8 research outputs found

    Reducing the impacts of intra-class spectral variability on the accuracy of soft classification and super-resolution mapping of shoreline

    Get PDF
    The main objective of this research is to assess the impact of intra-class spectral variation on the accuracy of soft classification and super-resolution mapping. The accuracy of both analyses was negatively related to the degree of intra-class spectral variation, but the effect could be reduced through use of spectral sub-classes. The latter is illustrated in mapping the shoreline at a sub-pixel scale from Landsat ETM+ data. Reducing the degree of intra-class spectral variation increased the accuracy of soft classification, with the correlation between predicted and actual class coverage rising from 0.87 to 0.94, and super-resolution mapping, with the RMSE in shoreline location decreasing from 41.13 m to 35.22 m

    Superresolution Land Cover Mapping Using a Generative Adversarial Network

    Get PDF
    Superresolution mapping (SRM) is a commonly used method to cope with the problem of mixed pixels when predicting the spatial distribution within low-resolution pixels. Central to the popular SRM method is the spatial pattern model, which is utilized to represent the land cover spatial distribution within mixed pixels. The use of an inappropriate spatial pattern model limits such SRM analyses. Alternative approaches, such as deep-learning-based algorithms, which learn the spatial pattern from training data through a convolutional neural network, have been shown to have considerable potential. Deep learning methods, however, are limited by issues such as the way the fraction images are utilized. Here, a novel SRM model based on a generative adversarial network (GAN), GAN-SRM, is proposed that uses an end-to-end network to address the main limitations of existing SRM methods. The potential of the proposed GAN-SRM model was assessed using four land cover subsets and compared to hard classification and several popular SRM methods. The experimental results show that of the set of methods explored, the GAN-SRM model was able to generate the most accurate high-resolution land cover maps

    The effect of the point spread function on downscaling continua

    Get PDF
    The point spread function (PSF) is ubiquitous in remote sensing. This paper investigated the effect of the PSF on the downscaling of continua. Geostatistical approaches were adopted to incorporate explicitly, and reduce the influence of, the PSF effect in downscaling. Two general cases were considered: univariate and multivariate. In the univariate case, the input coarse spatial resolution image is the only image available for downscaling. Area-to-point kriging was demonstrated to be a suitable solution in this case. For the multivariate case, a finer spatial resolution image (or images) observed under different conditions (e.g., at a different wavelength) is available as auxiliary data for downscaling. Area-to-point regression kriging was shown to be a suitable solution for this case. Moreover, a new solution was developed for estimating the PSF in image scale transformation. The experiments show that the PSF effect influences downscaling greatly and that downscaling can be enhanced obviously by considering the PSF effect through the geostatistical approaches and the PSF estimation solution proposed

    Geoscience-aware deep learning:A new paradigm for remote sensing

    Get PDF
    Information extraction is a key activity for remote sensing images. A common distinction exists between knowledge-driven and data-driven methods. Knowledge-driven methods have advanced reasoning ability and interpretability, but have difficulty in handling complicated tasks since prior knowledge is usually limited when facing the highly complex spatial patterns and geoscience phenomena found in reality. Data-driven models, especially those emerging in machine learning (ML) and deep learning (DL), have achieved substantial progress in geoscience and remote sensing applications. Although DL models have powerful feature learning and representation capabilities, traditional DL has inherent problems including working as a black box and generally requiring a large number of labeled training data. The focus of this paper is on methods that integrate domain knowledge, such as geoscience knowledge and geoscience features (GK/GFs), into the design of DL models. The paper introduces the new paradigm of geoscience-aware deep learning (GADL), in which GK/GFs and DL models are combined deeply to extract information from remote sensing data. It first provides a comprehensive summary of GK/GFs used in GADL, which forms the basis for subsequent integration of GK/GFs with DL models. This is followed by a taxonomy of approaches for integrating GK/GFs with DL models. Several approaches are detailed using illustrative examples. Challenges and research prospects in GADL are then discussed. Developing more novel and advanced methods in GADL is expected to become the prevailing trend in advancing remotely sensed information extraction in the future.</p

    Monitoring high spatiotemporal water dynamics by fusing MODIS, Landsat, water occurrence data and DEM

    Get PDF
    Monitoring the spatiotemporal dynamics of surface water from remote sensing imagery is essential for understanding water's impact on the global ecosystem and climate change. There is often a tradeoff between the spatial and temporal resolutions of imagery acquired from current satellite sensors and as such various spatiotemporal image fusion methods have been explored to circumvent the challenges this situation presents (e.g., STARFM). However, some challenges persist in mapping surface water at the desired fine spatial and temporal resolution. Principally, the spatiotemporal changes of water bodies are often abrupt and controlled by topographic conditions, which are usually unaddressed in current spatiotemporal image fusion methods. This paper proposes the SpatioTemporal Surface Water Mapping (STSWM) method, which aims to predict Landsat-like, 30 m, surface water maps at an 8-day time step (same as the MODIS 8-day composite product) by integrating topographic information into the analysis. In addition to MODIS imagery acquired on the date of map prediction and a pair of MODIS and Landsat images acquired temporally close to the date of prediction, STSWM also uses the surface water occurrence (SWO, which represents the frequency with which water is present in a pixel) and DEM data to provide, respectively, topographic information below and above the water surface. These data are used to translate the coarse spatial resolution water distribution representation observed by MODIS into a 30 m spatial resolution water distribution map. The STSWM was used to generate an 8-day time series surface water maps of 30 m resolution in six inundation regions globally, and was compared with several other state-of-the-art spatiotemporal methods. The stratified random sampling design was used, and unbiased estimators of the accuracies were provided. The results show that STSWM generated the most accurate surface water map in which the spatial details of surface water were well-represented

    Principles and methods of scaling geospatial Earth science data

    Get PDF
    The properties of geographical phenomena vary with changes in the scale of measurement. The information observed at one scale often cannot be directly used as information at another scale. Scaling addresses these changes in properties in relation to the scale of measurement, and plays an important role in Earth sciences by providing information at the scale of interest, which may be required for a range of applications, and may be useful for inferring geographical patterns and processes. This paper presents a review of geospatial scaling methods for Earth science data. Based on spatial properties, we propose a methodological framework for scaling addressing upscaling, downscaling and side-scaling. This framework combines scale-independent and scale-dependent properties of geographical variables. It allows treatment of the varying spatial heterogeneity of geographical phenomena, combines spatial autocorrelation and heterogeneity, addresses scale-independent and scale-dependent factors, explores changes in information, incorporates geospatial Earth surface processes and uncertainties, and identifies the optimal scale(s) of models. This study shows that the classification of scaling methods according to various heterogeneities has great potential utility as an underpinning conceptual basis for advances in many Earth science research domains. © 2019 Elsevier B.V

    Enhanced subpixel mapping with spatial distribution patterns of geographical objects

    Get PDF

    Mehitamata õhusõiduki rakendamine põllukultuuride saagikuse ja maa harimisviiside tuvastamisel

    Get PDF
    A Thesis for applying for the degree of Doctor of Philosophy in Environmental Protection.Väitekiri filosoofiadoktori kraadi taotlemiseks keskkonnakaitse erialal.This thesis aims to examine how machine learning (ML) technologies have aided significant advancements in image analysis in the area of precision agriculture. These multimodal computing technologies extend the use of machine learning to a broader spectrum of data collecting and selection for the advancement of agricultural practices (Nawar et al., 2017) These techniques will assist complicated cropping systems with more informed decisions with less human intervention, and provide a scalable framework for incorporating expert knowledge of the PA system. (Chlingaryan et al., 2018). Complexity, on the other hand, can be seen as a disadvantage in crop trials, as machine learning models require training/testing databases, limited areas with insignificant sampling sizes, time and space-specificity, and environmental factor interventions, all of which complicate parameter selection and make using a single empirical model for an entire region impractical. During the early stages of writing this thesis, we used a relatively traditional machine learning method to address the regression problem of crop yield and biomass prediction [(i.e., random forest regression (RFR), support vector regression (SVR), and artificial neural network (ANN)] to predicted dry matter (DM) yields of red clover. It obtained favourable results, however, the choosing of hyperparameters, the lengthy algorithms selection process, data cleaning, and redundant collinearity issues significantly limited the way of the machine learning application. We will further discuss the recent trend of automated machine learning (AutoML) that has been driving further significant technological innovation in the application of artificial intelligence from its automated algorithm selection and hyperparameter optimization of the deployable pipeline model for unravelling substance problems. However, a present knowledge gap exists in the integration of machine learning (ML) technology with unmanned aerial systems (UAS) and hyperspectral-based imaging data categorization and regression applications. In this thesis, we explored a state-of-the-art (SOTA) and entirely open-source AutoML framework, Auto-sklearn, which was built on one of the most frequently used machine learning systems, Scikit-learn. It was integrated with two unique AutoML visualization tools to examine the recognition and acceptance of multispectral vegetation indices (VI) data collected from UAS and hyperspectral narrow-band VIs across a varied spectrum of agricultural management practices (AMP). These procedures incorporate soil tillage method (STM), cultivation method (CM), and manure application (MA), and are classified as four-crop combination fields (i.e., red clover-grass mixture, spring wheat, pea-oat mixture, and spring barley). Additionally, they have not been thoroughly evaluated and lack characteristics that are accessible in agriculture remote sensing applications. This thesis further explores the existing gaps in the knowledge base for several critical crop categories and cultivation management methods referring to biomass and yield analysis, as well as to gain a better understanding of the potential for remotely sensed solutions to field-based and multifunctional platforms to meet precision agriculture demands. To overcome these knowledge gaps, this research introduces a rapid, non-destructive, and low-cost framework for field-based biomass and grain yield modelling, as well as the identification of agricultural management practices. The results may aid agronomists and farmers in establishing more accurate agricultural methods and in monitoring environmental conditions more effectively.Doktoritöö eesmärk oli uurida, kuidas masinõppe (MÕ) tehnoloogiad võimaldavad edusamme täppispõllumajanduse valdkonna pildianalüüsis. Multimodaalsed arvutustehnoloogiad laiendavad masinõppe kasutamist põllumajanduses andmete kogumisel ja valimisel (Nawar et al., 2017). Selline täpsemal informatsioonil põhinev tehnoloogia võimaldab keerukate viljelussüsteemide puhul teha otsuseid inimese vähema sekkumisega, ja loob skaleeritava raamistiku täppispõllumajanduse jaoks (Chlingaryan et al., 2018). Põllukultuuride katsete korral on komplekssete masinõppemudelite kasutamine keerukas, sest alad on piiratud ning valimi suurus ei ole piisav; vaja on testandmebaase, kindlaid aja- ja ruumitingimusi ning keskkonnategureid. See komplitseerib parameetrite valikut ning muudab ebapraktiliseks ühe empiirilise mudeli kasutamise terves piirkonnas. Siinse uurimuse algetapis rakendati suhteliselt traditsioonilist masinõppemeetodit, et lahendada saagikuse ja biomassi prognoosimise regressiooniprobleem (otsustusmetsa regression, tugivektori regressioon ja tehisnärvivõrk) punase ristiku prognoositava kuivaine saagikuse suhtes. Saadi sobivaid tulemusi, kuid hüperparameetrite valimine, pikk algoritmide valimisprotsess, andmete puhastamine ja kollineaarsusprobleemid takistasid masinõpet oluliselt. Automatiseeritud masinõppe (AMÕ) uusimate suundumustena rakendatakse tehisintellekti, et lahendada põhiprobleemid automatiseeritud algoritmi valiku ja rakendatava pipeline-mudeli hüperparameetrite optimeerimise abil. Seni napib teadmisi MÕ tehnoloogia integreerimiseks mehitamata õhusõidukite ning hüperspektripõhiste pildiandmete kategoriseerimise ja regressioonirakendustega. Väitekirjas uuriti nüüdisaegset ja avatud lähtekoodiga AMÕ tehnoloogiat Auto-sklearn, mis on ühe enimkasutatava masinõppesüsteemi Scikit-learn edasiarendus. Süsteemiga liideti kaks unikaalset AMÕ visualiseerimisrakendust, et uurida mehitamata õhusõidukiga kogutud andmete multispektraalsete taimkatteindeksite ja hüperspektraalsete kitsaribaandmete taimkatteindeksite tuvastamist ja rakendamist põllumajanduses. Neid võtteid kasutatakse mullaharimisel, kultiveerimisel ja sõnnikuga väetamisel nelja kultuuriga põldudel (punase ristiku rohusegu, suvinisu, herne-kaera segu, suvioder). Neid ei ole põhjalikult hinnatud, samuti ei hõlma need omadusi, mida kasutatatakse põllumajanduses kaugseire rakendustes. Uurimus käsitleb biomassi ja saagikuse seni uurimata analüüsivõimalusi oluliste põllukultuuride ja viljelusmeetodite näitel. Hinnatakse ka kaugseirelahenduste potentsiaali põllupõhiste ja multifunktsionaalsete platvormide kasutamisel täppispõllumajanduses. Uurimus tutvustab kiiret, keskkonna suhtes kahjutut ja mõõduka hinnaga tehnoloogiat põllupõhise biomassi ja teraviljasaagi modelleerimiseks, et leida sobiv viljelusviis. Töö tulemused võimaldavad põllumajandustootjatel ja agronoomidel tõhusamalt valida põllundustehnoloogiaid ning arvestada täpsemalt keskkonnatingimustega.Publication of this thesis is supported by the Estonian University of Life Scieces and by the Doctoral School of Earth Sciences and Ecology created under the auspices of the European Social Fund
    corecore