

4 ? ? 1 0

0 0 4 ? 1




, U =




4 4 0 4 0

0 4 4 ? 0

0 0 4 ? 4
0 0 0 4 ?

0 0 0 0 4




.

.

By increasing p, the accuracy of ILU(p) preconditioner will increase. However, the

increase in p will increase the computational complexity of factorising and applying

the preconditioner, as the number of non-zero entries in the factors increases. For

p → N , ILU(p) becomes the standard LU factorisation. However it is difficult to

know in advance how much “fill-in” p > 0 will produce. For each particular problem

there exists the value of p that would give a method with the shortest execution

time. However, an additional requirement of tagging the new “fill-in” elements to

know which “generation” they belong to is needed. This can be alleviated if “fill-in”

is based on the entries being larger than a certain threshold (ILUT) [12] [77, p.307].
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Although, if p > 0, we need to worry about the storage for the additional “fill-in”,

an amount we do not known in advance. This makes memory management difficult.

If the coefficient matrix is stored in sparse compressed row/column format, newly

introduced elements would involve an intricate operation to preserve ordering of the

elements. The use of ILU(0) does not involve any of these difficulties and we can

expect the best execution speed and caching, due to a relatively small number of

non-zero elements.

The level of “fill-in” in ILU(p) factorisation is dependent on the amount of non-

zero entries in A as well as the non-zero patten (which is connected with the node

numbering in a finite element mesh) [64, p.133]. In particular, the situation is ex-

pected to get worse (more “fill-in” generated) when discretisation is done by non-

structured or adaptively refined grids and no reordering algorithm (such as minimum

degree ordering) is applied. ILU(0) factorisation coincides with LU factorisation only

in the case of banded matrices with no zero elements within the band (such as a

tridiagonal matrix) or matrices resembling the right hand side in Example 3.1.2. The

narrow banded matrices arises from a FEM discretisation of a 1D problem, but not

in higher spacial dimensions.

Example 3.1.2. The two extreme cases of “fill-in” are;




4 4 4 4 4
4 4 0 0 0

4 0 4 0 0

4 0 0 4 0

4 0 0 0 4







4 0 0 0 4
0 4 0 0 4
0 0 4 0 4
0 0 0 4 4
4 4 4 4 4




all zero entries are “filled in”, no zero entries are “filled in”.

.

General methods (such as Cuthill McKee [77, p.82] and minimum degree ordering

[17, Section 7.1]) are developed for sparse direct solvers for reducing the amount of

“fill-in” by reordering (taking a permutation of) the matrix rows and/or columns.

The Cuthill McKee algorithm is very similar to performing a breadth first search

[77, p.81] where the adjacent vertices are traversed from lowest to highest degree.

This produces a narrow banded matrix that reduces “fill-in”. The minimum degree

ordering algorithm reduces “fill-in” by ordering the pivots based on the node with

the smallest degree, attempting to achieve the structure of the right hand side matrix

in Example 3.1.2 prior to factorisation as best it can. Tarjan’s algorithm [82] uses a

depth first search to find strongly connected components using a stack and linking to

potentially closed paths (the edges that connect the nodes at the top of the stack to
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those further lower down the stack) [23, Section 6.8]. A strong connected component

has no other nodes in its matrix row that do not belong in its closed path [23, p.114].

Stability is an important concept during LU factorisation as it is important for L̃Ũ

to represent A as accurately as possible. Partial pivoting is a procedure whereby at

each step, rows yet to be eliminated are interchanged to bring the maximum absolute

value from the current column entries onto the diagonal [80]. For L̃Ũ , it is possible to

use partial pivoting as a technique to retain numerical stability (see Example 3.1.3).

Example 3.1.3. Matrix A demonstrates a loss of stability during LU factorisation

[52, p.15]:

A L̃ Ũ

(
π −1

1 1

)
=

(
1 0

π−1 1

) (
π −1

0 1 + π−1 ≈ π−1

)
.

If π is a small number then

A− L̃Ũ =

(
0 0

0 1

)
.

.

Clearly the factorisation for Example 3.1.3 is unstable, even though the condition

number of A is small κ∞(A) = 4
1+π

, unless partial pivoting is used1. As with Gauss

elimination, partial pivoting provides numerical stability of the factorisation proce-

dure. Chow et al. [13] has also suggested that column partial pivoting improves the

numerical stability of ILU. However, partial pivoting will not be considered in the

context of the ILU(0) algorithm as the sparsity pattern of the incomplete factorisation

is fixed in advance. If A is an M -matrix (Definition 2.4.4) then the matrix obtained

after applying the “first generation” step (see Example 3.1.1) of Gauss-elimination is

also an M -matrix [77, p.288].

Theorem 3.1.5 ([52]). If A is diagonally dominant by row (Definition 2.4.2), then

Gauss-elimination without pivoting is stable.

If the preconditioning matrix M is taken to be an ILU factorisation of M = L̃Ũ ,

then we can write

A = L̃Ũ + R, (3.16)

1If κ∞(A) = ||A||∞ · ||A−1||∞ À 1 then A is ill-conditioned.
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where N = R is the residual matrix. The norm of the residual matrix is usually

considered a good indicator to how close the incomplete factorisation is to the LU

factorisation of the matrix A.

Theorem 3.1.6 ([62]). If matrix A is an M-matrix and P in Algorithm 3.1 is static

then unique factors L̃ and Ũ exist. Moreover (3.16) is a regular splitting.

Theorem 3.1.7 ([62]). If A is an M-matrix, then the construction of an ILU decom-

position is at least as stable as the construction of a complete decomposition A=LU

without any pivoting.

A generalisation of Theorem 3.1.7 by Manteuffel [60] later extended this property

to H-matrices2. On the other hand, if the diagonal entries are not positive in matrix

A, the construction of L̃ and Ũ may fail [63]. In cases where the diagonal entries

are close to zero it is clear from Algorithm (3.1) that the factorisation process may

break down, due to stability problems. Meijerink et al. [63] give a list of method

modifications in order to improve stability. That is, if a diagonal entry is less than

a given tolerance, during the construction of L̃Ũ (where Ũ = L̃T ), then setting

some of the previously constructed off-diagonal entries in the column of Ũ to zero

will recover stability. Alternatively, one may choose to increase the overall diagonal

entries by adding εI to matrix A, where ε is chosen to be large enough. This is called

a Manteuffel shift. The final modification, which is preferred by Meijerink et al. is

to skip a (Gaussian elimination) column update if as a consequence the magnitude

of the diagonal will be made smaller; this leads to a incomplete decomposition. The

version of ILU(0) that is implemented in OOMPHLIB does not have a strategy for

dealing with zero diagonal pivots.

It seems a strange concept to throw away, what may be useful information, in

order to protect the sparsity pattern of a matrix. A recurring alternative to ILU(0)

is modified ILU (MILU). This method makes one distinct change to the traditional

ILU method shown in Algorithm 3.1, where the diagonal entries now compensate

for the loss during zero “fill-in”. That is, instead of ignoring the disallowed “fill-in”

in Algorithm 3.1, the entries are added to the diagonal of the same row in matrix

M = LU . This modification is shown in Algorithm 3.2. This method guarantees that

the row sum of A is equal to the row sum of LU [77, p.305, p.306]. A generalisation

of this methodology is to use a parameter ω ∈ [0, 1] that allows a degree of both

standard ILU (ω = 0) and MILU (ω = 1) methods, called (RILU(ω)) [11] [95].

ILU(0) can be used as a preconditioner for a splitting iteration (3.7) by taking

2(A = ai,j) is a H-matrix if (B = bi,j) is an M -matrix where bi,j = −|ai,j |, bi,i = ai,i.
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Algorithm 3.2 Algorithm MILU [20, p.206] [12]

〈 insert 〉
Set ai,j = 0, for each (i, j) ∈ P
for k = 1 : n− 1 do

for i = k + 1 : n do
if (i, k) /∈ P then

ai,k = ai,k/ak,k

for j = k + 1 : n do
if (i, j) /∈ P then

ai,j = ai,j − ai,k ∗ ak,j

else
ai,i = ai,i − ai,k ∗ ak,j

end if
end for

end if
end for

end for

M = L̃Ũ and N = R [77, p.288, p.292] [93, p.47] with

xk+1 = xk + yk, k = 0, 1, . . . , (3.17)

where yk is calculated using forward and backward substitution:

L̃zk = rk (forward substitution)

Ũyk = zk (backward substitution).

Furthermore, the ILU(0) method can be implemented with a damping parameter to

improve efficiency, as was done with the Jacobi method (3.11),

xk+1 = xk + γ(L̃Ũ)−1rk γ ∈ [0, 1]. (3.18)

For the matrices that arise in FEM discretisation of PDEs, ILU(0) factorisation

is an optimal algorithm, both in terms of memory requirement and algorithmic cost.

This is a consequence of the fact that FE matrices always have O(n) non-zero entries

due to a constant number of non-zeros per row. However poor vectorisation prop-

erties of the algorithm and poor caching, due to the use of sparse data structures,

and the sequential nature of the algorithm make its efficient implementation tricky

in a parallel framework. Also the incomplete factorisation represents a considerable

computational overhead compared to the back/forward substitution phase (despite

the fact that in absolute terms both these phases have the same asymptotic compu-

tational cost). If we perform an ILU factorisation repeatedly as part of a complex
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computation this can increase computational cost significantly.

ILU(0) is present as a basic routine in many software libraries: see for example

MI11 in HSL [1], ParCSR Euclid in Hypre [2], IFPACK and AstecOOTrilinos [3].

Parallel ILU

Parallelisation of a sequential algorithm usually needs to take care of two additional

overheads: load balancing and communication between processors. Successful parallel

algorithms assume approximately equal share of the computational load on each pro-

cessor (without processors waiting for synchronisation), while parallel communication

should be to a kept minimal. A further consideration is that efficient parallelisation

of many algorithms require a substantial change to the original sequential algorithm.

Block Jacobi is a method for partitioning a matrix into block diagonal submatri-

ces, where there is a one-to-one correspondence between submatrices and processors.

Each processor/submatrix then applies a sequential iterative method to the linear

system [77, p.378, p.379]. Hysom and Pothen [53] describe a parallel ILU (PILU)

preconditioner that uses graph partitioning and an internal ordering strategy that

minimises the dependence of the factorisation process on other subdomains. Each

subdomain is free to choose a variant of ILU, however a level of “fill-in” is necessary

with ILU(p) being the preferred ILU method in this paper. Hysom and Pothen show

that in PILU(p) the way the matrix is subdivided does not affect the convergence

properties of the algorithm. Furthermore, the paper compares PILU(p) and block Ja-

cobi ILU(p) preconditioners. Their results show that the block Jacobi ILU(p) method

converged in a slightly larger number of iterations, when the number of nodes per

subdamain was larger than the number of subdomains, however the block Jacobi

ILU(p) method always has a smaller ratio between the number of non-zeros in the

preconditioner and the original matrix.

3.2 Krylov methods

The advantage of using simple-point iterations to solve sparse linear systems is that

they have a small cost per iteration. However, these solvers require a large number

of iterations to reach a given tolerance. Simple-point iterations, belong to a class of

one-dimensional projection (xk+1 = xk + rk, where x ∈ span{r})[77, Sections 1.12,

5.1.1]. The different types of simple-point iterations (3.9) seen previously can be

defined by introducing a preconditioner matrix M , which gives xk+1 = xk + M−1rk,

where x ∈ span{M−1r} [38, p.2]. Krylov methods are iterative methods based on

extracting the approximate solution of a linear system from the search subspace,

referred to as the Krylov subspace [77, Chapter 6].
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The residual reduction at every Richardson iteration (3.9) applied to the solution

of linear systems (3.1), where x0 = 0, is

rk+1 = (I − A)rk, k = 0, 1, ... . (3.19)

The Richardson iteration can be expressed in terms of residual vectors [87, p.22]:

xk+1 =
k∑

j=0

rj,

xk+1 =
k∑

j=0

(I − A)jr0,

xk+1 = P k(A)r0,

(3.20)

where P k is a matrix polynomial of degree k with a value of 1 at the origin [38, p.4].

Therefore xk+1 belongs to the space

xk+1 ∈ span{r0, Ar0, ... , Akr0} = Kk+1(A, r0). (3.21)

The space Kk+1(A, r0) is regarded as a (k +1)-dimensional Krylov subspace, gen-

erated by increasing powers of A applied to r0 [87, p.24, p.25]. The size of the

Krylov subspace depends on the number of iterations. Moreover, each Krylov sub-

space method has the same search space (Krylov subspace) and thus forms the same

polynomial approximation to the matrix inverse. The approximation solution xk+1

can be defined as

xk+1 ∈ x0 +Kk+1(A, r0) given rk+1 ⊥ Lk+1.

That is, the approximation to the solution xk+1 can be extracted from the Krylov

subspace by imposing (k + 1) independent constraints. These are usually imposed

by requesting that the current residual rk+1 is orthogonal to Lk+1, the space spanned

by the constraints. In comparison to the simple-point iteration methods, which has

a constraint space limited to only one vector, the dimension of a Krylov subspace

increases by one at each iteration. This fact will imply better convergence of Krylov

methods, compared with simple-point iterations.

A general basis set of Krylov subspace Kk+1 consists of non-orthogonal vectors.

However, it is more desirable to have orthogonal basis sets as the Krylov algorithm

exhibits better numerical stability and is less susceptible to round off errors. Thus,

the main operation in each Krylov algorithm is to orthogonalise the Krylov basis

set. At each iteration a new Krylov vector is orthogonalised with respect to the

previous orthogonal basis. In the case of symmetric matrices this is done by the
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Lancoz algorithm [77, p.187]. The advantage to this method is that orthogonalisa-

tion is needed only with respect to the previous two vectors. This implies optimal

computational cost of this operation. For a non-symmetric matrix, the orthogonal-

isation needs to be performed with respect to all previous vectors. This is done by

Arnoldi’s algorithm [77, p.154] (which represents a modified Gram-Schmidt method

[77, p.10]). This operation is non-optimal in terms of computational cost, and may

represent a considerable computational overhead, if the iteration count is large (see

Section 3.2.1).

It is possible to rearrange non-symmetric matrices to be amenable to the appli-

cation of a Krylov solver aimed at symmetric systems. However the computational

cost associated with this matrix transformation is not justified by the reduction in

the solution time [88].

Krylov methods can be classified into four groups, with respect to the choice of

subspace constraints ([87, p.25, p.26] [20, p.158]):

• Ritz-Galerkin: These are methods where at each iteration rk ⊥ Kk(A, r0) [87,

Chapter 4.1]. A representative of this class is the Conjugate Gradient (CG)

method [77, p.190].

• Minimum norm residual: Methods that belong to this category have the prop-

erty, that ||rk||2 is minimised over Kk(A, r0) [87, Chapter 4.2]. An example of

a Krylov method that belongs to this class is GMRES [77, p.165].

• Petrov-Galerkin: Methods from this class produce at each iteration an approx-

imation with residuals that are orthogonal to some space other than Kk(A, r0)

[87, Chapter 4.3]. An example of a Krylov method that belongs to this class is

Bi-CG [77, p.223].

• Minimum norm error: These are methods that at each iteration minimise the

norm of the solution error ||ek|| = ||xk − x||2 over the subspace ATKk(AT , r0)

[87, Chapter 4.4]. A representative of this class, for the symmetric case, is

SYMMLQ [20, p.161].

Hybrids of these methods also exist, such as BiCGStab [87, p.26].

Krylov methods perform, in general, with greater consistency (with respect to

the iteration count) than splitting iterations when applied to ill-conditioned systems

obtained from the discretisation of PDEs. In exact arithmetic, the upper bound to

the number of iterations for a Krylov method is equal to the size of the linear system.

Therefore, the upper bound for the computational complexity of a Krylov method is

O(n2). This is unacceptably high for practical applications. Some Krylov methods

have an optimal computational cost per iteration, making them potential candidates
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to be an optimal solver. To achieve this, a Krylov method needs to converge to a

prescribed tolerance in a small number of iterations and (ideally) be robust.

3.2.1 The GMRES method

In this section we introduce the Krylov solver (GMRES method) that will be used in

all our numerical tests.

GMRES is a Krylov method defined by the constraint space Lk = AKk and

the standard Krylov subspace K = Kk, where Kk is the kth Krylov subspace (3.21).

For GMRES the Krylov space is constructed to be orthonormal through using the

Arnoldi algorithm [38, p.38]. This process can be expressed in matrix form as

AV k = V k+1Hk, (3.22)

where Hk ∈ Rk+1×k is the Hessenberg matrix. A Hessenberg matrix is an upper

bi-triangular (hij = 0 for any i > j + 1) matrix [77, p.155]. This matrix consists

of the main storage overhead in the Arnoldi algorithm compared to the symmetric

Krylov method based on the Lanczos algorithm where H is symmetric tridiagonal

[77, p.186].

An approximate solution obtained by GMRES, xk ∈ x0 + Kk, can be presented

as an initial guess x0 and a vector formed from a linear combination of basis vectors

Kk. This can be expressed as

xk = x0 + V kyk, (3.23)

where V k ∈ Rn×k stores as its columns the orthogonal basis vectors of the kth Krylov

subspace and yk ∈ Rk. The aim of the GMRES method is to compute at each it-

eration the approximate solution xk, which, for all vectors in the Krylov subspace

Kk(A, r0) minimises the Euclidian norm of the residual ||rk||2. In order to approxi-

mate min
xk∈Kk

||rk||2, we solve approximately the least square problem for the vector y

by minimising the functional J(y) = ||βe1 −Hky||2, [77, p.165]:

min ||rk||2 = min
x
||b− Axk||2

= min
y
||b− A(x0 + V ky)||2

= min
y
||r0 − A(V ky)||2.
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Using (3.22), we can write

min ||rk||2 = min
y
||r0 − V k+1Hky||2

= min
y
||V k+1(βe1 −Hky)||2,

where β = ||r0||2 and e1 ∈ Rk+1 is the first column vector of an identity matrix.

Furthermore, the column vectors of V k+1 are orthogonal in Kk+1(A, r0); therefore

yk = min
y
||βe1 −Hky||2

J(y) = ||βe1 −Hky||2,
(3.24)

from the algorithm [77, p.165][38, p.39]. The process for minimising ||βe1−Hky||2 is

achieved by solving the least squares problem. The initial structure of matrix Hk is

upper bi-triangular. After performing a Givens rotation [38, p.40] [77, p.167] matrix

Hk becomes upper triangular. Then, performing a backsolve (Hkyk = βe1) will find

the minimum (3.24).

To summarise, Algorithm 3.3 shows at each GMRES iteration the following tasks

that need to be performed.

Algorithm 3.3 The GMRES algorithm [38, p.41]

• Apply the Anorldi algorithm.

– Add the new column to the Hessenberg matrix Hk.

– Orthogonalise the columns of Hk using (3.22).

– Perform Givens rotations. This is a replacement of the Gram-Schmidt
algorithm.

– Normalise V k if necessary.

• Perform a backsolve on Hk (to find the minimum of (3.24)).

• Correct the solution using (3.23).

The speed of convergence of GMRES is determined by the eigenvalue distribution

of the coefficient matrix if A is close to Hermitian [39]. If the spectrum of eigenvalues

is tightly clustered away from the origin, the convergence should be rapid. If the

symmetric part (Definition 2.4.7) of the coefficient matrix A = εD+C +S is positive

definite (H = εD + S in the convection-diffusion case) then the residuals generated

by the GMRES algorithm satisfy [31, p.171]:

||rk||
||r0|| ≤

(
1− λmin(H)2

λmin(H)λmax(H) + σ(F )2

)k
2

, (3.25)
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where F = C is the skew-symmetric part of A (Definition 2.4.8), λmin(H) is the

smallest eigenvalue of matrix H, λmax(H) is the largest eigenvalue of matrix H and

σ(F ) is the spectral radius of matrix F [31, p.171]. The general behaviour of GMRES

is difficult to predict using eigenvalues alone [38, p.55] [39]. For non-normal matrices

a tight clustering of eigenvalues around the value 1 may not be as beneficial as for

normal matrices (i.e. may not lead to rapid convergence).

Table 3.1 presents the absolute value of the extreme eigenvalues λmin and λmax

and the iteration count of the GMRES method applied to the solution of the dis-

crete convection-diffusion operator, obtained by Q1 SUPG FEM discretisation of the

double-glazing [31, p.119] problem on a uniform quadrilateral grid, with increasing

problem size and increasing Peclet number. The results show that as Pe increases

the difference between the max and min eigenvalues grows rapidly. This growth of

the condition number coincides with the increase in the iteration count.

Table 3.1: The absolute value of the eigenvalue limits for the discrete convection-diffusion oper-
ator obtained by SUPG, FEM discretisation of problem [31, p.119]. Also the number of GMRES
iterations needed to reduce the initial residual by six orders of magnitude.

N 9 225 961
Pe Iter |λmin| |λmax| Iter |λmin| |λmax| Iter |λmin| |λmax|
80 9 1.1679 15.128 78 0.0765 8.1207 153 0.0192 4.8167
2,000 9 2.8322 349.23 184 0.0806 198.96 200+ 0.0194 118.23
4,000 9 3.1181 697.27 197 0.0848 397.76 200+ 0.0195 236.37
20,000 9 4.3001 3481.5 200+ 0.1169 1988.1 200+ 0.0206 1181.5
40,000 9 5.6882 6961.9 200+ 0.1547 3976.1 200+ 0.0219 2362.8

The convergence behaviour of GMRES is not sensitive to the nodal ordering in the

case of convection flows. The use of SUPG discretisation to stabilise the solution leads

to better conditioning of the resulting coefficient matrix. As a result stabilisation has

a correlation to a good approximation, when using GMRES as a solver [35]; this is

also the case for three-dimensional convection-diffusion problems [71].

The disadvantage of GMRES is that with each iteration the computational cost

and memory storage increases, due to the need to store the Krylov vectors V k and

orthogonalise a new vector Ak−1r0 with respect to all previous Krylov vectors using

the Arnoldi algorithm. One method to reduce this overhead is to restart GMRES

after a number of iterations. This gives rise to the GMRES(m) method. The crucial

question is when to restart. When comparing the computational cost of GMRES(m)

(which takes a single matrix-vector multiplication per iteration) against BiCGStab or

non-symmetric CG methods (which take two sparse matrix-vector multiplications per

iteration) it may be the case that, on average, the cost of a single GMRES iteration is

lower [34]. However the disadvantage to GMRES(m) is that convergence is no longer
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guaranteed [78]. An alternative which is currently popular is to reduce the number

of iterations needed for convergence through the introduction of a preconditioner.

3.2.2 Preconditioned GMRES method

The idea behind introducing a preconditioner is to transform a linear system (3.1)

into an equivalent system (with the same solution) but with a coefficient matrix that

has more favourable spectral properties, which should lead to a more rapid conver-

gence of the Krylov iterative method [78] [34]. Systems that are easy to solve by the

GMRES method are close to a normal matrix and have a spectrum that is tightly

clustered, with the eigenvalues contained in an enclosed part of the complex plane

with the spectral bounds away from the origin and independent of the discretisa-

tion and problem parameters [31, p.80, p.177] [38, p.120]. This implies that a Krylov

method, applied to a transformed system, should converge to a given tolerance within

a small and (almost) constant number of iterations. This, in turn, may result in an

optimal solver for a particular class of problems. The practical aspects in achieving

an optimal solver requires that the computational overheads associated with the pre-

conditioning operator, that involve the assembly of the preconditioner and computing

its inverse to a vector, need to have optimal cost and reduce the number of iterations

(execution time) significantly compared to a non-preconditioned Krylov method [20,

Chapter 9].

A preconditioned operator can be applied to a system (3.1) in several different

ways. Here we present two possible ways: right-oriented or left-oriented (where M is

the preconditioner):

right oriented left oriented

Ax = b Ax = b −− the original system

AM−1Mx = b M−1Ax = M−1b −− the preconditioned system

AM−1z = b .

(3.26)

The eigenvalue spectrum between the left and right preconditioners are identical,

but the eigenvectors for the two variants may be different [87, p.175][77, p.271].

This may potentially lead to different convergence properties when matrix M is ill-

conditioned [77, p.272].

The residual equation (3.5) implies that the connection between the error and

the residual depends on the conditioning of the coefficient matrix A. If A is well-

conditioned, e and r are closely related, that is a small residual implies a small error.

On the other hand, if the coefficient matrix A is ill-conditioned and/or non-normal,
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a small residual does not necessarily imply a small error. An interesting example of

this relationship is demonstrated by Briggs et al. [10, p.8]. This property must be

taken into consideration as the stopping criterion of an iterative method is based on

the residual being smaller than a given tolerance. Projections of an error vector ||ek||
to a non-orthogonal basis may produce small error components in the direction of the

eigenvectors, even when the error vector norm is large. This is relevant in the case of

the convection-diffusion problem, and will have an impact on the stopping criterion

for Krylov solvers. However if r = 0 then e = 0, provided A is non-singular. The

stopping criterion within GMRES is typically based upon the relative residual (3.4)

or the absolute residual ||rk||. Like (3.3) the absolute residual is scalar dependent.

In the case of left preconditioning the quantity that is computed is the precondi-

tioned residual M−1r, therefore we do not have information about the residual itself

(unless an additional matrix-vector multiplication with M is performed, which is not

always possible in the case when MG is used as a preconditioner). If the precon-

ditioned residual is used for the stopping criterion of the Krylov solver, the level of

accuracy can potentially be compromised due to ill-conditioning of the preconditioner

[77, p.271]. A further property of left-preconditioning is that the matrix M−1A is

similar to a symmetric matrix if M is symmetric positive definite (see [20, p.196] for

further details).

Right-preconditioning may also not result in a symmetric matrix if matrix A

and M are symmetric. A right-preconditioner only affects the left-hand side of the

equation. A stopping criterion based upon ||z − zk|| may have the effect of being

considerably smaller than the norm of (3.2) which is equal to ||M−1(z − zk)|| [20,

p.196]. In cases when matrix M is ill-conditioned one may find a substantial difference

between the two methods of preconditioning [77, p.271] .

In a preconditioned GMRES method, at each iteration a solution to the linear

system Mz = r is performed. One possible indicator for the speed of convergence of

the preconditioned algorithm is the condition number of the preconditioned matrix,

κ(M−1A), see Definition 2.4.3. However, the estimates of the convergence rate based

on the condition number alone are usually pessimistic. In [12] Chan et al. present

that for a second-order elliptic problem, the use of ILU(0) preconditioning for the

Krylov solver does not lead to asymptotic improvement in the condition number,

i.e. κ(M−1A) ∼ κ(A) = O(h−2). Contrary to first impressions this is not the

whole story. Practically, the eigenvalues distribution plays a key role in the iteration

count of Krylov methods, see Vorst et al. [89] and Meijerink et al. [63] for the case

of using incomplete Cholesky as a preconditioner. Better convergence of an ILU-

preconditioned Krylov method is attributed to better clustering of the eigenvalues

of M−1A than that of the matrix A [31, p.177]. For the case when two different
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preconditioners lead asymptotically to the same condition number for M−1A the

preconditioner that has better clustering of the eigenvalues would generally produce

a lower iteration count.

To improve the asymptotic convergence rate: κ(M−1A) = O(h−1), for second

order elliptic problems the following insert:




for k = 1 : n do

ak,k = ak,k + ch2

end for,

can be included in Algorithm 3.2 (where h is the mesh size and c is a parameter

constant) [11] [20, p.206].

The Fourier analysis of RILU(ω), on a periodic second order elliptic problem

defined on a unit square domain, was performed by Chan [11] and Donato et al.

[19], where it was demonstrated that the condition number κ(M−1A) decreases as ω

changes from 0 to 1. However, upon reaching ω = 1 (the MILU case) there was a

large increase in the condition number. Furthermore, Chan et al. [12] summerises

that MILU is dependent on the matrix ordering, its existence may not be guaranteed

for M -matrices and MILU has a poorer eigenvalue distribution than ILU for elliptic

problems.

Table 3.2 presents the absolute value of the extreme eigenvalues λmin and λmax for

the discrete convection-diffusion operator, obtained by Q1 SUPG FEM discretisation

of the double-glazing problem [31, p.119] on a uniform quadrilateral grid, when pre-

conditioned with several general purpose preconditioners (Jacobi, Gauss-Seidel and

ILU(0)) for different values of the problem size N and Peclet number Pe. The results

from Table 3.2 indicate that ILU(0) is a better preconditioner than Gauss-Seidel or

Jacobi. We also note that the quality of all three preconditioners deteriorate as N

and Pe increase. Although for a fixed N it appears that κ(M−1A) behaves with

O(Pe) for all three preconditioners. Detailed Fourier analysis of the spectral prop-

erties of these preconditioners (motivated by [93, Chapter 7]) are deferred until the

next chapter.

The introduction of a point iterative method as a preconditioner can help reduce

the number of iterations of a Krylov solver, needed to reach a given tolerance, in

comparison to a non-preconditioned version. In [77, p.172] Saad reports the iteration

counts of solving discrete convection-diffusion problems [77, pp.95–97] using only

GMRES as a solver. In [77, p.287] the same problems are solved using GMRES

preconditioned by symmetric Gauss-Seidel leading to a reduction in the iteration

counts by a factor of 2-3. Finally, in [77, p.294] the same problems are solved by

GMRES preconditioned by ILU(0) leading to a further reduction in the iteration
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Table 3.2: Spectral properties of the discrete convection-diffusion operator obtained from Q1 SUPG
FEM discretisation on a uniform tensor product grid of a unit square, for problem [31, p.119]. When
preconditioned by three different general purpose preconditioners (Jacobi, Gauss-Seidel and ILU(0))
as a function of the discrete problem size N and Peclet number Pe.

N 9 225 961
|λmin| |λmax| |λmin| |λmax| |λmin| |λmax|

Pe=80
Jac 0.1321 1.4713 0.0223 1.6861 0.0071 1.4671
GS 0.2440 1.3974 0.0439 1.2952 0.0141 1.1962

ILU 0.6512 1.0512 0.1781 1.1330 0.0598 1.1873

Pe=2,000
Jac 0.0223 1.5954 0.0015 2.2792 0.0007 2.4488
GS 0.0440 1.4897 0.0031 1.5919 0.0014 1.6464

ILU 0.1699 1.0396 0.0283 1.3674 0.0131 1.4378

Pe=4,000
Jac 0.0190 1.6418 0.0008 2.2978 0.0004 2.4898
GS 0.0376 1.4901 0.0016 1.5994 0.0007 1.6725

ILU 0.1477 1.0378 0.0163 1.3766 0.0079 1.5170

Pe=20,000
Jac 0.0143 1.7888 0.0002 2.3130 0.0001 2.5239
GS 0.0283 1.4857 0.0004 1.6043 0.0002 1.6945

ILU 0.1152 1.0265 0.0049 1.3796 0.0020 1.5552

Pe=40,000
Jac 0.0126 1.8443 0.0001 2.3149 0.0000 2.5282
GS 0.0251 1.4836 0.0003 1.6048 0.0001 1.6974

ILU 0.1038 1.0286 0.0033 1.3800 0.0011 1.5566

counts.

In cases of dominant convection, diagonal dominance of matrix A can be compro-

mised. The use of ILU(0) as a preconditioner in cases where the matrix is indefinite,

has large non-symmetric parts or when diagonal dominance is lost may lead to poor

convergence [77, p.321].

Y. Feng et al. [34] compares three Krylov solvers preconditioned by ILU(0):

BiCGStab, non-symmetric CG and GMRES(m). BiCGStab has a non-monotonic

convergence characteristic, but converges in a smaller number of iteration than the

other two methods. However, GMRES is the preferred method for convection-

diffusion problems. That is, the overall convergence rate of GMRES may be lower

than that of BiCGStab and non-symmetric CG, but it has consistently a smoother

reduction in the relative residual norm. A further comparison is made between right-

and left-preconditioning, with no conclusive results (there are advantages to each

strategy in different cases).

Ordering the coefficient matrix before incomplete factorisation will have no ben-

eficial effect in reducing the iteration count of the GMRES(m) algorithm, due to

the lack of “fill-in” [77, p.334]. This is also the case reported in [5] for convection-

diffusion problems. If some level of “fill-in” is allowed (for example, by using ILUT

or ILU(1) method), the resulting preconditioner for the GMRES(m) solver performs
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as Pe-robust, when reverse Cuthill McKee or Cuthill McKee reordering is used. For

moderate ε−1 there seems no considerable advantage to applying Reverse Cuthill

McKee or Cuthill McKee algorithms before the ILU(0) factorisation (the precondi-

tioner obtained in each case shows similar iteration counts to that obtained with de-

fault ordering of unknowns). However, using the minimum degree ordering algorithm

leads ILU(0) preconditioner closer to Pe-robust for convection-dominated problems

(leading to a convergent iteration even when the ILU(0) preconditioner with other

orderings fails) [5].

Van der Vorst [87, p.177] remarks that increasing the amount of “fill-in” as a

means of increasing the efficiency of a preconditioner is not always advantageous, as

it can sometimes lead to a spectral clustering close to the origin that deteriorates the

efficiency of the solver.

An alternative to using the ILU method as a preconditioner for the discrete

convection-diffusion problem is to use the line Gauss-Seidel method. In [31, p.193] the

effectiveness of four-directional line Gauss-Seidel, two-directional ILU(0) and ILU(0)

with default lexicographical nodal ordering as preconditioners to GMRES are com-

pared, when applied to the double glazing problem. The results show that a multi-

directional ordering results in a reduction in the number of iterations. Also, that a

Krylov solver with a four-directional line Gauss-Seidel preconditioner converges in a

smaller number of iterations than standard ILU(0) as a preconditioner.

Elman et al. [27] analyses the performance of line iterative methods for solving the

discrete convection-diffusion equations with a variety of convective fields. The itera-

tive methods used are ILU preconditioned GMRES and Gauss-Seidel, with an initial

red-back ordering of the nodes (“natural ordering”). Using natural (lexicographical)

ordering of the nodes a line reordering method for grid diagonals (also known as zebra

relaxation [10, p.64]) is introduced. A further red-black ordering is then applied to

the diagonal lines of the nodes (“red-black line ordering”). The results show that

ILU preconditioned GMRES is close to ~w, Pe-robust with no further benefit of intro-

ducing line red-black ordering. The results also show, that preconditioned GMRES

is closer to ~w, Pe-robust than using Gauss-Seidel as a solver.

Although using line or simple-point iterations leads to the reduction in iteration

counts for certain classes of problems. In [31, p.194] it is demonstrated that for

the double glazing problem a four-directional line Gauss-Seidel preconditioner for a

GMRES solver leads to an increase in the iteration counts that is proportional to the

problem size.
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3.3 Multigrid method

All previously introduced methods belong to a class of single-grid methods. They

are referred to as single-grid methods as they apply only to the coefficient matrix A

obtained from the discretisation of a PDE on a given grid. The multigrid method

belongs to a class of multi-level methods, which involves a hierarchical representation

of the problem. The main components of a MG method are the smoother, the

representation of the problem at each level and the means of communicating the

information between different levels. Within MG the problem is solved iteratively

by solving the residual equation (3.5) on each level using a smoother (relaxation)

and using the correction to improve the current approximate solution. The methods

described in Section 3.1 can be used as smoothers for MG methods.

3.3.1 Geometric multigrid method

The problem hierarchy for geometric multigrid is defined on a sequence of progres-

sively finer grids. The continuous problem is discretised directly on each grid within

the hierarchy. The idea of introducing a hierarchy of grid levels is introduced to

rectify the inefficiencies that a simple-point iteration exhibits when applied to the

discrete PDEs (smoothing of the error).

Error analysis of simple-point iterations by Fourier analysis

Consider the following one-dimensional model-problem:

−u
′′

= f in [0, 1],

u(0) = u(1) = 0.
(3.27)

Assume that the problem is discretised by finite elements using a uniform grid with

N +1 elements (that is N unknowns). This results in a linear system (3.1) of size N ,

where the coefficient matrix A is tridiagonal.

We want to solve this tridiagonal system by simple-point iteration. The con-

vergence characteristic of a simple-point iterative method is very poor in this case.

Looking at the convergence history in Fig 3.1, one can observe that after an initial

reduction in the residual norm, the convergence effectively stalls and it takes a very

large number of iterations until the system is solved to a suitable tolerance (note that

ILU(0) has not been included in Fig 3.1, because for tridiagonal systems there is no

“fill-in”, therefore ILU(0) reduces to an LU factorisation). To give an insight into the

problem, we are going to study the behaviour of the solution error (3.6) by decom-

posing it into discrete Fourier components ek =
∑N

τ=1 ξτλ
k
τ (Eamp)φτ where ξτ ∈ R is
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Figure 3.1: Convergence history of the damped Jacobi (γ = 0.5) and Gauss-Seidel
methods applied to the discrete model problem (3.27) with f = 1 and N = 32.

a control parameter for the amount of each mode in the error, λk
τ are the eigenvalues

of Eamp and φτ are the discrete Fourier vectors with the components φτ,j = sin( jτπ
N+1

)

that form a basis of RN [10, p.18, p.19]. For illustration of the Fourier vectors φ1, φ16

and φ32 (see Figure 3.2) [10, p.13]. From Figure 3.2 it is clear that Fourier components
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Figure 3.2: Fourier vectors φτ,j = sin( jτπ
N+1

), 0 ≤ j ≤ N + 1 with wavenumbers
τ = 1, 16, 32 for N = 32.

with small wave numbers for τ correspond to slowly varying functions (smooth), while

Fourier components with large τ correspond to rapidly changing (oscillatory) discrete

functions. This is the reason for subdividing the Fourier spectrum into two parts:
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the smooth part, that corresponds to Fourier vectors φτ , 1 ≤ τ < N
2

(low frequency)

and the oscillatory part, that corresponds to Fourier vectors φτ ,
N
2
≤ τ ≤ N (high

frequency).

By solving a sequence of linear systems Ayτ = φτ [10, pp.12–25] [61, p.12], we see

how the application of a simple-point iteration affects different Fourier components

of the solution error. The convergence results for N = 32 are presented in Fig 3.3

[10, p.14], for three different values of τ = 1, 16 and 32. From this we can conclude
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Figure 3.3: Convergence history of (a) damped Jacobi (γ = 0.5), (b) Gauss-Seidel
methods applied to the reduction of different Fourier modes (f = φτ with τ = 1, 16, 32
corresponding to smooth, medium and high oscillatory modes) and N=32.

that the convergence of simple-point iterations is rapid when resolving oscillatory

components of the error, but progressively slows down when the wavenumber τ is

reduced and eventually stalls for smooth error components. The reason for such a

behaviour lies in the fact that a simple-point iteration corrects the error by a small

amount in cases when the residual is small compared to the solution error. That is,

smooth error modes have small residuals and this leads to slow convergence of simple-

point iterations. By contrast, high-frequency error components correspond to large

residuals, which are effectively reduced by a simple-point correction [10, p.25]. This

implies that simple-point iterations are effective in reducing oscillatory components of

the error, i.e. they smooth the error. A simple-point iterative method cannot convert

a mode with a certain wavenumber τ into a mode with a different wavenumber, but

can change its amplitude [10, p.19]. Such a behaviour can be explained by the local

nature of simple-point iterations (each error component at each iteration is updated
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using only information about its nearest neighbour). To eliminate effectively low-

frequency error components one needs to know global information about the error

(this can be achieved by making distant nodes in the grid “communicate” directly).

The idea behind MG is to tune the simple-point iteration by applying an opti-

mal damping parameter γ to maximise the reduction of high frequency errors. The

low-frequency error components are reduced by solving (directly or iteratively) the

residual equation (3.5) on a coarse grid. The concept behind this is that if an approx-

imate solution of the linear system (3.1) is computed (through an iterative method)

it can be improved by x̃ = x̃ + e, (3.2). The solution error e can be computed by

solving the residual equation (3.5). However, the problem is that solving (3.5) ex-

actly is just as difficult as solving the original linear system (3.1). To overcome this

difficulty, the residual equation is solved on a coarse grid and the correction projected

back on the fine grid. There are, however, practical difficulties associated with the

solution of (3.5) on a coarse grid. If the system is solved exactly (direct method), the

computational cost of such a two-grid method may not be considerably smaller than

the cost of solving the original problem directly. Furthermore, the asymptotic cost

of such an algorithm is not optimal. An iterative solution of the coarse grid residual

equation (3.5) would also suffer from a slow convergence, if simple-point iteration was

used.

On a coarse grid (which in 1D has half as many Fourier vectors if uniform refine-

ment is used) some of the smooth Fourier modes from a fine grid look sufficiently

more oscillatory [10, p.32], which the application of a simple-point iteration will re-

duce effectively. Further reduction of smooth error modes is possible if this procedure

is applied recursively. This leads to a multigrid method. In order to make the multi-

grid method work, we need to define a nested sequence of uniformly or adaptively

refined grids J1 ⊂ J2 ⊂ . . . ,⊂ JL where JL is the finest and J1 is the coarsest grid.

The method initially solves ALxL = bL by a small number of simple-point iterations,

giving an approximate solution x̃L, then computes the residual rL = bL−ALx̃L. The

recursive application of multigrid consists of restricting the residual to a sequence

of progressively coarser grids and solving approximately (by simple-point iteration)

the residual equation Alel = rl, at the grids for l = L − 1, . . . , 2 . At the coarsest

grid the residual equation A1e1 = r1 is solved using a direct method. The size of

the problem at level l = 1 is sufficiently small to make a direct solve feasible. The

correction from the coarsest level needs to be projected successively through the grid

hierarchy. Projection of the solution error between two consecutive levels tends to

introduce new high frequency errors. For this reason a small number of simple-point

iterations are applied to the residual equation, after each projection of the solution

error. This procedure is referred to as a multigrid V-cycle (see Fig 3.4).
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A multigrid method consists of five components:

• An initial matrix A = AL on the finest grid level.

• A smoother to relax the oscillatory components of the solution error.

• A nested hierarchy of uniformly or adaptively refined grids J1 ⊂ J2 ⊂ . . . ,⊂ JL

(JL is the finest grid). Also the discretisation or algebraic equivalent Al (l =

1, ..., L) of the continuous problem on these grids is needed.

• Intergrid transfer operators: restriction Rl
l+1 and interpolation P l+1

l (l = 1, ..., L−
1) for transfer of information between successive grids.

• A solver (usually direct method) to solve the system A1e1 = r1 on the coarsest

grid.

Let Sν
l , (l = 2, . . . , L) be the smoother operator where ν represents the number

of iterations at a grid level l; P l+1
l (l = 1, . . . , L− 1) the interpolation operator (such

that P l+1
l ∈ Rnl+1×nl) that projects the correction to the solution el to the level l +1;

Rl
l+1(l = 1, . . . , L− 1) the restriction operator that transfers the residual rl+1 from a

fine grid level l + 1 to a coarse-grid level l. The MG V-cycle can be presented as:

ũL = Sν1
L (AL, fL) ũL = Sν2

L (AL, fL)

rL = fL − ALũL ũL = ũL + eL

rL−1 = RL−1
L rL eL = PL

L−1eL−1

ẽL−1 = Sν1
L−1(AL−1, rL−1) ẽL−1 = Sν2

L−1(AL−1, rL−1)

r̃L−1 = rL−1 − AL−1ẽL−1 ẽL−1 = ẽL−1 + eL−1

. . . . .
.

ẽ2 = Sν1
2 (A2, r2) ẽ2 = Sν2

2 (A2, r2)

r̃2 = r2 − A2ẽ2 ẽ2 = ẽ2 + e2

r1 = R1
2r̃2 e2 = P 2

1 e1

A1e1 = r1

(3.28)

Other standard MG cycles are W-cycle and Full multigrid (F-cycle) [38, p.194].

For a convection-diffusion problem, the preconditioned MG V-cycle is shown in [69] to

have on occasions a smaller solve time compared to W- and F-cycles. The advantage

of a simple V-cycle is that it is computationally cheap in comparison. What really

matters in this case is to have an effective smoother and accurate coarse representation

of the problem.

The solution of a linear system by multigrid consists of repeated application of a

V-cycle described in (3.28) until the required convergence is achieved. This can be
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(a) MG-cycles (b) Refinement

Figure 3.4: (a) Different types of MG cycles: F-cycle (FMG), V-cycle and W-cycle;
(b) Several grid levels representing a MG hierarchy in the case of uniform grid refine-
ment.

represented as the Richardson iteration of the form

xk+1 = xk + MGl(A, rk) , k = 0, 1, . . . (3.29)

where MGl(A, rk) symbolises the use of a MG V-cycle, with l grid levels, applied to

the approximate solution of the residual equation (3.5). A V-cycle is symbolised by

V (ν1, ν2), where ν1 denotes the number of pre-smoothing iterations (the application

of Sν1
l , l = 2, . . . , L) on each MG level, and ν2 denotes the number of post-smoothing

iterations (the application of Sν2
l , l = 2, . . . , L).

The computational cost of a MG solver applied to the solution of the discrete

scalar second-order elliptic problem (Poisson problem), where O(n) is the cost of a

V-cycle, is O(n log(n)) as O(log(n)) iterations is needed to satisfy an error tolerance

that is dependent on the number of levels [10, p.77]. In the case of the convection-

diffusion problem the MG algorithm will perform robustly, provided that the relative

contribution of the convection term remains small. In cases when convection is dom-

inant, the application of MG as a solver will deteriorate. This is further emphasized

by the profound impact that the structure of the convective field has to the MG

convergence [70] [49] [69].
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Interpolation in GMG

The prolongation (interpolation) matrix, P l+1
l , is a means of communication between

two successive grid levels. In standard interpolation procedure, an interpolation ma-

trix is naturally connected with the finite basis set associated with the coarse-grid l.

The entries of an interpolation matrix are calculated as the values of the coarse-grid

FE basis functions evaluated at the fine grid points. Due to the locality of a FE basis

the interpolation matrix is sparse.

If ul ∈ Rnl is a discrete function defined on a grid at level l, then a discrete

representation of this function at a grid level l + 1, ul+1 ∈ Rnl+1 can be obtained as

ul+1 = P l+1
l ul, where P l+1

l ∈ Rnl+1×nl is an interpolation matrix with the entries

Pij = ϕl
j(xi, yi) i = 1, . . . , nl+1 , j = 1, . . . , nl , (3.30)

where ϕl
j is the global basis function associated with the node j ∈ Jl evaluated

at the node (xi, yi) ∈ Jl+1 [31, p.89] [10, pp.34–36]. The implementation for the

interpolation matrix in OOMPHLIB is given in Appendix-B.6 (Algorithm B.1). The

construction of the interpolation matrix based on FE basis set forms a partition of

unity (
∑n

j=1 ϕj(xi, yi) = 1 for all (xi, yi) ∈ Ω).

In the case of an adaptively refined grid that involves hanging nodes (depicted

in red in Fig 3.5) construction of the interpolation matrix involves further recursive

computation of the interpolation weights for a hanging node from the nodes which

have non-zero basis functions at the position of the hanging node (see Appendix-B.6,

Algorithm B.2).

The restriction matrix Rl
l+1 may be constructed in a number of different ways. The

simplest case is referred to as injection [10, p.35] (see Appendix-B.6, Algorithm B.3),

where the nodes at a coarse grid directly take the values from the fine grid. An

adaptation to this is the sum injection method (see Appendix-B.6, Algorithm B.4),

where the nodes at a coarse grid directly take the values from the fine grid and are

multiplied by the sum of the interpolation matrix column. A more sophisticated

method is referred to as full-weighting. The full-weighting restriction operator is

connected with the interpolation operator via [10, p.75]:

Rl
l+1 = c(P l+1

l )T , (3.31)

i.e. the restriction and the prolongation matrix differ from each other by a constant

c. This constant is 2d in the case of finite difference discretisation [77, p.422] and 1

in the case of FE discretisation [65], where d is the spacial dimension. By taking the

transpose of the interpolation matrix for the restriction matrix there is no additional
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Figure 3.5: Tree data structure associated with adaptive refinement. In black are
the regular nodes, and in red are the hanging nodes. The values of the solution at
(red) hanging nodes are obtained as linear combinations of the neighbouring (black)
master nodes.

computational and storage cost. Once the interpolation and restriction matrices are

assembled, an alternative method of assembling the coarse-level matrices Al (l =

1, . . . , L− 1), is by Galerkin projection [77, p.423]:

Al = Rl
l+1Al+1 P l+1

l , l = 1, . . . , L− 1. (3.32)

To allow interpolation to be effective it is necessary that the high frequency error

modes are sufficiently smoothed, as aliasing within oscillatory error modes can lead

to poor interpolation [10, p.35].

The variational properties (3.31) and (3.32) are used to assist in the analysis of

the two-gird correction scheme (MG2(A, r))[10, p.75], to ensure its efficiency [93,

p.90,p.91]. Here only the main result is quoted.

Theorem 3.3.1 ([95]). The contraction factor of a two-grid correction scheme can

be analytically bounded:

σ(MGν1
2 (A, r)) ≤ ||MGν1

2 (A, r)|| ≤ ||A−1
l+1 − PA−1

l R|| ||Al+1S
ν1
l+1||.

Theorem 3.3.2 ([94]). If A is symmetric, the V -cycle with ν pre and post smoothing

sweeps is uniformly convergent:

σ(MG
(ν,ν)
l (A, r)) ≤ CA

CA + ν
< 1,
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where ||A−1
l+1 − PA−1

l P T || ≤ CA (see Theorem 3.3.1).

In Theorem 3.3.1, MGν1
2 denotes the action of a two-grid operator with ν1 pre-

smoothing iterations only, Al+1S
ν1
l+1 is the smoothing property and A−1

l+1 − PA−1
l R is

the coarse grid correction [93, p.91] [31, p.95, p.96]. From Theorem 3.3.1 it follows

that the effectiveness of the two grid-correction scheme depends on the quality of a

smoother (its ability to damp the high frequency error components at a fine grid level)

and the ability of the coarse grid correction to remove the remaining components. The

difficulty with the convection-diffusion case is to find a simple smoother (relaxation

procedure) that damps effectively the high frequency error components for a wide

range of parameters (~w, Pe and h) [81, p.30, p.31].

3.3.2 Algebraic multigrid method

The geometric multigrid method relies on the existence of an underlying grid hi-

erarchy. There are a number of cases where the construction of such a nested grid

hierarchy is difficult or even impossible (for example problems posed over complicated

domains are frequently discretised by unstructured grids) [61, p.74]. Also problems

with discontinuous or anisotropic coefficients can lead to a deterioration in the per-

formance of the standard GMG method [77, p.437]. Algebraic multigrid (AMG) is

an alternative to GMG which requires only the original coefficient matrix A = AL

as an input. The coarse representation of that matrix, using (3.32), is created in an

automatic coarsening procedure which is based on certain heuristic principles.

One of the differences between GMG and AMG is that; for GMG all coarse levels

are predefined, and for AMG no geometric information is available therefore proper-

ties of the smooth error are used to construct an interpolation operator. In AMG the

concept of algebraic smoothness is introduced, where an algebraically smooth error

cannot be reduced significantly by the application of a smoother [77, p.438, p.439]

[10, p.139] [61, p.84]. Previously stated was that smooth errors are characterised by

small residuals, Ae ' 0. This can be used componentwise to define the interpolation

procedure in AMG [77, p.438] [10, p.140] [61, p.85]. Given that e is an algebraically

smooth error, the weighted average of its neighbouring error components ej, can be

used to approximate ei.

aiiei ≈ −
∑

i6=j

aijej. (3.33)

However (3.33) cannot be used directly to construct the interpolation operator. As

the components of e change slowly (smooth) in the direction of strong connections

[10, p.142] [61, p.85], it is important for interpolation to distinguish between strong

and weak dependence [77, p.439]. A dependence in the ith equation is defined by:
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if uj is influential in determining ui then point i depends on point j. For classical

(Ruge-Stüben) AMG coarsening (where A is an M matrix) we define a set of points

Si that have a strong influence on i, for each equation i:

Si ≡ {i 6= j : −aij ≥ θ max
k 6=i

(−aik)}, (3.34)

where θ determines the amount of influence which is acceptable, 0 < θ ≤ 1. For 2D

problems, in practice, θ = 0.25 is used in accordance with [61, p.100] and for 3D

problems θ = 0.5 is a better choice according to [50].

By (3.34) each point i can be defined by its number of strongly connected neigh-

bours j (i.e. the unknowns i is strongly influenced by).

The process of coarse grid selection is divided into two main stages. The first

stage is to partition the set of all points Jl ≡ F ∪ C, where C is a set of coarse grid

points and F the set of fine grid points that strongly depend on it. This is achieved

by finding the point with the largest number of influences (strong connections) and

setting it to C. The points that depend on this point in C are set to F . All points that

strongly influence the newly added points in F have their influence number (weight)

incremented. This method is applied recursively until Jl is empty (F = Jl \ C).

(see [15]). The second stage is to perform small adjustments to the subset F during

construction of the interpolation operator in order to satisfy the following heuristics

[61, pp.100–102].

Criterion 3.3.1 ([50][8]). For each point i ∈ F , each point j ∈ Si, j is either in C

or strongly connected to at least one point in Ci (Ci ⊂ C), where Ci = Si ∩ C.

Criterion 3.3.2 ([50] [8]). The set of coarse points C should be a maximal subset of

all points where no two points from C depend on the other.

The two heuristics given by, Criteria 3.3.1 and 3.3.2, are used as a guide, with

more emphasis on satisfying Criterion 3.3.1 [50].

For each point i in subset F we can divide its neighbours into three subcategories:

coarse grid points with a strong influence on i (denoted Ci), coarse and fine grid points

with a weak influence on i (Dw
i ) and fine grid points with a strong influence on i (F S

i ).

Given that the
∑

j∈Dw
i

aij is relatively small in comparison to aii, we can rewrite (3.33)

as

(aii +
∑

j∈Dw
i

aij)ei ≈ −
∑
j∈Ci

aijej −
∑
j∈F s

i

aijej, (3.35)

where ej ≈
P

k∈Ci

ajkekP
k∈Ci

ajk
. As e changes slowly in the direction of strong connections, ej

is more accurate when j is strongly connected to points in Ci. [61, p.100].
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Equations (3.33) and (3.34) are used to construct the interpolation operator. The

interpolation operator can be defined as [10, p.143] [61, p.99]:

(P l+1
l e)i =





ei if i ∈ C∑
j∈Ci

wi,jej if i ∈ F , (3.36)

where wi,j are weighting parameters. By rearranging (3.35) the weight wij can be

calculated for (3.36) [10, p.144] [77, p.440, p.441]:

wij = −
aij +

∑
m∈Fi

(
aimamjP

k∈Ci

amk
)

aii +
∑

n∈Dw
i

ain

.

However, classical AMG was developed for M-matrices. In cases when the off-

diagonal entries of aij have the same sign as aii the interpolation formula becomes

inaccurate this may lead to divergence [50]. The AMG algorithm BoomerAMG used

in this work, developed as a part of the hypre package [2], addresses this problem by

not allowing coefficients in aij that have the same sign as aii to contribute towards

calculating a weight wij [50]. The formula (3.34) is modified so that if aii has the

same sign as aij, j is not included in the set Si.

The construction of the MG hierarchy for AMG is called the “setup phase” (see Al-

gorithm 3.4). The above method, where coarse grid selection is based on the “strength

Algorithm 3.4 The “setup phase” for AMG [50]

Initialte l = L
do while( size(Jl) > 1 )

do (while Jl is not empty)
Partition Jl into disjoint sets C l and F l via coarse grid selection

end do
Set Jl−1 = C l

Construct the interpolation P l
l−1

Define the restriction Rl−1
l = (P l

l−1)
T

Apply Galerkin projection Al−1 = Rl−1
l AlP

l
l−1

Set l = l − 1
end while

of dependence” principle is referred to as classical AMG method. In the case of the

Poisson problem discretised on a uniform tensor product grid the resulting coarsen-

ing is exactly the same as full coarsening used in GMG. In convection-dominated
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problems the Ruge-Stüben method produces a variant of semi-coarsening in direc-

tions characterised by the convective field [97] [50] [10, p.151]. This contributes to

the accuracy of interpolation and is the key to the success of the AMG method in

convection-dominated cases.

The computational cost of the AMG method is difficult to predict in advance, as

the matrices’ size at coarse levels and the number of non-zero entries in the matrices

are not known. However the costs can be estimated after the “setup phase” on a per

problem basis [10, p.154]. There are several commonly used measures in this context.

Definition 3.3.1 ([10]). Grid complexity is defined as the ratio of the total size of

discrete operators at all levels over the size of the original operator AL:

CG =

L∑
l=1

size(Al)

size(AL)
, (3.37)

where size(A) is the dimension of the square matrix A.

Grid complexity gives an indication of how fast the matrices are reducing in

size [15]. In the case of uniform refinement with GMG full coarsening and direct

discretisation of the coarse-level matrices, where at each coarser level the number of

nodes is reduced in each spacial dimension by a factor of two, a grid complexity of

CG = 4
3

and 8
7

is expected for 2D and 3D problems respectively [10, p.154]. A large

difference away from these values indicates that Criterion 3.3.2 has been violated

significantly [8].

Definition 3.3.2 ([10]). Operator complexity is defined as the sum of the total

number of non-zeros in the entire grid hierarchy over the number of non-zeros in the

fine level matrix AL:

CA =

L∑
l=1

NNZ(Al)

NNZ(AL)
, (3.38)

where NNZ is the total number of non-zero entries in matrix (·).

The operator complexity (3.38) is an indicator of the storage costs for AMG. How-

ever, the storage for the interpolation matrices is not included in this measure. The

solving phase of AMG is dominated by the application of the smoother and compu-

tation of the residual vector (essentially a matrix-vector product). These operations

are directly proportional to the number of non-zero entries in matrix Al. This im-

plies that the operator complexity (3.38) also governs the computational cost of the

solve phase. In the case of uniform refinement with GMG full coarsening and di-

rect discretisation of the coarse-level matrices, CG ' CA. A feature of classical AMG
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coarsening is that, for unstructured grids, the coarse grid operators tend to have more

non-zero entries than the operator on the finest level (i.e. the coarse levels matrices,

on average, have larger matrix stencils) [10, p.158]. This is indicated by a difference

between the CG and CA. The problem is exaggerated further in 3D. A difference

between these values also implies an increase in the density of the interpolation ma-

trices increasing the computational cost of applying the interpolation. To reduce the

value of CA, the strength of dependence (3.34) threshold θ can be increased at a cost

of reducing the effectiveness of the preconditioner [8].

Definition 3.3.3 ([8]). Average stencil size is defined as

CS =
1

L

L∑

l=1

NNZ(Al)

size(Al)
. (3.39)

The average stencil size CS (3.39) is usually an optimistic estimate. This is due

to the large difference in the stencil sizes between coarse levels. However, a large

difference between the average stencil size CS and the stencil size at the finest level

(CS when l = L) indicates that the density of the coarse level matrices has increased,

in comparison to the original matrix [8].

In conclusion, AMG is found to be more expensive than GMG in terms of storage,

computational cost and time [97].

We now introduce a measure for the truncation of coefficient matrices in the

MG hierarchy. This measure is relevant for the newly introduce tILU smoother (see

Section 3.4), where truncation is based on (3.34).

Definition 3.3.4. Truncation ratio is defined as

η =

L∑
l=1

NNZ(Ãl)

L∑
l=1

NNZ(Al)

, (3.40)

where Ãl are the truncated matrices on all MG levels.

The truncation ratio is an indicator into the level reduction in the number of non-

zero entries throughout the MG hierarchy. This ratio therefore is a direct indicator

of the reduction in the storage requirements and the computational cost of the tILU

smoother over the standard ILU smoother.

The largest advantage that AMG has over GMG is that it can be used as a

“black-box” solver for a wide range of problems [97].
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3.3.3 Parallel AMG

The parallelisation of FE computations is usually done using the domain decompo-

sition method, which belong to the divide and conquer class. In this approach, the

spacial domain is subdivided into overlapping or non-overlapping subdomains where

all computations on each of the subdomains are associated with different processors.

An equivalent of this approach at a matrix level is to partition the matrix into a

number of submatrices and distribute these submatrices among parallel processors.

All independent operations are then performed in parallel (with possibly some inter-

processor communication), before the whole problem is reassembled [77, Chapter 14].

The “setup phase” of AMG is the most time-consuming. However, for classical

AMG, the process of coarse grid selection is essentially sequential in nature. The

simplest form of parallel coarse grid selection is to decompose the matrix A into

a number of submatrices and apply Ruge-Stüben coarsening disregarding any con-

nection (non-zero entries) across the interprocessor (subdomain) boundaries. Using

Ruge-Stüben coarsening can create a particulary high concentration of C points close

to the subdomain boundaries. As a result the Criterion 3.3.1 can occasionally be vi-

olated [50].

An alternative to local Ruge-Stüben coarsening is the Cleary-Luby-Jones-Plassman

(CLJP) algorithm [14], which constructs coarsening independent of the number of

subdomains, based on parallel graph-partitioning algorithms. Matrix S associated

with (3.34) is now constructed of boolean variables such that Sij = 1 if j in-

fluences i otherwise Sij = 0. The CLJP algorithm initially defines the weight

w(i) = |(ST
i )|+(random number ∈ [0, 1]), where ST

i is the ith column of S. Let

D be a set of points where w(i) > w(k) for k ∈ Si

⋂
ST

i (independent set of points).

CLJP coarsening relies on the following two heuristics [14].

Criterion 3.3.3 ([50]). The values of points in C are not interpolated. Neighbours

that influence a point in C are less valuable as potential points in C.

Criterion 3.3.4 ([50]). If k and j both depend on i ∈ C, and j influences k, then j

is less valuable as a potential point in C, because k can be interpolated from i.

By complying to Criteria 3.3.3 and 3.3.4 the weights w(j) that influence or depend

on i ∈ D are reduced to indicate that another influence has accounted for this point.

When w(j) < 1, the point j is added to F . After Criteria 3.3.3 and 3.3.4 are applied

to all points in D the remaining points are added to C. Each processor then performs

a global communication to update w in the neighbouring processor boundary points.

A new independent set D is then chosen and the process repeated until all points are

in C or F .
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An advantage to CLJP is that it is an entirely parallel coarsening strategy. Also,

given that the same random numbers are used when selecting weights, the same

coarse grids are selected regardless of the number of processors. The disadvantage

with CLJP is that more coarse grid points are selected than is necessary compared

to the Ruge-Stüben method, resulting in dense matrices Al that leads to an increase

in memory requirements and complexity of the solution phase [50].

A compromise between Ruge-Stüben and CLJP is called the Falgout coarsening.

This is a hybrid method that applies Ruge-Stüben coarsening in the interior of each

subdomain, to construct points in C that are not adjacent to the processor boundary

points. The application of CLJP algorithm is then applied where the points in C are

used as the first independent set of points in D, followed by recursive CLJP steps

until all points are either in C or F . This process allows the CLJP algorithm to deal

with the processor boundary points.

The iteration counts and solve times are useful measures of efficiency of a solver

when only a single processor is used. As the number of processors increases, we

expect the solve time to reduce, as the work load is shared between processors. The

efficiency of a parallel solver must therefore also be based on its parallel scaling. The

two common measures of parallel performance [20, p.61] are, speed up:

Sp =
t1
tp

, (3.41)

where t1 is the execution time of the algorithm with one processor and tp is the

execution time of the algorithm on P processors. Also, normalised speedup relative

to the number of processors is referred to as parallel efficiency:

Et =
t1

P tp
Et ∈ [0, 1], (3.42)

where optimal scaling, implies Et = 1.

3.3.4 Literature summary of multigrid

Using ILU(0) as a solver or preconditioner for the discrete convection-diffusion prob-

lem is ineffective (see Table 3.2). However, for a wide range of problems the smoothing

properties of ILU(0) are good [85, p.259]. Turek [86, p.57] also compliments the use

of ILU on the convection operator stating that it leads to resilient (“robust”) conver-

gence when used as a smoother. Furthermore, for complex mesh geometries Turek

[86, p.216] favours ILU as a resilient (“robust”) “black-box” smoother. This makes

the method a suitable alternative to a point smoother for multigrid.

Trottenberg et al. [85, pp.257–268] state that ordering of the nodes for the same
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grid can have a considerable impact on the effectiveness of an ILU(0) smoother, due

to different stability properties and different amounts of “fill-in” that is generated by

different orderings of the same matrix.

In [94] Wittum proves the convergence of ILU(0) as a smoother for the MG V -

cycle in the case of an anisotropic diffusion problem (Theorem 3.3.2). The anisotropic

diffusion problem used in this paper extends the proof of convergence of the MG V-

cycle to include negative eigenvalues in the iteration matrix Eamp that are found when

an ILU smoother is used.

In [96] a truncated ILU smoother is presented, based on reducing the stencil size

in the coefficient matrix by taking a particular grid block, and standardising the

boundary of the block to represent the remainder of the grid domain. This results in

a reduction in the storage and computational requirements of factorisation (due to

repetition of the matrix entries).

Kettler and Wesseling [56] analyse the use of a block ILU smoother for standard

GMG. Their analysis was performed on anisotropic diffusion and convection-diffusion

problems in three dimensions. This was a continuation of the work from [55], where a

block ILU smoother is used in two-dimensions. The motivation behind the paper was

to develop a “black-box” MG method, in three dimensions, for cases with complex

flow patterns. In the case of an anisotropic diffusion problem, when diffusion is

dominant in a certain plane, using a plane Gauss-Seidel smoother aligned with the

dominant plane is needed to satisfactorily smooth the error. Therefore if a dominant

plane has a variable orientation, alternating plane Gauss-Seidel needs to be used at

a considerable computational cost compared to block ILU method. However, Kettler

et al. propose, as a substitute to alternating plane Gauss-Seidel smoothing, the use of

a Krylov method to reduce the high frequency modes that block ILU has missed; as

opposed to dealing with a dominant plane through semi-coarsening. It was also found

that if a directional plane Gauss-Seidel smoother sweeps in the opposite direction to

the flow, the method would break down.

In [47] Hemker shows by means of Fourier analysis and amount of work per it-

eration, that ILU(0) is a better smoother for MG than modified ILU(0) (see Algo-

rithm 3.2) or symmetric Gauss-Seidel method for convection-diffusion problems. In

[48] Hemker performs efficiency and Fourier analysis of a two-grid solver with ei-

ther ILU(0) or line Gauss-Seidel smoother. The analysis demonstrate superiority of

ILU(0) smoother for the convection-diffusion problem.

Wesseling [92] compares a MG method with an ILU smoother against different

types of MG cycles. Wesseling reports that ILU is a “better” smoother than Gauss-

Seidel, for the diffusion problems considered. In [91] a “black-box” MG solver with

ILU(0) smoother (MGD1) is proposed. In this paper the use of ILU(0) smoother is
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preferred to other Gauss-Seidel type smoothers.

The limitations to using Fourier analysis on MG is that it is restricted to a two-

grid cycle. This may not reflect accurately the performance of a MG V -cycle, due

to the introduction of a sequence of coarser grids which have not been considered in

the analysis [49]. In [49] it has been demonstrated that effectiveness of ILU smoother

deteriorates when diagonal dominance of the coefficient matrices is lost. This can be

the case for the convection-diffusion problem. However, Kettler et al. still regards

ILU as a suitable smoother for convection-diffusion and proposed modifying the ILU

algorithm to block ILU.

For convection-dominated problems ordering the unknowns in the direction of the

convection flow is a common approach to improving the convergence rate of Gauss-

Seidel type smoothers for discrete convection-diffusion problems [24] [25]. Bey and

Wittum [6] further developed this concept and produced a downwind numbering

strategy for Gauss-Seidel as a smoother to MG for adaptively refined grids. Wang

and Xu [90] use a block Gauss-Seidel method where the blocks are ordered in a

crosswind direction, by using Tarjan’s algorithm [82]. However their block method

performs poorly as a smoother to MG.

Wu et al. [97] analyzed both GMG and AMG, using line and ordered Gauss-

Seidel as smoothers, on two different convection-diffusion problems (equivalent to

model problems Example 3.1.3 and 3.1.4 from [31, p.118, p.119]). The first problem

is solved using both MG methods where AMG is theoretically and numerically shown

to converge faster than GMG under certain conditions. MG however, as a solver, for

the second problem is not sufficient.

For anisotropic diffusion problems the convergence characteristic of MG as a solver

does not depend on h, but will depend on the anisotropy parameter ε [38, p.196]. This

is also the case for convection-diffusion problems when h ¿ ε, however as the problem

becomes more convection-dominated GMG is found to lose its h-independence [97].

To deal with this problem appropriate prolongation, restriction and smoothers can be

used [18]. However, problem specific solvers may not always be the most appropriate

solution, as the properties of the problem may not be known in advance. Greenbaum

[38, p.197] therefore suggests that multigrid be treated as a preconditioner to Krylov

methods. By using MG as a preconditioner to a Krylov solver we are essentially

accelerating the convergence of MG. Also, we obtain a more robust solver than when

using MG as a stand alone solver.
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3.3.5 Multigrid preconditioning of Krylov solvers

“The reliability of iterative techniques, when dealing with various applications, de-

pends more on the quality of the preconditioner than on the particular Krylov sub-

space accelerators used” [77, p.261]. This is further justified in papers by Faber,

Manteuffel and Voevodin where they found that an algorithm will have a “short solu-

tion” only if the matrix is Hermitian or skew Hermitian [78]. In the previous section

point iterative methods were introduced as preconditioners. If quality of the precon-

ditioner is key, in order to design an optimal solver for a given problem, we need to

consider more sophisticated preconditioning techniques than simple-point iterations.

In [97] MG is used as a preconditioner to GMRES. The overall performance of

AMG, on uniform and adaptive mesh refinement, is robust and for both problems

found to converge faster than GMG. However, GMG is shown to be a near Pe, ~w-

robust preconditioner to GMRES on uniform and adaptive mesh refinement.

In order to make MG work efficiently as a preconditioner for discrete convection-

dominated problems, some adjustments in the coarsening strategy and/or smoothing

operator needs to be made [70].

Goldstein [36] proposed to map the original equation to one that will result in a

symmetric positive definite stiffness matrix [77, p.245, p.252], solve this problem using

MG preconditioned conjugate gradient, and map the solution back to the original

problem. Goldstein also considered using Petrov-Galerkin (SUPG) approximation.

Standard MG V-cycle is used with a combination of symmetric red-black Gauss-Seidel

smoothers. The main disadvantage with mapping the problem is that it required a

parameter which is dependent on Pe and h.

Standard Galerkin approximation of the convection-diffusion problem leads to

oscillatory solutions on coarse grids. This effect reduces the effectiveness of MG

as a preconditioner. To solve this problem, in [72] it is proposed that the SUPG

method is applied with an appropriate level of stabilisation to the discretisation of

the convection-diffusion problem at all levels of the MG hierarchy. As we are inter-

ested in the solution of the problem at the finest grid, the stabilisation on coarse

grids will not have any adverse effects on its accuracy. Moreover, the stabilisation

on coarse grids makes MG a more effective preconditioner. In [72] the effect of a

stabilised MG preconditioner for GMRES is studied on increasingly stretched grids.

The testing performed by Ramage is based on a single MG V-cycle as a precondi-

tioner to GMRES. The smoother used is line Gauss-Seidel with one horizontal and

one vertical sweep per MG level for pre- and post-relaxation step. Ramage also stud-

ied the effect of using different interpolation procedures, a bilinear interpolation and

a De Zeeuw interpolation [18]. The results suggest that bilinear interpolation is suf-

ficient to achieve adequate convergence, provided stabilisation and (computationally
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expensive) alternating line smoothers are used.

Oosterlee and Washio [70] use a Krylov solver preconditioned with MG for solving

the discrete convection-diffusion equation. A further improvement to the Krylov

solver is achieved by introducing Krylov acceleration within the MG cycle. The

best results in [70] are observed when a Krylov accelerator is applied at level L − 1

after a post-smoothing step. The application of multiple Krylov acceleration steps at

multiple MG levels does not lead to a substantial improvement in convergence.

Syamsudhuha [81, pp.55–60] compares two different smoothing techniques (ILU(0)

and point Gauss-Seidel) for MG preconditioned GMRES solvers applied to the convec-

tion-diffusion problem (with uniform wind and recirculating wind) discretised on a

uniformly refined grids. Although ILU(0) smoothing leads to a reduction in the

iteration counts, the computational cost of performing ILU(0) factorisation at all MG

levels and applying the smoother is expensive. The convergence tests are performed

both with lexicographical and downwind ordering of the nodes (see [81, p.46]). The

downwind ordering led to a substantial reduction in the iteration counts in comparison

to lexicographical ordering, for both smoothers (with an exception in the case of

ILU(0) smoothing for the double glazing problem, where the solver diverged). Also,

Syamsudhuha shows that GMRES preconditioned by MG, gives more favourable

results than using MG as a solver.

3.4 A new tILU smoother

In [9] GMRES preconditioned by classical AMG with a range of smoothers is applied

to a convection-diffusion problem, discretised using SUPG. The MG preconditioner

that proved to be the most robust, in this context for the cases of strong variable

vertical wind [31, p.117] and recirculating wind [31, p.119], involves alternating line

Gauss-Seidel method on the finest level and damped (γ = 0.5) Jacobi smoother on

the coarse levels. This means that a computationally expensive smoother is applied

at the finest level and an inexpensive smoother to all coarse levels. The idea behind

tILU is exactly the opposite to this hierarchical smoothing strategy.

For a singular perturbation of a second-order elliptic problem in [95] it was shown

that ILU(0) is an exact solver in the limiting case of pure convection. Also it was

determined that the convergence rate of MG W-cycle with ILU(0) smoother deteri-

orates slightly when the grid is refined, but tends asymptotically to a constant for

each fixed value of ε.

From the matrix stencils introduced in Section 2.4 it can be concluded that,

due to the h-dependence of the convection matrix, its relative contribution to the

overall discrete convection-diffusion matrix increases when h is increased (i.e. the
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contribution is larger at coarse grids). In a MG setting this means that the convection

part becomes a more prominent factor in the overall coefficient matrix at coarser

levels. Assuming the incompressibility of the convective field (i.e. skew-symmetry of

the convection matrix), the diagonal dominance of the discrete convection-diffusion

operators can be completely lost (see Table 2.1). This would make point smoothers

progressively more ineffective on coarse MG levels. This intuitive finding suggests

that a computationally cheap smoother can be sufficient at finer levels and a robust

(and computationally more expensive) smoother is needed only at a few coarsest

levels.

In practice, it would be difficult to determine for each particular case a cutoff MG

level from which an application of a more complex smoother is necessary. Instead,

we propose a type of variable smoother which adapts itself to the strength and char-

acteristics of the convective field, represented locally by matrix stencils at each grid

node, and becoming progressively more complex towards coarser MG levels (where

the cost of its assembly and application is reasonable). The variable effect is achieved

by static analysis of the matrix entries before the application of the smoother. This

analysis will produce information of which off-diagonal entries are “relevant” in each

matrix row, thus capturing the local information about the convective field that may

be missed by the standard point smoothers. The criterion for determining which off-

diagonal entries are considered to be “relevant” (significant in magnitude) is the same

criterion that quantifies the strength of dependence principle in AMG (see (3.34)).

In a truncated matrix, for each row we keep the diagonal entry and all off-diagonal

entries that are “relevant”, i.e. those with the absolute value that is above a given

threshold determined by (3.43):

|aij| > α max
k
|aik|, α ∈ [0, 1]. (3.43)

The truncation level is controlled by the parameter α, this is the only parameter in the

method. The smoother is then defined by applying the incomplete LU factorisation

with no “fill-in” to the truncated matrices at all MG levels. We denote the resulting

method as tILU0(γ, α), where γ is the damping parameter. The new smoothing

technique reduces, in two extreme cases, to the standard ILU(0) method for α = 0

(no truncation), and for α = 1, to the Jacobi method (where all off-diagonal entries

are neglected).

The proposed method is hence a trade-off between a computationally cheap but

potentially numerically ineffective Jacobi method, and a robust but computationally

expensive ILU(0) method. Due to the h-dependence of the convection matrix, the

magnitude of the off-diagonal entries will become larger at coarse levels. The new
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smoother adapts automatically to this situation by truncating the majority of the off-

diagonal entries at a few of the finest levels, thus resembling the Jacobi method, whilst

keeping progressively more off-diagonal entries at the coarse levels, thus resembling

the ILU(0) method (where the application to relatively small coarse matrices is not

sufficiently expensive). The amount of off-diagonal entries kept at a particular MG

level will depend on the discrete problem size at that level and on the strength and

the structure of the convective field, where it is anticipated that more off-diagonal

entries will be kept in strongly convective cases with complex winds (see Tables 4.9

and 5.5).

The new smoothing method introduces a single parameter α that controls the level

of truncation at all MG levels. Although this fact may have a decremental effect with

regard to the effort of building a robust and effective “black-box” MG preconditioner

for a wide range of convection-dominated problems, we found by extensive testing

and Fourier analysis that for a wide range of test problems, a fixed parameter value

of α = 0.25 for GMG and α = 0.5 for AMG give the best results in term of the

execution time, for problems in two and three spacial dimensions. These values are

standardly used in the context of AMG.

If no partial pivoting is allowed in ILU, diagonal dominance of the underlying

coefficient matrix is essential to ensure numerical stability of the algorithm (Theo-

rem 3.1.5). As the Pe increases diagonal dominance is preserved for longer in the

truncated coefficient matrix than in the original coefficient matrix. This implies, by

Theorem 3.1.5, that ILU factorisation of the truncated coefficient matrix is more

stable than the original coefficient matrix. The reason for this is that in cases when

one of the off-diagonal entries in a row is larger than the diagonal entry, diagonal

dominance is surely lost. However if the off-diagonal entries are all smaller than the

diagonal entry then it is important to look into the sum of the off-diagonal entries.

By truncating all the small entries there is a smaller chance of losing diagonal dom-

inance. Therefore the truncation procedure, though it reduces the accuracy of the

smoother, does increase the stability of factorisation by retaining the property of

diagonal dominance for larger values of Pe.

In the following chapters we test the MG preconditioner with the new tILU0

smoother on a range of different problems, both in 2D and 3D, with progressively more

complex structures of the convection field (which make them progressively harder to

solve by a MG preconditioned iterative solver). We start our numerical tests by de-

termining experimentally the optimal value of the truncation parameter α when using

the tILU0 smoother for GMG. The preconditioned iterative solver that showed the

shortest execution times and performed the most consistently on a range of problems

and discretisations is α = 0.25, as a result we adapt this to be the default value in
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all our experiments with GMG. A continuation of the experiments is then performed

using an AMG preconditioner with the tILU0 smoother. The optimal value of the

truncation parameter α when using the tILU0 smoother is α = 0.5. Using a publicly

available parallel AMG solver we also tested the scalability of the new preconditioner.

All these tests on tILU0 are compared to the cases when MG is used with standard

point smoothers (Jacobi and Gauss-Seidel) or ILU(0) smoother.

The results in the sequel are presented in terms of iteration counts of the precondi-

tioned GMRES method, as well as the execution times. The execution time recorded

in the thesis is separated into the assembly part of the preconditioner (which includes

MG coarsening, assembly, nodal ordering in some cases and in the case of ILU(0) and

tILU0 methods the factorisation of the smoothing operators) and the total execution

time, which also includes the Krylov solve time.

The preconditioning methodology is also tested on problems described by stretched

or adaptively refined grids. These types of grids are frequently used to obtain ac-

curate and computationally effective discretisations of convection-diffusion problems.

The natural ordering of the nodes, used by default in the OOMPHLIB package, are

devised from tree structured ordering. That is, ordering is based on mesh refinement.

This type of ordering results in a more scattered non-zero pattern than that found in

directional ordering, where the nodal structure results in a banded matrix pattern.

We test the use of directional nodal ordering, as it is well known that smoothers may

perform better given an appropriate nodal ordering in convection-diffusion cases. In

LU factorisation the “fill-in” ratio is dependent on the non-zero structure of the coeffi-

cient matrix. We also investigate the effect of reordering the coefficient matrix, using

Tarjan’s “black-box” algorithm, so that potential “fill-in” during ILU(0) factorisation

is limited.

For completeness, the proposed MG convection-diffusion preconditioner in the

context of preconditioning the Navier-Stokes problem (see [31, Chapter 8]) is used.

We use the MG preconditioner with the tILU0 smoother in a “black-box” fashion, as

a building block for the LSC Navier-Stokes preconditioner (see Section 4.6).



Chapter 4

Two-Dimensional Case Studies

This chapter will present the results of a comprehensive numerical evaluation of the

novel smoothing technique for multigrid preconditioning performed on a number of

discrete convection-diffusion problems in two spacial dimensions. We start with the

simple diffusion problem, with the aim of obtaining benchmark convergence results

which will serve as a basis for comparison. The following sections will introduce four

test problems for the convection-diffusion equation, with increasing complexity of the

convective field ranging from the constant uni-directional wind to cases with single

and multiple recirculations.

We test the Krylov solver using both geometric and algebraic multigrid as a

preconditioner. In the case of algebraic multigrid preconditioner we also evaluate

parallel performance of the iterative solver. Our primary objective is to evaluate

the effectiveness and the performance of the multigrid preconditioner with the novel

tILU0 smoother. The project will assume that the MG interpolation procedure is

fixed (constructed using the finite element basis set or by a heuristical formula in the

case of algebraic multigrid (AMG) [10, p.145, p.146] [50]). Therefore, the efficiency of

the MG scheme remains solely dependent on the choice of the relaxation procedure.

To put this evaluation into perspective, we compare the results with that obtained

using the limiting cases of tILU0 smoother (point Jacobi and ILU(0)) as well as the

standard point symmetric Gauss-Seidel smoother. To simplify the notation ILU(0)

will from now on be referred to as ILU0. Also, the notation Pe∗ = 1
ε

is used to

represent the inverse diffusion parameter in the remaining contents of the thesis. For

the case of geometric multigrid we give a small sample of results that test different

strategies for ordering the unknowns.

The previous chapter introduced iterative methods for solving a sparse system

of linear equations. In this chapter these linear equations are constructed via the

SUPG FE discretisation of the convection-diffusion equation and standard Galerkin

FE discretisation of the Navier-Stokes equations. The solving strategy that will

89
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be used within this chapter is: GMRES as a Krylov solver, right-preconditioned

by multigrid, using the relative residual (3.4) being less than 10−6 as the stopping

criterion. This solution strategy is implemented as part of the OOMPHLIB software

package [45]. For algebraic multigrid we use publicly available code BoomerAMG

[50], which is part of the Hypre library [2] [33].

The computations are performed on “Horace”, one of the parallel computers at

The University of Manchester. “Horace” is a Bull Itanium 2 system with 192 pro-

cessor cores. This is divided into 24 computational nodes each with 4 dual core Intel

Itanium 2 Montecito 1.6GHz. Thus, each node has 8 cores, with 16GB RAM. The

peak computational performance of each core is 6.4 GFlop/s. The interconnections

between the computational nodes is a single rail Quadrics QsNetII [68].

4.1 The diffusion problem

The diffusion equation, although mathematically simple, represents a model for a

large number of physical processes and phenomena such as gravitation, electromag-

netism and elasticity [31, p.10]. The diffusion problem represents a part of the

convection-diffusion problem, and is obtained as a limiting case when Pe = 0. The

Poisson equation for Case study 4.1 is defined as:

Find u ∈ C2(Ω) such that

−∇2u = f in Ω ⊂ R2, (4.1)

on a square domain Ω = [−1, 1]2, subject to homogeneous Dirichlet BCs, u = 0

on ∂Ω. This problem can be regarded as a model of temperature distribution in a

homogeneous plate where boundaries are kept at a zero temperature and which is

subject to a heat source (f = 1) [31, p.11].

u = 0

u = 0

u = 0 u = 0

The solution to this problem can be seen in Figure 4.1. From the figure we observe

that the solution is smooth, without any sudden jumps (solution layers).

The problem is discretised using a uniform quadrilateral grid with bilinear (Q1)
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Figure 4.1: A contour plot of the solution u of the diffusion problem (Case study 4.1).

basis set. We apply Solver Strategy 4.1 to linear systems obtained from the discreti-

sation of Case study 4.1.

Solver Strategy 4.1

Krylov Method: GMRES (tolerance 10−6)
Preconditioner: GMG/AMG

Cycle: V (2, 2)
Smoothers:

Gauss− Seidel
ILU0(0.5)
tILU0(0.5, α)
Jacobi(0.5)

The coefficient matrix A, obtained from the discretisation of the Poisson problem

by Galerkin FEM is symmetric positive definite. Thus, the resulting system can be

solved by the (preconditioned) conjugate gradient method. However the symmetric

positive definite properties of the discrete Poisson problem are lost when convection is

introduced. To give a more direct comparison to the efficiency of solving convection-

diffusion systems, we therefore solve the Poisson problem using GMRES. For each

case we record the number of GMRES iterations, the preconditioner setup time and

the total execution time. The preconditioner setup time includes the time needed to

generate coarse grid operators, assemble the interpolation matrices and setup the

smoothers (which may include nodal ordering) at all MG levels. In the case of

incomplete factorisation smoothers this also includes the time for performing the

factorisation as well. The total execution time consists of the preconditioner setup
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time and the time needed to solve the discrete problem with GMRES.

In Table 4.1 we summarise the convergence characteristics of the right-preconditio-

ned GMRES solver applied to the discrete Poisson problem. We examine both GMG

preconditioner in Table 4.1(a) and AMG preconditioner in Table 4.1(b). For both

Table 4.1: The iteration counts and the (setup,total) execution time (in seconds) required for
the convergence of the GMRES solver right-preconditioned by multigrid with several smoothers,
when applied to the solution of the discrete Poisson problem (Case study 4.1) obtained from Q1
SUPG FEM on uniform grids. (a) GMG preconditioner; (b) AMG preconditioner; (c) parallel AMG
preconditioner applied to the largest discrete problem (N = 1, 046, 529).

(a) GMG

Smoother \ N 3969 16125 65025 261121 1046529
ILU0(0.5) 5(0.68,0.81) 5(3.04,3.69) 5(13.0,16.3) 5(53.4,68.0) 5(222.5,285.7)
tILU0(0.5, 0.25) 5(0.68,0.74) 6(3.04,3.35) 6(13.0,14.6) 6(53.5,61.0) 6(223.7,259.3)
GaussSeidel 4(0.68,0.72) 4(3.06,3.26) 4(13.0,14.2) 4(53.4,59.0) 4(220.1,244.5)

(b) AMG

Smoother \ N 3969 16125 65025 261121 1046529
ILU0(0.5) 8(0.05,0.06) 8(0.20,0.48) 8(0.97,5.13) 8(3.85,19.9) 8(15.1,79.6)
tILU0(0.5, 0.25) 9(0.04,0.05) 9(0.16,0.32) 9(0.84,3.82) 10(3.37,16.7) 10(13.4,69.6)
tILU0(0.5, 0.5) 9(0.04,0.05) 9(0.16,0.31) 9(0.81,3.63) 10(3.36,17.2) 10(14.0,75.7)
Jacobi(0.5) 9(0.02,0.05) 9(0.08,0.26) 9(0.44,3.99) 10(1.81,19.5) 10(7.23,73.5)
GaussSeidel 7(0.02,0.04) 7(0.09,0.18) 7(0.43,3.29) 8(1.84,14.0) 8(7.25,55.0)

(c) Parallel AMG

Smoother \ P 1 2 4 8 16
ILU0(0.5) 8(13.0,28.90) 9(6.71,17.7) 9(3.43,9.20) 9(1.88,5.25) 10(1.05,2.76)
tILU0(0.5, 0.25) 10(11.2,24.0) 11(6.33,14.4) 11(3.10,7.56) 11(1.88,4.80) 11(1.04,2.35)
tILU0(0.5, 0.5) 10(11.5,24.1) 11(6.03,14.2) 11(3.09,7.27) 11(1.74,4.56) 11(0.96,2.26)
Jacobi(0.5) 10(5.64,21.1) 11(3.16,11.5) 11(1.61,6.22) 11(0.91,3.77) 11(0.43,1.74)
GaussSeidel 8(5.10,14.7) 8(3.20,11.4) 8(1.61,8.43) 8(0.90,7.20) 8(0.44,6.38)

cases we examine the efficiency of MG preconditioning using a range of smoothers.

We report the convergence results for two different levels of the truncation parameter

(α = 0.25 and α = 0.5) and the damping parameter γ = 0.5. As the discrete Poisson

operator in 2D has a constant matrix stencil for each mesh size h, the truncation

procedure (3.43) will produce standard ILU0 smoothing for all α = [0, 0.125)1 and

produce Jacobi smoothing for all α = [0.125, 1] (this applies to the GMG case only

as the coarse level operators in AMG case may differ). In Table 4.1(a) we therefore

only represent tILU0(0.5, 0.25) as a smoother.

For comparison, we report the preconditioner effectiveness when using two limiting

cases of tILU smoother: ILU0 (obtained for α = 0) and damped Jacobi (obtained for

α = 1) and using the standard Gauss-Seidel smoother.

The results in Table 4.1 suggest that ILU0 smoother is h-robust, in this context,

with a small number of iterations. Truncated versions of the ILU0 smoother show a

1The cutoff value of α = 0.125 applies to Q1 discretisation (see Section 2.4) and will be different
for other discretisations.
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performance equal to that of the damped Jacobi smoother. It should be emphasised,

however, that in this case the smallest number of iterations and the shortest execution

time (for both GMG and AMG cases) was observed when Gauss-Seidel smoother is

used. MG is known to be an optimal preconditioner with respect to the discrete

problem size for the Poisson problem, and this property is clearly demonstrated in

Table 4.1 for all smoothers.

From part(a) and (b) of Table 4.1 it can be seen that the setup phase for GMG

takes considerably longer than that of AMG when applied to the same discrete prob-

lem. This can be explained by the way GMG is implemented in OOMPHLIB. GMG

is constructed by uniformly or adaptively un-refining the initial fine grid. The coeffi-

cient matrix is then constructed using a Q1 FEM discretisation associated with each

mesh in the hierarchy. This operation corresponds to a substantial proportion of the

overall setup time (around 80%). A small addition to the overall setup time is the

construction of the hierarchy of interpolation matrices (Appendix B.6), this accounts

for approximately 9% of the setup time. Within this interpolation setup time, half of

it is taken up by setting up the connections between the coarse and fine elements in

the refinement. Within the total setup time there is also the small cost of setting up

the smoother. This time will vary depending on the choice of smoother. Since the

setup time for coarse-level operators and interpolation matrices is equal in all cases,

the difference between the total setup times within each sub-table represents the dif-

ferences in the time needed to assemble the smoothers. In the case of the Jacobi and

Gauss-Seidel method there is no additional overhead associated with assembling the

smoothers, hence the preconditioner setup times should be equal in these two cases.

In the case of ILU0 method during the setup phase a copy of the original matrix at

every MG level needs to be made, before performing the incomplete factorisation of

the copied matrix. For tILU0, we need to make copies of the original matrices at all

MG levels, followed by the static analysis of the non-zero pattern to truncate small

off-diagonal entries, before performing ILU0 factorisation on truncated matrices.

In part(c) Table 4.1 we report the performance of AMG preconditioned GMRES

solver when the preconditioner is parallelised on P processors. The results are re-

ported only for the largest problem size (N = 1046529). From these results it can be

concluded that parallelisation of the classical AMG preconditioner can have further

detrimental effect to the numerical efficiency in some cases.

For the Gauss-Seidel smoother parallelisation is achieved by generalised red-black

ordering of unknowns. This can have a negative effect on the numerical efficiency of

the method, compared to the standard Gauss-Seidel method. Jacobi is naturally par-

allel, therefore it does not lead to any deterioration in the smoother’s efficiency. In the

case of incomplete factorisation (both ILU0 and tILU0), parallelisation of smoothers
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is done in a block Jacobi fashion. That is, by applying the standard ILU0 method to

the related diagonal blocks. The block Jacobi method assumes truncation of the non-

zero entries in the off-diagonal blocks. This truncation inevitably affects numerical

efficiency of the algorithm as the number of processors increases. The requirement to

truncate off-diagonal non-zero entries to facilitate parallelisation of ILU0 factorisation

resembles the idea used in tILU0. The difference between truncation performed in

tILU0 method and truncation performed in parallel ILU0 method is that the former

method is done with regard to the numerical efficiency of the resulting algorithm

(based on the magnitude of the non-zero entries in each row), while the latter is cen-

tred around achieving good load balancing. This implies that when tILU0 smoothing

is applied in parallel, potentially there could be further truncation in the coefficient

matrices (due to blocking of these matrices). This would lead to a further deterio-

ration in the numerical effectiveness of the resulting smoother. This effect is, to a

small extent, presented in Table 4.1(c) (there is an increase by 1 iteration moving

from 1 to 2 processors), but will become significantly more pronounced in cases of

complicated convection flow. A further consideration that may cause deterioration in

the iteration counts is that no communication between the processors is attributed

to the classical AMG parallel coarsening procedure.

Having in mind that preconditioning is often computationally the most expensive

part of the solution algorithm (accounting for 80-90% of the overall solution time) it

is realistic to expect a decent parallel performance. Although this is the case when

Jacobi and ILU0 smoothers are used, there is a considerable loss of parallel efficiency

when Gauss-Seidel smoother is used (for example although the sequential execution

time of the AMG preconditioned GMRES with Gauss-Seidel smoother is by far the

shortest (around 40% shorter than its nearest competitor AMG with tILU0(0.5, 0.25)

smoother), when using 16 processors, the same method is 3.6 times slower than the

best method (GMRES/AMG/damped Jacobi in this case). Parallel efficiency (3.42)

of GMRES/AMG/Gauss-Seidel on 16 processors is only 0.14, while parallel efficiency

of GMRES/AMG damped Jacobi is 0.76. For comparison, parallel efficiency for this

case of GMRES/AMG/ILU0 is 0.65 and that of GMRES/AMG/tILU0(0.5, 0.25) is

0.64. Thus, in parallel, tILU0 smoother leads to a MG preconditioner of similar

parallel efficiency as Jacobi smoothing.
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4.2 Geometric multigrid preconditioning of the

convection-diffusion problem

In this section we present the convergence results, for solving the system of linear

equations obtained from the SUPG FEM discretisation of the following convection-

diffusion problems. The linear solvers used in this section are the GMRES method

preconditioned with GMG which uses several different smoothers (Solver Strategy 4.2).

The efficiency of the preconditioners are examined on a range of different problems

and different discretisations.

Solver Strategy 4.2

Krylov Method: Right preconditioned GMRES (tolerance 10−6)
Preconditioner: GMG

Cycle: V (2, 2)
Smoothers:

Gauss− Seidel
ILU0(0.5)
tILU0(0.5, α)
Jacobi(0.5)

4.2.1 Constant uni-directional wind

This case is a model for temperature distribution on a square domain Ω = [−1, 1]2,

where a uni-directional convection field flows from the heated boundary. In addition,

at all other boundaries of the square domain the temperature is kept at zero. This is

formally represented with the following Dirichlet BCs:

u(x = 1,−1 ≤ y ≤ 1) = 1 (hot wall)

u = 0 , elsewhere on ∂Ω (cold wall).
(4.2)

u = 0

u = 0

u = 0 u = 1

The convection field flows in the negative x-direction and has a constant (~w =



96 CHAPTER 4. TWO-DIMENSIONAL CASE STUDIES

(−1, 0)), with a source term equal to zero (f = 0). This is represented by a vec-

tor plot in Figure 4.2(a). Figure 4.2 also represents the solution u as a contour plot

(a) (b)

(c) (d)

Figure 4.2: The convection-diffusion problem (Case study 4.2.1): constant, uni-
directional wind ~w = (−1, 0), no source term (f = 0); (a) Arrow plot of the wind.
(b) the solution for Pe = 0, (c) the solution for Pe∗ = 500, (d) the solution for
Pe∗ = 10, 000.

for three different values if Pe∗ = 0, 500 and 10, 000. In Figure 4.2(b) we see a

diffusion model (Pe∗ = 0) where heat from the hot wall diffuses to the more colder

areas of the domain leading to a smooth transition of reducing heat throughout the

domain (red representing hot and blue representing cold parts of the domain). In

Figure 4.2(c) we see the solution u as a contour plot when Pe∗ = 500. The model

now represents a convection-diffusion model. With these parameters the transfer of

heat is much more intense throughout, with a large proportion of the domain be-

ing heated, represented in orange. In addition it is also important to note that the
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solution shows steep boundary layers close to the cold boundaries, due to the ho-

mogeneous Dirichlet BC at u(x = −1,−1 ≤ y ≤ 1), u(−1 ≤ x ≤ 1, y = −1) and

u(−1 ≤ x ≤ 1, y = 1) intercepting the horizontal convection flow.

Finally Figure 4.2(d) represents the solution for highly convective flow, Pe∗ =

10, 000. An increase in the relative convection strength has lead to a larger proportion

of the domain being heated, and to increasingly steeper boundary layers near the cold

boundaries.

This model, along with Case study 4.1, due to their simplicity, will serve as a

benchmark in terms of iteration count and solve times. Also, Case study 4.2.1 is the

only scenario where performing some analysis of the smoothing operator is possible,

as a constant matrix stencil is required for this purpose.

Uniform grid refinement

We start with the discretisation of Case study 4.2.1 on a sequence of uniformly

refined grids. The default grid structure in OOMPHLIB is constructed through a

tree based data structure which naturally induces a tree structured enumeration of

the unknowns. Global nodal numbering of a sequence of uniformly refined grids,

enumerated by a tree-based method are presented in Figure 4.3.

Figure 4.3: An example of OOMPHLIB [45] global tree structure nodal ordering for
uniformly refined grids.

Table 4.2 summarises the convergence results of Solver Strategy 4.2. The table

show that using ILU0(0.5) as a smoother results consistently in the smallest iteration

count regardless of the diffusion parameter or grid size. Also, GMRES/GMG/ILU0(0.5)

can be considered Pe,h-robust and an optimal solver in this case. However, the com-

putational cost of assembling and applying the ILU0(0.5) smoother makes other less

computationally expensive smoothers an attractive choice.

The use of the Gauss-Seidel smoother in this case also proved Pe,h-robust, follow-

ing asymptotically the same convergence pattern as the ILU0(0.5) smoother. However

this is not the case for coarser grids. Here we find Gauss-Seidel to be dependent on
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Table 4.2: The iteration counts and the (setup,total) execution time (in seconds) required
for the convergence of the GMRES solver right-preconditioned by geometric multigrid with sev-
eral smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 4.2.1) obtained from Q1 SUPG FEM on uniform grids. Natural (tree-based) ordering of the
unknowns, with each sub-table representing a different diffusion parameter.

(a) Pe∗=500

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 5(0.89,1.04) 5(4.09,4.87) 5(17.6,22.1) 6(72.9,97.1) 6(247.0,318.3)
tILU0(0.5, 0.25) 7(0.89,0.98) 7(4.11,4.56) 8(17.7,20.7) 9(73.3,90.7) 10(247.9,303.7)
tILU0(0.5, 0.5) 7(0.89,0.98) 7(4.09,4.55) 8(17.7,20.7) 10(73.2,91.0) 11(247.7,307.7)
Jacobi(0.5) 28(0.88,1.22) 24(4.10,5.71) 22(17.7,26.8) 22(73.0,118.) 21(245.8,372.6)
GaussSeidel 6(0.88,0.95) 5(4.09,4.38) 5(17.6,19.6) 5(73.0,83.3) 6(254.9,293.2)

(b) Pe∗=1,000

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 5(0.88,1.03) 5(4.08,4.86) 5(17.6,22.1) 5(73.1,93.8) 6(253.7,339.2)
tILU0(0.5, 0.25) 9(0.88,1.00) 8(4.10,4.61) 8(17.7,20.7) 9(73.4,90.7) 10(288.0,373.5)
tILU0(0.5, 0.5) 9(0.89,1.00) 8(4.10,4.61) 8(17.7,20.6) 9(73.8,90.6) 10(292.0,371.3)
Jacobi(0.5) 36(0.89,1.34) 31(4.10,6.07) 29(17.7,29.8) 28(73.8,132.) 28(299.4,557.8)
GaussSeidel 8(0.89,0.97) 6(4.08,4.40) 6(17.6,20.0) 6(73.1,85.0) 6(251.3,286.7)

(c) Pe∗=2,000

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 5(0.89,1.04) 5(4.09,4.88) 5(17.7,22.1) 5(73.4,94.0) 6(296.9,396.7)
tILU0(0.5, 0.25) 10(0.89,1.02) 9(4.08,4.67) 9(17.7,21.0) 9(73.6,90.6) 9(304.9,381.3)
tILU0(0.5, 0.5) 10(0.89,1.01) 9(4.11,4.71) 9(17.7,21.0) 9(73.7,90.8) 9(289.6,358.7)
Jacobi(0.5) 45(0.88,1.45) 48(4.10,7.60) 41(17.6,35.4) 38(73.5,156.) 36(273.2,558.6)
GaussSeidel 11(0.88,0.99) 9(4.08,4.55) 7(17.6,20.3) 6(73.2,85.1) 6(303.7,354.2)

the diffusion parameter. This can possibly be explained by the inaccurate approxi-

mation of the solution for such coarse discretisations. The total solve time of an iter-

ative solver, in the case of convection-dominated problems, that uses a Gauss-Seidel

smoother is roughly 10% smaller than a solver that uses a damped ILU0 smoother.

This is because of the larger computational overhead associated with the assembly

and application of the ILU0 smoother.

The Jacobi smoother continuously shows poor performances compared to the

other methods. Although performing h-robust, the Jacobi smoother leads to a GMG

preconditioner which exhibits a considerable dependence on Pe∗. Based on the results

from Table 4.2 the asymptotic behaviour of Jacobi appears to be O(
√

Pe∗). This

considerable dependence on Pe∗ and a relatively high iteration count make Jacobi

smoothing not competitive in this context, despite having the lowest computational

cost.

By contrast, the tILU0 smoother demonstrates Pe,h-robust behaviour for this

problem. There is an increase in iteration count by 50% compared to the cases when

ILU0 and Gauss-Seidel are used. However, by allowing a truncation of the original

matrix before factorising we are reducing the storage cost of matrix M (3.8), when
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compared to ILU0. This can help boost the caching properties of the resulting algo-

rithm as it has to deal with much smaller datasets. Due to the significant amount of

truncated entries (in Table 4.10 with α = 0.25 and α = 0.5 we observe the truncation

of 78% of the off-diagonal entries across all MG levels), there is a reasonable gain

in the execution time in the case Pe∗ = 2000 compared to ILU0(0.5) smoother and

a comparable performance to that when Gauss-Seidel smoother is used. As trun-

cation plays an important role in reducing storage costs and as a consequence the

total solve time, it is reasonable to believe that further truncation will result in a

further reduction in total solve time. This is computationally true per iteration as

the limiting case tILU0(0.5,1) is equivalent to the Jacobi(0.5) smoother. However,

there is a value of α that will give a minimum execution time for each problem, if

this value is exceeded the execution time will grow again (this can be seen when

using Jacobi as a smoother). The results in Table 4.2 indicate that tILU0 smoother

can offer a suitable alternative to computationally expensive, memory intensive, but

robust ILU0 smoother and inexpensive but potentially ineffective Jacobi smoother in

the context of MG preconditioning of strongly convection-dominated problems.

To summarise, in Table 4.2 we find that the Gauss-Seidel method is the preferred

chosen smoother for Solver Strategy 4.2 when applied to Case study 4.2.1, closely

followed by tILU0(0.5,0.5).

Lexicographical nodal ordering in a negative x-direction

The Gauss-Seidel algorithm approximates the matrix by its lower triangular part.

This means that its efficiency will be compromised if there are large (in magnitude)

off-diagonal entries in the upper triangular part of the matrix. The aim of downwind

ordering of the unknowns is to bring large off-diagonal entries to the lower triangular

part of the matrix and thus improve the effectiveness of the Gauss-Seidel smoother

[44]. By ordering the unknowns in the direction of the wind this leads to excellent

results, as ideally A becomes a block lower triangular matrix.

The ILU0 algorithm (3.18) can also benefit from ordering the entries. Differ-

ent orderings of the unknowns may lead to completely different ILU0 factorisations,

which may have a profound effect on its effectiveness as a smoother. Depending

on the amount and magnitude of the “fill-in” entries the resulting smoothers can

have significantly different properties. As the components of a Jacobi algorithm are

independently updated, ordering the nodes in the mesh will have no effect.

For convection-dominated problems (with Gauss-Seidel as a smoother) a good

convergence rate requires ordering of the unknowns [44]. In [85, p.236, p.237] the

authors study the effect of nodal ordering on various point and line smoothers. The

findings show that ordering in the direction of the wind leads to a more efficient
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Gauss-Seidel smoother.

In the cases of constant uni-directional wind it is possible to analyse the smoothing

efficiency of a particular iterative method using Fourier analysis. In addition, the

problem needs to be discretised on a uniform regular tensor product grid. For Case

study 4.2.1 we order the nodes in a lexicographical negative x-direction.

Fourier smoothing analysis

Wesseling [93, Chapter 7] discusses the analytical procedure, based on Fourier anal-

ysis, to determine the contraction factors that correspond to different components of

the solution error in the direction of the Fourier vectors.

Denote

Eampφ(θ) = λ(θ)φ(θ),

the eigenvalue problem associated with the amplification matrix Eamp (3.14), where

λ(θ) is the eigenvalue of the matrix Eamp and φ(θ) is the associated eigenvector

represented by,

φj1,j2(θ) = ei(j1θ1+j2θ2). (4.3)

In (4.3) j1, j2 are the nodal coordinates in Cartesian space and i =
√−1. Define

Θ(θ) as the Fourier space with θ1, θ2 coordinates of the points in discrete Fourier grid

Θ(θ) = [−π, π]2.

The eigenvalues of Eamp (3.14) are calculated by [93, p.113] [81, p.14]:

λ(θ) =

∑
j N(j)ei(j1θ1+j2θ2)

∑
j M(j)ei(j1θ1+j2θ2)

θ ∈ Θ(θ), (4.4)

where j = (j1, j2) and θ = (θ1, θ2). The eigenfunctions φ(θ) belong to two main

spaces [93, p.108] [81, p.128]:

θ ∈ ΘS Smooth eigenfunctions : ΘS(θ) = Θ(θ) ∩ (−π
2
, π

2
)2

θ ∈ ΘR Oscillatory eigenfunctions : ΘR(θ) = Θ(θ)\ΘS(θ).

The FE discretisation of Case study 4.2.1 using SUPG method with Q1 approximation

defined on a uniform tensor product grid results in a discrete operator that can be



4.2. GEOMETRIC MULTIGRID PRECONDITIONING 101

represented in a nine point stencil notation:

A Stencil


d q f g p

c d q f g p

c d q f g

c d q f

b c d q

a b c d q

z a b c d q

z a b c d




∼




f g p

c d q

z a b


 .

To simplify the notation we denote:

E = fei(−θ1+θ2) + geiθ2 + pei(θ1+θ2) + qei(θ1),

F = ce−i(θ1) + ze−i(θ1+θ2) + ae−i(θ2) + bei(θ1−θ2).

Using right to left, bottom to top lexicographical ordering of the nodal points,

by substituting (4.4) into relevant stencil notation we can calculate the eigenvalues

(amplification factor) for each smoother as follows:

Gauss-Seidel

λ(θ) =
−E

d + F
. (4.5)

Jacobi

λ(θ) =
−(E + F )

d
. (4.6)

ILU0

For the case of ILU0 a new stencil notation must be introduced to take into consid-

eration the matrix residual. This stencil notation takes the following form:

LD−1U︸ ︷︷ ︸
M

−A = N =




ξ 0 0 0 0

ω 0 0 0 ς

0 0 0 0 ϑ


 ,
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N =
ξei(−2θ1+θ2) + ωe−2i(θ1) + ςe2i(θ1) + ϑei(2θ1−θ2)

d̃
,

where d̃ is computed from a recursion algorithm [93, p.142]. Then the eigenvalues of

Eamp are given by

λ(θ) =
N

N + (E + F + d)
. (4.7)

tILU0

To find the eigenvalues of our new tILU0 method, we initially treat our truncated

method in a similar fashion to that of ILU0. However given that a truncation has

been performed statically before the application of the incomplete factorisation, our

modified stencils in M have only taken into account the truncated part of the matrix.

This means that we need to place all truncated entries into the matrix Nt and derive

the modified formulas for the coefficients of Nt:

(LD−1U)t︸ ︷︷ ︸
Mt

−At = Nt =




ξ 0 0 0 0

ω 0 0 0 ς

0 0 0 0 ϑ


 .

The statically removed stencil entries from matrix A during the truncation process

are represented as N∗
t , and will be represented as

N∗
t = (A− At) =




f ∗t g∗t p∗t
c∗t 0 q∗t
z∗t a∗t b∗t


 .

The residual error of matrix A is therefore

N = Nt + N∗
t = Nt − (E∗

t + F ∗
t ).

The new equation to calculating the eigenvalues is therefore

λ(θ) =
N

Nt + (Et + Ft + d)
. (4.8)

In the case of convection-diffusion it is not possible to evaluate the eigenvalues of

the matrix Eamp analytically. This is why we resort to a numerical method. Given

the discretisation of the Fourier space by a tensor product grid of points with uniform

spacing hθ we can numerically calculate the absolute value of the complex eigenvalues

|λ(θ)| from (4.5), (4.6), (4.7) and (4.8).
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In Table 4.3 we summarise the values of σ = sup |λ(θ)| at different Pe∗ for two

different Fourier space mesh sizes hθ. A smoother will converge if 0 < σ < 1 [31,

Gauss-
ILU0

tILU0 Jacobi
Seidel (0.25)

Pe∗=0 hθ=
2π
64

0.4087 0.1377 0.5 0.5
Pe∗=0 hθ=

2π
128

0.4203 0.1466 0.5 0.5
Pe∗=500 hθ=

2π
64

0.5314 0.3822 0.5613 1.751
Pe∗=500 hθ=

2π
128

0.5459 0.3822 0.5811 1.751
Pe∗=2000 hθ=

2π
64

0.8294 0.9739 0.8726 1.9336
Pe∗=2000 hθ=

2π
128

0.8455 0.9739 0.8811 1.9336

Table 4.3: The modulus of the maximum eigenvalue σ = sup |λ(θ)| for different smoothers for Case
study 4.2.1 with negative x-directional ordering as a function of Pe∗. A matrix size of N = 3, 969
is used.

p.98]. For a diffusion problem, a value of sup |λ(θ)| for the Jacobi smoother is found

analytically to be 0.5 [31, p.100]. This is consistent with that reported in Table 4.3,

for Pe∗ = 0. For ILU0, when Pe∗ = 0 Wesseling [93, p.143] finds numerically that

σ = 0.13 (this cannot be achieved analytically; this is also the case when Pe∗ > 1).

This is consistent with Table 4.3. The smoothing factor for a Gauss-Seidel seven

point stencil when Pe∗ = 0 [93, p.124] is σ = |λ(π
2
, cos−1(4

5
)| = 0.5. We would expect

a nine point stencil to have a smaller value σ, which we found to be σ ≈ 0.42.

In a case study similar to this Syamsudhuha [81, p.45] shows that for a seven-point

stencil using Gauss-Seidel with lexicographical ordering of the unknowns, σ initially

(σ = 0.5 at Pe∗ = 0) reduced as Pe∗ increases, up until Pe∗ = 102.5. However, with

a further increase in Pe∗, the value of σ increases considerably with σ ≈ 0.49 for

Pe∗ = 103 and σ ≈ 0.85 for Pe∗ = 104 indicating a considerable deterioration in

the efficiency of the smoother. This efficiency pattern coincides with our findings in

Table 4.3.

For the discrete convection-diffusion problem arising in Case study 4.2.1 the trun-

cation of the coefficient matrix N = 3969 is exactly the same for both values of the

truncation parameters (α = 0.25 and α = 0.5), therefore we will only report the

results for α = 0.25 in Table 4.3.

From Table 4.3 we observe that for a fixed problem size (N = 3969) all smoothers

exhibit strong dependence on Pe∗. A further observation from Table 4.3 is that it

is necessary to introduce damping into the Jacobi method, to obtain a convergent

smoother, as convergence is only guaranteed if σ < 1.

The results in Table 4.3 suggest that for Pe∗ = 2000 the tILU0 smoother has lower

σ than the ILU0 smoother, and has a comparable error reduction to the Gauss-Seidel

smoother. The results from Table 4.3 use the Fourier space defined in [93, p.108].
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However Wesseling [93, p.111] states that when using a Fourier series for smoothing

analysis with Dirichlet BC, better agreement with practical results are found when

θ = 0 is not included in the Fourier space [93, p.112]. This has a profound effect only

on the ILU0 smoother when Pe∗ = 2000 where we obtain for hθ = 2π
64

, σ = 0.4102

and for hθ = 2π
128

, σ = 0.6634.

In Figure 4.4 we plot the eigenvalues λ(θ) in the Fourier space [−π, π]2 computed

for four different smoothers (Jacobi, Gauss-Seidel, ILU0, tILU0(α = 0.25)). These

results offer a more complete picture of the smoothing properties of each method

than Table 4.3, which represents the worst case scenario. From these plots we can see

that in the case of the ILU0 smoother (part(a)) most of the oscillatory error modes
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Figure 4.4: Plots of the eigenvalues λ(θ) of the matrix Eamp for Case study 4.2.1 with
Pe∗ = 2, 000 discretised by SUPG FEM with Q1 approximation (discrete problem
size N = 3969). The Fourier space [−π, π]2 is discretised by a uniformly spaced grid
of points with hθ = 2π

64
. (a) ILU0 smoother. (b) Jacobi smoother. (c) tILU0(0.25)

smoother. (d) Gauss-Seidel smoother.
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are strongly reduced, except the modes around |θ1| = π, θ2 = 0.

Figure 4.4(b) suggests that in the case of Jacobi smoother a substantial portion of

oscillatory modes have their corresponding eigenvalues well above one, inducting that

this would be an inefficient choice of smoother (unless damped) for Case study 4.2.1.

Figure 4.4(c) represents the plot of λ(θ) for the tILU0(α = 0.25) smoother. The

interesting detail here is to compare this plot with those in part(a) and (b). This

reveals the fact that tILU0 smoother exhibits in part the features of ILU0 smoother

(spikes close to |θ1| = π, θ2 = 0) and in part the features of the Jacobi smoother (the

curved part for −π
2

< θ1 < π
2
). This practically demonstrates the hybrid nature of

the tILU0 smoother.

It is interesting to note that ILU0 and Gauss-Seidel have similar smoothing proper-

ties (judging from the shapes of the curves λ(θ) for part(a) and part(d) of Figure 4.4),

with the observation that ILU0 shows to be better in reducing a wider spectrum of

oscillatory modes. In conclusion of Table 4.3 and Figure 4.4, we observe that ILU0

would be expected to have the fastest convergence regardless of the diffusion param-

eter.

Having analysed smoothing properties of various methods, we examine the con-

vergence of Solver Strategy 4.2 using lexicographical ordering of the unknowns in the

negative x-direction. These results are summarised in Table 4.4.

In Table 4.4 the performance of our smoothers directly complies with our Fourier

analysis findings in Table 4.3, when Dirichlet BC are imposed on the Fourier space

(for N = 3969).

The results in Table 4.4 are broadly the same as those reported in Tables 4.2.

From this we can conclude that for Case Study 4.2.1 ordering the unknowns seems to

have virtually no effect to the performance of the smoothers and therefore the GMG

preconditioner. This is a positive result as we are looking to create a preconditioner

that is robust and which does not require any special ordering of the unknowns. As

this is especially important if we are to further develop the smoother for AMG instead

of GMG.
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Table 4.4: The iteration counts and the (setup,total) execution time (in seconds) required
for the convergence of the GMRES solver right-preconditioned by geometric multigrid with sev-
eral smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 4.2.1) obtained from Q1 SUPG FEM on uniform grids. The lexicographical ordering of the
unknowns in the negative x-direction, with each sub-table representing a different diffusion param-
eter.

(a) Pe∗=500

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 5(0.89,1.14) 5(3.91,5.16) 6(17.3,24.9) 6(71.1,102.7) 6(294.6,422.8)
tILU0(0.5, 0.25) 7(0.87,0.99) 7(3.92,4.48) 8(17.3,20.8) 9(71.9,90.4) 10(295.9,370.0)
tILU0(0.5, 0.5) 7(0.87,0.99) 7(3.90,4.46) 8(17.3,20.8) 10(71.2,88.3) 11(295.3,373.9)
Jacobi(0.5) 28(0.88,1.22) 24(4.10,5.71) 22(17.7,26.8) 22(73.0,118.1) 21(245.8,372.6)
GaussSeidel 6(0.90,0.96) 5(3.92,4.18) 5(17.2,19.0) 6(71.3,79.0) 6(293.2,327.5)

(b) Pe∗=1,000

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 5(0.86,1.12) 5(3.92,5.15) 5(17.3,23.8) 6(71.4,103.2) 6(304.1,434.4)
tILU0(0.5, 0.25) 9(0.87,1.02) 8(3.90,4.52) 8(17.4,20.8) 9(71.5,90.0) 10(305.6,397.7)
tILU0(0.5, 0.5) 9(0.88,1.02) 8(3.92,4.55) 8(15.9,18.8) 9(72.5,92.1) 10(300.7,379.7)
Jacobi(0.5) 36(0.89,1.34) 31(4.10,6.07) 29(17.7,29.8) 28(73.8,131.7) 28(299.4,557.8)
GaussSeidel 7(0.87,0.93) 6(3.90,4.19) 6(17.2,19.0) 6(71.8,79.7) 6(297.6,332.4)

(c) Pe∗=2,000

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 5(0.87,1.12) 5(3.90,5.15) 5(16.0,21.7) 5(71.7,99.8)) 6(306.8,441.9)
tILU0(0.5, 0.25) 10(0.88,1.03) 9(3.91,4.59) 9(17.1,21.0) 9(73.6,93.2) 9(309.0,394.1)
tILU0(0.5, 0.5) 10(0.87,1.03) 9(3.93,4.63) 9(17.3,21.2) 9(73.7,93.0) 9(305.0,384.8)
Jacobi(0.5) 45(0.88,1.45) 48(4.10,7.60) 41(17.6,35.4) 38(73.5,156.1) 36(273.2,558.6)
GaussSeidel 9(0.87,0.95) 8(3.92,4.31) 7(17.0,19.1) 7(74.4,84.0) 7(314.0,357.4)

4.2.2 Double glazing problem - recirculating wind

In this case we study the convection-diffusion problem known as the double glazing

problem [31, p.119]. It is a well-known benchmark problem for testing the efficiency

of linear solvers aimed at discrete convection problems. The main difficulty in this

problem arises from the nature of the wind, which is cyclical (recirculating). At

the same time, this is a physically relevant example of a wide class of enclosed flow

problems that occur frequently in fluid mechanics (driven cavity problem [31, p.316,

p.317]).

We consider the convection-diffusion problem on a unit square domain Ω =

[−1, 1]2 with the following Dirichlet BC:

u(x = 1,−1 ≤ y ≤ 1) = 1 (hot wall)

u = 0 , elsewhere on ∂Ω (cold wall).
(4.9)
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u = 0

u = 0

u = 0

u = 1

This is a model for a heat exchange system; for example when air circulates between

glass panels of a double glazed window, or a nuclear reactor cooling system. The

convection flow used in this case is

~w = (2y(1− x2),−2x(1− y2)),

shown in Figure 4.5(a). Figure 4.5 also presents the solution u as a contour plot for

Pe∗ = 0, 500 and 10, 000, using a zero source term f = 0.

In Figure 4.5(b) we see a diffusion model (Pe∗ = 0) where heat from the hot wall

diffuses to more colder areas of the domain, shown by the heat colour spectrum. In

Figure 4.5(c), where Pe∗ = 500, the transfer of heat by convection becomes dominant.

The solution exhibits two boundary layers, one close to the “hot” wall, and the other

close to the “cold” wall y = −1. This is due to the shape of the wind function, which

moves hot fluid close to the “cold” wall at y = −1. The width of the boundary layers

is thought to be proportional to
√

( 1
Pe∗

) [31, p.119], which can be seen in Figure 4.5(d)

obtained for Pe∗ = 10, 000.

Following the results from [44], where improved performance of point or block

Gauss-Seidel smoothers is obtained using a “black-box” downwind ordering of the

unknowns, it would be of interest to examine the potential benefits when the same

reordering is used for tILU0 smoothing. Certain ordering algorithms aim to min-

imise the amount of “fill-in” [78] (for example reverse Cuthill McKee [23, Section 8]

and minimum degree ordering [17, Section 7.1]). Intuitively this implies that ILU0

factorisation of a reordered matrix would be closer to LU factorisation than the

ILU0 factorisation of the matrix without reordering. This should make the smoother

more robust and effective than for any other ordering. The authors of [5] show the

performance of these ordering strategies when ILU0 is used as a preconditioner to

GMRES(20). However these reordering algorithms work only on information based

on static sparsity patterns and do not take into account the numerical values of the

matrix coefficients.

We will now take a closer look at the effect that ordering of the unknowns can

have on the performance of smoothers within the GMG preconditioner. In Table 4.5
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(a) (b)

(c) (d)

Figure 4.5: The convection-diffusion problem (Case study 4.2.2): recirculating wind
~w = (2y(1 − x2),−2x(1 − y2)), no source term (f = 0); (a) Arrow plot of the wind.
(b) the solution for Pe∗ = 0, (c) the solution for Pe∗ = 500, (d) the solution for
Pe∗ = 10, 000.

we examine five different methods of unknown ordering, for Case study 4.2.2 with

Pe∗ = 500.

In Table 4.5(a) we use a MG V-cycle V (2, 2) with default ordering of the un-

knowns. The results in this table show an increase in the total number of iterations

that is required to solve the linear system of Case study 4.2.2, in comparison to

Case studies 4.2.1 and 4.1. This is, in part, expected as the convection field in Case

study 4.2.2 is considerably more complex than in Case study 4.2.1.

The default ordering of the Gauss-Seidel smoother in comparison to Case study 4.2.1

grows from 6 to 12 iterations. By contrast, the performance of GMG with the ILU0

smoother is ~w-robust, with an increase of 1 to 2 iterations. This implies that ILU0 has
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Table 4.5: The iteration counts and the (setup,total) execution time (in seconds) required
for the convergence of the GMRES solver right-preconditioned by geometric multigrid with sev-
eral smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 4.2.2) obtained from Q1 SUPG FEM on uniform grids. A constant diffusion parameter
(Pe∗ = 500), with each sub-table representing a different ordering of the unknowns.

(a) OOMPHLIB natural ordering; MG V-cycle V(2,2)

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 10(0.77,1.02) 9(3.49,4.53) 9(15.1,21.0) 8(60.2,82.6) 7(256.6,346.7)
tILU0(0.5, 0.25) 18(0.80,1.03) 16(3.47,4.39) 15(15.2,19.6) 14(60.5,79.4) 13(266.6,354.1)
tILU0(0.5, 0.5) 28(0.77,1.09) 27(3.49,4.92) 25(15.3,22.0) 23(60.5,89.1) 21(265.1,399.2)
Jacobi(0.5) 75(0.77,1.72) 69(3.45,7.56) 64(5.19,37.3) 59(60.7,155.) 54(262.4,676.6)
GaussSeidel 16(0.80,0.95) 14(3.47,4.05) 13(15.1,18.7) 12(60.3,75.7) 12(257.3,330.2)

(b) x-directional ordering (D̆(→), D̆(→),D̆(→), D̆(→)) ; MG V-cycle V(4,4)

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 6(0.81,1.26) 6(3.74,5.97) 5(17.2,27.5) 5(75.3,120.3) 5(343.0,541.4)
tILU0(0.5, 0.25) 11(0.83,1.12) 10(3.77,4.95) 10(17.3,23.6) 9(75.5,102.7) 8(343.9,451.3)
tILU0(0.5, 0.5) 17(0.82,1.18) 16(3.78,5.34) 15(17.3,24.9) 14(75.8,109.9) 13(345.1,495.0)
Jacobi(0.5) 45(0.82,1.67) 41(3.79,7.51) 38(16.2,38.3) 35(67.0,168.5) 32(277.2,677.4)
GaussSeidel 12(0.81,0.95) 11(3.76,4.36) 10(17.2,21.0) 10(75.1,92.59) 9(340.4,415.1)

(c) xy-forward-directional ordering (D̆(→), D̆(↑),D̆(→), D̆(↑)); MG V-cycle V(4,4)

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 6(0.86,1.34) 6(3.94,6.18) 5(21.2,34.0) 5(75.6,120.3) 5(338.6,533.4)
tILU0(0.5, 0.25) 11(0.87,1.18) 10(3.96,5.18) 9(21.1,28.7) 9(75.4,102.3) 8(340.6,456.6)
tILU0(0.5, 0.5) 17(0.88,1.25) 16(3.93,5.54) 15(21.3,31.2) 14(75.3,109.7) 13(376.9,548.1)
Jacobi(0.5) 45(0.82,1.67) 41(3.79,7.51) 38(16.2,38.3) 35(67.0,168.5) 32(277.2,677.4)
GaussSeidel 12(0.87,1.01) 11(3.95,4.55) 10(21.0,26.2) 9(75.1,90.9) 9(341.5,413.3)

(d) xy-forward-xy-backward-directional ordering (D̆(→), D̆(↑),D̆(←), D̆(↓)); MG V-cycle V(4,4)

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 6(0.81,1.27) 6(3.76,6.11) 6(17.4,29.6) 5(75.2,121.5) 5(327.4,519.7)
tILU0(0.5, 0.25) 11(0.81,1.10) 10(4.05,5.33) 9(17.4,23.5) 9(75.6,103.1) 8(326.7,426.4)
tILU0(0.5, 0.5) 17(0.81,1.18) 16(3.99,5.66) 15(17.4,25.3) 14(75.4,110.1) 13(331.6,471.5)
Jacobi(0.5) 45(0.82,1.67) 41(3.79,7.51) 38(16.2,38.3) 35(67.0,168.5) 32(277.2,677.4)
GaussSeidel 11(0.81,0.93) 9(3.74,4.23) 9(17.4,20.5) 8(75.1,88.96) 7(329.5,383.1)

(e) “Black-box” ordering (HSL MC13 Tarjan’s algorithm); MG V-cycle V(2,2)

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 21(0.88,1.83) 19(4.60,8.94) 18(28.4,51.4) 17(261.4,359.4) 15(3882,4209)
tILU0(0.5, 0.25) 28(0.89,1.40) 26(4.60,6.93) 24(28.5,39.9) 22(261.5,313.0) 20(3888,4058)
tILU0(0.5, 0.5) 35(0.89,1.43) 33(4.60,7.10) 31(28.4,40.7) 29(261.6,319.3) 26(3751,3942)
Jacobi(0.5) 75(0.77,1.72) 69(3.45,7.56) 64(5.19,37.3) 59(60.7,155.) 54(262.4,676.6)
GaussSeidel 26(0.89,1.13) 23(4.58,5.66) 21(28.3,34.7) 20(261.0,290.4) 18(3993,4091)

the potential to be a robust smoother for MG preconditioning of discrete convection-

dominated problems. Also, there is a noticeable increase in the iteration count be-

tween Case study 4.2.1 and 4.2.2 (by approximately a factor of 3) when damped

Jacobi is used as a smoother.

The results obtained for tILU0(0.5,α) show a clear mesh independence for both
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levels of truncation (α = 0.25 and α = 0.5). However α = 0.25 gives a more h-robust

smoother at a smaller iteration count. The increase in the iteration count of Case

study 4.2.2 compared to 4.2.1 is approximately 30% for α = 0.25 and approximately

double for α = 0.5. Moreover, the behaviour of tILU0(0.5,0.25) smoother is fairly

similar to that of ILU0

Next we turn our attention to the effects that different node orderings have on

the performance of our smoothers. In Figure 4.3 we see how OOMPHLIB globally

indexes the nodes in a uniform 2D grid, based on a tree structure strategy. We can

obtain a standard lexicographical ordering of the nodes, by taking a permutation of

the unknowns. This is achieved by introducing a lookup vector, which for a simple

example shown in Figure 4.3 has the form

Forward X-Directional: D̆(→) = (0 1 4 2 3 5 6 7 8),

Forward Y-Directional: D̆(↑) = (0 2 6 1 3 7 4 5 8),

Backward X-Directional: D̆(←) = (8 7 6 5 3 2 4 1 0),

Backward Y-Directional: D̆(↓) = (8 5 4 7 3 1 6 2 0).

The lookup vector is used to indirectly access the correct entries in the coefficient

matrix, which is assembled using default ordering. This approach is more memory

efficient than explicitly reordering the coefficient matrix. However indirect addressing

will result in a deterioration in the execution performance.

In the case of non-uniform wind with variable directions, it is difficult to order the

nodes in the direction of the wind. This is the reason why a single downwind ordering

is replaced by multiple sweeps of lexicographical ordering in different directions.

In Table 4.5(b)(c)(d) we report the iteration counts of Solver Strategy 4.2 with

V(4, 4) cycle. That is, 4 sweeps of a smoother. The increase in the number of

sweeps is necessary in order to perform a fair comparison with each table (that have

different node orderings), to approximately have the same amount of computational

work associated with the preconditioner in each case.

In Table 4.5(b) forward x-directional lexicographical ordering is used. Once again

we find that the ILU0 smoother leads to the smallest iteration counts and a pre-

conditioner that is h-robust. However due to the computational complexity of ILU0

smoothing, the total execution times do not look competitive. As is expected there

is a small increase in the iteration count of tILU0(0.5, 0.25) in comparison to ILU0.

Although the difference between the iteration counts of ILU0 and tILU0(0.5, 0.25)

is slightly smaller when x-directional lexicographical ordering is used, compared to

the case of default ordering. This implies that tILU0(0.5, 0.25) smoothing is slightly

more sensitive to the ordering than ILU0 smoothing. However tILU0(0.5, 0.25) has a

considerable reduction in the total solve time compared to ILU0.
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Both tILU0(0.5, 0.25) and Gauss-Seidel lead to roughly the same iteration counts,

with the execution time of GMRES/GMG/Gauss-Seidel being ≈ 10% better than

that of GMRES/GMG/tILU0(0.5, 0.25) in Table 4.5(a) and (b).

Instead of having one or a few sweeps of a smoother in a single Cartesian direction,

one can perform sweeps of a smoother applied to alternating lexicographical ordering

of the unknowns. This way, instead of smoothing the error components in a single

direction, we smooth the components of the error over multiple directions.

In Table 4.5(c) alternating forward Cartesian directional sweeps (D̆(→), D̆(↑),D̆(→),

D̆(↑)) are used. Comparing the results from part(b) and (c) of Table 4.5, we conclude

that forward alternating directional ordering and forward x-directional ordering of

the unknowns have no difference in performance for the smoothers we consider. Ex-

tending the ordering to include all four Cartesian directions (see Table 4.5(d)) leads

to a further reduction in iteration counts for the case of Gauss-Seidel smoothing,

but appears to have no effect when other smoothers are used. The iteration counts

obtained by tILU0 for α = 0.25 and α = 0.5 in Table 4.5(b), (c) and (d) appear to

have no dependence on the ordering of the unknowns.

Next we want to examine whether nodal ordering, using algorithms designed to

reduce “fill-in” during sparse Gauss-elimination, will have any beneficial impact to

our smoothers in the case of convection-dominated problems. The authors [44] sug-

gest that “black-box” reordering, based on variants of the minimum degree ordering

algorithm may coincide with downwind ordering and therefore improve the efficiency

of smoothers during convection-dominated problems. This is a very useful concept

when no geometric information is available to perform downwind reordering. Such

circumstances arise during AMG preconditioning, and thus a “black-box” reordering

is the only available option, apart from default ordering.

In this context we experimented with Tarjan’s algorithm [82]. As was the case for

the previous directional orderings we use a lookup vector to implement a permutation

to the coefficient matrix through indirect addressing. However this lookup vector is

now created from a permutation of the convection matrix only (Definition 2.4.8).

A permutation of the convection matrix is achieved by passing the non-zero matrix

entries’ coordinates into the MC13 HSL algorithm [1]. This is applied to all matrices

in the MG hierarchy. In Table 4.5(e) we report the results of Solver Strategy 4.2 with

V(2,2) cycle, ordered using Tarjan’s algorithm. Comparing these results with the

results from Table 4.5(a), we observe a significant deterioration in iteration counts,

with the iteration counts doubling for the ILU0 smoother. However, this is not the

case for the Jacobi smoother, as it is unaffected by ordering.

In Table 4.6 we present the same set of results as in Table 4.5, but for a larger

value of Pe∗ = 2000. Comparing the corresponding cases between the two tables,
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Table 4.6: The iteration counts and the (setup,total) execution time (in seconds) required
for the convergence of the GMRES solver right-preconditioned by geometric multigrid with sev-
eral smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 4.2.2) obtained from Q1 SUPG FEM on uniform grids. A constant diffusion parameter
(Pe∗ = 2000), with each sub-table representing a different ordering of the unknowns.

(a) OOMPHLIB natural ordering; MG V-cycle V(2,2)

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 17(0.78,1.19) 17(3.44,5.32) 16(15.1,24.8) 14(60.3,97.6) 13(259.8,415.9)
tILU0(0.5, 0.25) 43(0.78,1.36) 41(3.45,6.08) 38(15.2,27.3) 35(60.7,114.8) 32(262.8,492.5)
tILU0(0.5, 0.5) 61(0.79,1.58) 65(3.46,7.47) 62(15.3,34.7) 58(60.5,150.6) 53(260.9,660.0)
Jacobi(0.5) 189(0.77,4.39) 194(3.46,20.7) 180(15.3,99.6) 166(60.3,416.1) 153(260.1,1939)
GaussSeidel 39(0.79,1.16) 36(3.45,5.05) 35(15.2,25.1) 29(60.3,98.0) 27(263.4,445.3)

(b) x-directional ordering (D̆(→), D̆(→),D̆(→), D̆(→)); MG V-cycle V(4,4)

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 10(0.82,1.52) 9(3.75,6.94) 9(17.1,34.2) 8(75.4,142.7) 7(372.9,662.4)
tILU0(0.5, 0.25) 27(0.82,1.57) 25(3.77,6.90) 22(17.2,31.4) 20(75.8,141.3) 19(375.5,696.7)
tILU0(0.5, 0.5) 37(0.81,1.62) 38(3.75,7.64) 36(17.2,36.3) 33(75.4,167.1) 31(371.2,834.1)
Jacobi(0.5) 116(0.83,3.52) 116(3.78,17.0) 107(16.2,87.1) 98(67.1,401.8) 89(278.6,1611.)
GaussSeidel 29(0.81,1.14) 28(3.74,5.31) 29(17.1,27.7) 24(75.5,117.2) 22(377.2,579.4)

(c) xy-forward-directional ordering (D̆(→), D̆(↑),D̆(→), D̆(↑)); MG V-cycle V(4,4)

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 11(0.87,1.67) 13(3.92,8.41) 20(17.5,53.6) 20(75.6,233.5) 18(374.7,1016)
tILU0(0.5, 0.25) 26(0.87,1.64) 24(3.96,7.09) 21(17.5,31.0) 19(75.7,138.0) 18(357.3,664.5)
tILU0(0.5, 0.5) 37(0.86,1.70) 38(4.00,8.08) 36(17.3,36.3) 33(75.5,168.8) 31(355.7,785.0)
Jacobi(0.5) 116(0.83,3.52) 116(3.78,17.0) 107(16.2,87.1) 98(67.1,401.8) 89(278.6,1611.)
GaussSeidel 30(0.86,1.22) 42(4.05,6.57) 75(21.2,60.0) 84(75.6,242.2) 75(373.8,1191.)

(d) xy-forward-xy-backward-directional ordering (D̆(→), D̆(↑),D̆(←), D̆(↓)); MG V-cycle V(4,4)

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 11(0.81,1.62) 13(3.94,8.51) 20(17.5,54.4) 20(75.4,238.4) 18(362.2,1012.)
tILU0(0.5, 0.25) 26(0.82,1.57) 24(3.89,7.11) 21(17.4,31.4) 19(75.8,138.9) 18(351.3,623.3)
tILU0(0.5, 0.5) 37(0.83,1.63) 38(3.76,7.64) 36(17.4,37.0) 33(75.7,165.5) 31(356.1,757.4)
Jacobi(0.5) 116(0.83,3.52) 116(3.78,17.0) 107(16.2,87.1) 98(67.1,401.8) 89(278.6,1611.)
GaussSeidel 31(0.82,1.16) 41(3.93,6.33) 67(17.3,42.5) 74(75.3,220.6) 69(367.5,1038.)

(e) “Black-box” ordering (HSL MC13 Tarjan’s algorithm); MG V-cycle V(2,2)

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 47(0.89,3.05) 47(4.61,15.3) 44(28.4,84.0) 41(261.6,494.3) 38(3926.,4794.)
tILU0(0.5, 0.25) 67(0.91,2.40) 67(4.61,11.7) 62(28.4,61.8) 58(261.5,414.7) 54(3901.,4478.)
tILU0(0.5, 0.5) 82(0.92,2.40) 85(4.59,12.4) 80(28.4,66.7) 74(261.5,435.4) 68(3919.,4646.)
Jacobi(0.5) 189(0.77,4.39) 194(3.46,20.7) 180(15.3,99.6) 166(60.3,416.1) 153(260.1,1939.)
GaussSeidel 65(0.89,1.58) 63(4.58,8.15) 57(28.4,47.0) 53(261.2,341.7) 49(4011.,4421.)

(f) OOMPHLIB natural ordering; MG V-cycle V(1,1)

Smoother \ N 3969 16129 65025 261121 1046529
GaussSeidel 62(0.87,1.44) 60(3.81,6.82) 66(16.8,35.9) 54(69.2,142.4) 51(290.4,642.2)

(g) x-directional ordering (D̆(→)); MG V-cycle V(1,1)

Smoother \ N 3969 16129 65025 261121 1046529
GaussSeidel 68(0.85,1.49) 74(4.04,7.98) 96(17.2,49.2) 99(72.4,244.5) 90(304.0,1044.)
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we observe that in all cases there is a considerable increase in iteration counts when

Pe∗ is increased. This growth appears the smallest in the case of the ILU0 smoother.

When default ordering is used (part(a)), the iteration counts roughly doubled when

the ILU0 smoother is used and triple when the Jacobi smoother is used (for this case

the number of iterations is already impractical when Pe∗ = 2000). In the case of

tILU0 and Gauss-Seidel smoothers there is an increase in the iteration counts by a

factor of 2.5 to 3. We emphasise that the shortest execution time is obtained when

the ILU0 smoother is used, due to the fact that the incomplete factorisation time

is compensated by a considerably smaller number of GMRES iterations, compared

to the cases when other smoothers are used. In Table 4.6(f) we present the results

for the Gauss-Seidel smoother with V(1,1) MG cycle, which demonstrates that the

iteration counts have increased by a factor of 2 when compared to a V(2,2) MG cycle.

It is also clear that in Table 4.6(f) there is a small dependence on h, however, by

increasing the number of smoothing iterations in a cycle this dependence is reduced.

Next we turn our attention to the case when different ordering strategies are used.

In Table 4.6(b) we note a considerable improvement in the performance of Gauss-

Seidel smoother (by contrast, using V(1,1) MG cycle in Table 4.6(g) the precondi-

tioner exhibits considerable h-dependence before the iteration count asymptotically

settles to a constant). However, the asymptotic cost of V(1,1) and V(4,4) precondi-

tioners is consistent (in that the former requires 4 times as many iterations, being

roughly 4 times computationally cheaper). What may come as a surprising result

is that the application of V(4,4) GMG cycle with Gauss-Seidel smoother performs

considerably better when default or x-directional ordering of unknowns is used, than

when alternating ordering of the unknowns is used. Although, the h-dependence

shown in Table 4.6(g) seems to have a direct correlation.

In the context of directional ordering, tILU0 smoothers show virtually no differ-

ence in performance with respect to the ordering of the unknowns, and, except in

the case of x-directional ordering, MG preconditioning with tILU0(0.5,0.25) smoother

outperform significantly the MG preconditioner with Gauss-Seidel smoothing.

In summary it is clear that an appropriate ordering of the nodes can have the

desired effects of reducing the iteration counts. However, as demonstrated in Table 4.6

the orderings need to be paired with the adequate number of relaxation sweeps. On

occasions tILU0(0.5, 0.25) was shown to have the smallest total solve time and out

performed Gauss-Seidel on iteration counts. The disadvantage in using ordering

nodes is the extra computational cost of making a lookup vector. Also, in the case

of ILU, changing the nodal ordering meant re-factorising the matrices to take into

consideration the new nodal ordering. A more efficient implementation of the ILU

smoother with multi-directional ordering would require a considerably larger memory.
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In the 1980s MG preconditioning of anisotropic elliptic problem appears to be

the main challenge for demonstrating the robustness of a smoother, with respect

to anisotropic diffusion. In [83] Thole and Trottenberg use MG with standard full

coarsening and simple-point relaxation. For highly anisotropic diffusion this results

in smoothing only the dominant direction. Such a combination will produce an

inefficient MG preconditioner. To improve the robustness of this preconditioning

methodology a combination of semi-coarsening and line smoothing is proposed in

this context. The idea is to coarsen the grid only in the direction of dominant

diffusion or to apply line smoothing in the same direction. In [31, pp.178–197] the

use of alternating directional line smoothers is demonstrated to give a robust GMG

preconditioner for the convection-diffusion problem. However, for the case of AMG

preconditioning directional line smoothing cannot be achieved as there is no geometric

information. In Tables 4.5 and 4.6 a prominent feature of tILU0 is that the smoother

gives a similar performance of the MG preconditioner irrespectively of the nodal

ordering. Within the context of MG semi-coarsening, AMG uses standard Ruge-

Stüben coarsening which generates semi-coarsening in the characteristic directions

[97], which for the convection-diffusion problem is the downwind direction.

Stretched grids

The accuracy of the discrete solution of a problem depends on the quality of the

underlying grid and the order of approximation. This especially applies to convection-

diffusion problems where boundary layers can occur. In the case when the structure

of the solution is known in advance, a grid can be constructed in such a way that

good accuracy of the discrete solution is achieved, even with moderate grid resolution

and standard Galerkin FEM [31, p.140, p.141] [42, p.133].

The concept behind using stretched grids in the context of the convection-diffusion

problem is that, using a priori knowledge or simply a guess about the nature of the

solution (e.g. part of the domain close to the Dirichlet boundary), we can construct

a grid which will have nodes concentrated in these areas of the domain and fewer

nodes in areas of the domain where there are no significant changes in the solution.

Grid stretching introduces elements of distorted shape (in the case of triangular

grids) or large aspect ratios (in the case of quadrilateral grids). This situation leads to

discrete convection-diffusion operators that have considerably different matrix stencils

than was obtained from the discretisation found in uniform grids (Section 2.4). This,

in turn, causes problems for MG solvers due to greater positive off-diagonal entries,

reduced diagonal dominance and further loss of symmetry. Having a robust MG

smoother, if standard coarsening is used, is key to tackling these problems.

In Figure 4.6(a) a uniform quadrilateral mesh is shown. In Figure 4.6(b) we
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present a stretched grid with the same number of points, and more nodes concentrated

towards the domain boundary.

(a) (b)

Figure 4.6: Discretisation of the domain Ω = [−1, 1]2 with (a) uniform grid; (b)
stretched grid with a stretching parameter a = 0.9 (N = 529 in both cases).

The stretching of a mesh in Figure 4.6(b) is done by initially uniformly refining

the mesh to the desired resolution. The transformation (4.10) is then applied to

recalculate the position of each node in the domain interior:

if (not on x boundary)

x = x− (1 + x)|xa| (x < 0)

x = x + (1− x)|xa| (x ≥ 0),

if (not on y boundary)

y = y − (1 + y)|ya| (y < 0)

y = y + (1− y)|ya| (y ≥ 0),

(4.10)

where a ∈ [0, 1] is the parameter that determines the amount of stretching.

In Table 4.7 we present the convergence characteristics of Solver Strategy 4.2,

where the convection-diffusion problem (Case study 4.2.2) is discretised using SUPG

FEM with Q1 approximation on a sequence of stretched grids with the parameter a set

to 0.9. From the table it can be seen that ILU0 smoother performs h-robust, however

the solver shows moderate dependence on Pe∗ (as O(
√

Pe∗)). What is interesting is

that the solver with the tILU0(0.5,0.25) smoother shows the same robustness, but has

up to 15% shorter execution time. Also, tILU(0.5,0.25) smoother shows competitive

execution times, compared to other smoothers considered in the project. When the

damped Jacobi smoother is used, the resulting iterative solver exhibits a much worse

asymptotic behaviour with respect to Pe∗ than the iterative solver with ILU0/tILU0

smoothers (the iteration counts grow essentially as O(Pe∗)). In the cases when the
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Table 4.7: The iteration counts and the (setup,total) execution time (in seconds) required for the
convergence of the GMRES solver right-preconditioned by geometric multigrid V(2,2) cycle with
several smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 4.2.2) obtained from Q1 SUPG FEM on stretched grids. Natural (tree-based) ordering of the
unknowns, with each sub-table representing a different diffusion parameter.

(a) Pe∗=500

Smoother \ N 2209 9025 36481 146689
ILU0(0.5) 9(0.43,0.55) 8(1.99,2.52) 8(8.13,10.7) 7(33.7,45.1)
tILU0(0.5, 0.25) 10(0.43,0.51) 10(1.99,2.33) 9(8.15,9.57) 8(35.2,42.2)
tILU0(0.5, 0.5) 20(0.45,0.57) 20(2.03,2.61) 19(8.16,10.7) 19(33.6,45.3)
Jacobi(0.5) 36(0.43,0.64) 34(1.98,3.00) 30(8.10,12.7) 27(33.6,53.7)
GaussSeidel 12(0.43,0.50) 11(1.91,2.18) 10(8.11,9.46) 11(33.5,40.7)

(b) Pe∗=1,000

Smoother \ N 2209 9025 36481 146689
ILU0(0.5) 12(0.43,0.59) 11(1.97,2.66) 10(8.00,11.1) 9(35.3,49.7)
tILU0(0.5, 0.25) 14(0.43,0.53) 13(2.00,2.43) 12(8.02,9.82) 11(35.1,44.1)
tILU0(0.5, 0.5) 29(0.43,0.61) 30(1.98,2.89) 28(8.09,11.9) 26(34.0,51.7)
Jacobi(0.5) 56(0.42,0.79) 56(1.97,3.93) 50(8.03,16.2) 44(36.6,78.1)
GaussSeidel 17(0.44,0.52) 21(2.01,2.50) 21(8.02,10.7) 18(35.5,49.0)

(c) Pe∗=2,000

Smoother \ N 2209 9025 36481 146689
ILU0(0.5) 15(0.43,0.62) 15(1.97,2.92) 14(8.01,12.3) 13(38.5,61.8)
tILU0(0.5, 0.25) 20(0.44,0.58) 20(1.98,2.68) 17(8.25,10.9) 15(39.2,52.7)
tILU0(0.5, 0.5) 39(0.43,0.69) 44(2.01,3.46) 43(8.30,14.7) 40(35.8,64.8)
Jacobi(0.5) 86(0.43,1.05) 91(1.99,5.84) 84(8.66,26.2) 73(34.9,97.8)
GaussSeidel 24(0.43,0.56) 43(2.09,3.19) 71(8.05,18.6) 102(34.0,122)

Gauss-Seidel smoother is used, the iterative solver loses its independence on the

problem size in highly convective cases.

4.2.3 Combined uni-directional and recirculating wind

Here we combine the convection fields studied in Case study 4.2.1 and 4.2.2 to create

a new complex convection flow. In this case we solve the convection-diffusion problem

(2.7) on a square domain Ω = [−1, 1]2, subject to the following combination of the

Dirichlet BCs:

u = 0 for [−1 ≤ x < 0, y = −1]
⋃

[−1 ≤ x ≤ 1, y = 1]
⋃

[x = −1,−1 ≤ y ≤ 1]

u = 1 for [0 ≤ x ≤ 1, y = −1]
⋃

[x = 1,−1 ≤ y < 1].

(4.11)
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u = 0

u = 0

u = 0

u = 1

u = 1

The convection field ~w used for this case study consists of two components:

~wu = (cos(2π
3

), sin(2π
3

)) (uni-directional),

~wc = (2y(1− x2),−2x(1− y2)) (circular),

~w = ~wu − ~wc,

(4.12)

and is shown in Figure 4.7(a). This case study may be considered as a simplified

model of costal modelling, where we have a uni-directional ~wu inflow of a river with

a concentration u of a pollutant into a bay with a circular ~wc (sweeping) sea current.

In Figure 4.7(b),(c) and (d) the contour plots represent the solution u for Pe∗ = 0,

500 and 10,000. This combination of BCs and convective field results in a rather com-

plicated flow, with steep boundary layers close to y = 1 and a concave shaped layer

in the domain interior. Thus, getting accurate numerical solutions of the problem

can be difficult. Discretisation by uniform grid would require very fine resolution

(especially for large Pe∗), and using stretched grids would only resolve the boundary

layers at y = 1. The best choice here (unless using SUPG method) is to have a FEM

based on adaptively refined grids. For this case study we restrict ourselves to Q1

SUPG FEM discretisation on uniform grids and will explore adaptively refined grids

in the next case study.

In Table 4.8 we present the performance of Solver Strategy 4.2 for Case study 4.2.3.

For a relatively small inverse diffusion parameter Pe∗ = 500 (Table 4.8(a)) all

smoothers are h-robust. As in the previous examples, the ILU0 smoother leads to the

smallest iteration count, although it has essentially a larger solve time in compari-

son to the cases when Gauss-Seidel and tILU0(0.5,0.25) smoothers are used. As the

inverse diffusion parameter increases, the iteration count for all methods increases

moderately. In all cases the Gauss-Seidel and tILU0(0.5,0.25) smoothers show mesh

independence and consistently outperform the other smoothers.

In Table 4.9 we summarise the truncation statistics obtained using (3.43) for

several values of α with coefficient matrices at all levels of the MG hierarchy obtained

in Case study 4.2.3, for the case of uniform grid refinement. The storage requirements

of a MG preconditioner is proportional to number of non-zero entries (NNZ) at each
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(a) (b)

(c) (d)

Figure 4.7: The convection-diffusion problem (Case study 4.2.3): no source term
(f = 0); (a) Arrow plot of the wind, defined by (4.12), (b) the solution for Pe∗ = 0,
(c) the solution for Pe∗ = 500, (d) the solution for Pe∗ = 10, 000.

hierarchical level (we do not take into consideration the storage requirements of the

interpolation operators as they are independent to the level of truncation).

The results in Table 4.9 are presented for three different values of Pe∗. For

the extreme case α = 0 we have no truncation. Hence the numbers of non-zero

entries in matrices Ãl and Al are the same for l = 1, ..., L, and we have the standard

ILU0 method. At the other extreme value of the truncation parameter (α = 1)

we have Jacobi smoothing, where only the diagonal entries are kept. As we use Q1

approximation in our discretisation, which results in a 9-point stencil, the asymptotic

level of truncation when α = 1 should be 1
9
≈ 0.11. This is clearly visible at fine

grids, while on coarse grids, due to the larger influence of the boundary nodes this

asymptotic ratio is marginally different. The expectation is that by changing the

truncation parameter between 0 and 1 we can find a smoother with low cost similar
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Table 4.8: The iteration counts and the (setup,total) execution time (in seconds) required for the
convergence of the GMRES solver right-preconditioned by geometric multigrid V(2,2) cycle with
several smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 4.2.3) obtained from Q1 SUPG FEM on uniform grids. Natural (tree-based) ordering of the
unknowns, with each sub-table representing a different diffusion parameter.

(a) Pe∗=500

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 9(0.80,1.02) 9(3.46,4.49) 8(14.5,19.2) 8(61.5,84.3)
tILU0(0.5, 0.25) 14(0.79,0.98) 11(3.48,4.13) 10(14.5,17.4) 10(61.7,76.9)
tILU0(0.5, 0.5) 21(0.79,1.03) 21(3.47,4.56) 20(14.5,19.4) 20(61.7,87.7)
Jacobi(0.5) 32(0.78,1.14) 32(3.48,5.14) 31(14.4,23.1) 29(61.6,104.0)
GaussSeidel 10(0.79,0.89) 10(3.49,3.93) 9(14.5,16.7) 8(61.7,72.1)

(b) Pe∗=1,000

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 10(0.79,1.04) 11(3.48,4.73) 10(14.4,20.1) 9(61.6,86.8)
tILU0(0.5, 0.25) 17(0.79,1.02) 19(3.52,4.66) 14(14.5,18.6) 13(61.8,81.6)
tILU0(0.5, 0.5) 23(0.79,1.05) 30(3.46,5.07) 29(14.5,21.8) 27(61.8,98.3)
Jacobi(0.5) 37(0.79,1.20) 41(3.47,5.67) 41(14.4,26.4) 39(61.5,121.0)
GaussSeidel 12(0.79,0.90) 14(3.50,4.10) 12(14.4,17.3) 11(61.7,76.0)

(c) Pe∗=2,000

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 10(0.79,1.03) 13(3.45,4.90) 14(14.5,22.3) 12(61.6,94.5)
tILU0(0.5, 0.25) 18(0.80,1.04) 26(3.49,5.10) 26(14.5,22.3) 18(62.1,90.0)
tILU0(0.5, 0.5) 25(0.80,1.08) 37(3.45,5.52) 42(14.5,25.7) 39(62.1,118.4)
Jacobi(0.5) 41(0.79,1.26) 50(3.44,6.20) 54(14.4,30.8) 53(61.6,147.9)
GaussSeidel 14(0.80,0.93) 17(3.50,4.26) 19(14.4,19.0) 20(61.5,87.6)

to that of the Jacobi method, but with sufficient robustness (ideally, the same as the

ILU0 method). The amount of entries held at each MG level will depend, in general,

on the nature of the convection field ~w, Pe∗ and the problem itself.

The two values of the parameter α in Table 4.9 are those used in our experiments

reported in Table 4.8. The interesting findings from Table 4.9 are that for both

α = 0.25 and α = 0.5 the percentage of truncated entries (NNZ( eAl)
NNZ(Al)

) varies between

the refinement levels. This is the consequence of h-dependence in the convection

matrix (see matrix stencils in Section 2.4) resulting in the convection part of the

operator becoming more prominent at coarser levels. What makes the suggested

methodology effective is the fact that most of the non-zero entries at fine levels are

truncated. For example, in the case when Pe∗ = 20 and α = 0.25, the truncated

matrices at levels l = 8, 7, 6 are diagonal matrices resulting in a Jacobi smoother on

these levels. This is exactly the opposite from previous work [9] where an expensive

(line Gauss-Seidel) smoother is applied at the finest level, followed by the damped

Jacobi method at all coarser levels.

Keeping a much larger proportion of the non-zero entries at coarse levels appears

to be key to the success of the tILU0 smoother when compared to the simple Jacobi



120 CHAPTER 4. TWO-DIMENSIONAL CASE STUDIES

Table 4.9: Truncation statistics for the convection-diffusion matrices obtained from Q1 SUPG
FEM discretisation of Case study 4.2.3 as a function of Pe∗ with uniform grid refinement. Ãl

denotes the truncated matrix and Al is the original matrix at the refinement level l. NNZ(·) denotes

the number of non-zero entries and NNZ(fAl)
NNZ(Al)

[%] the percentage of the non-zero entries kept in the
truncated matrices.

(a) Pe∗=20

Level l 8 7 6 5 4 3 2 1
∑

l(NNZ(Ãl))
N 261121 65025 16129 3969 961 225 49 9 347489
NNZ(Al) 2343961 582169 143641 34969 8281 1849 361 49 3115281
α = 0
NNZ(Ãl) 2343961 582169 143641 34969 8281 1849 361 49 3115281
NNZ(fAl)
NNZ(Al)

[%] 100 100 100 100 100 100 100 100 η =100
α = 0.25
NNZ(Ãl) 261121 65025 16129 5203 1776 538 122 20 349935
NNZ(fAl)
NNZ(Al)

[%] 11 11 11 15 21 29 34 41 η =11
α = 0.5
NNZ(Ãl) 261121 65025 16129 3969 979 298 76 14 347612
NNZ(fAl)
NNZ(Al)

[%] 11 11 11 11 12 16 21 29 η =11
α = 1.0
NNZ(Ãl) 261121 65025 16129 3969 961 225 49 9 347489
NNZ(fAl)
NNZ(Al)

[%] 11 11 11 11 12 12 14 18 η =11

(b) Pe∗=500

Level l 8 7 6 5 4 3 2 1
∑

l(NNZ(Ãl))
α = 0.25
NNZ(Ãl) 609501 179900 47298 12514 3183 741 153 21 853312
NNZ(fAl)
NNZ(Al)

[%] 26 31 33 36 38 40 42 43 η =27
α = 0.5
NNZ(Ãl) 315940 96176 26391 6843 1698 395 85 14 447543
NNZ(fAl)
NNZ(Al)

[%] 13 17 18 20 21 21 24 29 η =14

(c) Pe∗=2000

Level l 8 7 6 5 4 3 2 1
∑

l(NNZ(Ãl))
α = 0.25
NNZ(Ãl) 769968 207318 54737 13888 3369 759 154 21 1050215
NNZ(fAl)
NNZ(Al)

[%] 33 36 38 40 41 41 43 43 η =34
α = 0.5
NNZ(Ãl) 427453 112813 28882 7189 1738 397 85 14 578572
NNZ(fAl)
NNZ(Al)

[%] 18 19 20 21 21 21 24 29 η =19

smoother. However, for a fixed value of α the amount of truncated entries is reduced

as Pe∗ is increased. But even for highly convective flows (Pe∗ = 2000) only an

average of 20% of the non-zero entries are kept for α = 0.5. This is also true for all

case studies introduced in this chapter (Table 4.10).



4.2. GEOMETRIC MULTIGRID PRECONDITIONING 121

Table 4.10: Comparison of truncation statistics for Case studies 4.2.1, 4.2.2, 4.2.3 and 4.2.4 as
a function of Pe∗ and the truncation parameter α. The discrete convection-diffusion operators are
obtained from Q1 SUPG FEM discretisation using a uniform grid hierarchy. The results present the
total number of non-zero entries in the entire MG hierarchy and, in brackets, the percentage of the
total number of non-zero entries in the entire MG hierarchy after truncation.

Pe∗ Case Study α = 0 α = 0.25 α = 0.5 α = 1.0
4.2.1 3115281(100) 693965(22) 433355(14) 347489(11)

500 4.2.2 3115281(100) 727545(23) 440533(14) 347489(11)
4.2.3 3115281(100) 853312(27) 447543(14) 347489(11)
4.2.4 3115281(100) 814001(26) 497052(16) 347489(11)
4.2.1 3115281(100) 693965(22) 693965(22) 347489(11)

2000 4.2.2 3115281(100) 951577(31) 619169(20) 347489(11)
4.2.3 3115281(100) 1050215(34) 578572(19) 347489(11)
4.2.4 3115281(100) 956168(31) 592205(19) 347489(11)

4.2.4 Multiple recirculating wind

As a final case, we consider the convection-diffusion problem defined on a rectangular

domain Ω = [0, 1]×[0, 2] with a convection field ~w consisting of multiple recirculations.

This configuration is physically relevant as it occurs in models of thermally buoyed

flows when Rayleigh-Bénard convection is studied [22, Chapter 6]. The specification

for this problem is taken from the OOMPHLIB library [46]. The boundary conditions

are taken from the analytical solution calculated on ∂Ω:

u = tanh(1.0− 50 ∗ (x− y)). (4.13)

u = −1

u = 1

u = 1

u = −1

u = 1

The convection field used in this case is

~w = (sin(6y), cos(6x)),

shown in Figure 4.8(a), where we can see three complete recirculations, two moving

in an anti-clockwise direction and the third in a clockwise direction. Figure 4.8 also

represents the solution u as a contour plot for Pe∗ = 0, 500 and 10, 000, with a zero

source term f = 0. This combination of BCs and convection field results in a steep

solution layer in the interior of the domain. Initially for Case study 4.2.4 we use Q1
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(a) (b)

(c) (d)

Figure 4.8: The convection-diffusion problem (Case study 4.2.4): no source term
(f = 0); (a) Arrow plot of the wind (b) the solution for Pe∗ = 0, (c) the solution for
Pe∗ = 500, (d) the solution for Pe∗ = 10, 000.

SUPG FEM discretisation on a uniform grid.

In Table 4.11 we present the iteration count and the execution times of Solver

Strategy 4.2 for Case study 4.2.4. Comparing these results with the previous cases,

we can observe consistency both in terms of absolute iteration counts and performance

of different smoothers relative to each other.

For all cases in Table 4.11 we observed that the asymptotic performance of GM-

RES remains h-robust. However, there is a modest increase in iteration counts as a

function of Pe∗. This increase is the smallest for the case of ILU0 and tILU0(0.5, 0.25)

smoothers. The shortest execution time is obtained when Gauss-Seidel smoother is
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Table 4.11: The iteration counts and the (setup,total) execution time (in seconds) required for
the convergence of the GMRES solver right-preconditioned by geometric multigrid V(2,2) cycle with
several smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 4.2.4) obtained from Q1 SUPG FEM on uniform grids. Natural (tree-based) ordering of the
unknowns, with each sub-table representing a different diffusion parameter.

(a) Pe∗=500

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 9(0.79,1.01) 10(3.74,5.05) 9(14.7,20.2) 9(60.3,84.8) 8(264.8,371.5)
tILU0(0.5, 0.25) 15(0.81,1.01) 15(3.77,4.72) 15(14.8,19.0) 15(60.6,81.7) 14(258.9,361.4)
tILU0(0.5, 0.5) 23(0.81,1.07) 23(3.81,5.19) 23(14.8,20.8) 22(61.0,88.2) 21(251.4,374.6)
Jacobi(0.5) 35(0.81,1.19) 36(3.74,5.80) 36(14.7,25.7) 35(60.5,112.1) 32(245.3,452.2)
GaussSeidel 14(0.79,0.93) 14(3.76,4.43) 13(14.7,18.1) 12(60.3,75.1) 11(248.3,308.6)

(b) Pe∗=2,000

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 14(0.79,1.12) 15(3.47,5.34) 16(14.7,24.1) 15(60.3,99.8) 14(258.8,423.6)
tILU0(0.5, 0.25) 24(0.79,1.11) 26(3.52,5.26) 27(14.8,22.8) 26(60.8,99.4) 25(261.8,434.6)
tILU0(0.5, 0.5) 39(0.79,1.26) 45(3.50,6.10) 47(14.7,28.1) 45(60.6,123.8) 42(255.9,566.4)
Jacobi(0.5) 60(0.80,1.57) 71(3.48,7.95) 73(14.8,39.4) 71(60.7,170.2) 69(259.7,851.6)
GaussSeidel 25(0.79,1.03) 27(3.53,4.79) 27(14.7,21.8) 25(60.3,91.9) 23(256.1,397.3)

used, closely followed by the tILU0(0.5, 0.25) smoother.

Adaptively refined grids

Case study 4.2.4 is an example where discretisation by uniform or stretched grids

would not be advantageous, due to the structure of the solution (there exists a steep

layer in the interior of the domain, with the position depending upon the structure

and strength of the wind). For this reason we use adaptive grid refinement as our

discretisation strategy and test our solvers for this case.

The OOMPHLIB library [45] has a built in adaptive refinement function. Adap-

tive mesh refinement targets areas of interest by solving the problem at each level

of refinement and using a posteriori error estimator function to calculate the solu-

tion error estimate elementwise. The elements in which the error estimate exceeds

the maximum threshold are refined, and the elements in which the error estimate is

smaller than the minimum threshold are unrefined as long as the desired min/max

level is not achieved in all elements. The refinement procedure is stopped when the

estimated solution error satisfies either a posteriori error in the interval [10−3, 10−5]

or a maximum of 6 levels of refinement.

In Figure 4.9 level 3 and 4 of the refinement process is presented for Case study 4.2.4.

We can see that in parts of the domain where the solution does not change signifi-

cantly (for y > 1.5) some of the elements are un-refined (coarsened), while parts of

the domain with the most rapid changes in the solution have most of its elements

refined.
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(a) (b)

Figure 4.9: Adaptive mesh refinement for Case study 4.2.4 with (a) 3 levels of refine-
ment, N = 768. (b) 4 levels of refinement, N = 2411.

The consequence of using adaptively refined grids is that the same level of accu-

racy in the discrete solution can be achieved with much fewer degrees of freedom than

in the case of uniform refinement. However, spectral properties of coefficient matri-

ces obtained from discretisation on adaptively refined grids are considerably different

from the matrices obtained from uniform grids (in particular, the condition number

depends on the size of the smallest elements in the grid). Also if the matrix stencils

are h-dependent then the matrix coefficients will differ between rows (i.e. the coeffi-

cient matrix can potentially be badly scaled). These two facts can have potentially

negative impact on the performance on the smoother and, as a consequence, the MG

preconditioner. Table 4.12 summarises the convergence results of Solver Strategy 4.2,

applied to Case study 4.2.4 discretised on adaptively refined grids. The main conclu-

sion is that the results are consistent with those obtain on uniform grids (reported in

Table 4.11) with the iteration counts generally lower. The best execution times are

obtained from Gauss-Seidel and tILU0(0.5,0.25) smoothers.

In Table 4.13 we present the truncation statistics for the matrices obtained from

the discretisation of Case study 4.2.4 on a sequence of adaptively refined grids. From

Table 4.13 it follows that proportionately more entries are kept on the few finest levels

than in the case of uniformly refined grids. Also, there is no substantial difference in

the amount of truncated entries when Pe∗ is increased.

Finally, for comparison reasons, in Table 4.14 we present the truncation statistics

for coefficient matrices obtained by Q1 SUPG FEM discretisation of Case studies

4.2.1, 4.2.2, 4.2.3 and 4.2.4 on adaptive grids for Pe∗ = 500 and 2000. From this
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Table 4.12: The iteration counts and the (setup,total) execution time (in seconds) required for
the convergence of the GMRES solver right-preconditioned by geometric multigrid V(2,2) cycle with
several smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 4.2.4) obtained from Q1 SUPG FEM on an adaptive grid refinement. Natural (tree-based)
ordering of the unknowns, with each sub-table representing a different diffusion parameter.

(a) Pe∗=500

Smoother \ Level 2 3 4 5 6
ILU0(0.5) 7(0.04,0.05) 8(0.15,0.18) 8(0.47,0.58) 8(1.23,1.52) 6(1.22,1.43)
tILU0(0.5, 0.25) 10(0.04,0.05) 13(0.14,0.18) 13(0.47,0.56) 12(1.24,1.46) 10(1.22,1.41)
tILU0(0.5, 0.5) 12(0.04,0.05) 18(0.15,0.19) 20(0.47,0.60) 17(1.24,1.51) 15(1.22,1.46)
Jacobi(0.5) 19(0.04,0.05) 28(0.14,0.20) 30(0.46,0.65) 26(1.25,1.66) 20(1.23,1.52)
GaussSeidel 9(0.04,0.05) 12(0.15,0.17) 11(0.46,0.52) 10(1.23,1.37) 8(1.21,1.31)

(b) Pe∗=2,000

Smoother \ Level 2 3 4 5 6
ILU0(0.5) 8(0.04,0.05) 11(0.15,0.20) 12(0.50,0.67) 11(1.34,1.76) 12(1.21,1.61)
tILU0(0.5, 0.25) 11(0.04,0.05) 17(0.15,0.19) 20(0.49,0.65) 19(1.34,1.74) 17(1.21,1.52)
tILU0(0.5, 0.5) 13(0.04,0.05) 24(0.16,0.21) 31(0.49,0.70) 31(1.37,1.93) 26(1.23,1.64)
Jacobi(0.5) 22(0.04,0.06) 42(0.15,0.25) 49(0.49,0.82) 43(1.36,2.13) 36(1.22,1.74)
GaussSeidel 10(0.04,0.05) 17(0.15,0.18) 19(0.49,0.59) 16(1.37,1.59) 15(1.21,1.39)

table we can conclude that in the case of uniform wind (Case study 4.2.1) the amount

of truncation is almost independent of Pe∗ and is almost the same for both values

values for α. For α = 0.5 the percentage of truncated entries appears to be almost

the same for all four problems and also appears almost independent of Pe∗. For the

smaller value of α = 0.25 complexity of the convection field and Pe∗, however, does

have an impact to the amount of truncation. That is, more entries are being kept in

cases of more complicated convection (Case studies 4.2.2 and 4.2.3) and when Pe∗ is

increased.
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Table 4.13: Truncation statistics for the convection-diffusion operator obtained from Q1 SUPG
FEM discretisation of Case study 4.2.4 as a function of Pe∗ with adaptive grid refinement. Ãl

denotes the truncated matrix and Al is the original matrix at the refinement level l. NNZ(·) denotes

the number of non-zero entries and NNZ(fAl)
NNZ(Al)

[%] the percentage of the non-zero entries kept in the
truncated matrices.

(a) Pe∗=20

Level l 6 5 4 3 2 1
∑

l(NNZ(Ãl))
N 3,994 1,077 308 87 28 9
NNZ(Al) 35,620 9,449 2,622 685 196 49 48,621
α = 0
NNZ(Ãl) 35,620 9,449 2,622 685 196 49 48,621
NNZ(fAl)
NNZ(Al)

[%] 100 100 100 100 100 100 η =100
α = 0.25
NNZ(Ãl) 11,688 2,960 754 198 70 22 15,692
NNZ(fAl)
NNZ(Al)

[%] 33 31 29 29 36 51 η =32
α = 0.5
NNZ(Ãl) 4,018 1,111 343 124 41 12 5,649
NNZ(fAl)
NNZ(Al)

[%] 11 12 13 19 21 35 η =12
α = 1.0
NNZ(Ãl) 3,994 1,077 308 87 28 9 5,503
NNZ(fAl)
NNZ(Al)

[%] 11 11 12 13 14 18 η =11

(b) Pe∗=500

Level l 6 5 4 3 2 1
∑

l(NNZ(Ãl))
N 5,053 1,376 384 119 32 9 6,973
NNZ(Al) 45,303 12,204 3,314 971 230 49 62,071
α = 0.25
NNZ(Ãl) 13,951 4,098 1,211 385 103 22 19,770
NNZ(fAl)
NNZ(Al)

[%] 31 34 37 40 45 45 η =32
α = 0.5
NNZ(Ãl) 8,675 2,426 711 223 67 12 12,114
NNZ(fAl)
NNZ(Al)

[%] 20 20 21 23 29 24 η =20

(c) Pe∗=2000

Level l 6 5 4 3 2 1
∑

l(NNZ(Ãl))
N 4,937 1,352 376 112 32 9 6,818
NNZ(Al) 44,269 11,995 3,242 908 230 49 60,692
α = 0.25
NNZ(Ãl) 15,572 4,348 1,232 364 105 22 21,643
NNZ(fAl)
NNZ(Al)

[%] 35 36 38 40 46 45 η =36
α = 0.5
NNZ(Ãl) 9,016 2,534 715 217 68 12 12,562
NNZ(fAl)
NNZ(Al)

[%] 20 21 22 24 30 24 η =21
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Table 4.14: Comparison of truncation statistics for Case studies 4.2.1, 4.2.2, 4.2.3 and 4.2.4 as
a function of Pe∗ and the truncation parameter α. The discrete convection-diffusion operators are
obtained from Q1 SUPG FEM discretisation using adaptive meshing. The results present the total
number of non-zero entries in the entire MG hierarchy and, in brackets, the percentage of the total
number of non-zero entries in the entire MG hierarchy after truncation.

Pe∗ Case Study α = 0 α = 0.25 α = 0.5 α = 1.0
4.2.1 13,640(100) 3,456(25) 3,260(24) 1,624(12)

500 4.2.2 21,970(100) 7,159(33) 4,962(23) 2,560(12)
4.2.3 21,927(100) 8,053(37) 4,604(21) 2,511(11)
4.2.4 62,071(100) 19,770(32) 12,114(20) 6,973(11)
4.2.1 13,339(100) 3,386(25) 3,194(24) 1,589(12)

2000 4.2.2 22,787(100) 8,468(37) 5,211(23) 2,655(12)
4.2.3 23,188(100) 9,166(40) 4,945(21) 2,650(11)
4.2.4 60,692(100) 21,643(36) 12,562(21) 6,818(11)

4.2.5 Summary

In this section we tested the performance of the GMRES solver preconditioned by

GMG, where a variety of smoothers were used on a number of case studies. In all

cases the tILU0 smoother was asymptotically optimal with respect to the discrete

problem size and exhibited only moderate dependence on Pe∗. In cases of compli-

cated convection fields this dependence was no worse than when the standard ILU0

smoother was used. When tested with multiple-directional nodal ordering, the tILU0

smoother showed little sensitivity in its performance with respect to the ordering of

the unknowns. This leads to the assumption that tILU0 is an appropriate smoother

for AMG with arbitrary nodal ordering.

In terms of the execution times, the preconditioned iterative solver with the

tILU0(0.5,0.25) smoother is better than the solver obtained when using ILU0 or

damped Jacobi smoothing. Furthermore, the execution times for the tILU0 smoother

were comparable to the execution times obtained from the Gauss-Seidel smoother.

Having said that, the tILU0 smoother shows a much better Pe, h-robustness than

the Gauss-Seidel smoother in important cases such as recirculating wind problems

discretised by stretched grids.

Damping parameters

For completeness we will now look at alternative damping parameters γ that are

used within the context of simple point smoothers. In [9] a damping parameter of

γ = 0.5 is used for the damped Jacobi smoother, on the double-glazing problem with

stretched grids. For the 1D Laplacian operator, the damped Jacobi smoother with

γ = 2
3

is the optimal damping parameter for a uniform square grid [8]; γ = 0.8 in

the case of a 5-point 2D Laplacian operator, and γ = 6
7

for 7-point approximation in

3D. Furthermore, [31, p.100] states that for Q1 approximation on a uniform square
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grid the optimal damping parameter for Jacobi is γ = 8
9
. Since the preconditioner

setup time does not depend on γ, we only report iteration count below. The total

execution times in each case can be estimated by taking the total execution times in

Tables 4.15(a) or 4.16(a) scaled with the number of iterations.

Table 4.15: The iteration counts and the (setup,total) execution time (in seconds) required for
the convergence of the GMRES solver right-preconditioned by geometric multigrid V(2,2) cycle with
several smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 4.2.2) obtained from Q1 SUPG FEM on uniform grids. Natural (tree-based) ordering of the
unknowns and Pe∗=2000, with each sub-table representing a different damping parameter.

(a) γ = 0.5

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 17(0.78,1.19) 17(3.44,5.32) 16(15.1,24.8) 14(60.3,97.6)
tILU0(0.5, 0.25) 43(0.78,1.36) 41(3.45,6.08) 38(15.2,27.3) 35(60.7,114.8)
tILU0(0.5, 0.5) 61(0.79,1.58) 65(3.46,7.47) 62(15.3,34.7) 58(60.5,150.6)
Jacobi(0.5) 189(0.77,4.39) 194(3.46,20.7) 180(15.3,99.6) 166(60.3,416.1)
GaussSeidel 39(0.79,1.16) 36(3.45,5.05) 35(15.2,25.1) 29(60.3,98.0)

(b) γ = 0.666·

Smoother \ N 3969 16129 65025 261121
ILU0(2/3) 15 15 13 12
tILU0(2/3, 0.25) 36 36 31 28
tILU0(2/3, 0.5) 50 50 50 46
Jacobi(2/3) 161 161 151 137

(c) γ = 0.8

Smoother \ N 3969 16129 65025 261121
ILU0(0.8) 13 13 12 11
tILU0(0.8, 0.25) 32 30 27 25
tILU0(0.8, 0.5) 44 47 44 40
Jacobi(0.8) × × × ×

(d) γ = 1.0

Smoother \ N 3969 16129 65025 261121
ILU0(1.0) 13 13 12 12
tILU0(1.0, 0.25) 28 26 23 34
tILU0(1.0, 0.5) 40 44 42 37
Jacobi(1.0) × × × ×

Table 4.15 shows the dependence of the iteration counts with respect to damping

parameters and different smoothers for Case study 4.2.2 with Pe∗ = 2000. In the case

of damped Jacobi smoothing we observe that the GMG preconditioned solver fails

to converge for large values of the damping parameter. That is, convergence when

γ < 0.8, however damped Jacobi is still not a competitive smoothing strategy. For

ILU0 smoothing, the smallest iteration counts are seen for γ = 0.8. It is therefore clear

that the tILU0 smoother, in the extreme cases, benefit from damping. However, for

each case the smallest iteration counts are obtained for different values of damping

parameters. In Table 4.16, Case study 4.2.4, we find that the smallest number of
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Table 4.16: The iteration counts and the (setup,total) execution time (in seconds) required for
the convergence of the GMRES solver right-preconditioned by geometric multigrid V(2,2) cycle with
several smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 4.2.4) obtained from Q1 SUPG FEM on uniform grids. Natural (tree-based) ordering of the
unknowns and Pe∗=2000, with each sub-table representing a different damping parameter.

(a) γ = 0.5

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 14(0.79,1.12) 15(3.47,5.34) 16(14.7,24.1) 15(60.3,99.8)
tILU0(0.5, 0.25) 24(0.79,1.11) 26(3.52,5.26) 27(14.8,22.8) 26(60.8,99.4)
tILU0(0.5, 0.5) 39(0.79,1.26) 45(3.50,6.10) 47(14.7,28.1) 45(60.6,123.8)
Jacobi(0.5) 60(0.80,1.57) 71(3.48,7.95) 73(14.8,39.4) 71(60.7,170.2)
GaussSeidel 25(0.79,1.03) 27(3.53,4.79) 27(14.7,21.8) 25(60.3,91.9)

(b) γ = 0.666·

Smoother \ N 3969 16129 65025 261121
ILU0(2/3) 12 13 13 12
tILU0(2/3, 0.25) 20 22 23 22
tILU0(2/3, 0.5) 34 39 40 38
Jacobi(2/3) 51 59 60 58

(c) γ = 0.8

Smoother \ N 3969 16129 65025 261121
ILU0(0.8) 11 12 12 11
tILU0(0.8, 0.25) 18 19 20 19
tILU0(0.8, 0.5) 30 35 35 34
Jacobi(0.8) × × × ×

(d) γ = 1.0

Smoother \ N 3969 16129 65025 261121
ILU0(1.0) 9 10 12 10
tILU0(1.0, 0.25) 16 17 18 ×
tILU0(1.0, 0.5) 28 39 157 ×
Jacobi(1.0) × × × ×

iterations for ILU0 is when no damping is performed. This leads to the assumption

that the damping parameter of ILU0 is problem dependent. On the other hand

when using a damped Jacobi smoother we find that for Case study 4.2.4 a damping

parameter of γ = 2
3

leads to the smallest iteration count. This is consistent with Case

study 4.2.2.

Numerical evidence shows that α = 0.25 is the most appropriate value for the

truncation parameter when tILU0 smoother is used for GMG preconditioning. For

completeness, we now look at the relationship of tILU0(γ, 0.25) as a function of the

damping parameter. In Tables 4.15 and 4.16 we find that the smallest iteration

count and therefore the smallest solve time, and subsequently computational cost, is

found when γ = 0.8. In Table 4.15 we observe a reduction of 29% in the number of

iterations between the cases γ = 0.5 and γ = 0.8, and in Table 4.16 a reduction of

27%. This decrease in the iteration count makes tILU0 a significant competitor to
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Gauss-Seidel in terms of solve time. Also, it is worth noting that for γ = 1, the GMG

preconditioner with tILU0 smoother show some difficulties with convergence.

Number of smoothing sweeps

We now look at the impact that changing the number of smoothing sweeps, of the

preconditioned GMG V-cycle, has on the solver’s iteration counts. We would expect

the iteration count to decrease as the number of pre and post smoothing sweeps

within a V-cycle increase, as the residual equations (3.5) at each MG level are solved

more accurately. However, a more important criterion is the overall solve time, and

its relationship to the number of pre and post smoothing iterations.

The results for Case study 4.2.2 are summarised in Table 4.17. The increase in the

Table 4.17: The iteration counts and the (setup,total) execution time (in seconds) required
for the convergence of the GMRES solver right-preconditioned by geometric multigrid with sev-
eral smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 4.2.2) obtained from Q1 SUPG FEM on uniform grids. A constant Pe∗=2000 and natural
(tree-based) ordering of the unknowns, with each sub-table representing a different number of pre
and post smoothing operations.

(a) V (1, 1)

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 25(0.91,1.66) 26(3.67,6.92) 25(15.18,28.42) 23(60.11,112.1)
tILU0(0.5, 0.25) 66(0.91,2.26) 65(3.72,8.79) 60(15.34,34.19) 56(61.91,137.9)
tILU0(0.5, 0.5) 96(0.91,2.73) 107(3.69,11.96) 105(15.39,49.27) 98(61.28,203.0)
Jacobi(0.5) × × × ×
GaussSeidel 62(0.91,1.77) 60(3.64,6.84) 66(15.08,29.98) 54(60.24,111.7)

(b) V (2, 2)

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 17(0.78,1.19) 17(3.44,5.32) 16(15.1,24.8) 14(60.28,97.56)
tILU0(0.5, 0.25) 43(0.78,1.36) 41(3.45,6.08) 38(15.2,27.3) 35(60.66,114.8)
tILU0(0.5, 0.5) 61(0.79,1.58) 65(3.46,7.47) 62(15.3,34.7) 58(60.52,150.6)
Jacobi(0.5) 189(0.77,4.39) 194(3.46,20.7) 180(15.3,99.6) 166(60.35,416.1)
GaussSeidel 39(0.79,1.16) 36(3.45,5.05) 35(15.2,25.1) 29(60.26,97.99)

(c) V (4, 4)

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 12(0.88,1.46) 11(3.67,5.82) 11(13.91,23.30) 10(60.40,96.62)
tILU0(0.5, 0.25) 27(0.91,1.77) 26(3.72,6.86) 23(15.29,26.65) 21(61.83,105.6)
tILU0(0.5, 0.5) 37(0.88,1.92) 38(3.74,7.85) 36(15.26,31.59) 33(61.49,126.2)
Jacobi(0.5) 116(0.91,5.10) 116(3.72,20.51) 107(15.16,78.83) 98(61.52,317.1)
GaussSeidel 26(0.91,1.56) 24(3.67,6.11) 22(15.08,24.44) 20(60.42,97.01)

number of smoothing sweeps leads to an overall reduction in execution time for tILU0

and damped Jacobi. This is not the case when ILU0 and Gauss-Seidel smoothers are

used (in these two cases increasing the number of smoothing sweeps beyond two does

not lead to any significant improvement in the overall execution time).
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Table 4.18 contains results for Case study 4.2.4. We see that roughly the same

pattern of behaviour as in Table 4.17. When tILU0(0.5, 0.25) smoothing is used, we

Table 4.18: The iteration counts and the (setup,total) execution time (in seconds) required
for the convergence of the GMRES solver right-preconditioned by geometric multigrid with sev-
eral smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 4.2.4) obtained from Q1 SUPG FEM on uniform grids. A constant Pe∗=2000 and natural
(tree-based) ordering of the unknowns, with each sub-table representing a different number of pre
and post smoothing operations.

(a) V (1, 1)

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 21(0.35,0.59) 23(1.45,2.55) 25(6,11.1) 24(23.89,44.58)
tILU0(0.5, 0.25) 33(0.35,0.59) 38(1.45, 2.53) 41(6.01,10.8) 41(24.45,44.86)
tILU0(0.5, 0.5) 56(0.36,0.72) 69(1.45,3.29) 75(6.04,14.62) 74(24.12,62.11)
Jacobi(0.5) 96(0.36,0.99) 118(1.45,4.71) 124(5.98,20.47) 124(24.28,91.51)
GaussSeidel 36(0.35,0.52) 40(1.44,2.2) 41(5.64,8.62) 39(23.76,36.77)

(b) V(2,2)

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 14(0.35,0.54) 15(1.44,2.3) 16(6.1,9.99) 15(23.99,39.53)
tILU0(0.5, 0.25) 24(0.36,0.57) 26(1.46,2.35) 27(6.03,9.78) 26(24.46,39.65)
tILU0(0.5, 0.5) 39(0.35,0.65) 45(1.46,2.83) 47(6.04,12.11) 45(24.21,49.61)
Jacobi(0.5) 60(0.35,0.84) 71(1.46,3.83) 73(5.98,16.13) 71(24.27,68.05)
GaussSeidel 25(0.36,0.52) 27(1.43,2.11) 27(6.12,8.9) 25(23.71,34.76)

(c) V (4, 4)

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 10(0.35,0.53) 10(1.45,2.21) 10(6.01,9.27) 9(23.87,36.41)
tILU0(0.5, 0.25) 16(0.35,0.55) 17(1.44, 2.25) 17(6.03,9.26) 16(24.4,37.14)
tILU0(0.5, 0.5) 26(0.35,0.62) 29(1.45, 2.64) 30(6.01,11.16) 28(24.22,44.9)
Jacobi(0.5) 40(0.35,0.85) 45(1.44,3.71) 45(5.98,15.33) 44(24.21,63.86)
GaussSeidel 17(0.35,0.52) 17(1.44,2.1) 17(5.95,8.71) 16(23.75, 34.89)

see that an increase in the number of pre and post smoothing sweeps from 1 to 2 leads

to a reduction in iteration counts by ∼ 36% and a reduction in the total execution

time by ∼ 12%. On the other hand, a further increase from 2 to 4 smoothing sweeps

reduces the iteration counts by a further ∼ 25%, but the overall execution time is

reduced by only ∼ 5%.

From Tables 4.17 and 4.18 we can conclude that V(2,2) is an appropriate choice

for our V-cycle.
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4.3 Algebraic multigrid preconditioning of the

convection-diffusion problem

Geometric multigrid is based on the existence of a nested hierarchy of grids and the

discretisation of the underlying problem on these grids (which assumes the knowledge

of the geometric information associated with these grids). In many practical cases the

domain of interest is fairly complicated. Such cases are usually discretised by non-

structured grids, which makes the construction of a nested grid hierarchy difficult

or even impossible. In such cases the application of MG depends on the ability to

construct a sequence of coarse representations of the discrete operator. This can be

achieved through an automatic coarsening procedure, based entirely on the matrix

properties. This is the concept of AMG.

In this section we examine the effectiveness of the novel smoothing methodology,

based on truncated ILU (tILU0) factorisation in the AMG context, when applied

to discrete convection-dominated problems. We use classical Ruge-Stüben AMG,

where the coarsening procedure is based on matrix properties of the discrete Poisson

operator [61, Chapter 4]. However, this coarsening procedure is also effective when

applied to discrete convection-diffusion problems. For the case of GMG we were

able to explore different ordering strategies of the unknowns, to get potentially a

more robust smoothing strategy (Section 4.2.2). For the case of AMG there is no

geometric information available, to help with ordering the unknowns. Therefore in

the case of AMG we can only use default or “black-box” ordering. This is why having

a smoothing strategy that shows little difference in its performance with respect to

the ordering of the unknowns, as was the case for tILU0, is important.

To solve the linear system (3.1) using AMG preconditioning, we use Solver Strat-

egy 4.3.

Solver Strategy 4.3

Krylov Method: Hypre GMRES (tolerance 10−6)
Preconditioner: Hypre BoomerAMG

Coarsening:
Classical Ruge-Stüben
Strength of dependance: θ = 0.25

Cycle: V (2, 2)
Smoothers:

Gauss− Seidel
ILU0(0.5)
tILU0(0.5, α)
Jacobi(0.5)
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In Table 4.19 we show the convergence characteristics of Solver Strategy 4.3 ap-

plied to discrete problems from Case study 4.2.1. In the case of AMG we extend the

Table 4.19: The iteration counts and the (setup,total) execution time (in seconds) required for the
convergence of the GMRES solver right-preconditioned by classical algebraic multigrid V(2,2) cycle
with several smoothers, when applied to the solution of the discrete convection-diffusion problem
(Case study 4.2.1) obtained from Q1 SUPG FEM on uniform grids. Each sub-table represents a
different diffusion parameter. × denotes a lack of convergence within 100 GMRES iterations.

(a) Pe∗=500

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 5(0.11,0.19) 5(0.49,1.23) 5(2.60,8.10) 5(14.3,47.0) 5(68.3,173.5)
tILU0(0.5, 0.25) 7(0.09,0.16) 7(0.40,0.99) 8(1.87,6.86) 10(8.99,45.3) 8(29.8,126.9)
tILU0(0.5, 0.5) 7(0.09,0.16) 8(0.40,1.01) 10(1.87,7.98) 10(8.99,43.4) 9(33.8,145.3)
Jacobi(0.5) 9(0.03,0.12) 7(0.14,0.62) 8(0.77,6.23) 9(6.76,42.2) 9(12.1,132.5)
GaussSeidel 8(0.03,0.10) 5(0.14,0.50) 6(0.77,4.84) 6(4.31,27.5) 5(11.8,78.7)

(b) Pe∗=2,000

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 5(0.11,0.19) 6(0.48,1.30) 5(2.23,7.14) 8(7.97,30.7) 5(59.8,204.9)
tILU0(0.5, 0.25) 8(0.09,0.18) 7(0.40,1.01) 12(1.82,9.07) 7(9.38,30.1) 8(38.7,174.4)
tILU0(0.5, 0.5) 8(0.09,0.17) 8(0.39,1.01) 8(1.81,6.62) 8(7.91,30.1) 10(38.4,198.8)
Jacobi(0.5) 20(0.03,0.22) 13(0.13,1.00) 9(0.74,6.55) 7(3.70,27.0) 8(18.8,153.4)
GaussSeidel 12(0.03,0.19) 12(0.14,0.96) 8(0.72,5.57) 5(3.67,20.1) 6(28.6,124.9)

(c) Pe∗=10,000

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 4(0.10,0.18) 5(0.47,1.19) 6(2.18,8.36) 6(10.0,37.8) 6(45.7,179.8)
tILU0(0.5, 0.25) 14(0.09,0.23) 13(0.39,1.45) 12(1.78,9.35) 9(8.07,36.5) ×
tILU0(0.5, 0.5) 13(0.08,0.21) 13(0.38,1.36) 12(1.74,8.84) 10(7.95,37.4) 8(33.9,134.5)
Jacobi(0.5) 33(0.03,0.36) 40(0.13,3.02) 26(0.67,17.0) 15(3.56,49.1) 9(16.6,145.7)
GaussSeidel 19(0.02,0.20) 25(0.13,1.85) 22(0.67,13.8) 23(3.56,68.9) 14(17.4,192.9)

range of Pe∗ for which we test the solver to Pe∗ = 10, 000 as the AMG preconditioner

generally performs more robustly for highly convective cases. From Table 4.19 we

can see that the AMG preconditioner has asymptotically optimal scaling with respect

to the problem size for all smoothers and is Pe-robust for tILU0 smoothers for all

values of truncation parameter α ∈ [0, 1]1. However, when using Gauss-Seidel as a

smoother, there is a strong dependence on the iteration counts with respect to Pe∗.

For the highly convective case, Pe∗ = 10, 000, the shortest execution time is recorded

for the tILU0(0.5,0.5) smoother.

In GMG all discrete operators at coarse levels are usually created directly by FE

discretisation of the governing equations on these grids. This has an influence on the

sparsity pattern of the coarse level operators. For example, in the case of a hierarchy

of uniformly refined tensor product quadrilateral grids, Q1 FE approximation, we can

expect at all GMG levels that the matrices will retain a 9-point stencil, that is, each

1We observe a lack of convergence when using tILU0(0.5,0.25) smoother for the case N = 1046529
and Pe∗ = 10, 000.
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row will contain 9 non-zero entries. In the case of classical AMG coarsening this is

frequently not the case. Regular coarsening patterns can only be expected for the

Poisson problem discretised on regular grids. When non-structured grids are used

and/or singular perturbations of the second-order elliptic operators are coarsened by

classical AMG, one can expect that the generated coarse-level representations of the

original matrix will have considerably different characteristics than the original matrix

itself. An essential property of classical AMG coarsening is to generate coarse level

matrices which are much denser than the original coefficient matrix. By inspection

it can be seen that a substantial amount of the off-diagonal entries in coarse level

matrices are very small in magnitude, and thus do not have a substantial contribution

to the matrix properties. This makes them suitable candidates for truncation by

(3.43). This situation is even more pronounced in 3D [8]. The difference in the

matrix properties of the coarse levels in GMG and AMG has led to a switch in the

optimal value for the truncation parameter from α = 0.25 (the best value for the

GMG case) to α = 0.5 for classical AMG.

Table 4.20 shows the efficiency of Solver Strategy 4.3 for Case study 4.2.2. For

Table 4.20: The iteration counts and the (setup,total) execution time (in seconds) required for the
convergence of the GMRES solver right-preconditioned by classical algebraic multigrid V(2,2) cycle
with several smoothers, when applied to the solution of the discrete convection-diffusion problem
(Case study 4.2.2) obtained from Q1 SUPG FEM on uniform grids. Each sub-table represents a
different diffusion parameter. × denotes a lack of convergence within 100 GMRES iterations.

(a) Pe∗=500

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 7(0.16,0.34) 6(0.58,1.62) 6(2.63,10.1) 6(12.1,47.2) 7(39.0,164.8)
tILU0(0.5, 0.25) 8(0.12,0.24) 7(0.47,1.21) 9(2.05,8.54) 10(9.22,43.6) 10(32.7,155.8)
tILU0(0.5, 0.5) 10(0.13,0.27) 9(0.46,1.32) 10(2.01,8.78) 12(9.03,48.5) 11(31.8,156.4)
Jacobi(0.5) 12(0.03,0.19) 10(0.13,0.98) 10(0.70,7.84) 11(3.67,44.5) 11(12.3,154.3)
GaussSeidel 10(0.03,0.16) 8(0.13,0.82) 7(0.73,6.17) 7(3.67,29.3) 8(12.3,106.5)

(b) Pe∗=2000

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 11(0.14,0.41) 10(0.58,2.17) 9(2.44,12.0) 7(10.8,46.9) 7(46.1,191.2)
tILU0(0.5, 0.25) 14(0.12,0.33) 12(0.47,1.68) 11(1.93,9.24) 11(8.30,43.1) 11(35.3,177.7)
tILU0(0.5, 0.5) 16(0.11,0.33) 14(0.46,1.74) 13(1.90,10.0) 11(8.19,41.9) 12(34.9,185.1)
Jacobi(0.5) 24(0.028,0.35) 20(0.12,1.80) 16(0.61,11.2) 12(3.06,43.8) 11(14.2,169.2)
GaussSeidel 17(0.03,0.24) 16(0.12,1.40) 14(0.63,9.82) 10(3.05,35.0) 9(13.5,128.6)

(c) Pe∗=10,000

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 18(0.14,0.55) 21(0.57,3.88) 33(2.46,36.3) × ×
tILU0(0.5, 0.25) 27(0.12,0.52) 33(0.48,4.15) 31(1.97,23.08) 29(8.34,102.6) 22(33.3,323.2)
tILU0(0.5, 0.5) 30(0.11,0.54) 36(0.46,3.94) 30(1.93,21.3) 28(8.29,100.1) 19(33.3,268.2)
Jacobi(0.5) 48(0.03,0.72) 55(0.12,5.24) 47(0.62,32.8) 36(2.87,128.5) 25(12.6,337.9)
GaussSeidel 36(0.03,0.47) 51(0.12,4.55) × × ×

Pe∗ = 500 and 2000 the asymptotic performance of GMRES, for all smoothers, is
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Pe, h-robust. For moderate values of Pe∗ the shortest execution times are obtained

when using Gauss-Seidel smoothing, but for highly-convective flow (Pe∗ = 10, 000)

tILU0(0.5,0.5) smoother has asymptotically the smallest iteration count and exe-

cution time with h-robust performance. A similar performance was also seen for

Case study 4.2.3 reported in Appendix A. A noticeable feature in Table 4.20 when

Pe∗ = 10, 000 is that tILU0, α ∈ (0, 1], smoother is h-robust even when standard

ILU0 and Gauss-Seidel smoothers fail.

In Table 4.21 we present the iteration counts of Solver Strategy 4.3 applied to

discrete problems from Case study 4.2.4. It can be seen that for moderate values of

Table 4.21: The iteration counts and the (setup,total) execution time (in seconds) required for the
convergence of the GMRES solver right-preconditioned by classical algebraic multigrid V(2,2) cycle
with several smoothers, when applied to the solution of the discrete convection-diffusion problem
(Case study 4.2.4) obtained from Q1 SUPG FEM on uniform grids. Each sub-table represents a
different diffusion parameter. × denotes a lack of convergence within 100 GMRES iterations.

(a) Pe∗=500

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 6(0.12,0.25) 6(0.54,1.57) 6(2.35,8.67) 6(11.4,44.2) 6(44.2,170.5)
tILU0(0.5, 0.25) 7(0.10,0.20) 8(0.44,1.21) 8(1.87,7.11) 10(8.62,41.4) 9(33.8,148.7)
tILU0(0.5, 0.5) 9(0.10,0.21) 9(0.44,1.25) 10(1.83,7.95) 11(8.42,42.8) 10(34.0,152.5)
Jacobi(0.5) 9(0.03,0.14) 9(0.13,0.86) 9(0.66,6.80) 10(3.68,39.6) 9(15.0,144.5)
GaussSeidel 7(0.03,0.12) 7(0.13,0.70) 7(0.65,5.49) 7(3.66,28.6) 6(15.3,102.5)

(b) Pe∗=2,000

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 8(0.13,0.31) 8(0.55,1.88) 8(2.42,10.9) 8(10.3,50.1) 8(39.2,187.5)
tILU0(0.5, 0.25) 10(0.11,0.24) 9(0.46,1.41) 9(1.95,8.16) 9(8.16,37.3) 9(32.0,150.7)
tILU0(0.5, 0.5) 12(0.11,0.26) 11(0.44,1.39) 12(1.91,9.58) 11(7.99,41.1) 9(31.9,148.9)
Jacobi(0.5) 12(0.03,0.18) 12(0.13,1.19) 12(0.64,8.85) 11(3.06,40.4) 10(12.6,142.6)
GaussSeidel 9(0.03,0.13) 9(0.12,0.88) 9(0.64,6.62) 8(3.19,31.2) 8(13.2,120.4)

(c) Pe∗=10,000

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 12(0.13,0.37) 13(0.57,2.72) 15(2.47,18.5) 50(10.6,265.) ×
tILU0(0.5, 0.25) 15(0.11,0.31) 15(0.47,2.02) 14(2.00,12.2) 14(8.36,54.3) 12(33.0,190.4)
tILU0(0.5, 0.5) 15(0.11,0.30) 17(0.46,2.23) 16(1.98,12.9) 16(8.16,57.0) 15(32.3,211.2)
Jacobi(0.5) 18(0.03,0.25) 17(0.12,1.66) 16(0.65,11.7) 16(3.05,57.2) 15(12.4,208.9)
GaussSeidel 14(0.03,0.19) 15(0.13,1.40) 14(0.64,10.1) 14(3.04,48.5) 12(12.4,161.3)

Pe∗ all smoothers lead to an AMG preconditioner that is Pe, h-robust. The shortest

execution time is observed when the Gauss-Seidel smoother is used. However, when

Pe∗ is increased further, the ILU0 smoother fails for the largest problem, while other

smoothers remain robust with moderate increase in iteration counts.

The AMG complexity measures CG, CA and CS are now reported for the largest

problem size (N = 1, 046, 529) obtained by discretising Case study 4.2.4. The results

from Table 4.22 show that the grid complexity does not change considerably when

Pe∗ is increased, suggesting a fairly stable coarsening in this case. For the case of
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Table 4.22: Coarsening statistics for Case study 4.2.4 with N = 1, 046, 529 as a function of Pe∗.

Pe∗ 20 500 1,000 5,000 10,000
L 13 20 20 20 20
CG 1.66553 2.12602 2.21301 2.30866 2.35954
CA 2.43924 4.68124 4.85015 4.37539 4.49954
CS 16.9796 30.8793 36.8793 33.4037 34.4232
C

(1)
S 8.98827 8.98827 8.98827 8.98827 8.98827

L is the number of MG levels, CG is the grid complexity, CA is the operator complexity, CS is the
average matrix stencil over all MG levels and C

(1)
S is the average matrix stencil of A at the finest

level.

uniform refinement with full coarsening GMG and direct discretisation of the coarse-

level matrices, CG = CA = 4
3

is expected [10, p.154]. It is clear from Table 4.22 that

AMG has a considerably larger grid complexity than GMG.

In Table 4.22 we can also see that the operator complexity CA depends strongly

on Pe∗ for Pe∗ < 500, and after that it remains relatively constant. The values of

CA ≈ 4.6 indicate that the coarse level matrices are considerably denser than the fine

level matrix. This is clearly visible from the average stencil size CS, for Pe∗ > 500

(which is CS ≈ 34), compared to the average stencil size of A at the finest level

where C
(1)
S = 9. The average stencil for GMG is consistent throughout all MG levels

CS ≈ 9.

In Figure 4.10 we present the truncation ratio (3.40) for the matrix of dimension

N = 1, 046, 529 obtained from Case study 4.2.4 as a function of Pe∗. We can see that
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Figure 4.10: Truncation ratio (3.40) for Case study 4.2.4 with N = 1, 046, 529 as a
function of Pe∗.

both tILU0(0.5,0.25) and tILU0(0.5,0.5) have only marginally more non-zero entries
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than the damped Jacobi smoother. Also compared to the convergence results from

Table 4.21, the performance is also remarkably similar.

Damping parameters

The tILU0 smoother has two parameters, the truncation ratio (α) and damping (γ).

Currently all tests using AMG preconditioning have had γ = 0.5 and we have tested

different values of α on a number of problems and discretisations. We now examine

the impact of the damping parameter on AMG preconditioning by looking at its

performance. For this purpose we consider the following values of γ = 0.5, 2
3
, 0.8 and

1.0.

In Table 4.23 we summarise the convergence results for Case study 4.2.2 with

Pe∗ = 10000. From these results it is clear that ILU0 gives poor performances

regardless of the damping parameter chosen. In the cases of damped Jacobi and

Table 4.23: The iteration counts and the (setup,total) execution time (in seconds) required for
the convergence of the GMRES solver right-preconditioned by algebraic multigrid V(2,2) cycle with
several smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 4.2.2) obtained from Q1 SUPG FEM on uniform grids. Natural (tree-based) ordering of the
unknowns and Pe∗=10000, with each sub-table representing a different damping parameter.

(a) γ = 0.5

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 18(0.14,0.55) 21(0.57,3.88) 33(2.46,36.3) ×
tILU0(0.5, 0.25) 27(0.12,0.52) 33(0.48,4.15) 31(1.97,23.1) 29(8.34,102.6)
tILU0(0.5, 0.5) 30(0.11,0.54) 36(0.46,3.94) 30(1.93,21.3) 28(8.29,100.1)
Jacobi(0.5) 48(0.03,0.72) 55(0.12,5.24) 47(0.62,32.8) 36(2.87,128.5)
GaussSeidel 36(0.03,0.47) 51(0.12,4.55) × ×

(b) γ = 0.666·

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 17 20 43 X
tILU0(0.5, 0.25) 25 30 28 32
tILU0(0.5, 0.5) 27 32 29 25
Jacobi(0.5) 41 48 41 33

(c) γ = 0.8

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 16 21 84 X
tILU0(0.5, 0.25) 24 28 29 42
tILU0(0.5, 0.5) 27 31 28 31
Jacobi(0.5) 38 44 43 88

(d) γ = 1.0

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 16 35 X X
tILU0(0.5, 0.25) 23 27 35 62
tILU0(0.5, 0.5) 34 42 80 X
Jacobi(0.5) X X X X
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tILU0(γ, 0.5) the iteration counts improve marginally when γ = 2
3

is used, compared

to the default parameter (γ = 0.5). However any further increase results in a sig-

nificant increase in the iteration count. The reduction in iteration count leads to a

proportional reduction in the overall execution time (the preconditioner setup cost

remains unchanged). Thus, for Case study 4.2.2 the use of tILU0(
2
3
, 0.5) smoother

within V(2,2) AMG preconditioner leads to the shortest solution time.

In Table 4.24 we report the same experiment for Case study 4.2.4. We see

Table 4.24: The iteration counts and the (setup,total) execution time (in seconds) required for
the convergence of the GMRES solver right-preconditioned by algebraic multigrid V(2,2) cycle with
several smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 4.2.4) obtained from Q1 SUPG FEM on uniform grids. Natural (tree-based) ordering of the
unknowns and Pe∗=10000, with each sub-table representing a different damping parameter.

(a) γ = 0.5

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 12(0.13,0.37) 13(0.57,2.72) 15(2.47,18.5) 50(10.6,265.)
tILU0(0.5, 0.25) 15(0.11,0.31) 15(0.47,2.02) 14(2.00,12.2) 14(8.36,54.3)
tILU0(0.5, 0.5) 15(0.11,0.30) 17(0.46,2.23) 16(1.98,12.9) 16(8.16,57.0)
Jacobi(0.5) 18(0.03,0.25) 17(0.12,1.66) 16(0.65,11.7) 16(3.05,57.2)
GaussSeidel 14(0.03,0.19) 15(0.13,1.40) 14(0.64,10.1) 14(3.04,48.5)

(b) γ = 0.666·

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 11 11 15 53
tILU0(0.5, 0.25) 13 13 13 14
tILU0(0.5, 0.5) 15 15 14 14
Jacobi(0.5) 16 15 14 14

(c) γ = 0.8

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 10 12 16 70
tILU0(0.5, 0.25) 12 13 13 15
tILU0(0.5, 0.5) 14 14 14 13
Jacobi(0.5) 16 14 14 13

(d) γ = 1.0

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 9 12 20 X
tILU0(0.5, 0.25) 12 13 14 29
tILU0(0.5, 0.5) 16 18 19 51
Jacobi(0.5) 16 17 18 91

again that ILU0 smoother leads to an AMG preconditoner which performs poorly

for large problem sizes, regardless of the value of damping parameter. By contrast,

the tILU0(γ, 0.5) solving strategy performs consistently for a wide range of damping

parameters γ ∈ (0.5, 0.8).

In both cases tILU0 can be considered competitive or better smoother than Gauss-

Seidel.
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Number of smoothing sweeps

Here we examine how the number of pre and post smoothing sweeps affects the

convergence of AMG preconditioned GMRES solver. In all cases the damping pa-

rameter γ = 0.5 is used. In Table 4.25 we summarise the results for Case study 4.2.2

with Pe∗ = 10000. For all smoothers, the iteration count decreases as the number of

Table 4.25: The iteration counts and the (setup,total) execution time (in seconds) required
for the convergence of the GMRES solver right-preconditioned by algebraic multigrid with sev-
eral smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 4.2.2) obtained from Q1 SUPG FEM on uniform grids. A constant Pe∗=10000 and natural
(tree-based) ordering of the unknowns, with each sub-table representing a different number of pre
and post smoothing operations.

(a) V (1, 1)

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 21(0.14,0.41) 30(0.57,3.32) 86(2.46,62.06) ×
tILU0(0.5, 0.25) 35(0.12,0.48) 43(0.48,3.49) 41(1.97,22.11) 38(8.34,95.90)
tILU0(0.5, 0.5) 40(0.11,0.50) 49(0.46,3.70) 46(1.93,23.35) 43(8.29,102.1)
Jacobi(0.5) 74(0.03,0.80) 83(0.12,6.20) 67(0.62,36.02) 57(2.87,146.3)
GaussSeidel 50(0.03,0.50) 69(0.12,4.98) 93(0.60,49.76) ×

(b) V (2, 2)

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 18(0.14,0.55) 21(0.57,3.88) 33(2.46,36.3) ×
tILU0(0.5, 0.25) 27(0.12,0.52) 33(0.48,4.15) 31(1.97,23.1) 29(8.34,102.6)
tILU0(0.5, 0.5) 30(0.11,0.54) 36(0.46,3.94) 30(1.93,21.3) 28(8.29,100.1)
Jacobi(0.5) 48(0.03,0.72) 55(0.12,5.24) 47(0.62,32.8) 36(2.87,128.5)
GaussSeidel 36(0.03,0.47) 51(0.12,4.55) × ×

(c) V (4, 4)

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 15(0.14,0.68) 17(0.57,4.89) 21(2.46,42.67) 41(10.53,363.2)
tILU0(0.5, 0.25) 22(0.12,0.66) 26(0.48,4.93) 25(1.97,33.98) 23(8.34,139.17)
tILU0(0.5, 0.5) 24(0.11,0.65) 28(0.46,4.69) 26(1.93,31.96) 21(8.29,118.80)
Jacobi(0.5) 35(0.03,0.83) 42(0.12,6.83) 34(0.62,45.78) 29(2.87,171.19)
GaussSeidel 29(0.03,0.65) 42(0.12,6.60) × ×

smoothing sweeps increases. This trend was also seen in GMG (Tables 4.17 and 4.18).

However, the rate at which the iteration count decreases is not directly proportional

to the to the increase in the number of sweeps; for tILU0(0.5, 0.5) an increase from

1 to 2 sweeps leads to a ∼ 35% reduction in the iteration count. By increasing the

number of sweeps to 4 this leads to a further reduction by only ∼ 25%. The increase

in the number of sweeps results in an increase in the computational cost (execution

time) of performing the preconditioning. Also, in cases when tILU0(0.5, 0.25) and

damped Jacobi smoothers are used this decrease in iteration count is not reflected

in the reduction of the overall solve time. For tILU0(0.5, 0.5) smoother the total

execution time improves marginally when V(2,2) is used instead of V(1,1).
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In Table 4.26 the results of the same experiment for Case study 4.2.4 are reported.

From this table we see roughly the same pattern of behaviour as in Table 4.25. The

Table 4.26: The iteration counts and the (setup,total) execution time (in seconds) required
for the convergence of the GMRES solver right-preconditioned by algebraic multigrid with sev-
eral smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 4.2.4) obtained from Q1 SUPG FEM on uniform grids. A constant Pe∗=10000 and natural
(tree-based) ordering of the unknowns, with each sub-table representing a different number of pre
and post smoothing operations.

(a) V (1, 1)

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 15(0.13,0.31) 16(0.57,1.99) 19(2.47,14.05) 37(10.60,121.)
tILU0(0.5, 0.25) 18(0.11,0.29) 18(0.47,1.67) 17(2.00,9.70) 19(8.36,48.83)
tILU0(0.5, 0.5) 23(0.11,0.31) 24(0.46,1.97) 23(1.98,11.68) 24(8.16,57.76)
Jacobi(0.5) 27(0.03,0.26) 24(0.12,1.73) 23(0.65,11.54) 24(3.05,56.92)
GaussSeidel 18(0.03,0.17) 19(0.13,1.33) 18(0.64,8.65) 18(3.04,40.81)

(b) V (2, 2)

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 12(0.13,0.37) 13(0.57,2.72) 15(2.47,18.5) 50(10.6,265.)
tILU0(0.5, 0.25) 15(0.11,0.31) 15(0.47,2.02) 14(2.00,12.2) 14(8.36,54.3)
tILU0(0.5, 0.5) 15(0.11,0.30) 17(0.46,2.23) 16(1.98,12.9) 16(8.16,57.0)
Jacobi(0.5) 18(0.03,0.25) 17(0.12,1.66) 16(0.65,11.7) 16(3.05,57.2)
GaussSeidel 14(0.03,0.19) 15(0.13,1.40) 14(0.64,10.1) 14(3.04,48.5)

(c) V (4, 4)

Smoother \ N 3969 16129 65025 261121
ILU0(0.5) 10(0.13,0.48) 10(0.57,3.24) 11(2.47,23.31) 38(10.60,338.)
tILU0(0.5, 0.25) 12(0.11,0.40) 12(0.47,2.56) 11(2.00,15.59) 11(8.36,70.38)
tILU0(0.5, 0.5) 13(0.11,0.40) 13(0.46,2.46) 13(1.98,16.38) 12(8.16,71.03)
Jacobi(0.5) 15(0.03,0.35) 14(0.12,2.48) 13(0.65,17.73) 13(3.05,79.92)
GaussSeidel 12(0.03,0.29) 13(0.13,2.18) 12(0.64,15.23) 12(3.04,68.80)

data from Tables 4.25 and 4.26 suggest that V(2,2) cycle is an appropriate choice for

a preconditioner (having in mind the requirements of robustness and minimal total

execution time).

4.4 Parallelisation

The aim of numerical modelling is to produce simulations of increasingly more com-

plex systems and phenomena. For example, modelling three-dimensional problems

with greater accuracy, tackling complex multi-physics systems and performing sim-

ulations of time dependent problems. This aim can be achieved through the de-

velopment of new, sophisticated numerical algorithms and/or increasing speed and

memory capacity. However, progress in this area struggles to keep up with the ever

more complex problems introduced. In such cases a natural progression is to use a

parallel architecture. This approach puts additional requirements on the numerical
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algorithm designers, that is, to develop algorithms that allow efficient parallelisation

and effective implementation of such algorithms on modern parallel architectures.

The most frequently used technique for parallelising numerical algorithms for the

simulation of PDEs is domain decomposition [77, Chapter 14] [20, Section 8.2.7,9].

To solve the linear system (3.1) in parallel we use the solver configuration set out

in Solver Strategy 4.4.

Solver Strategy 4.4

Krylov Method: Hypre GMRES (tolerance 10−6)
Preconditioner: Hypre BoomerAMG

Coarsening:
Classical Ruge-Stüben
Strength of dependence: θ = 0.25

Cycle: V (2, 2)
Smoothers:

Parallel Gauss− Seidel
Block Jacobi ILU0(0.5)
Block Jacobi tILU0(0.5, α)
Parallel Jacobi(0.5)

In Solver Strategy 4.4 parallelism is considered only in the preconditioning step. A

parallel AMG preconditioner BoomerAMG [50] is used from the Hypre library [2] [33].

The code is based on MPI and has several different options for parallel coarsening.

Our experiments, unless stated otherwise, use a standard Ruge-Stüben method that

neglects any connections between the unknowns across the subdomain boundaries.

This approach is effective from an implementation point of view (as it does not require

any interprocessor communication), however this can also result in a reduction in the

efficiency of the preconditioner in some complex cases (e.g. strong convection). A

solution to this is to use three-pass Ruge-Stüben coarsening [50], where a classical

two-pass coarsening method is applied to the interior of each subdomain, followed

by a third pass that affects only the nodes at the subdomain/processor boundaries

(the nodes that have interconnections across the subdomain boundaries). The third

pass of the coarsening algorithm requires interprocessor communication and may also

lead to load imbalance [50]. BoomerAMG also offers other coarsening algorithms,

such as CLJP [14] [50] and Falgout coarsening [50]. The CLJP coarsening algorithm

has an advantage that it always generates the same sequence of coarse operators

regardless of the number of subdomains. The disadvantage of the CLJP coarsening

method is that it produces coarse level operators that are denser than those produced

by the Ruge-Stüben coarsening. The Falgout coarsening is a trade-off between the

two methods, it applies the standard Ruge-Stüben method in the interior of the

subdomains (thus preserving the operator sparsity) and the CLJP coarsening to the
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nodes at the subdomain boundaries (leading to better load balance than three-pass

Ruge-Stüben coarsening) [50].

In the context of parallel smoothers, the Jacobi method is inherently parallel and

the Gauss-Seidel method can be parallelised using red-black ordering [21]. Paralleli-

sation of the ILU0 method is achieved using a block Jacobi approach (see Page 93,

94 for further details) [77, p.378].

In Table 4.27 the convergence results of the above Solver Strategy applied to

Case study 4.2.1, as a function of the number of processors for the problem size

N = 1046529, is shown. From the table we see that parallelisation does not have a

Table 4.27: The iteration counts and the (setup,total) execution time (in seconds) required for
the convergence of the parallel GMRES solver preconditioned by classical algebraic multigrid V(2,2)
cycle with several smoothers, when applied to the solution of the discrete convection-diffusion prob-
lem (Case study 4.2.1) obtained from Q1 SUPG FEM on a uniform grid, with N = 1, 046, 529. Each
sub-table represents a different diffusion parameter.

(a) Pe∗=500

Smoother \ P 1 2 4 8 16
ILU0(0.5) 5(24.8,50.6) 5(13.6,28.5) 5(6.71,14.1) 5(3.72,7.56) 5(1.94,3.84)
tILU0(0.5, 0.25) 8(18.9,39.5) 8(11.1,23.0) 8(5.69,11.7) 9(3.15,6.96) 8(1.62,3.49)
tILU0(0.5, 0.5) 9(18.5,38.1) 10(10.7,22.5) 10(5.28,11.7) 10(3.06,7.22) 10(1.62,3.59)
Jacobi(0.5) 9(9.12,35.4) 9(5.89,19.4) 9(2.84,10.3) 10(1.66,6.11) 9(0.80,3.09)
GaussSeidel 5(9.03,27.4) 6(5.96,19.8) 6(2.94,12.0) 6(1.66,8.16) 6(0.85,6.70)

(b) Pe∗=10,000

Smoother \ P 1 2 4 8 16
ILU0(0.5) 6(33.0,67.3) 6(16.6,33.8) 6(8.81,18.2) 6(4.81,9.40) 6(2.71,5.27)
tILU0(0.5, 0.5) 8(23.2,43.8) 8(12.3,23.2) 8(6.74,12.8) 8(3.68,7.44) 8(2.21,4.04)
Jacobi(0.5) 9(14.0,41.3) 9(7.94,23.0) 9(4.39,12.1) 9(2.52,6.73) 9(1.41,3.77)
GaussSeidel 14(14.1,60.9) 14(7.93,35.2) 15(4.52,23.7) 15(2.44,16.1) 15(1.38,12.3)

negative impact to the iteration counts for all the smoothers considered. However,

there is a lack of convergence in the solver for Pe∗ = 10, 000 when the tILU0(0.5, 0.25)

smoother is used (this is consistent with the result from Table 4.19(c)). An important

consideration in this case is the execution times. For Pe∗ = 500 and P = 1 the best

execution time is obtained when Gauss-Seidel smoother is used. However, parallel

efficiency, of the Gauss-Seidel smoother implemented in BoomerAMG appears to be

relatively poor, and for P ≥ 2 the solver with damped Jacobi smoother performs well

with the shortest execution time. For a larger number of processors both ILU0 and

tILU0 smoothers’ parallel performance exceeds that of the Gauss-Seidel smoother.

For Pe∗ = 10, 000 the best execution times are obtained for the Jacobi smoother, ir-

respectively of the number of processors, closely followed by tILU0(0.5,0.5) smoother.

It is also noticeable that the actual GMRES solver time is shorter when tILU0(0.5,0.5)

smoother is used than when damped Jacobi smoother is used. However, the higher

setup time involved in tILU0(0.5,0.5) results in a marginally worse execution time
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than in the damped Jacobi case. Furthermore, when the number of processors is

increased, the solver with damped Jacobi smoother exhibits, as expected, marginally

better efficiency than the solver with tILU0 smoother.

In Fig 4.11 we present parallel efficiency of Solver Strategy 4.4 as a function of the

number of processors. We can see that Gauss-Seidel smoothing results in a precondi-
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Figure 4.11: Parallel efficiency of GMRES solver with classical AMG preconditioning
for Case study 4.2.1 with N = 1, 046, 529 (a) Pe∗ = 500, (b) Pe∗ = 10, 000.

tioned solver that has very poor parallel scaling when used on more than 2 processors.

By contrast, both Jacobi and ILU0 smoothers show good parallel efficiency, which

does not deteriorate substantially when the number of processors is increased. As

expected, the parallel efficiency of the tILU0 smoother generally lie close to damped

Jacobi and ILU0 smoothing.

The parallelisation of the preconditioned GMRES solver is not that successful for

high values of Pe∗ for Case study 4.2.2. The convergence results are summarised

in Table 4.28. For the lower value of Pe∗ there is a considerable growth in iteration

counts when the number of processors is increased between 1 and 16, with the iteration

counts roughly doubling overall for all smoothers. For Pe∗ = 10, 000, Table 4.28(b),

there is a distinct increase in the iteration counts when multiple processors are used.

In the case of Gauss-Seidel and ILU0 smoothers, the increase in Pe∗ and an increase

in the number of processors, leads to an increase in the iteration count above 100,

therefore these results have not been included in Table 4.28(b). The only smoother

for which the solver converges is tILU0. The reason for such poor convergence of

the solver in parallel lies in the coarsening strategy used. A parallel Ruge-Stüben

coarsening which disregards any connections between the nodes in different subdo-

mains, without any method to compensate for the loss, will eventually begin to lose

its efficiency. In the convection-diffusion cases, this effect is seen in Table 4.28. To



144 CHAPTER 4. TWO-DIMENSIONAL CASE STUDIES

Table 4.28: The iteration counts and the (setup,total) execution time (in seconds) required for
the convergence of the parallel GMRES solver preconditioned by classical algebraic multigrid V(2,2)
cycle with several smoothers, when applied to the solution of the discrete convection-diffusion prob-
lem (Case study 4.2.2) obtained from Q1 SUPG FEM on a uniform grid, with N = 1, 046, 529. Each
sub-table represents a different diffusion parameter.

(a) Pe∗=500

Smoother \ P 1 2 4 8 16
ILU0(0.5) 7(27.5,63.2) 9(13.7,40.5) 11(7.40,25.1) 13(9.24,20.3) 13(2.22,8.31)
tILU0(0.5, 0.25) 10(20.4,45.0) 14(11.1,30.2) 17(5.95,20.0) 20(40.8,49.3) 20(65.7,70.8)
tILU0(0.5, 0.5) 11(20.3,45.9) 16(10.8,30.4) 20(6.22,19.2) 23(3.14,12.8) 22(1.85,6.67)
Jacobi(0.5) 11(9.87,41.7) 15(5.80,29.0) 18(3.23,20.8) 21(1.68,11.5) 21(0.94,6.94)
GaussSeidel 8(9.87,37.8) 11(5.87,29.1) 13(3.24,22.1) 14(1.73,16.0) 14(0.92,12.7)

(b) Pe∗=10,000

Smoother \ P 1 2 4 8 16
tILU0(0.5, 0.25) 22(21.6,83.9) 61(11.2,108.6) 92(6.14,100.9) 89(41.7,85.9) 76(67.8,91.0)
tILU0(0.5, 0.5) 19(21.0,70.8) 61(10.8,97.7) 95(6.08,82.1) 95(3.23,53.6) 83(1.99,23.9)
Jacobi(0.5) 25(9.82,85.3) 69(5.48,125.9) X X 93(1.05,32.1)

rectify the problem we apply a more sophisticated parallel coarsening method.

In Table 4.29 we repeat the tests performed previously for Case study 4.2.2 using

a GMRES solver preconditioned by AMG with Falgout coarsening. The results in

Table 4.29: The iteration counts and the (setup,total) execution time (in seconds) required for
the convergence of the parallel GMRES solver preconditioned by algebraic multigrid with Falgout
coarsening and V(2,2) cycle with several smoothers, when applied to the solution of the discrete
convection-diffusion problem (Case study 4.2.2) obtained from Q1 SUPG FEM on a uniform grid,
with N = 1, 046, 529. Each sub-table represents a different diffusion parameter.

(a) Pe∗=500

Smoother \ P 1 2 4 8 16
ILU0(0.5) 7(28.9,68.0) 8(14.1,38.2) 8(7.25,19.4) 8(3.97,10.9) 8(2.28,5.90)
tILU0(0.5, 0.25) 11(21.6,51.1) 10(11.5,26.8) 10(5.92,13.0) 10(3.29,7.30) 10(1.95,4.15)
tILU0(0.5, 0.5) 12(21.4,50.9) 11(11.3,27.1) 11(5.79,13.0) 11(3.21,7.33) 11(1.95,4.17)
Jacobi(0.5) 11(11.2,46.6) 11(6.30,24.9) 10(3.23,11.4) 11(1.82,6.79) 10(1.04,3.41)
GaussSeidel 8(11.3,37.4) 8(6.40,27.7) 8(3.23,22.5) 8(1.82,19.4) 8(1.06,17.7)

(b) Pe∗=10,000

Smoother \ P 1 2 4 8 16
tILU0(0.5, 0.25) 22(22.7,90.7) 21(12.3,49.2) 20(6.81,23.3) 20(3.56,12.6) 20(2.22,6.96)
tILU0(0.5, 0.5) 19(22.2,75.9) 20(12.0,44.2) 20(6.31,20.9) 19(3.58,11.3) 19(2.26,6.31)
Jacobi(0.5) 25(11.2,95.0) 25(6.66,51.3) 25(3.49,24.7) 24(2.05,13.1) 24(1.26,7.00)

Table 4.29 show a consistent iteration count in all the solvers with respect to an

increasing number of processors. The shortest execution time for Pe∗ = 500 is ob-

served when the Jacobi smoother is used, regardless of the number of processors.

In the highly convective case (Pe∗ = 10000) presented in Table 4.29(b), once again

Gauss-Seidel and ILU0 smoothers are not shown as these smoothers have not facili-

tated GMRES to converge within an acceptable number of GMRES iterations (100
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in our case). This raises the question as to the general capabilities of Gauss-Seidel as

a smoother. In Table 4.29(b), it is clear that the smallest iteration count and shortest

execution time is consistently observed for the tILU0(0.5, 0.5) smoother, regardless

of the number of processors.

In Figure 4.12(a) we present parallel efficiency of the GMRES solver with AMG

preconditioner using Falgout coarsening as a function of the number of processors for

different parallel smoothers for Case study 4.2.2. The efficiency of tILU0 and Jacobi
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Figure 4.12: Parallel efficiency of GMRES solver with AMG preconditioning using
Falgout coarsening with N = 1, 046, 529 and Pe∗ = 10, 000 for (a) Case study 4.2.2,
(b) Case study 4.2.4.

smoothers have improved in comparison to Figure 4.11(a). In Figure 4.12(a) there

is a clear parallel relationship between tILU0(0.5,0.5) and Jacobi. Furthermore the

efficiency of tILU0(0.5,0.25) is asymptotically identical to the Jacobi smoother with

respect to the number of processors.

The convergence characteristics of GMRES/AMG/Gauss-Seidel method are sig-

nificantly more Pe, h-robust for Case study 4.2.4 than for Case study 4.2.2 when

a single processor is used. In Table 4.30 the parallel performance of the GMRES

solver preconditioned with AMG using different smoothers for Case study 4.2.4, as

a function of the number of processors for problem size N = 1046529 is shown.

In Table 4.30(a) Ruge-Stüben coarsening is used. Once again we see a clear de-

pendence in the iteration counts with respect to the number of processors for all

smoothers. In the case of P = 16 the Gauss-Seidel smoother has the same iteration

count as tILU0(0.5,0.25). However the execution time of Gauss-Seidel is three times

larger than tILU0(0.5,0.25). We see that tILU0 is more closely related to the Jacobi

smoother. In Table 4.30(b) Falgout coarsening is used. We observe robust perfor-

mance, with respect to the number of processors, which indicates that the problem
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Table 4.30: The iteration counts and the (setup,total) execution time (in seconds) required for
the convergence of the parallel GMRES solver preconditioned by algebraic multigrid V(2,2) with
several smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 4.2.4) obtained from Q1 SUPG FEM on a uniform grid, with N = 1, 046, 529. A constant
diffusion parameter (Pe∗ = 10, 000), with each sub-table representing a different coarsening strategy.

(a) Ruge-Stüben coarsening

Smoother \ P 1 2 4 8 16
tILU0(0.5, 0.25) 12(22.9,58.5) 15(11.3,35.2) 21(6.91,29.3) 21(3.36,14.2) 38(1.95,11.8)
tILU0(0.5, 0.5) 15(21.1,59.5) 19(11.1,37.3) 26(6.09,26.1) 26(3.12,12.7) 44(1.87,12.0)
Jacobi(0.5) 15(10.4,58.6) 18(5.81,36.1) 26(3.69,32.0) 26(1.78,17.0) 45(0.97,13.5)
GaussSeidel 12(10.4,55.9) 15(5.77,39.5) 21(3.40,35.7) 21(1.80,24.7) 38(0.98,34.7)

(b) Falgout coarsening

Smoother \ P 1 2 4 8 16
tILU0(0.5, 0.25) 12(24.3,68.1) 12(12.5,35.3) 12(6.96,19.8) 11(3.66,9.33) 12(2.20,5.37)
tILU0(0.5, 0.5) 14(23.5,69.5) 14(12.3,36.3) 15(6.84,21.3) 14(3.60,10.2) 15(2.10,5.74)
Jacobi(0.5) 14(12.4,68.5) 14(6.81,34.8) 15(4.00,20.6) 13(1.99,9.25) 15(1.14,5.34)
GaussSeidel 12(12.4,70.2) 12(6.81,38.2) 12(4.02,25.4) 12(1.98,18.3) 12(1.15,13.7)

of poor performance from Table 4.30(a) can be attributed to the poor coarsening

strategy used in this case. The results in Table 4.30(b) show a clear robustness with

respect to the number of processors for all smoothers. Although the solver that uses

Gauss-Seidel smoother has a small iteration count, the execution time in comparison

to all other smoothers is more than double, due to a poor parallel scaling of the

Gauss-Seidel smoother.

In Figure 4.12(b) we present parallel efficiency of the GMRES solver using Falgout

coarsening for Case study 4.2.4. Using Gauss-Seidel smoothing results in a precon-

ditioned solver that has poor parallel scaling, this is consistent with our findings for

Case study 4.2.1, Table 4.11(b). The parallel scaling of tILU0 on the other hand

is very encouraging, as it scales almost as the Jacobi smoother, which is inherently

parallel.

4.5 Performance profile and summary

In summary of this chapter, we studied the iteration count, execution time and par-

allel scaling of MG preconditioned GMRES solver with different smoothers applied

to a number of two-dimensional case studies.

In the case of the diffusion problem the GMG preconditioner generally led to a

marginally lower iteration count, in comparison to AMG given the same parameters

and choice of smoothers. For convection-dominated problems we observed that the

new tILU0 smoother was better in terms of execution time than ILU0 and damped

Jacobi smoothers and competitive with the case when Gauss-Seidel smoother is used.
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The advantage of the tILU0 smoother over Gauss-Seidel was apparent in the case of

recirculating wind (Case study 4.2.2) when no special node ordering is used and in

the case when this problem is discretised by stretched or adaptively refined girds.

When parallel performance of the iterative solver is considered, tILU0 smoother

(including its limiting case, damped Jacobi) exhibited much better scalability than

the Gauss-Seidel smoother, and for the majority ILU0.

To give an overall view of the performance of the smoothers when used in con-

junction with MG preconditioned GMRES we now consider performance profiling

[51, pp.320–327] based on total execution times from this chapter. The performance

profile is plotted as a function of φj(θ) against θ for all solver j, where θ represents a

tolerance (factor of the fastest solver) and φj(θ) the probability of being the fastest

solver within a factor θ of the best performance over all solvers of the given set of

test problems [51, p.320].

In Figure 4.13(a) we find the performance profile of GMG preconditioned GMRES

solver for the largest problem size N with Pe∗ = 500 and 2000 for all tables within this

chapter (from Table 4.2 to Table 4.12). The performance profile shows that Gauss-

Seidel is the fastest solver on 80% of the problems (shown when θ = 1). However,

tILU0(0.5, 0.25) reaches the probability φj(θ) = 1 first given a factor θ = 1.2 of the

fastest solver on every problem. This shows that tILU0(0.5, 0.25) is the more reliable

smoother in the sense of being the least likely to be much slower than the fastest.

Figure 4.13(b) shows the performance profile of AMG preconditioned GMRES

solver for the largest problem size N with Pe∗ = 500 and 10000 for all tables within

this chapter (from Table 4.19 to Table 4.21). For AMG we have concluded that

α = 0.5 is the most appropriate truncation parameter for the tILU0 smoother. In

Figure 4.13(b) we find that Gauss-Seidel is the fastest solver on roughly 60% of the

problems and tILU0(0.5, 0.5) on the remaining problems, in the strictest sense (i.e

θ = 1). By comparing the performance profile of GMG and AMG preconditioned

GMRES solver with Gauss-Seidel smoother, we observe a performance reduction

in the AMG case (i.e Gauss-Seidel is less competitive over all problems). Initially

we must note that we are using larger Pe∗ for the AMG case (Pe∗ = 10000) in

comparison to GMG (Pe∗ = 2000). An explanation for the performance reduction of

AMG with Gauss-Seidel, is that for large Pe∗ Gauss-Seidel fails to converge within

the maximum number of iteration for Case studies 4.2.2 and 4.2.3 compared to tILU0

and Jacobi. If we were to select a solver that has a 75% chance of being within a

factor of roughly 1.5 of the fastest solver then all smoothers are equally successful,

with the exception of ILU0. The severe drop in performance of ILU0 it not only down

to ILU0 failing to converge within the maximum number of iteration on a number

of occasions, but also because the coarse level matrices generated by classical AMG
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Figure 4.13: Performance profile for Case study 4.2.1, 4.2.2, 4.2.3 and 4.2.4, based on
total execution time. GMRES solver with (a) GMG preconditioning (Pe∗=500, 2000),
(b) AMG preconditioning (Pe∗=500, 10000) and (c) Parallel AMG preconditioning
(Pe∗=500, 10000).

are considerably denser than the coefficient matrix (Table 4.22), which makes ILU0

computationally expensive. As θ is increased we find that Jacobi(0.5) is the first

smoother to reach φj(θ) = 1, within a factor of the fastest solver on every problem,

followed by tILU0(0.5, 0.5). This further enforces that Gauss-Seidel is not the most

robust of smoothers we tested and makes a further case for the use of tILU0(0.5, 0.5)

smoother for the AMG preconditioner.

Figure 4.13(c) shows the performance profile of parallel AMG preconditioned GM-

RES solver for the largest problem size N and number of processors P = 1, 2, 4, 8, 16

with Pe∗ = 500 and 10000 for all tables within this chapter (from Table 4.27 to

Table 4.30). As is expected Gauss-Seidel performs poorly in parallel circumstances.

We have seen from Section 4.4 that tILU0(0.5, 0.5) scales well. It is clear from Fig-

ure 4.13(c) that tILU0(0.5, 0.5) is robust with respect to the number of processors,

however this is now reached for a very small factor θ. In conclusion it is clear that

tILU0 smoother is robust and robust with respect to the number of processors for

two-dimensional problems.
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4.6 Floor-driven cavity problem for the Navier-

Stokes equations

In this section we test the effectiveness of the novel smoothing strategy in the context

of block MG preconditioning of the Navier-Stokes equations. The implementation

details of the “floor-driven cavity” problem is from OOMPHLIB [45]. This is an

equivalent problem to lid-driven cavity [31, p.317]. The non leaky boundary condi-

tions used for this case are

-

ux = uy = 0

ux = 0
uy = 0

ux = 1, uy = 0

ux = 0
uy = 0

The solution of the Navier-Stokes equations (2.34) requires finding the unknown

vector velocity field ~u = [ux; uy] and pressure p. In Figure 4.14 we present the solution

of the floor-driven cavity for three different values of Re: (a) 20, (b) 200 and (c) 1000.

The solution is presented as the pressure field (represent as a contour plot) and the

velocity field (represented as streamlines [31, p.216]). In Figure 4.14(a) we see a

recirculating flow in a anti-clockwise direction, with small eddies in the top corner

of the domain. The pressure is fairly constant throughout the domain, with a large

plume representing an increase in pressure around the bottom right corner, due to

the movement of the floor. In Figure 4.14(b) we observe a distinct change in the

position of the central eye of the recirculating flow, and in Figure 4.14(c) we see a

further change in the position of the central eye of the recirculating flow towards the

centre of the domain. In cases when Re > 104 for a two-dimensional case, the flow

becomes unstable, and we begin to observe time periodic states [31, p.317]. That is,

the flow loses its stability via the Hopf bifurcation [31, p.323].

A system of nonlinear equations obtained from FE discretisation of the problem

(2.34) is solved iteratively using Newton’s method (Algorithm 2.1). This linearisation

procedure requires the solution of a linear system at every iteration (Newton step).

The stopping criterion for Newton’s method is implemented in OOMPHLIB as either

the maximum number of Newton steps (10) or when ||(rk
N)||∞ < 10−7 is reached.

When Navier-Stokes problems with high value of Re are solved by Newton’s
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Figure 4.14: Floor-driven cavity problem: velocity streamlines and pressure field
for (a) Re = 20, (b) Re = 200, (c) Re = 1, 000. Discretisation of the problem is
performed using Taylor-Hood elements on a uniformly refined mesh with N = 14, 162
and a zero source term.

method, special care must be taken when selecting an initial solution guess. New-

ton’s method is known to converge quadratically, providing that the current solution

approximation is “sufficiently close” to the true solution [31, p.326]. The “ball of

convergence” of Newton’s method in the Navier-Stokes case has a radius typically

inversely proportional to Re [31, p.326]. This implies that in the case of highly con-

vective flows we need a more accurate initial guess to ensure convergence of Newton’s

method. This can be achieved in two ways. The first is to use a hybrid Picard/Newton

method to solve a nonlinear system. Starting with an arbitrary initial guess (e.g. a

zero vector) we apply a small fixed number of Picard’s iterations to obtain an initial

guess for Newton’s method. The alternative is to apply a version of the continuation

method where we increase gradually the value of Re and solve the problem for each

particular Re, using the solution from the previous continuation step as the initial

guess for the current solve. In our computations we apply pure Newton’s method (as
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no difficulties with convergence are observed in cases we tested). However, we found

experimentally that to obtain a convergent solution with Re > 500, the continuation

method (with increments ∆Re = 100) is needed to obtain a sufficiently good initial

guess of the solution.

We consider an iterative solution strategy for the linear system (2.40). We use

GMRES as a solver, preconditioned by the inexact LSC preconditioner [31, Chap-

ter 8]. In our application the entire momentum block F is approximately inverted

by the “black-box” application of AMG. Although AMG is ideally suited only for

discrete scalar elliptic problems, the assumption is that it will work reasonably well

when applied to the momentum block F . The rationale behind this assumption is that

the main diagonal blocks Fx and Fy in the momentum block are scalar convection-

diffusion matrices, perturbed by the Newton blocks Wxx and Wyy (2.44). In the LSC

approximation of the Schur complement S = BF−1BT , given by

S̃ = (BM−1
u BT )(BM−1

u FM−1
u BT )−1(BM−1

u BT ),

with Mu as a velocity mass matrix [31, p.347]. The matrix block BM−1
u BT , is spec-

trally equivalent to the pressure Poisson operator Dp [31, p.348], and is inverted

approximately by MG. Then the preconditioning step at each GMRES iteration re-

quires the approximate solution of a linear system (4.14):

z r




Fx + Wxx Wxy

Wyx Fy + Wyy

0 0

BT
x

BT
y

−S̃




︷ ︸︸ ︷


zx

zy

zp


 =

︷ ︸︸ ︷


rx

ry

rp


 .

(4.14)

The solution of the system (4.14) is achieved by a block back substitution. With

each Newton step the only change to the momentum block is the Newton derivative

contribution W . In (4.14) [rx, ry, rp]
T is the linear residual, at the current GMRES

iteration (rk = R(X)− J(X)δX
k
).

We apply Gauss-Seidel smoother in MG approximation of the pressure Poisson

operators BM−1
u BT in S̃ and test the efficiency of a variety of smoothers in MG

approximation of the momentum block F . In the case of the tILU0 smoother we test

two levels of truncation, α = 0.25 and α = 0.5. Thus, to solve the linear system (4.14)

at each Newton step we use the solver configuration set out in Solver Strategy 4.5.

In Table 4.31 we present the average values of the iteration counts of the precon-

ditioned GMRES solver and the setup/total execution times over the entire course of

Newton steps. In all tests, the average step counts do not entirely reflect the full pic-

ture, as the iteration counts at the first Newton step are always considerably smaller
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Solver Strategy 4.5

Krylov Method: GMRES (tolerance 10−6)
Preconditioner: LSC

Pressure Poisson Block Dp: Hypre BoomerAMG
Coarsening:

Classical Ruge-Stüben
Strength of dependence: θ = 0.25

Cycle: V (2, 2)
Smoothers:

Gauss− Seidel
Momentum Block F : Hypre BoomerAMG

Coarsening:
Classical Ruge-Stüben
Strength of dependence: θ = 0.25

Cycle: 2 ∗ V (2, 2)
Smoothers:

Gauss− Seidel
ILU0(γ)
tILU0(γ, α)
Jacobi(γ)

Table 4.31: The iteration counts and the (setup,total) execution time (seconds) required for the
convergence of the GMRES solver preconditioned by the LSC preconditioner applied to the discrete
Navier-Stokes problem obtained by the Q2-Q1 discretisation of Case study 4.6. The convection-
diffusion block within the momentum block are preconditioned by a V(2,2) cycle of classical AMG
and a variety of smoothers (damping γ = 0.5 is used).

(a) Re=200

Smoother \ N(Grid) 3482(20× 20) 14162(40× 40) 32042(60× 60) 57122(80× 80)
ILU0(0.5) 20(0.36,2.84) 30.5(1.78,29.7) 42.5(4.36,101.6) 56.2(8.25,255.9)
tILU0(0.5, 0.25) 26.5(0.23,1.77) 42.2(1.14,21.5) 62.8(2.84,82.5) 87.6(5.27,228.4)
tILU0(0.5, 0.5) 28.3(0.22,1.77) 44.2(1.17,22.0) 65.3(2.90,87.6) 90.6(5.19,227.7)
Jacobi(0.5) 27.3(0.16,1.77) 42.3(0.87,20.8) 62.7(2.18,90.2) 87.2(4.21,247.0)
GaussSeidel 22.2(0.15,1.42) 35(0.89,17.5) 51.7(2.21,75.5) 70.8(4.21,200.5)

than the average. The lowest iteration counts in Table 4.31 are seen when AMG pre-

conditioner with the ILU0 smoother is used for F , and the shortest execution times

are seen in the case of Gauss-Seidel smoothing. Using tILU0 as a smoother results in

execution times that are 10% shorter than for the preconditioner using either ILU0

or Jacobi smoothers.

In Table 4.32, we report the convergence characteristics of the preconditioned

GMRES solver without damping (γ = 1.0) for the ILU0/tILU0/Jacobi smoothers.

The results are presented for three different values of Re. For these cases Newton’s

method converges roughly in 3, 6 and 8 steps respectively. For completeness, we

also present the convergence characteristics of the GMRES solver with the exact

LSC preconditioner (i.e. where all the inverse blocks in the LSC preconditioner
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Table 4.32: The iteration counts and the (setup,total) execution time (seconds) required for the
convergence of the GMRES solver preconditioned by the LSC preconditioner applied to the discrete
Navier-Stokes problem obtained by the Q2-Q1 discretisation of Case study 4.6. The convection-
diffusion block within the momentum block are preconditioned by a V(2,2) cycle of classical AMG
and a variety of smoothers (damping γ = 1.0 is used). Each sub-table represents a different value
of the Reynolds number.

(a) Re=20

Smoother \ N 3482 14162 32042 57122 89402
Grid (20× 20) (40× 40) (60× 60) (80× 80) (100× 100)
ILU0(1.0) 10.7(0.35,1.62) 20(1.83,20.4) 30(4.68,80.3) 41(8.63,201.4) 53(12.6,337.6)
tILU0(1.0, 0.25) 17.3(0.22,1.12) 33(1.21,17.0) 51.3(3.04,75.4) 69.7(5.71,194.2) 91.7(8.17,337.1)
tILU0(1.0, 0.5) 20.7(0.22,1.23) 39(1.24,21.1) 59.3(3.05,83.0) 83.3(5.84,228.0) 107.7(8.15,388.5)
Jacobi(1.0) 16.3(0.16,1.05) 31.7(1.00,16.9) 49(2.48,76.8) 68(4.13,172.1) 88(6.64,358.8)
GaussSeidel 16(0.17,1.07) 31(0.97,16.0) 46.3(2.44,72.7) 65(4.13,162.6) 85.3(6.70,346.6)
Direct 9(0.39,0.55) 11(7.12,8.64) 12.7(23.9,28.5) 13.7(69.8,80.1) 15(151.8,171.4)

(b) Re=200

Smoother \ N 3482 14162 32042 57122 89402
Grid (20× 20) (40× 40) (60× 60) (80× 80) (100× 100)
ILU0(1.0) 19.8(0.35,2.85) 29.3(1.79,30.5) 39.5(4.74,108.) 50.8(8.06,217.6) 65.8(12.8,443.8)
tILU0(1.0, 0.25) 23.3(0.24,1.67) 37.3(1.20,21.1) 54.5(3.00,83.7) 75.8(5.06,182.3) 93.8(8.91,396.8)
tILU0(1.0, 0.5) 26.7(0.23,1.74) 42.7(1.19,22.6) 63.7(3.03,95.2) 89.2(4.99,210.5) 112.6(7.89,438.9)
Jacobi(1.0) 23(0.16,1.61) 36(0.89,18.4) 53(2.37,86.3) 72.8(3.98,192.9) 94.8(6.89,407.7)
GaussSeidel 22.2(0.16,1.44) 35(0.95,18.4) 51.7(2.33,82.1) 70.8(4.07,187.2) 92.6(6.51,393.7)
Direct 18.7(0.39,0.72) 22.2(7.12,10.2) 25.3(23.9,33.0) 26.2(69.8,89.2) 28.6(157.1,206.9)

(c) Re=400

Smoother \ N 3482 14162 32042 57122 89402
Grid (20× 20) (40× 40) (60× 60) (80× 80) (100× 100)
ILU0(1.0) 30.1(0.34,3.91) 35.6(1.74,32.4) 44.3(4.19,99.2) 56.9(7.84,240.1) X
tILU0(1.0, 0.25) 34.3(0.21,2.16) 44.3(1.11,21.7) 59.9(2.68,73.9) 79.1(5.01,191.6) 102.1(7.89,393.9)
tILU0(1.0, 0.5) 53.9(0.21,3.18) 49.3(1.11,23.4) 67(2.68,84.1) 89.9(4.99,213.4) 117(8.06,468.2)
Jacobi(1.0) 60.3(0.15,3.70) 43.3(0.83,21.0) 58.3(2.08,80.4) 76.3(3.96,203.4) 98.1(6.41,442.2)
GaussSeidel 53.1(0.15,3.19) 42.1(0.84,20.0) 56.4(2.08,76.8) 74(3.95,194.1) 95(6.76,446.1)
Direct 28.4(0.39,0.90) 29.6(7.12,11.1) 32.6(23.9,35.6) 35.4(69.7,96.1) 38.1(151.8,200.6)

are performed exactly using a direct solver). In Table 4.32 we see that there is

a considerable increase in iteration counts when the mesh is refined with constant

Re. This trend is observed for all values of Re that are tested. However, it was

observed that mesh dependence is reduced as the number of V-cycles, applied to the

approximate inverse of the momentum block, increases. Taking more than two MG

V-cycles, however, leads to an increase in the total execution time. For a fixed grid,

the iteration counts grow as Re is increased. These trends are present in both the

exact and inexact LSC preconditioners. For the inexact LSC preconditioner the best

execution times are observed when tILU0(0.5,0.25) as a smoother is used, closely

followed by Gauss-Seidel and Jacobi smoothers.

If we compare Tables 4.31 and 4.32(b) (the results for Re = 200 obtained for

damped (γ = 0.5) and undamped (γ = 1) versions of ILU0/tILU0/Jacobi smoothers),
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we see that slightly lower iteration counts are observed when γ = 1. This is contrary

to the case of scalar discrete convection-diffusion problems, where much better conver-

gence results are obtained when the smoothers are damped. A potential explanation

for this is the fact that in the Navier-Stokes case MG is applied to the entire mo-

mentum block, which represents a vector-valued problem. Also, in addition to the

convection-diffusion operators, the momentum block contains the Newton derivative

blocks W , which may have a negative impact on the performance of MG (see [31,

p.357, p.361]). We also remark that the convection-diffusion operators in the mo-

mentum block are discretised using standard Galerkin FEM, which can also have a

detrimental effect on the MG performance if a sufficiently fine grid is not used.

In conclusion, the new smoother shows potential in the context of block precondi-

tioning of the Navier-Stokes equations. However, further tests are needed on various

model and realistic problems to obtain a more complete picture of the effectiveness

and competitiveness of the new tILU0 smoother in the context of fluid mechanics

problems.



Chapter 5

Three-Dimensional Case Studies

A natural extension to the numerical study from the previous chapter is to test

the new smoothing technique, tILU0, on a range of three-dimensional convection-

dominated problems. In this chapter we present the results of a comprehensive nu-

merical evaluation of the tILU0 smoothing technique for multigrid preconditioning

performed on a number of discrete convection-diffusion problems in three spacial

dimensions.

The main consequence of moving to a higher spacial dimension is that, for the same

grid resolution, the resulting linear system and the matrix stencils are considerably

larger. That is, a Q1 discretisation on a uniform tensor product grid in 2D produces

a coefficient matrix with a 9 point stencil. In the same context, a 3D problem will

have a matrix stencil of size 27. This increase in both the problem size and the

number of non-zero entries in the coefficient matrix may have a significant effect on

the computational overhead and parallel performance of the algorithm used to solve

the linear system. We introduce two case studies in three spacial dimensions that

represent direct extensions of the Case studies 4.2.1 and 4.2.2. All the plots of the

solutions in 3D are given as a sequence of two-dimensional surface plots at a distance

of 0.05, 0.5 and 0.95 from the side walls.

In this chapter we test the Krylov solver initially with GMG as a preconditioner

with either default or lexicographical node ordering. In Section 5.2 we test classical

AMG as a preconditioner, and in Section 5.3 we evaluate the parallel performance of

classical parallel AMG as a preconditioner. The primary objective in this chapter is

to evaluate the effectiveness, the performance and the spacial robustness (robust with

an additional requirement that performance is consistent over spacial dimensions) of

the MG preconditioner with the novel tILU0 smoother. The evaluation consists of

comparing the tILU0 smoother with the results obtained using the limiting cases of

tILU0 smoother (point Jacobi and ILU0) as well as the standard point symmetric

Gauss-Seidel smoother with reflection on the previous results in Chapter 4.

155
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5.1 Geometric multigrid preconditioning of the

convection-diffusion problem

In this section we present the convergence results, obtained from solving the sys-

tems of linear equations that arise in the SUPG FEM discretisation of two different

convection-diffusion problems in three spacial dimensions. The linear solvers used in

this section have the same configuration as in the two-dimensional cases. That is,

GMRES method preconditioned with GMG which uses several different smoothers

(Solver Strategy 4.2). This allows a direct comparison of the linear solvers’ behaviour,

when the spacial dimension is increased. The efficiency of the preconditioners are ex-

amined on a range of different problem parameters and different discretisations.

5.1.1 Constant uni-directional wind

This case represents a convection-diffusion model (2.7) for temperature distribution

on a cube domain Ω = [0, 1]3. We set one boundary (x = 1) to be hot (u = 1), and

the remaining boundaries are assigned to homogeneous Dirichlet BCs as follows:

u(x = 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1) = 1 (hot wall)

u = 0 , elsewhere on ∂Ω (cold wall).
(5.1)
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The convection field is uniform and uni-directional in the negative x-direction (~w =

(−1, 0, 0)) and is presented as an arrow plot in Figure 5.1(a).

In Figure 5.1(b)(c)(d) the solution u is depicted as contour plot slices for Pe∗ = 0,

500 and 10, 000 respectively, assuming a zero source term (f = 0). From Figure 5.1

we can see that the increase in Pe∗ leads to the creation of steep solution layers near

all “cold” walls.
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(a) (b)

(c) (d)

Figure 5.1: The convection-diffusion problem (Case study 5.1.1): constant, uni-
directional wind ~w = (−1, 0, 0), no source term (f = 0); (a) Arrow plot of the
wind. (b) the solution for Pe∗ = 0, (c) the solution for Pe∗ = 500, (d) the solution
for Pe∗ = 10, 000.

Uniform grid refinement

This is the simplest case of discretisation, where a tensor product grid of brick el-

ements is constructed and the convection-diffusion problem (2.7) with BCs (5.1) is

discretised using SUPG FEM with trilinear approximation Q1 [31, p.26]. Further-

more, a default (tree-based) nodal ordering is used [45].

In Table 5.1 we summarise the performance of Solver Strategy 4.2 for Case study

5.1.1 with default ordering. When ILU0(0.5) smoother is used, the results from the

table show that the iterative solver performs Pe, h-robust. This was also the case in

2D (see Table 4.2). However, large computational cost associated with the assembly

of the smoother makes this approach not competitive in 3D. When tILU0 is used as

a smoother, for this example, it appears that there is little difference in the perfor-

mance of the iterative solver for the two different levels of truncation that are tested
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Table 5.1: The iteration counts and the (setup,total) execution time (in seconds) required for the
convergence of the GMRES solver right-preconditioned by geometric multigrid V(2,2) cycle with
several smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 5.1.1) obtained from Q1 SUPG FEM on uniform grids. Natural (tree-based) ordering of the
unknowns, with each sub-table representing a different diffusion parameter.

(a) Pe∗=500

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 4(0.89,1.00) 5(7.14,8.82) 6(58.5,79.8) 6(524.1,695.6)
tILU0(0.5, 0.25) 8(0.89,0.93) 7(7.14,7.58) 8(58.7,64.5) 8(513.1,562.9)
tILU0(0.5, 0.5) 8(0.89,0.94) 7(7.14,7.58) 8(58.8,64.6) 11(512.9,578.2)
Jacobi(0.5) 16(0.89,0.99) 17(7.13,8.50) 18(58.6,77.8) 17(511.8,656.1)
GaussSeidel 8(0.89,0.94) 6(7.12,7.56) 5(58.5,63.7) 5(510.8,552.0)

(b) Pe∗=1,000

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 4(0.89,0.99 5(7.13,8.81) 6(58.8,80.2) 6(511.9,683.5)
tILU0(0.5, 0.25) 9(0.90,0.94) 8(7.15,7.64) 9(59.0,65.3) 8(511.4,561.3)
tILU0(0.5, 0.5) 9(0.89,0.94) 8(7.13,7.64) 9(59.1,65.5) 8(524.1,576.8)
Jacobi(0.5) 18(0.89,1.00) 21(7.13,8.80) 24(58.8,84.1) 21(512.5,689.4)
GaussSeidel 9(0.89,0.93) 9(7.12,7.76) 7(58.8,65.9) 6(513.3,561.5)

(c) Pe∗=2,000

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 4(0.89,1.00) 5(7.13,8.80) 5(58.5,76.8) 6(520.0,695.6)
tILU0(0.5, 0.25) 10(0.89,0.94) 10(7.13,7.74) 10(58.5,65.6) 10(518.5,581.8)
tILU0(0.5, 0.5) 10(0.89,0.94) 10(7.14,7.75) 10(58.7,65.5) 10(522.1,586.6)
Jacobi(0.5) 20(0.90,1.01) 29(7.13,9.47) 49(58.8,112.1) 43(518.6,908.4)
GaussSeidel 10(0.89,0.93) 12(7.12,7.94) 10(58.4,68.1) 7(517.2,574.9)

(α = 0.25 and 0.5). Comparable execution times in both cases suggest approximately

the same level of truncation of non-zero entries in the MG operators’ hierarchy. The

iterative solver with tILU0 as a smoother shows h-robust and a minor deterioration

in performance with respect to Pe∗. Also, the execution times for tILU0 are approx-

imately 15% shorter than when ILU0 is used. When Jacobi smoothing is used, the

resulting iterative solver exhibits dependence in iteration counts both with respect to

the problem size and Pe∗. This makes the solve strategy with the Jacobi smoother

less competitive in terms of the execution time than when either ILU0 or tILU0 are

used as smoothers for the convection-dominated case. This characteristic of the Ja-

cobi smoother for uni-directional wind was also seen in 2D (see Table 4.2). When

Gauss-Seidel smoother is used, the resulting iterative solver is h-robust and exhibits

mild dependence on Pe∗. In terms of the execution times, the best performance

is seen from the solvers with GMG preconditioned Gauss-Seidel or tILU0(0.5,0.25)

smoothers.
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Lexicographical nodal ordering in a negative x-direction

In Case study 4.2.1 different nodal orderings can have a considerable impact to the

performance of some smoothers, and subsequently, the resulting preconditioned iter-

ative solvers (for downwind results see Table 4.4, other nodal ordering results are not

included in the thesis).

In Table 5.2 we summarise the iteration counts of Solver Strategy 4.2 with lexi-

cographical ordering of the nodes in a negative x-direction. For Case study 5.1.1 this

Table 5.2: The iteration counts and the (setup,total) execution time (in seconds) required for
the convergence of the GMRES solver right-preconditioned by geometric multigrid V(2,2) cycle
with several smoothers, when applied to the solution of the discrete convection-diffusion problem
(Case study 5.1.1) obtained from Q1 SUPG FEM on uniform grids. The lexicographical ordering
of the unknowns in the negative x-direction, with each sub-table representing a different diffusion
parameter.

(a) Pe∗=500

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 7(0.89,1.22) 8(7.28,12.0) 8(59.3,108.0) 7(554.5,946.0)
tILU0(0.5, 0.25) 10(0.89,0.96) 11(7.28,8.05) 10(59.4,67.5) 10(545.7,623.4)
tILU0(0.5, 0.5) 10(0.90,0.96) 11(7.27,8.04) 10(59.5,67.7) 11(546.1,622.0)
Jacobi(0.5) 16(0.89,0.99) 17(7.13,8.50) 18(58.6,77.8) 17(511.8,656.1)
GaussSeidel 8(0.89,0.94) 9(7.24,7.83) 7(59.1,64.8) 6(541.2,589.4)

(b) Pe∗=1,000

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 7(0.89,1.22) 9(7.25,12.5) 11(59.4,124.2) 9(544.4,1034)
tILU0(0.5, 0.25) 12(0.90,0.98) 13(7.28,8.20) 12(59.5,69.1) 11(548.9,633.9)
tILU0(0.5, 0.5) 12(0.90,0.97) 13(7.27,8.17) 12(59.5,69.2) 11(542.7,627.9)
Jacobi(0.5) 18(0.89,1.00) 21(7.13,8.80) 24(58.8,84.1) 21(512.5,689.4)
GaussSeidel 10(0.90,0.94) 12(7.25,8.03) 10(59.3,67.2) 8(543.4,605.2)

(c) Pe∗=2,000

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 7(0.89,1.22) 10(7.24,13.0) 13(59.5,135.4) 12(548.8,1197)
tILU0(0.5, 0.25) 13(0.90,0.98) 16(7.25,8.36) 15(59.5,71.5) 14(546.4,654.5)
tILU0(0.5, 0.5) 13(0.89,0.97) 16(7.28,8.40) 15(59.5,71.4) 14(551.0,661.1)
Jacobi(0.5) 20(0.90,1.01) 29(7.13,9.47) 49(58.8,112.1) 43(518.6,908.4)
GaussSeidel 10(0.89,0.94) 15(7.24,8.25) 15(59.5,71.1) 11(564.8,652.8)

corresponds to a downwind nodal ordering. Comparing the iteration counts between

Table 5.1 and Table 5.2, we observe that the iteration counts in the latter case are

larger (except for the Jacobi smoother that is insensitive to nodal ordering). More-

over, in the latter case we observe that the resulting solvers exhibit more dependence

on Pe∗. The largest dependence on Pe∗ is observed in the case of the ILU0 smoother.

In the context of execution time, the Gauss-Seidel smoother leads to an iterative

solver with the best performance, however for higher values of Pe∗, tILU0(0.5,0.25)

smoother becomes competitive.
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5.1.2 Double glazing problem - recirculating wind

We consider a generalisation of the double-glazing problem from Case study 4.2.2,

with the convection-diffusion equation (2.7) posed over the unit-cube domain Ω =

[0, 1]3 and the convection field consisting of a clockwise circulation along the z-axis.

The boundary plane x = 1 is regarded as “hot” (u = 1), while all other boundaries

have zero Dirichlet BCs:

u(x = 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1) = 1 (hot wall)

u = 0 , elsewhere on ∂Ω (cold wall).
(5.2)

½
½

½
½½

½
½
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½½

½
½

½
½½

u = 0

u = 0
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u = 0

u = 1
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z

- y
½½=
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The convection flow used in this case is given by

~w = (2x(1− x)(2y − 1)z,−(2x− 1)y(1− y),−(2x− 1)(2y − 1)z(1− z)). (5.3)

This is represented as an arrow plot in Figure 5.2(a). In Figure 5.2 we also present

the solution u for three different values Pe∗ = 0, 500 and 10000, with zero source

term (f = 0). For this case we examine the performance of the MG preconditioner in

the context of the multi-directional lexicographical ordering of the nodes as well as

the default (tree-based) ordering. In addition, the increase in the number of spacial

dimensions inevitably leads to the increase in the computational cost of smoothing

with multi-directional lexicographical ordering.

In Table 5.3 we summarise the convergence characteristics of Solver Strategy 4.2

for Pe∗ = 500 using different orderings for the unknowns. In part(a) of the table

we consider default (tree-based) ordering and use MG V(2,2) cycle. We see that

all smoothers lead to a h-robust iterative solver, where the smallest iteration counts

are observed for ILU0 and Gauss-Seidel smoothers, and the shortest execution times

are obtained when Gauss-Seidel and tILU0(0.5,0.25) smoothers are used. In part(b)

we consider x-directional lexicographical ordering and MG V(6,6) cycle. The reason

for this choice of sweeps is that we want to have comparable computational cost of
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(a) (b)

(c) (d)

Figure 5.2: The convection-diffusion problem (Case study 5.1.2): recirculating wind
(5.3), no source term (f = 0); (a) Arrow plot of the wind. (b) the solution for
Pe∗ = 0, (c) the solution for Pe∗ = 500, (d) the solution for Pe∗ = 10, 000.

the preconditioner with the subsequent cases when multi-directional ordering is used

(parts (c) and (d) of the table). We see that this choice of ordering and preconditioner

leads to a h-robust solver, irrespectively of the choice of smoother. The shortest

execution time is observed for the case when the Gauss-Seidel smoother is used.

The tILU0 smoothers lead to roughly 50% shorter execution time than when ILU0

smoother is used. Also, we see, that the GMG V(6,6) cycle as a preconditioner

with x-directional lexicographical ordering yields longer execution times than those

obtained for GMG V(2,2) cycle as a preconditioner with default ordering.

In part(c) of Table 5.3 we report multi-directional forward lexicographical order-

ing (xyz-xyz) and MG V(6,6) cycle. We see that only ILU0 smoother has slightly

lower iteration counts, compared to the previous case, while all other smoothers show

the same efficiency in both cases, with the relative relations between the execution

times remaining roughly the same. Part(d) of the table presents the results for 6-

directional lexicographical ordering made up of forward and backward sweeps in all
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Table 5.3: The iteration counts and the (setup,total) execution time (in seconds) required
for the convergence of the GMRES solver right-preconditioned by geometric multigrid with sev-
eral smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 5.1.2) obtained from Q1 SUPG FEM on uniform grids. A constant diffusion parameter
(Pe∗ = 500), with each sub-table representing a different ordering of the unknowns.

(a) OOMPHLIB natural ordering; MG V-cycle V(2,2)

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 6(0.89,1.04) 6(7.15,9.10) 6(58.9,80.4) 6(526.3,698.6)
tILU0(0.5, 0.25) 9(0.89,0.94) 10(7.16,7.77) 10(58.9,65.8) 9(515.0,568.4)
tILU0(0.5, 0.5) 12(0.89,0.96) 12(7.16,7.85) 12(59.0,67.0) 11(516.6,581.1)
Jacobi(0.5) 15(0.89,0.98) 15(7.14,8.33) 14(58.9,73.9) 13(515.9,627.7)
GaussSeidel 6(0.89,0.93) 6(7.14,7.58) 6(58.6,64.8) 5(514.6,556.1)

(b) x-directional ordering ; MG V-cycle V(6,6)

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 4(0.91,1.46) 4(7.56,14.8) 4(64.5,139.9) 4(596.4,1247.)
tILU0(0.5, 0.25) 5(0.91,0.98) 6(7.57,8.42) 6(64.7,74.0) 6(598.5,683.3)
tILU0(0.5, 0.5) 6(0.91,0.99) 7(7.58,8.48) 6(64.7,73.7) 6(594.2,678.9)
Jacobi(0.5) 8(0.90,1.02) 7(7.14,8.54) 7(57.7,76.6) 7(532.8,701.8)
GaussSeidel 4(0.91,0.95) 4(7.56,8.01) 4(64.1,71.9) 4(588.1,659.4)

(c) xyz-forward-directional ordering; MG V-cycle V(6,6)

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 3(0.92,1.36) 3(7.55,13.5) 3(64.4,124.2) 3(598.2,1124)
tILU0(0.5, 0.25) 5(0.91,0.98) 6(7.59,8.46) 6(64.3,73.5) 6(599.9,685.6)
tILU0(0.5, 0.5) 6(0.91,0.99) 7(7.58,8.48) 6(64.4,73.2) 6(598.9,684.6)
Jacobi(0.5) 8(0.90,1.02) 7(7.14,8.54) 7(57.7,76.6) 7(532.8,701.8)
GaussSeidel 4(0.91,0.96) 4(7.56,8.05) 4(63.9,71.7) 4(591.0,667.0)

(d) xyz-forward-xyz-backward-directional ordering; MG V-cycle V(6,6)

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 3(0.91,1.36) 3(7.57,13.6) 3(64.6,125.8) 3(597.6,1132)
tILU0(0.5, 0.25) 5(0.91,0.98) 6(7.60,8.47) 6(64.6,73.9) 6(599.8,685.9)
tILU0(0.5, 0.5) 6(0.91,0.99) 7(7.62,8.53) 6(64.7,73.7) 6(595.5,681.2)
Jacobi(0.5) 8(0.90,1.02) 7(7.14,8.54) 7(57.7,76.6) 7(532.8,701.8)
GaussSeidel 3(0.92,0.95) 4(7.57,8.14) 4(64.1,71.9) 4(590.1,666.9)

(e) “Black-box” ordering (HSL MC13 Tarjan’s algorithm); MG V-cycle V(2,2)

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 7(0.91,1.24) 7(7.71,12.2) 6(86.5,124.3) 6(2661.0,3015.1)
tILU0(0.5, 0.25) 10(0.91,0.97) 10(7.72,8.41) 10(86.7,93.5) 10(2646.4,2715.0)
tILU0(0.5, 0.5) 12(0.91,0.98) 12(7.71,8.47) 12(86.7,94.5) 11(2602.5,2677.2)
Jacobi(0.5) 15(0.89,0.98) 15(7.14,8.33) 14(58.9,73.9) 13(515.9,627.7)
GaussSeidel 7(0.90,0.94) 6(7.72,8.11) 6(86.5,91.3) 6(2670.1,2715.8)

three Cartesian directions. Both the iteration counts and the execution times look

remarkably similar to the previous case. We see no particular difference in the results

reported for three different nodal orderings (part(b), (c), and (d) of the table)). This

was also the case for the 2D counterpart of this problem (see Table 4.5).

Finally, in part(e) of Table 5.3 we present “black-box” ordering (where the lookup
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vector is constructed from the application of Tarjan’s algorithm to the convective

part C of the matrix A). As in the 2D case we use the HSL application of Tarjan’s

algorithm [82] (the routine HSL MC13 [1]). Furthermore, we use GMG V(2,2) cycle as a

preconditioner. Comparing these results with part(a) of the table, we see a remarkable

similarity in terms of the iteration counts. However, a considerable overhead in terms

of the execution time, observed in the case of “black-box” ordering, can be attributed

to the time taken by calculating a matrix permutation by the HSL routine. This

considerable overhead in terms of the execution time is also seen in the 2D case

(Table 4.5), however, the iteration counts for all types of smoothers is worse (in 2D)

when “black-box” nodal ordering compared to when default ordering is used.

In Table 5.4 we present the convergence results for Pe∗ = 2000 for the same set of

solver parameters. In all cases we observe h-robust preconditioned iterative solvers.

In the case of default nodal ordering the most competitive solvers are obtained when

Gauss-Seidel and tILU0(0.5,0.25) smoothers are used (as was seen for Pe∗ = 500).

The solvers that are Pe-robust are found when ILU0 and tILU0(0.5,0.25) are used as

smoothers. When smoothers based on directional or multi-directional lexicographical

ordering of the nodes are used (part(b), (c) and (d) of Table 5.4), the resulting iter-

ative solvers with ILU0, tILU0(0.5,0.25) and Gauss-Seidel smoothers perform Pe, h-

robust. As in the case Pe∗ = 500, the use of “black-box” ordering based on Tarjan’s

algorithm does not produce any improvement in terms of the iteration counts, when

compared to default ordering.

Truncation statistics

When discretisation of the convection-diffusion problem (3.1) is performed on uni-

formly refined grids, the resulting coefficient matrices A have the same number of

non-zero entries, irrespectively of the problem. Numerical values of these non-zero

entries, however, depend on the convective field ~w used in a particular problem, as

well as on Pe∗. These two parameters have a crucial effect on the non-zero pattern

of truncated matrix Ã, obtained using (3.43).

With each further level of uniform grid refinement in 3D the discrete problem size

increases by a factor of 8 (asymptotically). Moreover, the connectivity pattern in Q1

approximation gives a stencil size (number of non-zero per row) of 27. This implies

that in the case of the Jacobi smoothing the truncation ratio should be approximately
NNZ( eA)
NNZ(A)

= 1
27
≈ 0.04. A further difference between 2D and 3D matrices is the matrix

stencil. In 2D the entries of the diffusion matrix D are constant, i.e. behave as

O(1) (see Section 2.4), while in 3D they behave as O(h). Thus, we can expect that

the application of the truncation (3.43) to result in removing a different amount of

non-zero entries than in the 2D cases.
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Table 5.4: The iteration counts and the (setup,total) execution time (in seconds) required
for the convergence of the GMRES solver right-preconditioned by geometric multigrid with sev-
eral smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 5.1.2) obtained from Q1 SUPG FEM on uniform grids. A constant diffusion parameter
(Pe∗ = 2000), with each sub-table representing a different ordering of the unknowns.

(a) OOMPHLIB natural ordering; MG V-cycle V(2,2)

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 8(0.89,1.08) 9(7.14,9.93) 8(58.8,86.4) 8(555.5,799.3)
tILU0(0.5, 0.25) 13(0.89,0.97) 14(7.16.8.04) 13(58.9,68.2) 13(554.5,644.1)
tILU0(0.5, 0.5) 18(0.90,0.99) 20(7.15,8.32) 19(59.0,71.8) 18(548.5,670.4)
Jacobi(0.5) 31(0.89,1.08) 34(7.14,10.1) 31(58.9,92.2) 29(546.5,847.8)
GaussSeidel 10(0.89,0.94) 11(7.14,7.88) 10(58.9,68.7) 9(553.3,636.9)

(b) x-directional ordering ; MG V-cycle V(6,6)

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 5(0.91,1.56) 6(7.61,17.9) 6(64.7,170.6) 5(673.5,1546.)
tILU0(0.5, 0.25) 7(0.91,1.02) 8(7.59,8.82) 7(67.0,80.7) 7(665.3,792.6)
tILU0(0.5, 0.5) 9(0.91,1.02) 10(7.59,8.89) 9(66.8,81.5) 9(660.8,803.2)
Jacobi(0.5) 15(0.90,1.11) 15(7.15,10.1) 13(57.9,90.6) 12(531.6,809.5)
GaussSeidel 6(0.91,0.96) 6(7.60,8.35) 6(64.4,75.5) 5(645.8,751.1)

(c) xyz-forward-directional ordering; MG V-cycle V(6,6)

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 5(0.91,1.57) 5(7.55,16.3) 5(64.2,153.6) 4(653.3,1381)
tILU0(0.5, 0.25) 7(0.92,1.02) 7(7.58,8.68) 7(64.3,76.7) 7(686.4,818.8)
tILU0(0.5, 0.5) 9(0.91,1.03) 10(7.57,8.89) 9(64.3,77.6) 9(698.7,865.0)
Jacobi(0.5) 15(0.90,1.11) 15(7.15,10.1) 13(57.9,90.6) 12(531.6,809.5)
GaussSeidel 6(0.91,0.96) 6(7.57,8.37) 6(64.1,74.9) 5(638.3,748.7)

(d) xyz-forward-xyz-backward-directional ordering; MG V-cycle V(6,6)

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 5(0.91,1.59) 5(7.60,16.7) 5(64.4,155.9) 4(625.4,1318)
tILU0(0.5, 0.25) 7(0.92,1.03) 7(7.59,8.71) 7(64.6,77.3) 7(608.9,718.9)
tILU0(0.5, 0.5) 9(0.91,1.02) 10(7.59,8.92) 9(64.6,78.3) 9(597.3,722.1)
Jacobi(0.5) 15(0.90,1.11) 15(7.15,10.1) 13(57.9,90.6) 12(531.6,809.5)
GaussSeidel 6(0.91,0.96) 6(7.60,8.39) 5(64.6,73.9) 5(628.2,728.1)

(e) “Black-box” ordering (HSL MC13 Tarjan’s algorithm); MG V-cycle V(2,2)

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 10(0.91,1.36) 11(7.72,14.4) 10(86.6,146.0) 9(2650.7,3167.6)
tILU0(0.5, 0.25) 14(0.91,1.01) 15(7.72,8.82) 15(86.7,98.0) 14(2633.5,2741.2)
tILU0(0.5, 0.5) 19(0.91,1.02) 21(7.73,9.11) 21(86.7,100.7) 19(2664.9,2797.9)
Jacobi(0.5) 31(0.89,1.08) 34(7.14,10.1) 31(58.9,92.2) 29(546.5,847.8)
GaussSeidel 12(0.91,0.97) 13(7.74,8.53) 11(86.5,94.7) 10(2679.8,2765.9)

In Table 5.5 we report the truncation statistics obtained for the Case study 5.1.2

discretised on a sequence of uniformly refined grids. For the mildly-convective prob-

lem (Pe∗ = 20), we see no difference in the truncation rates between α = 0.25 and 0.5.

In both cases tILU0 smoothing is reduced to the Jacobi smoother. For Pe∗ = 500,

tILU0 smoothing differs only marginally from Jacobi (mainly at the coarsest levels),
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Table 5.5: Truncation statistics for the convection-diffusion operator obtained from Q1 SUPG
FEM discretisation of Case study 5.1.2 as a function of Pe∗ with uniform grid refinement. Ãl

denotes the truncated matrix and Al is the original matrix at the refinement level l. NNZ(·) denotes

the number of non-zero entries and NNZ(fAl)
NNZ(Al)

[%] the percentage of the non-zero entries kept in the
truncated matrices.

(a) Pe∗=20

Level l 6 5 4 3 2 1
∑

l(NNZ(Ãl))
N 857375 103823 12167 1331 125 8 974829
NNZ(Al) 22665187 2685619 300763 29791 2197 64 25683621
α = 0
NNZ(Ãl) 22665187 2685619 300763 29791 2197 64 25683621
NNZ(fAl)
NNZ(Al)

[%] 100 100 100 100 100 100 η =100
α = 0.25
NNZ(Ã) 857375 103823 12167 1331 125 8 974829
NNZ(fAl)
NNZ(Al)

[%] 4 4 4 4 6 13 η =4
α = 0.5
NNZ(Ãl) 857375 103823 12167 1331 125 8 974829
NNZ(fAl)
NNZ(Al)

[%] 4 4 4 4 6 13 η =4
α = 1.0
NNZ(Ãl) 857375 103823 12167 1331 125 8 974829
NNZ(fAl)
NNZ(Al)

[%] 4 4 4 4 6 13 η =4

(b) Pe∗=500

Level l 6 5 4 3 2 1
∑

l(NNZ(Ãl))
α = 0.25
NNZ(Ãl) 860153 118167 18527 2577 305 16 999745
NNZ(fAl)
NNZ(Al)

[%] 4 4 6 9 14 25 η =4
α = 0.5
NNZ(Ãl) 857375 103823 12525 1633 173 14 975543
NNZ(fAl)
NNZ(Al)

[%] 4 4 4 5 8 22 η =4

(c) Pe∗=2000

Level l 6 5 4 3 2 1
∑

l(NNZ(Ãl))
α = 0.25
NNZ(Ãl) 1317847 207143 29569 3991 429 18 1558997
NNZ(fAl)
NNZ(Al)

[%] 6 8 10 13 20 28 η =6
α = 0.5
NNZ(Ãl) 886947 130823 17947 2101 205 16 1038039
NNZ(fAl)
NNZ(Al)

[%] 4 5 6 7 9 25 η =4

but leads to a significant improvement in the iteration counts (by 31% - see Ta-

ble 5.3(a)). For the highly convective case (Pe∗ = 2000), a truncation of α = 0.25

gives, on average, matrices with only 60% more entries than in the Jacobi case and

the truncation with α = 0.5 yields the matrices with only 6% more non-zero entries

than the Jacobi case. This relatively small increase in smoother complexity leads to

the reduction in iteration counts by 55% and 38%, respectively (see Table 5.4(a)).
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The level of truncation, that still produces a satisfactory iteration count, at the

finest mesh is staggering with over 21 million fewer non-zero entries. The overall

total saving in storage costs is between 94 − 96% when compared to using standard

ILU0(0.5) as a smoother. At the few finest levels (where the discrete operators are

the largest), the tILU0 smoother resembles (or is equal to) the Jacobi smoother, but

gives a much improved performance in comparison to the Jacobi smoother.

Adaptively refined grids

A more sophisticated form of grid refinement is to use adaptive mesh refinement (see

Pages 123, 124 for further details). In Figure 5.3(a) a single uniform refinement has

been taken from the original coarse grid structure. In Figure 5.3(b) adaptive mesh

(a) (b)

Figure 5.3: Mesh plot of Case study 5.1.2 using (a) uniform refinement with N = 125,
(b) adaptive mesh refinement after 3 levels of refinement with N = 8208.

refinement is presented for Case study 5.1.2, with Pe∗ = 2000. In this particular

example, after three levels of refinement, a large proportion of the domain is refined

uniformly. A consequence of the problem discretisation on adaptively refined grids

is the introduction of an imbalance in the magnitude of the matrix coefficients. In

searching for a general smoother it is important to investigate such a case and whether

the smoother is robust.

In Table 5.6 we present the convergence characteristics of Solver Strategy 4.2 for

Case study 5.1.2, discretised on a sequence of adaptively refined grids. In all cases we

see that the GMG preconditioner performs h-robust and has only minor deterioration

with respect to Pe∗. In terms of the execution time, the best results are observed

when Gauss-Seidel or tILU0 smoothers are used.

In Table 5.6(b) we find that the total solve times at the refinement steps (5) and

(5b) are very similar. In Table 5.7(b) the number of refinement levels is identical to
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Table 5.6: The iteration counts and the (setup,total) execution time (in seconds) required for the
convergence of the GMRES solver right-preconditioned by geometric multigrid V(2,2) cycle with
several smoothers, when applied to the solution of the discrete convection-diffusion problem (Case
study 5.1.2) obtained by the Q1 SUPG FEM on an adaptive grid refinement. Natural (tree-based)
ordering of the unknowns, with each sub-table representing a different diffusion parameter.

(a) Pe∗=500

Smoother \ Level 2 3 4 5
ILU0(0.5) 5(0.90,1.04) 6(5.25,6.39) 6(15.9,19.9) 5(28.3,33.8)
tILU0(0.5, 0.25) 9(0.92,0.97) 8(5.29,5.58) 8(15.8,16.8) 8(28.2,29.7)
tILU0(0.5, 0.5) 11(0.92,0.98) 11(5.28,5.65) 10(15.9,17.1) 10(28.2,30.1)
Jacobi(0.5) 15(0.91,1.00) 13(5.27,5.83) 12(15.9,18.2) 11(28.2,31.6)
GaussSeidel 6(0.91,0.94) 5(5.26,5.45) 5(15.9,16.8) 5(28.3,29.7)

(b) Pe∗=2,000

Smoother \ Level 2 3 4 5 5b
ILU0(0.5) 7(0.92,1.10) 8(5.87,7.57) 7(19.2,24.4) 7(46.6,59.1) 5(47.2,56.5)
tILU0(0.5, 0.25) 12(0.94,1.01) 12(5.90,6.43) 11(19.2,20.7) 11(46.7,50.5) 9(47.3,50.5)
tILU0(0.5, 0.5) 16(0.93,1.01) 17(5.86,6.54) 15(19.2,21.3) 15(46.6,51.6) 11(47.2,50.9)
Jacobi(0.5) 30(0.93,1.11) 31(5.87,7.33) 26(19.2,24.7) 24(46.5,58.7) 18(47.2,56.3)
GaussSeidel 10(0.89,0.95) 10(5.77,6.18) 9(19.1,20.8) 8(46.5,50.3) 6(47.1,50.0)

the number of refinement steps in Table 5.6(a). However in Table 5.6(b) we apply

an extra refinement step, as the maximum number of refinement steps or the error

tolerance has not been reached. A hierarchical refinement level is defined as an

increase in the depth of a tree structure, where the original coarse mesh is the root

of the tree. In Table 5.6(b) refinement (5b) is an example of when there is a decrease

in the number of nodes in the mesh (i.e. some element patches are “un-refined”),

however the depth of the tree structure remains the same. Therefore the number of

hierarchical levels remains unchanged, but the number of adaptive refinement steps

has increased. This means that the problem obtained in 5.6(b) has the same number

of hierarchical levels as the one in 5.6(a).

Table 5.7 summaries the truncation statistics for a sequence of coarse grid levels

generated by GMG for the case of five adaptive refinements. The amount of elements

refined at each new level of the adaptive process is problem specific. That is, as

Pe∗ increases the size of the coefficient matrix may also increase. Furthermore, as

Pe∗ increases the magnitude of the off-diagonal entries becomes more dominant.

This results in a smaller level of truncation. From part(a) of the table we see that

in a mildly convective case (Pe∗ = 20) the tILU0 smoother reduces to a Jacobi

smoother (NNZ(Ã)=N). When Pe∗ is increased to 500, the cost of tILU0(0.5,0.25)

is only marginally higher than that of Jacobi, while for α = 0.5 this difference is

almost indistinguishable. For a highly convective case (part c), Pe∗ = 2000 the total

number of non-zero entries kept in all coarse matrices for α = 0.25 is roughly twice

that of the Jacobi smoother, while in the case α = 0.5 the difference is again almost
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Table 5.7: Truncation statistics for the convection-diffusion operator obtained from Q1 SUPG
FEM discretisation of Case study 5.1.2 as a function of Pe∗ with adaptive grid refinement. Ãl

denotes the truncated matrix and Al is the original matrix at the refinement level l. NNZ(·) denotes

the number of non-zero entries and NNZ(fAl)
NNZ(Al)

[%] the percentage of the non-zero entries kept in the
truncation matrix.

(a) Pe∗=20

Level l 6 5 4 3 2 1
∑

l(NNZ(Ãl))
N 17,734 2,829 215 64 24 8
NNZ(Al) 434,534 60,187 2,459 480 176 64 497,900
α = 0
NNZ(Ãl) 434,534 60,187 2,459 480 176 64 497,900
NNZ(fAl)
NNZ(Al)

[%] 100 100 100 100 100 100 η =100
α = 0.25
NNZ(Ãl) 17,734 2,829 215 64 24 8 20,874
NNZ(fAl)
NNZ(Al)

[%] 4 5 9 13 14 13 η =4
α = 0.5
NNZ(Ãl) 17,734 2,829 215 64 24 8 20,874
NNZ(fAl)
NNZ(Al)

[%] 4 5 9 13 14 13 η =4
α = 1.0
NNZ(Ãl) 17,734 2,829 215 64 24 8 20,874
NNZ(fAl)
NNZ(Al)

[%] 4 5 9 13 14 13 η =4

(b) Pe∗=500

Level l 6 5 4 3 2 1
∑

l(NNZ(Ãl))
Size(Al) 31,472 5,021 507 109 24 8 37,141
NNZ(Al) 792,372 113,647 8,149 1,243 176 64 915,651
α = 0.25
NNZ(Ãl) 39,271 7,659 1,018 234 44 16 48,242
NNZ(fAl)
NNZ(Al)

[%] 5 7 12 19 25 25 η =5
α = 0.5
NNZ(Ãl) 31,570 5,333 624 144 35 14 37,720
NNZ(fAl)
NNZ(Al)

[%] 4 5 8 12 20 22 η =4

(c) Pe∗=2000

Level l 6 5 4 3 2 1
∑

l(NNZ(Ãl))
Size(Al) 56,116 8,612 953 202 51 8 65,942
NNZ(Al) 1,419,498 198,894 17,171 2,924 629 64 1,639,180
α = 0.25
NNZ(Ãl) 115,672 21,623 2,586 530 143 18 140,572
NNZ(fAl)
NNZ(Al)

[%] 8 11 15 18 23 28 η =9
α = 0.5
NNZ(Ãl) 70234 13263 1576 331 82 16 85,502
NNZ(fAl)
NNZ(Al)

[%] 4 4 6 7 8 13 η =5

indistinguishable. Nevertheless, the smoother tILU0(0.5,0.5) leads to a considerable

reduction in iteration counts, compared to the Jacobi smoother (see Table 5.6(b)).

Comparing the uniform mesh refinement truncation ratio η (in Table 5.5(c)) with
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those obtained from adaptive mesh refinement (Table 5.7(c)) for Case study 5.1.2

we observe that adaptive mesh refinement leads to a larger truncation ratio η (fewer

entries are truncated in adaptive mesh refinement). This is partially due to the

need for smaller meshing found in adaptive mesh refinement allowing the coarse level

refinement to have a larger contribution towards the overall total number of entries.

That is, the coarse level refinement is proportionately closer to finer level in adaptive

mesh refinement than in uniform refinement. The other reason for a large total

truncation percentile is that adaptive refinement has been able to throw away less

relevant areas of the domain, that our truncation method would also have disposed

of if they were adequately small.

In Table 5.8 we present a comparative study of the total truncation ratios be-

tween Case studies 5.1.1 and 5.1.2 for the case of adaptively refined grids. The most

Table 5.8: Comparison of truncation statistics for Case studies 5.1.1 and 5.1.2 as a function of
Pe∗ and the truncation parameter α. The discrete convection-diffusion operators are obtained from
Q1 SUPG FEM discretisation using adaptive meshing. The results present the total number of
non-zero entries in the entire MG hierachy and, in brackets, the percentage of the total number of
non-zero entries in the entire MG hierarchy after truncation.

Pe∗ Case Study α = 0 α = 0.25 α = 0.5 α = 1.0
5.1.1 2,352,205(100) 213,997(9) 149,631(6) 96,501(4)

500 5.1.2 915,651(100) 48,242(5) 37,720(4) 37,141(4)
5.1.1 3,306,585(100) 303,521(9) 271,081(8) 135,649(4)

2000 5.1.2 1,639,180(100) 140,572(9) 85,502(5) 65,942(4)

important conclusion is that, comparing with the 2D results reported in Table 4.14,

the amount of truncation in 3D is larger (smaller η) for the same value of α. In each

case the discrete problem is adapted to either a maximum level of refinement or the

default a posteriori error is reached.

5.1.3 Summary

In Section 4.2 we tested the performance of the GMRES solver preconditioned by

GMG, with four different smoothing strategies. The truncation parameter that

showed the best results in 2D for the tILU0 smoother was α = 0.25. In this section

we tested the GMRES solver preconditioned by GMG with the same four different

smoothers in the context discrete convection-diffusion problems in 3D. We observed

that the iteration counts obtained with tILU0(0.5, 0.25) smoother are asymptotically

optimal with respect to the discrete problem size and exhibited only a moderate

dependence on Pe∗. This is consistent with our findings from Section 4.2. When

truncation of the coefficient matrices in the MG hierarchy is concerned, a consider-

ably large proportion of the non-zero off-diagonal entries are truncated in 3D discrete

problems compared to the 2D case.
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In addition, the study of different damping parameters for Jacobi/tILU0/ILU0

smoothing reveals that damped Jacobi and ILU0 smoothing performs in a very sim-

ilar fashion to Tables 4.15 and 4.16 when GMG preconditioner is used for 3D prob-

lems. When tILU0(γ, 0.25) smoothing is used, the best GMRES iteration counts are

observed for 0.5 ≤ γ ≤ 2
3
.

5.2 Algebraic multigrid preconditioning of the

convection-diffusion problem

In this section we report the performance of the classical AMG preconditioner with

four different smoothing strategies, when applied to Case studies 5.1.1 and 5.1.2.

AMG performs a variant of semi-coarsening in the characteristic directions, gov-

erned by the strength and directions of the wind [8]. This leads to an increase in

the number of coarse levels (compared to GMG). Also, with the substantial increase

in the stencil size of the original fine level matrix in 3D, and the fact that AMG is

computationally more expensive per iteration than GMG, due to an increase in the

coarse level matrices stencils in comparison to the original fine level matrix stencils,

having a “cheap”, robust smoother is essential (see Section 3.3.2 and Pages 132–134

for more details).

In Section 4.3 we demonstrated that the best results in 2D for the AMG precondi-

tioner with tILU0 smoothing are observed for the truncation parameter α = 0.5. The

aim here is to demonstrate that this combination works equally well for 3D problems.

In Table 5.9 we summarise the convergence results of Solver Strategy 4.3 for Case

study 5.1.1. In the case of AMG, as was the case in 2D, we extend the range of

Pe∗ to include Pe∗ = 500, 2000 and 10000. The discretisation of the problem is

performed on a sequence of uniform grids. For a moderate value of Pe∗ (Pe∗ = 500)

we see that an AMG preconditioner is h-robust with all smoothers considered. As Pe∗
is increased Gauss-Seidel as a smoother exhibits a considerable deterioration in its

performance, (the iteration counts behave with O(
√

Pe∗)). In all cases, the ILU0 and

tILU0(0.5, 0.5) smoothers are Pe, h-robust and ILU0 is observed to have the smallest

number of iterations. However, the execution time of ILU0 is not competitive, due

to the excessive computational cost associated with ILU0 factorisation in 3D. In

Table 5.9(c), the shortest execution time is obtained when tILU0(0.5, 0.5) is used as a

smoother (a large truncation resulting in only a small increase in the iteration count

in comparison to ILU0 smoother).

We report in Table 5.10 the convergence results of Solver Strategy 4.3 for Case

study 5.1.2 where a more complex convection field is used, recirculating wind. It
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Table 5.9: The iteration counts and the (setup,total) execution time (in seconds) required for the
convergence of the GMRES solver right-preconditioned by classical algebraic multigrid V(2,2) cycle
with several smoothers, when applied to the solution of the discrete convection-diffusion problem
(Case study 5.1.1) obtained from Q1 SUPG FEM on uniform grids. Each sub-table represents a
different diffusion parameter.

(a) Pe∗=500

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 4(0.08,0.12) 5(1.99,4.32) 5(33.6,63.6) 6(1112.9,1660.2)
tILU0(0.5, 0.25) 7(0.05,0.09) 7(0.98,2.58) 7(14.1,36.6) 9(413.4,849.0)
tILU0(0.5, 0.5) 7(0.05,0.09) 7(0.98,2.51) 8(14.0,39.3) 10(413.5,891.8)
Jacobi(0.5) 11(0.03,0.09) 9(0.76,2.74) 7(11.9,36.7) 7(390.4,765.2)
GaussSeidel 7(0.03,0.07) 7(0.75,2.30) 7(11.9,36.3) 5(392.5,692.9)

(b) Pe∗=2,000

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 4(0.08,0.12) 4(1.67,3.37) 5(30.8,60.0) 6(855.4,1337.8)
tILU0(0.5, 0.25) 10(0.05,0.11) 9(0.84,2.66) 7(13.9,35.9) 7(310.8,609.2)
tILU0(0.5, 0.5) 10(0.05,0.10) 8(0.84,2.36) 7(13.9,35.9) 8(311.0,646.5)
Jacobi(0.5) 16(0.03,0.12) 17(0.62,3.87) 12(11.8,51.2) 8(288.1,640.5)
GaussSeidel 10(0.03,0.09) 12(0.62,2.97) 12(11.8,50.6) 12(289.4,795.9)

(c) Pe∗=10,000

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 4(0.08,0.12) 4(1.57,3.29) 4(31.1,54.0) 5(659.0,1026.6)
tILU0(0.5, 0.25) 3(0.19,0.25) 14(0.78,3.57) 39(13.9,122.2) 17(254.0,889.1)
tILU0(0.5, 0.5) 12(0.05,0.11) 13(0.77,3.24) 13(13.8,50.5) 10(253.9,640.1)
Jacobi(0.5) 17(0.03,0.13) 25(0.56,5.17) 30(11.7,102.3) 20(233.4,1032.7)
GaussSeidel 11(0.03,0.09) 17(0.56,3.78) 23(11.8,82.4) 24(231.4,1101.3)

can be seen that all smoothers are h-robust. Furthermore, the results show that

tILU0(0.5, 0.5) performs consistently for both cases (Case studies 5.1.1 and 5.1.2). A

more surprising result, is that Gauss-Seidel and Jacobi as smoothers perform better

in the case of a more complex wind. A similar pattern was observed for the Gauss-

Seidel smoother in 2D for Case study 4.2.4 (see Table 4.21). However, in the 2D

counterpart of Case study 5.1.2 the Gauss-Seidel smoother performed poorly, which

does raise some questions about using Gauss-Seidel as a default smoother for AMG

preconditioning for convection-dominated problems.

An inherent property of the classical AMG coarsening algorithm is that it gener-

ates coarse grid operators that are much denser than the original coefficient matrix

and this feature is particularly profound for 3D problems. To reduce this increase in

the operator complexities one can increase the value of the strength of dependence

threshold θ (3.34) from its default value 0.25 and/or applying a single pass of Ruge-

Stüben coarsening [8]. This leads to a deterioration in the numerical efficiency of the

preconditioner, however, much shorter execution times are observed (due to a signifi-

cant reduction in computational cost of assembling and applying the preconditioner).
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Table 5.10: The iteration counts and the (setup,total) execution time (in seconds) required for the
convergence of the GMRES solver right-preconditioned by classical algebraic multigrid V(2,2) cycle
with several smoothers, when applied to the solution of the discrete convection-diffusion problem
(Case study 5.1.2) obtained from Q1 SUPG FEM on uniform grids. Each sub-table represents a
different diffusion parameter.

(a) Pe∗=500

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 4(0.27,0.46) 5(16.5,27.04) 5(190.5,322.0) 5(7137.9,8580.3)
tILU0(0.5, 0.25) 7(0.10,0.23) 7(2.50,9.89) 8(43.88,177.6) 7(520.5,1702.5)
tILU0(0.5, 0.5) 7(0.11,0.23) 7(2.49,9.88) 8(43.8,177.4) 7(508.8,1649.1)
Jacobi(0.5) 7(0.058,0.20) 7(1.92,9.64) 7(37.6,167.4) 6(442.2,1440.2)
GaussSeidel 4(0.06,0.14) 4(1.92,6.73) 5(37.6,132.9) 4(463.3,1253.8)

(b) Pe∗=2,000

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 5(0.23,0.44) 5(7.48,15.0) 5(45.0,136.1) 5(18627.7,20353.)
tILU0(0.5, 0.25) 7(0.09,0.20) 8(1.61,7.36) 8(30.9,141.8) 8(490.2,1860.3)
tILU0(0.5, 0.5) 9(0.09,0.24) 9(1.60,7.93) 9(30.8,153.4) 9(494.6,2028.1)
Jacobi(0.5) 9(0.05,0.21) 10(1.10,8.35) 9(25.0,152.2) 8(429.3,1896.4)
GaussSeidel 6(0.05,0.16) 6(1.10,5.63) 7(25.1,129.6) 6(423.8,1511.6)

(c) Pe∗=10,000

Smoother \ N 1331 12167 103823 857375
ILU0(0.5) 7(0.20,0.45) 7(5.39,13.8) 7(229.1,366.3) 7(6490.1,8015.6)
tILU0(0.5, 0.25) 9(0.08,0.22) 11(1.33,7.67) 10(20.9,124.3) 10(255.3,1382.0)
tILU0(0.5, 0.5) 10(0.08,0.23) 12(1.31,8.17) 11(20.9,133.2) 11(254.6,1473.6)
Jacobi(0.5) 11(0.04,0.21) 15(0.86,9.44) 16(16.0,194.0) 15(206.3,1945.9)
GaussSeidel 8(0.04,0.17) 10(0.85,6.59) 12(15.9,145.0) 12(204.8,1586.7)

For the purpose of the project we only use a two-pass Ruge-Stüben coarsening (classi-

cal AMG) with a default value for the parameter θ = 0.25. In this context we present

in Table 5.11 the complexity measures CG, CA and CS obtained from coarsening of

the largest discrete operator (N = 857, 375) from Case study 5.1.2 as a function of

Pe∗.

Table 5.11: Coarsening statistics for Case study 5.1.2 with N = 857, 375 as a function of Pe∗.

Pe∗ 20 500 1,000 5,000 10,000
L 17 20 20 22 25
CG 2.23259 2.57160 2.82280 3.21759 3.25889
CA 13.3185 37.5398 41.8640 32.3085 27.35226
CS 778.997 1250.18 1320.47 935.313 742.447
C

(1)
S 26.4 26.4 26.4 26.4 26.4

L is the number of MG levels, CG is the grid complexity, CA is the operator complexity, CS is the
average matrix stencil over all MG levels and C

(1)
S is the average matrix stencil of A at the finest

level.
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In the case of full coarsening of uniformly refined girds (characterised by a re-

duction in the number of grid points in each spacial dimension by a factor of 2), we

expect CG = 8
7
' 1.143 in 3D (see Pages 77–79 for further details) [10, p.154] [8]. It

is clear from Table 5.11 that AMG coarsening results in a larger grid complexity than

GMG. In the 2D case (Table 4.22), grid complexity increases when Pe∗ is increased.

This can be explained by a more pronounced semi-coarsening that classical AMG

performs in the direction of the convection. For the 3D case, there is an increase in

grid complexity by 31%, between Pe∗ = 20 and Pe∗ = 10, 000. By comparison, for

a 2D problem, the results from Table 4.22 show a 29% increase. This implies that

roughly the same increase in grid complexity with respect to the inverse diffusion

parameter is observed in two and three spacial dimensions. However, for a fixed Pe∗
there is an increase of between 17% and 28% in the grid complexity of AMG between

the 2D and 3D cases.

In Table 5.11 we see that the operator complexity is significantly larger than in

2D (Table 4.22). Moreover, the operator complexity initially grows with Pe∗ (up to

1000), and falls when Pe∗ is increased further. This also implies that the interpola-

tion matrices are fairly dense. Furthermore, in Table 5.11, there are large differences

between the average stencil size over all levels CS and the finest level C
(1)
S . This in-

dicates a considerable increase in stencil sizes at coarse levels. A further observation

is that CS peaks at Pe∗ = 1000, and is reduced significantly for larger values of Pe∗.

This statistic may explain the high setup and total execution times of the iterative

solver with ILU0 smoother reported in Table 5.10. In cases when the physical mem-

ory is smaller than the memory required, data is moved to and from the hard disk

with continuous swapping to perform a single task. This is known as memory page

swapping. Page swapping usually leads to a poor execution performance. Further-

more, the large memory requirement of AMG with ILU0 smoother may lead to poor

caching, and further deterioration in execution.

In the case of 2D problems, Figure 4.10, the average amount of non-zero entries

kept in the matrices MG hierarchy was below 20% for α = 0.25 and around 11%

for α = 0.5. For three-dimensional problems, the grid complexity is larger than in

two dimensions. Furthermore the stencil size also increases, increasing the density of

the matrix. These two properties, together with a different magnitude to the matrix

entries in 3D have the potential to have their storage costs reduced considerably. In

Table 5.12 we calculate the total truncation ratio (3.40) for Case study 5.1.2. In the

case of classical AMG coarsening, the amount of truncation is almost 99.5% of the

total number of non-zeros, and this amount almost corresponds to the Jacobi case.

Furthermore, the truncation ratio does not depend very strongly on Pe∗. Also, such

a large percentage of truncated entries confirms that AMG’s coarse level matrices
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Table 5.12: Truncation ratio (3.40) for several different values of truncation parameter α as a
function of Pe∗, for Case study 5.1.2 with N = 857, 375.

Pe∗ 20 500 1,000 5,000 10,000
α = 0.0 1 1 1 1 1
α = 0.25 0.00634147 0.002606405 0.00272057 0.006681074 0.00998486
α = 0.5 0.006341109 0.002592616 0.002552394 0.004223302 0.00552579
α = 1.0 0.006341106 0.002591332 0.002550646 0.003767262 0.00450701

have much larger matrix stencils than in the case of GMG full coarsening (in 3D the

maximal truncation ratio in GMG corresponding to the Jacobi case, is ∼ 96%).

In Table 5.13 we expand the operator complexity results from Table 5.11 to allow

further analysis of the operator complexity as a function of the truncation parame-

ter α and Pe∗. When truncation (3.43) is applied to the coarse level operator, we

Table 5.13: Operator complexity, CA, (3.38) for several different values of truncation parameter
α as a function of Pe∗, for Case study 5.1.2 with N = 857, 375.

Pe∗ 20 500 1,000 5,000 10,000
α = 0.0 13.31847829 37.53981368 41.86409775 32.30846862 27.35225595
α = 0.25 2.232713807 2.578206435 2.631932896 2.652096866 2.84415412
α = 0.5 2.232586674 2.572875346 2.824735967 2.672281753 2.59363991
α = 1.0 2.232585508 2.571601691 2.822802158 3.217589736 3.25889372

have much lower operator complexities, which are virtually independent of both the

truncation ratio and Pe∗. This implies that the cost of applying the smoother in

cases α > 0 will be much smaller than for α = 0. Although, the complexity of the

interpolation operators remains unchanged for all values of α. A further observation

is that, given a level of truncation, the operator complexity is now closely related

to the grid complexity CG ' CA. This suggests that during truncation there is no

increase in matrix density. However, as the denominator in (3.38) varies with the

truncation amount, we see that when Pe∗ > 5000 the operator complexity of α = 1

is greater than the operator complexity for α = 0.5, even though in direct comparison

at each hierarchical level the density of α = 1 is smaller than the density of α = 0.5.

By using a different measure (the average stencil size (3.39)) this anomaly is rectified.

The results in Table 5.14 present the average stencil size CS (3.39), in terms of

the truncation parameter α and Pe∗. For completeness, we also report in brackets

Table 5.14: Average stencil size, CS , (3.39) and in brackets the (stencil size at finest level), for
several different values of truncation parameter α as a function of Pe∗, for Case study 5.1.2 with
N = 857, 375

Pe∗ 20 500 1,000 5,000 10,000
α = 0.0 778.997(26.4) 1250.18(26.4) 1320.47(26.4) 935.313(26.4) 742.447(26.4)
α = 0.25 1.03664(1.00) 1.18548(1.00) 1.31730(1.14) 1.46262(2.15) 1.60849(2.54)
α = 0.5 1.00014(1.00) 1.04421(1.00) 1.06464(1.00) 1.04781(1.35) 1.06614(1.54)
α = 1.0 1 1 1 1 1



5.3. PARALLELISATION 175

the stencil size for the matrix on the finest level (C
(1)
S ). By comparing the stencil

size CS when α = 0 with CS when α > 0 we see that the truncated stencil sizes are

considerably smaller (almost equal to the Jacobi case). For α = 0.25, we observe that

the average stencil size CS has a small dependence on Pe∗, which is not present for

α = 0.5. By comparing CS with C
(1)
S for α = 0 we observe that there is an increase

in matrix density for coarser levels. By introducing truncation, this difference has

been reduced significantly. In the case when Pe∗ > 5000 we observe that CS is now

smaller than C
(1)
S for α = 0.25 and α = 0.5. This observation illustrates that the

coarse matrix stencils are now not denser than the fine level stencils. Furthermore,

this also explains why the operator complexity is larger for α = 1 than α = 0.25 and

α = 0.5 when Pe∗ > 5000. That is, for α = 1 there is no increase or decrease in

the matrix density at coarser levels, however for α = 0.25 and α = 0.5 the matrix

density is reduced at coarse levels. This results in CA for α = 0.25 and α = 0.5 being

proportionately smaller than α = 1 (for CA is smaller for α = 0.25 and α = 0.5 than

for α = 1).

5.3 Parallelisation

The effect of parallelisation of the AMG preconditioner should become more pro-

nounced in 3D, where the size of the discrete problems increases much faster with

grid refinement. We have seen in Table 5.9 and Table 5.10 a rapid increase in the

solution times, which are, in part the consequence of excessive storage requirements

(which may cause memory page swapping and thus poor performance). In order

to resolve this difficulty, parallelisation should be introduced. In this way both the

computational and the storage cost is divided among different processors. In this

section we look into the parallel scaling of the AMG preconditioner, using a variety

of different smoothers.

The iteration counts for a single processor, shown in Table 5.9, for Case study 5.1.1

scale very well with respect to an increase in Pe∗, when ILU0(0.5) and tILU0(0.5, 0.5)

smoothers are used. Also, we see that ILU0(0.5) and tILU0(0.5, 0.5) perform com-

parably. This is considered to be the best we can achieve for tILU0, in terms of

iteration counts. While the iteration counts of an iterative solver with ILU0 and

tILU0 smoothers change very little as the Pe∗ increases, this is far from the case

for the Jacobi and Gauss-Seidel smoothers. These iteration count patterns seem to

correspond to those observed in two dimensions, see Table 4.19.

In 3D, only the classical Ruge-Stüben coarsening, with no communication between

the subdomains, is used. The parallel performance results of Solver Strategy 4.4 for

Case study 5.1.1 are summarised in Table 5.15 for two different values of Pe∗. We
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Table 5.15: The iteration counts and the (setup,total) execution time (in seconds) required for
the convergence of the parallel GMRES solver preconditioned by classical algebraic multigrid V(2,2)
cycle with several smoothers, when applied to the solution of the discrete convection-diffusion prob-
lem (Case study 5.1.1) obtained from Q1 SUPG FEM on a uniform grid, with N = 857, 375. Each
sub-table represents a different diffusion parameter.

(a) Pe∗=500

Smoother \ P 1 2 4 8 16
ILU0(0.5) 6(770.3,917.8) 6(558.9,665.1) 6(263.8,342.2) 6(188.6,234.3) 6(89.8,115.7)
tILU0(0.5, 0.25) 9(398.8,481.0) 9(243.6,296.8) 9(150.3,183.0) 9(131.1,148.3) 9(68.9,78.1)
tILU0(0.5, 0.5) 10(397.1,475.7) 10(231.3,275.3) 10(149.9,177.1) 10(93.6,112.7) 10(69.0,78.9)
Jacobi(0.5) 7(386.3,468.3) 7(230.1,277.0) 7(146.9,176.5) 7(92.1,107.1) 7(67.8,76.3)
GaussSeidel 5(389.3,445.4) 5(237.8,282.8) 5(146.5,185.4) 5(92.1,130.5) 5(67.7,107.1)

(b) Pe∗=10,000

Smoother \ P 1 2 4 8 16
ILU0(0.5) 5(505.8,613.0) 6(263.0,343.0) 6(126.7,169.7) 6(100.5,124.1) 7(50.2,74.7)
tILU0(0.5, 0.5) 10(241.2,304.7) 10(127.5,161.8) 10(83.2,103.5) 11(45.8,62.2) 11(33.5,43.2)
Jacobi(0.5) 20(230.2,391.9) 20(123.3,222.1) 20(73.9,135.0) 20(44.5,75.2) 23(32.4,55.5)
GaussSeidel 24(230.2,426.4) 26(123.2,280.7) 26(74.0,200.9) 26(44.6,166.8) 27(32.4,175.0)

use the largest discrete problem size achieved with current computational resources

(N = 857, 375), thus the reported results refer to the strong parallel scaling of the

preconditioner (i.e. keeping the problem size fixed while increasing the number of

processors). We see that the solver has independent iteration counts with respect

to the number of processors, irrespective of the smoother. Also, the best execution

times for relatively strong convection are observed when tILU0(0.5,0.5) smoother is

used. By taking a two-dimensional surface plot of Case study 5.1.1 we achieve a

two-dimensional representation of the problem (see Case study 4.2.1). In Table 4.27

it was observed that all smoothers resulted in an independent iteration count with

respect to P . In three dimensions this is also the case. However, with respect

to spacial dimensions we find that the Gauss-Seidel and Jacobi smoothers are no

longer independent, increasing the solver iteration count by a factor of 2 in the

case of a convection-dominated problem. For the case of ILU0 and tILU0(0.5, 0.5)

the smoothers are observed to be close to iteration count independent over spacial

dimensions.

In Figure 5.4 we present parallel efficiency (3.42) of the preconditioned solver, as

a function of the number of processors P for Case study 5.1.1. From these graphs

we see that the Jacobi and tILU0 smoothers give a solver with a consistent efficiency

behaviour when Pe∗ is increased (this was also the case in 2D, Figure 4.11). By

contrast, parallel efficiency of the solver with Gauss-Seidel smoother deteriorates

when Pe∗ is increased.

In Table 5.16 we present the convergence results of Solver Strategy 4.4 for Case

study 5.1.2. For the convection-dominated set of results 5.16(b), we observe a con-
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Figure 5.4: Parallel efficiency for Case study 5.1.1 with N = 857, 375; (a) Pe∗ = 500,
(b) Pe∗ = 10, 000.

Table 5.16: The iteration counts and the (setup,total) execution time (in seconds) required for
the convergence of the parallel GMRES solver preconditioned by classical algebraic multigrid V(2,2)
cycle with several smoothers, when applied to the solution of the discrete convection-diffusion prob-
lem (Case study 5.1.2) obtained from Q1 SUPG FEM on a uniform grid, with N = 857, 375. Each
sub-table represents a different diffusion parameter.

(a) Pe∗=500

Smoother \ P 1 2 4 8 16
ILU0(0.5) 6(513.4,782.6) 5(577.5,785.3) 5(759.9,980.5) 5(462.6,617.6) 5(279.2,377.4)
tILU0(0.5, 0.25) 7(434.4,635.5) 7(319.6,439.3) 7(237.1,324.8) 7(204.7,248.0) 7(164.5,191.5)
tILU0(0.5, 0.5) 7(433.6,633.7) 7(274.5,386.3) 7(235.4,298.3) 7(180.4,225.0) 7(163.0,187.7)
Jacobi(0.5) 6(407.7,621.0) 6(259.6,378.0) 6(216.5,282.8) 6(169.0,213.7) 7(160.1,188.3)
GaussSeidel 4(408.6,561.7) 4(275.4,411.4) 4(228.7,352.7) 4(173.5,291.1) 4(163.1,287.5)

(b) Pe∗=10,000

Smoother \ P 1 2 4 8 16
ILU0(0.5) 7(2877,3274) 11(1176,1729) 15(512.6,998.7) 17(222.5,433.1) 19(129.6,248.4)
tILU0(0.5, 0.25) 10(201.8,403.3) 14(140.4,309.7) 18(96.1,231.3) 18(76.9,141.5) 22(67.7,114.0)
tILU0(0.5, 0.5) 11(201.4,418.2) 16(133.9,307.6) 20(90.4,206.3) 20(81.0,163.7) 24(64.9,114.3)
Jacobi(0.5) 15(175.4,533.6) 18(121.1,360.7) 21(83.6,232.9) 21(76.4,182.8) 25(66.0,132.9)
GaussSeidel 12(175.4,472.3) 15(126.7,420.8) 18(88.5,399.2) 20(76.4,428.7) 22(64.2,448.6)

siderable dependence in iteration counts with respect to the number of processors,

when coarsening is performed on a parallel architecture. This is a consequence of the

type of coarsening that is used. As in the 2D case, the problem can be fixed using

more complex parallel coarsening (for example, the Falgout method, (see Tables 4.28

and 4.29)). The best parallel execution times, with the configuration we adopted, are

observed when tILU0 smoothing is used.

The parallel efficiency for Case study 5.1.2 seen in Figure 5.5 shows, as for Case

study 5.1.1, that an increase in the relative convection strength does not have a

distinct effect on the scaling of Jacobi and tILU0(0.5, 0.5).
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Figure 5.5: Parallel efficiency for Case study 5.1.2 with N = 857, 375; (a) Pe∗ = 500,
(b) Pe∗ = 10, 000.

Again, this is not the case for Gauss-Seidel where parallel efficiency is reduced as

Pe∗ is increased.

5.4 Performance profile and summary

In summary of this chapter, we have analysed the iteration counts, execution times

and parallel scaling of the MG preconditioned GMRES solver with different smoothers

applied to three-dimensional case studies that are natural extension of two-dimensional

Case studies 4.2.1 and 4.2.2 . For GMG as a preconditioner the truncation parameter

α = 0.25 was used as default for tILU0 smoother, and for AMG preconditioner the

truncation parameter α = 0.5 was used as default for the tILU0 smoother.

An obvious consequence of moving to a higher spacial dimension is the increase in

both the size of coefficient matrix stencils and the rate of growth of discrete problems

under mesh refinement (e.g Tables 4.9 and 5.5). For the cases of uniform and recir-

culating flow, for AMG preconditioned GMRES solver it has been observed that for

increasing Pe∗ there was a distinct lack of independence in the iteration count when

using Gauss-Seidel as a smoother (e.g Tables 4.19 and 4.20) in two-dimensions. In

three-dimensions Tables 5.9 and 5.10 show little robust characteristics in the solver

when Gauss-Seidel is used as a smoother. However, ILU0 and tILU0(0.5,0.5) are

observed to be robust, in comparison.

A MG preconditioner with tILU0 smoother exhibited considerably shorter exe-

cution times than when ILU0 smoother is used for three-dimensional problems (Ta-

bles 5.1–5.16). Furthermore, the execution times of tILU0 are competitive with Gauss-

Seidel when GMG was used as a preconditioner (e.g Table 5.1). For large Pe∗ the
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execution times of AMG preconditioned tILU0 are shorter and scale substantially

better in parallel compared to Gauss-Seidel (Tables 5.9–5.15). The relative amount

of entries truncated in the matrix hierarchy using (3.43) in the three-dimensional case

is considerably larger than in the two-dimensional case (due to the different matrix

stencils) (e.g GMG: Tables 4.14 and 5.8, AMG: Figure 4.10 and Table 5.12).

When different damping parameters are considered for AMG preconditioning with

tILU0 smoothing, we observe a negligible change in iteration count when damping

parameter γ changes in the range [0.5, 2
3
]. Any further increase of γ leads to an

increase in iteration counts.

We conclude our summary with a performance profile of the experiments reported

in this chapter (based on total executions times). The performance profile results are

presented for three different categories: GMG preconditioning Figure 5.6(a), AMG

preconditioning Figure 5.6(b) and parallel AMG preconditioning Figure 5.6(c). In
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Figure 5.6: Performance profile for Case study 5.1.1 and 5.1.2, based on total execu-
tion time. GMRES solver with (a) GMG preconditioning (Pe∗=500, 2000), (b) AMG
preconditioning (Pe∗=500, 10000)and (c) Parallel AMG preconditioning (Pe∗=500,
10000).

Figure 5.6(a) the performance profile is taken from Tables 5.1–5.6 using only the

largest problem size N with Pe∗ = 500 and 2000. It can be seen that Gauss-Seidel
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is the most successful method according to the performance profile criterion followed

closely by tILU0(0.5, 0.25).

In Figure 5.6(b) the performance profile is taken from Tables 5.9 and 5.10 using

only the largest problem size N with Pe∗ = 500 and 10000. Figure 5.6(b) shows

that all smoothers, with the exception of ILU0, are within a small factor of one

another, with tILU0(0.5, 0.5) being the most reliable of smoothers given a small factor

θ = 1.2 of the fastest solver. As was the case in two-dimensions (Figure 4.13(b))

AMG preconditioned ILU0 has a poor performance profile. This is now not only due

to classical AMG having considerably denser coarser matrices than the coefficient

matrix, but also due to the initial coefficient matrix being denser in three-dimensions

(Tables 4.22 and 5.11).

In Figure 5.6(c) the performance profile is taken from Tables 5.15 and 5.16 using

only the largest problem size N with Pe∗ = 500 and 10000 and number of processors

P = 1, 2, 4, 8, 16. In Figure 5.6(c), as was the case in Figure 4.13(c), we conclude

that tILU0(0.5, 0.5) is the most robust smoother based on the smallest value of θ in

the performance profile framework.



Chapter 6

Conclusion and Future Work

The main aim of this thesis is to evaluate numerically a new smoothing methodology

for multigrid preconditioning of the discrete convection-diffusion problems. In the

special case of uniform uni-directional wind these results are strengthened theoreti-

cally by Fourier smoothing analysis.

Robustness of ILU0 smoothing in the context of MG preconditioning of the dis-

crete convection-diffusion equation has been studied in the literature. Our numerical

tests use a damped version of this smoother (γ = 0.5) and demonstrate its robustness

with respect to the discrete problem size, the relative convection strength and the

grid type, on a wide range of test problems in 2D and 3D. However, excessive compu-

tational and storage requirements associated with the ILU0 smoother (especially in

the AMG context, if coarsening is performed by the classical Ruge-Stüben method),

makes this method not competitive in terms of total execution times. Thus, we are

looking for a new smoothing methodology, which retains the asymptotic behaviour

of the ILU0 smoother, but at a considerably lower storage and computational cost

(ideally, comparable to the standard point smoothers Jacobi or Gauss-Seidel). We

propose a new incomplete factorisation type of smoother, based on the truncation

of “insignificant” off-diagonal entries in matrices within the MG hierarchy, before

performing incomplete factorisation on these matrices.

The truncation of the coefficient matrices reduces the numerical efficiency of the

smoother, compared to a standard ILU0 method. This will inevitably lead to an

increase in the iteration counts, but most importantly, decrease the total execution

time. A further characteristic of the new smoother, that we aim to satisfy, is that

the asymptotic behaviour of the iteration counts with respect to the problem size, Pe

and the type of grids used remains approximately the same as the ILU0 smoother.

The truncation criterion is based on the strength of dependence principle used in

classical AMG. Such a choice of truncation criterion, introduces an additional param-

eter into the algorithm. Finding an appropriate choice of truncation parameter, for

181
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the tILU0 smoother, that works efficiently for a wide range of problems (necessary if a

“black-box” algorithm is required), may pose a considerable challenge. For geometric

multigrid a truncation parameter of α = 0.25 was found to perform competitively

with respect to the other smoothers, frequently producing the shortest total solve

times. For algebraic multigrid a truncation parameter of α = 0.5 was found to be

more appropriate for the same range of case studies. This increase in the value of

the truncation parameter in the AMG case is associated with particular features of

classical AMG coarsening.

Parallel computing is becoming ever more popular as the computational costs of

solving very large problems increase. With the discrete problem size increasing in

modern applications the algorithm designers need to produce new algorithms that

are both numerically effective and have good parallel scalability. When smoothing

algorithms are concerned, the Jacobi method has the best parallel scaling properties,

but proves to be a fairly ineffective smoother in convection-dominated cases. The

Gauss-Seidel smoother is a numerically effective smoother, however its parallelisation

depends on the appropriate decoupling (red-black ordering) of the unknowns. Per-

formance tests with BoomerAMG show poor scaling of the Gauss-Seidel smoother in

both 2D and 3D. Parallelisation of the ILU0 method (block Jacobi ILU0) relies on a

balanced subdivision of the coefficient matrix among processors, and the application

of the ILU0 algorithm concurrently to all diagonal blocks. In the context of the tILU0

method, the coefficient matrix has already been truncated dynamically (with respect

to the magnitude of the off-diagonal entries). Thus, static truncation based on load

balancing, may lead to a much smaller deterioration in numerical efficiency of the

tILU0 algorithm than in the case of the parallel ILU0 algorithm. These properties

make the new tILU0 smoother a competitive choice in the parallel setting.

Future work

In this project we studied briefly the effectiveness of the new smoothing strategy

in the context of MG block preconditioning of the floor-driven cavity Navier-Stokes

equations. We found that the beneficial effect of damping for tILU0 smoother (and

its limiting cases Jacobi and ILU0) is not present when the MG preconditioner is

used to invert, approximately, the entire momentum block. We outlined potential

reasons for this finding (unsuitability of MG for vector-valued problems, presence

of Newton derivative blocks and/or the absence of SUPG stabilisation). Applying

Picard’s linearisation [31, p.326] can change this situation, as the momentum block

has a block diagonal structure. Also, the componentwise application of the MG pre-

conditioner to scalar convection-diffusion subproblems within the momentum block

is usually beneficial [31, p.361]. A natural extension is to test the new methodology
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for time-dependent problems, where the momentum block is perturbed further by a

(beneficial) mass matrix [57]. It is also necessary to test the new MG preconditioner

with tILU0 smoothing on a broader set of more realistic problems in fluid mechanics

[28].

A further extension of this work can include testing of the new smoothing strategy

in the context of different AMG coarsening. In this project we experimented with

classical Ruge-Stüben and Falgout coarsening. By contrast, there exists an entire

class of aggregation based MG methods [67]. These methods have naturally low

operator complexities (i.e. the coefficient matrices at coarse levels remain relatively

sparse). It would therefore be of interest to compare the effectiveness of the tILU0

smoothing in this context (and to find an optimal value for the truncation parameter

α).

In Section 2.1 we say that a scalar convection-diffusion equation represents a sin-

gular perturbation of a second-order elliptic problem. Another example of singular

perturbation is the Helmholtz equation [7, p.275], this is relevant in modelling elec-

tromagnetic waves (acoustic scattering). A common feature of singular perturbations

of the Poisson problem is that they introduce h-dependence in the FE discretisations

of these problems. For the case of discrete convection-diffusion problems the tILU0

smoother shows its effectiveness. Standard MG preconditioning of the Helmholtz

problem is still an open problem [26] [29]. Thus, finding an effective MG scheme

through using tILU0 as a smoother for the discrete Helmholtz problem would be of

interest.



Appendix A

Additional Results

Table A.1 shows the convergence characteristics of the classical AMG preconditioned
Krylov solver for Case study 4.2.3. For Pe∗ = 500 and 2000 the asymptotic perfor-
mance of GMRES, for all smoothers, remains Pe, h-robust. For moderate values of
Pe∗ the shortest execution times are obtained when using the Gauss-Seidel smoother,
however for highly convective flow (Pe∗ = 10, 000) using Gauss-Seidel as a smoother
results in the solver not converging for large problem sizes. In the case of dominant
convection (Pe∗ = 10, 000) tILU0(0.5,0.5) smoother has asymptotically the smallest
iteration count.

Table A.1: The iteration counts and the (setup,total) execution time (in seconds) required for the
convergence of the GMRES solver right-preconditioned by classical algebraic multigrid V(2,2) cycle
with several smoothers, when applied to the solution of the discrete convection-diffusion problem
(Case study 4.2.3) obtained from Q1 SUPG FEM on uniform grids. Each subtable represents a
different diffusion parameter. × denotes a lack of convergence within 100 GMRES iterations.

(a) Pe∗=500

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 6(0.13,0.27) 6(0.56,1.60) 5(2.43,7.82) 5(11.0,38.9) 5(42.5,151.8)
tILU0(0.5, 0.25) 8(0.11,0.22) 7(0.46,1.18) 7(1.92,6.50) 9(8.59,38.8) 9(33.9,152.2)
tILU0(0.5, 0.5) 9(0.11,0.23) 8(0.45,1.20) 9(1.90,7.39) 10(8.42,39.6) 10(33.5,158.5)
Jacobi(0.5) 10(0.03,0.15) 9(0.13,0.92) 9(0.63,6.51) 9(3.32,35.6) 10(13.6,154.0)
GaussSeidel 7(0.03,0.11) 7(0.13,0.72) 6(0.63,4.77) 6(3.30,24.8) 6(13.6,98.3)

(b) Pe∗=2,000

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 6(0.13,0.26) 7(0.56,1.75) 7(2.39,9.43) 7(10.7,47.4) 6(44.7,180.0)
tILU0(0.5, 0.25) 10(0.11,0.25) 11(0.46,1.59) 9(1.93,7.74) 8(8.42,35.6) 8(35.1,152.0)
tILU0(0.5, 0.5) 11(0.11,0.26) 12(0.45,1.60) 11(1.88,8.46) 10(8.22,39.7) 10(34.3,167.7)
Jacobi(0.5) 14(0.03,0.20) 13(0.13,1.30) 12(0.60,8.16) 10(3.05,37.9) 9(13.5,145.8)
GaussSeidel 9(0.02,0.13) 10(0.13,0.94) 13(0.61,8.66) 14(3.05,48.8) 7(13.5,113.5)

(c) Pe∗=10,000

Smoother \ N 3969 16129 65025 261121 1046529
ILU0(0.5) 7(0.13,0.29) 8(0.56,1.91) 11(2.40,13.1) 14(10.5,79.3) 17(43.9,393.9)
tILU0(0.5, 0.25) 11(0.11,0.26) 13(0.47,1.84) 15(1.96,11.6) 15(8.44,59.2) 17(35.0,275.4)
tILU0(0.5, 0.5) 12(0.12,0.26) 15(0.45,1.87) 18(1.91,12.7) 18(8.20,63.6) 13(34.0,206.6)
Jacobi(0.5) 16(0.03,0.23) 19(0.12,1.78) 20(0.59,12.9) 18(2.95,63.5) 15(12.9,225.4)
GaussSeidel 10(0.03,0.14) 12(0.12,1.09) 19(0.59,12.0) × ×
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Appendix B

Iterative Linear Solvers

The purpose of this tutorial is to show the implementation details and how to specify
different iterative linear solvers for oomph-lib’s Newton solver.

B.1 Overview

For the case of linear problems, by default oomph-lib’s Newton solver,
Problem::newton solve(...), solves the linear systems that arise from the Newton
iteration with its default (direct) linear solver, SuperLUSolver.

A direct solver may not always be the most appropriate method of solving a linear
system of equations, especially in cases when they are very large. oomph-lib provides
a number of alternative iterative linear solvers that can be used instead. All iterative
linear solvers are derived from the class linear solver, which in turn is derived from a
base class LinearSolver, which contains a single pure virtual function of the form:

virtual void LinearSolver::solve(Problem *const &problem_pt,
Vector<double> &result)=0;

The task of this function is to compute the solution δx (returned in the vector result)
of the linear system

J δx = −rN,

where rN and J are the nonlinear residual vector and the global Jacobian respectively,
assembled by the Problem which is accessed through the pointer problem pt.

B.2 List of available iterative linear solvers

The online users, can follow the links that will take you directly to the solvers’ class
references which explain any solver-specific member functions.

• Point iterative solvers. These methods can be used as a Solver,
Preconditioner or Smoother:

– GaussSeidel: Gauss-Seidel – A special instance of SOR solver, that ap-
proximates the coefficient matrix by its lower triangular part. As a solver
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this method will need a significant amount of iterations to converge to a
tolerance.

– UpperGaussSeidel: Upper Gauss-Seidel – Approximates the coefficient
matrix by its upper triangular part. Can be used in conjunction with
standard Gauss-Seidel to form a symmetric version of the Gauss-Seidel
method. This is important when is used as a preconditioner/smoother
within Conjugate Gradient method.

– ILUzero(damping,truncation): ILUzero – A special case of LU decom-
position, where the factorisation does not create “fill-in”. This, in turn,
preserves the original sparsity of the coefficient matrix in the incomplete
factors. Allows truncation and damped version of the method.

– Jacobi(damping): Jacobi – Computationally cheap method that approxi-
mates the coefficient matrix by its diagonal entries. Allows damped version
of the method.

• MultiGrid Solvers:

– GMG: Geometric Multigrid – Uses a hierarchical sequence of discrete rep-
resentations of the underlying problem assembled on a nested sequence
of uniformly or adaptively refined grids. An interpolation and restriction
operator, based of finite element basis functions, are used communicate in-
formation between different levels in the hierarchy. At each multigrid level,
except the coarsest, a residual (defect) equation is solved approximately
by applying a small, fixed number of smoothing iterations.

– HypreSolver : Algebraic Multigrid – Uses an algebraic multigrid method
to produce discrete operator hierarchy based on automatic coarsening pro-
cedure. Hypre provides a choice of coarsening and smoothing strategies
[2] [33]. Hypre also provides a parallel implementation of the AMG and
smoothing strategy.

B.3 How to change the LinearSolver

Specifying Gauss-Seidel as a linear solver for a linear system with a sparse coefficient
matrix represented in a compressed row format is done by:

// Gauss Seidel
//------

linear_solver_pt()=new GaussSeidel<CRDoubleMatrix>;

Gauss-Seidel may not be the best choice for a solver/preconditioner/smoother when
used with the default ordering of nodes (unknowns). Ordering the unknowns can be
beneficial in some context. In cases of advection-diffusion problems ordering the in
direction of the wind can reduce the number of iterations needed by the Gauss-Seidel
solver to reach a prescribed tolerance.

// Gauss Seidel with lexicographical forward and back ordering
// in Cartesian directions (4 directional ordering)
//------

linear_solver_pt()=new GaussSeidel<CRDoubleMatrix>(order_typeb,widthb);
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There is a choice of ordering patterns within oomph-lib setup, that include forward
and backward directional ordering in each of the Cartesian directions, as well as
the black box ordering, based on a variant of minimum degree ordering algorithm,
referred to as Tarjan’s algorithm (implemented in the routine HSL13 from the HSL
library [1]). To set the vector order typeb for a four-directional ordering in two spacial
dimensions we need to proceed as follows:

//forward, back, black_box, nothing
// //ordering
// //0:x direction
// //1:y direction

unsigned widthb=3;
//direction + (x and y order if needed) //dimensions for 2d

unsigned order_type_nb=4;
Vector<unsigned>order_typeb(widthb*order_type_nb);
order_typeb[0]=direction::forward;
order_typeb[1]=0;
order_typeb[2]=1;

order_typeb[3]=direction::forward;
order_typeb[4]=1;
order_typeb[5]=0;

order_typeb[6]=direction::back;
order_typeb[7]=0;
order_typeb[8]=1;

order_typeb[9]=direction::back;
order_typeb[10]=1;
order_typeb[11]=0;

The variable widthb controls the memory space needed for each ordering (the direction
and the direction priority).

The following example demonstrates how a black-box ordering of the unknowns
is defined:

unsigned width=1;
unsigned order_type_n=2;
Vector<unsigned>order_type(width*order_type_n);
order_type[0]=direction::black_box;
order_type[1]=direction::black_box;

In this example a single iteration will consist of two sweeps using the same black-box
ordering.

A Jacobi method can be setup as a linear solver in a similar fashion. The Jacobi
method has an additional feature, damping. Damped Jacobi uses a simple variable,
for damping, in its constructor.

std::cout<<"Damped=0.5
Jacobi solver================="<<std::endl;

std::cout<<endl;
double weight=0.5;
linear_solver_pt()=new Jacobi<CRDoubleMatrix>(weight);

The ILU0 method is also setup to work with a damping parameter and can be
initialised in a similar fashion as the Jacobi method. Performing ILU0 on a large
sparse matrix, especially in cases of three-dimensional problems, can be time and
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memory consuming. These can be reduced by using the new tILU0 method, whereby,
prior to applying ILU0 factorisation, the coefficient matrix is analysed and in each
row the entries that are small in magnitude (compared to a predefined threshold
relative to the largest off-diagonal entry in a particular row) are neglected.

// ILUZero(trunc=0.25,damp=0.5) Solver
//-------

double reduction_weight=0.25 ;// 1=Jacobi, 0=ILU
double ilu_weight=0.5;//Damping
bool reduction=true;

linear_solver_pt()=new ILUZero<CRDoubleMatrix>(ilu_weight,
reduction,
reduction_weight,
order_type,width);

//-----------------------------------.

The damping variable in this example is ilu weight, and the relative trunca-
tion threshold variable is reduction weight. The two limiting cases of tILU0 are
reduction weight=0, which gives the standard ILU0 method and reduction weight

=1.0 which gives the Jacobi method. The boolean variable reduction is used to turn
the truncation process off or on, as there is a small additional computational cost
associated with performing the reduction. In cases where reduction weight=0 it
would be better to set the reduction boolean to false, as the analysis phase does
not need to be performed for ILU0. These methods can all be used as smoothers for
geometric multigrid.

For scalar second-order elliptic operators, multigrid (MG) is an optimal solver.
In setting geometric MG as a solver we need to set the template to represent the
number of spacial dimensions of the problem <2>. The geometric MG method is
implemented in oomph-lib as a V-cycle. A single V-cycle constitutes one MG
iteration. When MG is used as a solver, V-cycles are repeated until the solution
residual is reduced to satisfy a given tolerance. Different methods can be used in pre-
and post-smoothing. This is achieved by associating two different methods with the
functions pre smoother pt() and post smoother pt(). The default value settings
for pre- and post-smoothers is Gauss-Seidel. The MG setup is performed by:

// Geometric Multigrid with pre
smoother=GaussSeidel and postsmoother=
// UpperGaussSeidel using an ordering
//-------

cout << "Geometric MultiGrid Solver with pre=GS and post=UGS smoother" << std::endl;
cout << "-----------------------" << std::endl;
linear_solver_pt()=new MGSolver<2>;

cout << "GS and UGS smoother using BB ordering" << std::endl;
cout << "-----------------------" << std::endl;

pre_smoother_pt()=new GaussSeidel<CRDoubleMatrix>(order_type,width);
post_smoother_pt()=new UpperGaussSeidel<CRDoubleMatrix>(order_type,width);

All the methods mentioned until now can also be used as preconditioners. A
default Krylov solver in oomph-lib is GMRES which can be used with the left of
right preconditioner. Choosing the preconditioning side can be done by setting the
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preconditioner LHS() function to true for the left side or false for the right-side.
In the example below a right hand side preconditioner is used. The preconditioner is
declared in much the same way as a linear solver. In the example below we are using
geometric MG preconditioner with Gauss-Seidel smoother using a four directional
nodal ordering.

cout << "GMRES Solver RHS GMG" <<
std::endl;

cout << "-----------------------" << std::endl;

bool preconditioner_LHS=false;//false=rhs preconditioner
linear_solver_pt()=new GMRES<CRDoubleMatrix>;
dynamic_cast<GMRES<CRDoubleMatrix>*>(linear_solver_pt())->
preconditioner_LHS()= preconditioner_LHS;

cout << "GMG preconditioner" << std::endl;
cout << "-----------------------" << std::endl;
dynamic_cast<IterativeLinearSolver*>(linear_solver_pt())->
preconditioner_pt()=new MGSolver<2>;

cout << "Gauss-Seidel smoother" << std::endl;
cout << "-----------------------" << std::endl;

pre_smoother_pt()=new GaussSeidel<CRDoubleMatrix>(order_typeb,
widthb);

post_smoother_pt()=new GaussSeidel<CRDoubleMatrix>(order_typeb,
widthb);

//-----------------------//

In oomph-lib a default algebraic MG solver is BoomerAMG [50] from the package
hypre [2] [33]. The setup of an algebraic MG preconditioner is therefore done slightly
differently from the geometric MG case:

IterativeLinearSolver* oomph_linear_solver_pt = new GMRES<CRDoubleMatrix>;
oomph_linear_solver_pt->tolerance()=1.0e-7;
problem.linear_solver_pt() = oomph_linear_solver_pt;

// Create a new Hypre preconditioner
HyprePreconditioner* hypre_preconditioner_pt = new HyprePreconditioner;
// set the preconditioning method within the hypre solver
hypre_preconditioner_pt->hypre_method() = HyprePreconditioner::BoomerAMG;
// set the preconditioner in the iterative solver
oomph_linear_solver_pt->preconditioner_pt() = hypre_preconditioner_pt;

B.4 Point iterative solver

From a general matrix splitting J = M+N we obtain a general simple-point iteration:

xk+1 = xk + M−1rk, k = 0, 1, ...

where M is a non-singular matrix that is easier to invert than J , and rk is the
residual at the k-th iteration.
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If we replace the splitting J = M + N by the splitting J = D + L + U , where
D is the diagonal L strictly lower and U strictly upper parts of J , we obtain several
well-known splitting (simple-point) iterative methods:

• The Jacobi method takes M = D. To increase the efficiency of the Jacobi
method a damping parameter γ ∈ (0, 1] is added, giving:

xk+1 = xk + γD−1rk, k = 0, 1, ...

• In the Gauss-Seidel method M = D + L.

xk+1 = xk + (D + L)−1rk, k = 0, 1, ...

• In the Upper Gauss-Seidel method M = D + U .

xk+1 = xk + (D + U)−1rk, k = 0, 1, ...

• The ILU0 method takes M to be a product of two incomplete factors L̃ and
Ũ . The method can be damped for improved efficiency. The method then uses
forward and backward substitution applied to the residual vector rk.

xk+1 = xk + γ(L̃Ũ)−1rk, k = 0, 1, ...

The disadvantages of using these methods as solvers is they require a large amount
of iterations to converge to a given tolerance.

B.5 Geometric multigrid

Point iterative methods are very efficient at reducing high frequency (oscillatory) error
components. However, they are very inefficient at resolving low frequency (smooth)
error components. This inefficiency is the reason behind the large number of iter-
ations needed for their convergence to a given tolerance. Thus, an effective way of
using point iterative solvers is to apply only a few iterations, to reduce oscillatory
error components, followed by a projection of the remaining (smooth) error compo-
nents to a coarser grid. These simple-point methods are known as smoothers and are
represented as Sν1

L (JL, fL) where ν is the number if iterations. Multigrid is a hier-
archical method that attempts to take advantage of the potential of point iterative
methods, by allowing the point iterative methods to reduce the high frequency error
components at each hierarchical level.

The solve phase of the geometric MG method in oomph-lib consists of a standard
V-cycle. The matrices J l+1, l = 1, . . . , L are constructed though a direct finite
element discretisation of the problem at a different grid level in the MG hierarchy.
To transfer the information between different grid levels the interpolation matrices
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P l+1
l are introduced. Finally, at the coarsest level the linear system is solved using a

direct solver (SuperLU). The MG V-cycle can be schematically presented as:

δ̃xL = Sν1
L (JL, (rN)L) δ̃xL = Sν2

L (JL, (rN)L)

rL = fL − JLδ̃xL δ̃xL = δ̃xL + eL

rL−1 = RL−1
L rL eL = PL

L−1eL−1

ẽL−1 = Sν1
L−1(JL−1, rL−1) ẽL−1 = Sν2

L−1(JL−1, rL−1)
r̃L−1 = rL−1 − JL−1ẽL−1 ẽL−1 = ẽL−1 + eL−1

. . . . .
.

ẽ2 = Sν1
2 (J2, r2) ẽ2 = Sν2

2 (J2, r2)
r̃2 = r2 − J2ẽ2 ẽ2 = ẽ2 + e2

r1 = R1
2r̃2 e2 = P 2

1 e1

J1e1 = r1.

The V-cycle presented above starts and finishes at the finest grid level L. At the
finest level L a smoother (Sν

L(JL, (rN)L)) is applied to the system JLδxL = (−rN)L

(rN is the nonlinear residual). The linear residual rL is then computed and projected
(restricted) to a coarse level. At all coarse levels we solve the residual equation
approximately, except at the coarsest level, where it is solved exactly. After the exact
solution of the residual equation, at the coarsest level, the correction to the solution
e1 is projected (interpolated) to the finest grid. At each finer grid the correction
is further smoothed to remove the high-frequency error components introduced by
interpolation. Finally, at the finest level, the correction eL is added to the current
approximate solution.

Having in mind that the interpolation matrix and the coarse-level operators in
standard geometric MG method are fixed (determined by the finite element inter-
polation and direct finite element discretisation of the problem on coarse grids), the
efficiency of the method is solely determined by the quality of the smoother. In this
context, point smoothers work well if the coefficient matrix is diagonally dominant.

B.6 Interpolation matrix

Interpolation in the context of MG is the process of passing the information from a
coarser to a finer grid. If the size of the coarser grid is nc and the size of the finer
grid is nf , then the interpolation matrix P is an nf × nc sparse matrix, constructed
from the finite element basis functions as in Algorithm B.1.

Note that this is an example of assembling the interpolation matrix in the case
of two-dimensional problem discretised by a uniformly refined quadrilateral grid. A
requirement of this setup phase is that the interpolation matrix assumes that the
element 1, and the node 1 at level l, must be the same as the element 1 and the node
1 at level l + 1. For adaptively refined grid refinement hanging nodes must be taken
into account when assembling the interpolation matrix (Algorithm B.2).

The restriction matrix can be constructed in a number of ways. We have already
introduced the fully weighted restriction matrix which is the transpose of the interpo-
lation matrix. This is the default setting in oomph-lib. A simpler (and consequently
less effective) restriction is injection (Algorithm B.3). In this case the nodes at a
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Solver Strategy B.1 Assembly of the interpolation matrix P l+1
l for uniformly refined

grids

for e = 1 : N l
e %loop over all elements at level l

−if (e is refined)
−for k = 1 : 4 %loop over ek

l+1

+for i = 1 : 4 %loop over nodes in ek
l+1

+ii = %global node number of the node il+1

∗for j = 1 : 4 %loop over nodes in ek
l

∗jj = %global node number of the node jl

∗P (ii, jj) = ψl
i(xi, yj)

−else
−for i = 1 : 4 %loop over all nodes in el = el+1

+jj = %global node number of the node i in el

+ii = %global node number of the node i in el+1

+P (ii, jj) = ψl
i(xi, yi)

−end if

Solver Strategy B.2 Assembly of the interpolation matrix P l+1
l , when hanging

nodes are present

for e = 1 : N l
e %loop over all elements at level l

if (e is refined)
for k = 1 : Ne %loop over nodes ek

l+1

for i = 1 : Ne %loop over nodes in ek
l+1

ii = %global node number of the node il+1

for j = 1 : number of nodes %loop over nodes in ek
l

jj = %global node number of the node jl

if(hanging)
% loop over all master nodes that are related to this hanging node
P (ii,masterjj) = P (ii,masterjj) + ψl

i(xi, yj)
else

P (ii, jj) = ψl
i(xi, yj)

else
for i = 1 : 4 %loop over all nodes in el = el+1

jj = %global node number of the node i in el

ii = %global node number of the node i in el+1

P (ii, jj) = ψl
i(xi, yi)

end if

coarser grid directly take the residual vector values from the nodes at the same geo-
metric positions in the fine grid. This is equivalent to using only the integer entries
in the fully weighted restriction matrix.

A modification to this method is the sum injection matrix (Algorithm B.4). Here
the sum of each column of the interpolation matrix is multiplied by the residual
vector.
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Solver Strategy B.3 Assembly of the restriction matrix Rl
l+1, via injection

if(P (i, j) = 1)
rhsl+1[j] = rel[i]

Solver Strategy B.4 Assembly of the restriction matrix Rl
l+1, via sum injection

if(P (i, j) = 1) z = i
rhsl+1[j] =

∑
i(P (i, j)) ∗ rel[z]



Appendix C

HPCx Notes

The aim of using HPCx was to further test the scalability of the new MG precon-
ditioner with tILU smoother on a larger number of processors and for large discrete
problem sizes. This chapter will cover the procedure and the difficulties encountered
during the installation of OOMPHLIB and modified Hypre 2.2b software libraries on
the HPCx architecture.

HPCx is the UK science community’s capability computing service, run by EPCC
and CCLRC on behalf of the EPSRC. The current specifications used are a 160 IBM
eServer 575 LPARs for computations, using a IBM PowerPC architecture. Each
eServer LPAR contains 16, 1.5Ghz processors, with a total shared main memory of
32GB. The total machine capacity is 2560 processors [4].

C.1 Download

The latest version of the OOMPHLIB (48 at the time) library was downloaded using
SVN. To do this the .profile file must be modified to include the following path:

PATH=PATH : /usr/local/packages/svn/subversion− 1.5.6/bin
The svn scripts used to locate the OOMPHLIB library are:

#!/bin/bash if [ $# -ne 2 ]; then

echo ‘‘Usage: check_me_out username path_to working_copy’’

exit 1

fi

http-proxy-host = 148.79.162.144

%

http-proxy-port = 8080

%

svn checkout

svn+ssh://$1@orac.ma.man.ac.uk/home/svn-oomphlib/public/trunk $2 cd

$2 svn checkout

svn+ssh://$1@orac.ma.man.ac.uk/home/svn-oomphlib/private/trunk

private cd ..

We then run the script as follows: ./check me out.sh <oomphlib user name> <
hpcx user directory> or alternatively download the library from the home direc-
tory [45]. Hpcx does not have the capability to zip/unzip a file so we must first do

194
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the following:
gunzip oomphlib.tar.gz, scp oomphlib.tar username@login.hpcx.ac.uk:.

We can then unpack the tar file into a directory:
tar -xvf oomphlib.tar

C.2 Building the library

Change the compiler options to match those of HPCx compilers.
Serial Compilers: oomphlib/config/configure options/hpcx serial:

--enable-suppress-doc CXX=‘‘-qrtti=all’’ LD=xlf_r CXX=xlC_r CC=xlc_r

F77=xlf_r

Parallel Compiler: oomphlib/config/configure options/hpcx mpi:

--enable-MPI --enable-suppress-doc

CXX=‘‘-qrtti=all’’ LD=xlf_r CXX=mpCC_r CC=mpcc_r F77=mpxlf_r

To build the library run
./autogen --rebuild

and choose the appropriate compiler configuration.

C.3 Libtool

Libtool is not supported by HPCx but the staff allow a local directory download to
be used. If Libtool is not present, the following error will arise:
Libtool library used but ‘LIBTOOL’ is undefined:

The usual way to define ‘LIBTOOL’ is to add ‘AC PROG LIBTOOL’ to configure.in
and run aclocal and autoconf again.

Download and install Libtool to your local directory as instructed and compile
./configure --prefix /oomphlib/locallibtool make; make install

we then need to add the path to the libtool bin and lib in .profile.
PATH = $PATH : /oomphlib/locallibtool/bin
The library path is not set by using LD LIBRARY path but LIBPATH in AIX.
LIBPATH = $LIBPATH : /oomphlib/locallibtool/lib

C.4 OOMPHLIB

Within OOMPHLIB we need to modify regenerate cofig files.sh from
aclocal

to
aclocal -I /oomphlib/locallibtool/share/aclocal

and modify configure.ac script/start to
AC CONFIG MARCO DIR([m4])

and Makefile.am

ACLOCAL AM FLAGS=-I m4
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We will now find that an error occurs during the autogen.sh compilation. This is
due to a comparability problem with HPCx not supporting .sh and so echo -n does
not work.

To solve this problem temporarily we can change the top of each of the following
files from bin/sh to bin/bash

oomphlib/bin/

regenerate_config_file.sh

build_mesh_makefile.sh

change_headers_to_links.sh

oomphlib/

autogen.sh

The next error will be found in external src/arpack with debug.h and stat.h

being missing. This is also temporarily resolved by coping the files from a GNU
distribution.

An observation that was noticed was that a file would need two to five times more
memory on the HPCx machine than on a the wulf machine (University of Manch-
ester, Department of Mathematics, parallel machine).

Using CXX=xlC r as a compiler we found that an oomphlib utitiy.cc line 349

error exists. This can be resolved by using a CXX=g++.

Recompiling OOMPHLIB via
./autogen --rebuild

will now compile successfully.

Having successfully compiled OOMPHLIB, we turn our attention to specific prob-
lems. A simple one-dimensional problem has now compiled however during run-
time a segmentation fault will occur. To resolve the problem of differences be-
tween AIX and GNU the following flag was introduced to the configure options

LDFLAGS=‘‘-brtl’’. However due to the size of the library an ld:0711-781 ERROR:TOC

overflow error occurs because the table of contents is over 64KB. Many solutions to
this were used but with no success. It was concluded that LDFLAGS=‘‘-brtl’’ could
not be used. The segmentation fault was in relation to using a C language function
superlu. If a C++ language solver was used such as DenseLU or GMRES<CRDoubleMatrix>
we find that the one dimensional Poisson problem is solved accurately.

The problem may have been down to CXX=g++ and CC=xlc r begin incompatible.
Therefore, to resolve this problem the serial compiler oomphlib/config/configure
options/hpcx serial:

--enable-suppress-doc CXX=‘‘-qrtti=all’’ LD=xlf\_r CXX=xlC\_r

CC=xlc\_r F77=xlf\_r

must be used. The LD flag was another option that was changed, and was found to
work best with LD=xlC r or xlf r.
Furthermore to get to the stage where the problem is in the “C” functions a number
of files must be commented: oomphlib utilities.cc line 349, mesh.h line 1348
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and fsi.cc taken out of the build process completely. Also, elements with external

element.cc L144 and oomph info L168 was also a new problem and needed to be
modified to std::cout

To resolve the problem of not being able to use any functions from superlu3.0

which is written in “C” we can add all the relevant files that are used into src/generic/
Makefile.am for example sources= /oomphlib/external src/oomph superlu3.0/

util.c. This is clearly a temporary solution as the superlu3.0 library should link
up to src/user driver/Makefile.

We can conclude that building the OOMPHLIB library on an AIX machine is
problematic.
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