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Enhanced Subpixel Mapping With Spatial
Distribution Patterns of Geographical Objects

Yong Ge, Member, IEEE, Yuehong Chen, Alfred Stein, Sanping Li, and Jianlong Hu

Abstract—This paper proposes spatial distribution pattern-
based subpixel mapping (SPMS) as a novel subpixel mapping
(SPM) strategy. It separately considers spatial distribution pat-
terns of different types of geographical objects. Initially, it clas-
sifies geographical objects into areal, linear, and point patterns
according to their spatially geometric characteristics. For the dif-
ferent patterns, SPMS uses the vectorial boundary-based SPM al-
gorithm with the spatial dependence assumption to deal with areal
objects, the linear template matching-based SPM algorithm for
linear objects, and the spatial pattern consistency matching-based
SPM algorithm for point objects. The three patterns are integrated
to generate a subpixel map. An artificially created image and two
remotely sensed images were used to evaluate the performance
of SPMS. The results were compared with a traditional hard
classifier and seven existing SPM methods. The experimental
results demonstrated that SPMS performed better than the hard
classification and traditional SPM methods, particularly when
dealing with linear and point objects.

Index Terms—Classification, mixed pixel, remotely sensed im-
ages, spatial distribution patterns of geographical objects, subpixel
mapping (SPM).

I. INTRODUCTION

SUBPIXEL mapping (SPM) was introduced by Atkinson [1]
to determine where the relative proportions of a class are

within each pixel. Since then, much effort has been directed
toward developing more efficient and accurate methods. These
methods include pixel-swapping [2], linear optimization tech-
niques [3]–[5], subpixel/pixel spatial attraction models [4], [6],
Markov random fields [7]–[10], indicator cokriging [11]–[13],
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the geometric method [14], [15], the spatial regularization [16],
[17] and artificial-intelligence-based methods such as differ-
ential evolution, an artificial immune system, and maximum
a posteriori models [18]–[23]. They have been mainly de-
veloped under the spatial dependence assumption both within
and between pixels and are applicable in high resolution
(H-resolution), where pixels are smaller than the objects of
interest [24] because they maximize the spatial dependence
under the constraints of class proportions derived from soft
classifications [25]. These methods, however, cannot effectively
deal with low resolution (L-resolution), where the pixels are
larger than the objects of interest [24], or with linear objects,
where the pixels are both shorter and wider than the objects
of interest [18]. Applying these methods in L-resolution, for
instance, may result into clustering of objects, thus leading
to a loss of the original characteristics, such as randomness
or dispersion [24]. In addition, applying them to fine linear
objects may result into a loss of linear connectivity, whereas for
large linear objects, it may lead to unsmooth boundaries [18].
Important in this respect is that these methods treat all objects
as a single type when predicting their land cover classes.

To date, most SPM methods focus on predicting the spatial
distribution in H-resolution. Lechner et al. [26] highlighted
the requirement of SPM for mapping L-resolution and linear
land cover objects for the representation of ecological val-
ues for natural resource management. Few studies, though,
have addressed SPM for L-resolution and for linear objects.
Tatem et al. [27] proposed the Hopfield neural network and
Atkinson [28] proposed the two-point histogram to obtain the
spatial distribution in L-resolution by incorporating prior infor-
mation. Both methods provided acceptable solutions in predict-
ing the land cover pattern of L-resolution objects at the subpixel
scale [27], [28]. Such prior information, however, is typically
in the form of finer training images and is either not readily
available or requires laborious preprocessing [12]. To deal with
linear objects, Ai et al. [29] used mathematical morphology to
extract their central line from fraction images, which was used
as auxiliary information to improve the accuracy using spatial
annealing. Thornton et al. [30] added anisotropic modeling
to pixel swapping to enhance the prediction of linear objects
within the superresolution output. This modification resulted in
an increase in the accuracy of mapping fine rectilinear objects
as compared with pixel swapping [30], but ignored curvilinear
objects [30].

To address these problems, this paper proposes a new SPM
strategy called spatial distribution pattern-based SPM (SPMS).
SPMS separately considers the spatial characteristics of land
cover objects and recognizes geographical objects as having an
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areal pattern (A), a linear pattern (L), or a point pattern (P ).
The reason is that geographical objects are usually represented
by these three patterns in a geographical information system
(GIS) [31] according to their spatially geometric characteristics
[24], [27], [29], [30]. A-objects corresponding to H-resolution
cases are characterized by the spatial distribution of a large
patch. Similarly, P -objects corresponding to L-resolution cases
are scattered inside or on the edge of pixels and are repre-
sented as points within pixels. L-objects have linear shapes,
for example, roads and rivers extending over several pixels.
SPMS considers A-objects using the vector boundary-based
SPM (SPMV) algorithm [15], which also uses the spatial depen-
dence assumption and deals with A-objects. For L-objects, we
develop the linear template matching-based SPM (SPML) al-
gorithm, whereas for P -objects, we propose the spatial pattern
consistency matching-based SPM (SPMSP) algorithm. By using
this strategy, SPMS avoids various shortcomings. An artificially
created test image and two remote sensing images are used to
evaluate the effectiveness and performance of SPMS.

The remainder of this paper is organized as follows.
Section II briefly describes the background of SPM. Section III
introduces the proposed SPMS strategy. Section IV contains
the experimental results and analysis. Section V presents the
discussion. Section VI presents the conclusion.

II. BACKGROUND

The aim of SPM is to determine appropriate locations of
subpixels within a mixed pixel under the conditions of maximal
spatial dependence and fixed fractions of land cover classes.
Spatial dependence in SPM indicates that labels of neighboring
pixels/subpixels are more likely to have the same land cover
class than those farther apart [1].

Let C be the number of classes and suppose that C fraction
images have been derived from coarse remotely sensed im-
ages, e.g., using a soft classification. Given the scale factor S,
each pixel in the coarse image is divided into S × S smaller
subpixels. Each subpixel is allocated a value 1 or 0 for each
class, where the value 1 indicates that the subpixel belongs to
the particular class, and the value 0 indicates otherwise.

Atkinson [24] classified SPM into two categories: regression-
type and spatial optimization-type methods. In this paper, we
describe the SPM as a linear optimization problem [3]. The
objective is to maximize the spatial dependence of subpixels
within a pixel, subject to constraints that each subpixel should
be allocated to a single class and that the fraction of subpixels
in each class is the same as the class fractions obtained from the
classification. That is

max z =

C∑
c=1

S2∑
i=1

xic ×Gic (1)

subject to

⎧⎪⎪⎨
⎪⎪⎩

C∑
c=1

xic = 1

S2∑
i=1

xic = Fjc × S2

(2)

where Gic is the spatial dependence measurement of class c in
subpixel i, andFjc is the fraction value of class c in mixed pixel j.

Fig. 1. SPM with spatial dependence theory. (a), (c), (e), and (g) Examples of
A-, P -, and L-objects, respectively. (b) SPM for A-objects in (a). (d) SPM for
P -objects in (c). (f) SPM for fine L-objects in (e). (h) SPM for larger L-objects
in (g).

To predict the spatial distribution of different types of
objects, we distinguish areal (A), linear (L), and point (P )
patterns. Examples of A-, P -, and L-objects are shown in
Fig. 1(a), (c), (e), and (g), where, for a scale factor S = 4,
each coarse pixel consists of 16 smaller subpixels. Prediction
of the spatial distribution of the A-objects in Fig. 1(a) is
shown in Fig. 1(b) using (1). Spatial dependence states that
neighboring pixels/subpixels are more likely to be the same
than those farther apart [1]. Fig. 1(d) shows the prediction of
P -objects in Fig. 1(c). These are commonly predicted to be
the spatial distribution of aggregation. The P -objects within
four neighboring pixels in Fig. 1(c) are predicted together at
the central part of the four pixels in Fig. 1(d). Fig. 1(e) and (f)
shows the prediction of L-objects. For those, connectivity is
not retained when maximizing the spatial dependence of the
fine linear objects. Maximizing the spatial dependence of the
larger linear objects causes unsmooth boundaries, as shown in
Fig. 1(g) and (h).

III. SPMS

To identify geographic objects as A-, L-, and P -objects, we
provide quantitative definitions in Section III-A. We use these
patterns to illustrate the use of SPMS for estimating their spatial
distribution at the subpixel scale. It includes five main steps:
spatial pattern recognition of objects, SPM for L-objects, SPM
for A-objects, SPM for P -objects, and integration of the SPM
results. Step 1 recognizes and partitions objects into A-, P -, and
L-objects using the shape–density index [32] of each object as
extracted from each fraction image by a seeded region-growing
algorithm [33]. SPMV [15], SPML, and SPMSP are then used
in steps 2, 3, and 4, respectively. Note that pure pixels are di-
rectly divided into subpixels by allocating the same class when
the spatial locations of the objects are determined, whereas a
decay function as used in SPMV [15] provides the missing
neighboring information of pixels in the image boundary region
for mapping. Finally, the resulting patterns of the A-, L-, and
P -objects are integrated into a single land cover map at a finer
resolution with the fraction images. Details of the five steps of
the SPMS framework are described in the following.
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A. Spatial Pattern Recognition of Objects

Step 1 starts with segmenting an image and extracting all
pixels above a predefined fraction value in each fraction im-
age using the seeded region-growing model (SRGM) [33].
In SRGM, pixel values within regions are considered to be
similar, and it segments targets with similar characteristics
and a similar connectivity [33]. SRGM has been successfully
used to extract L-objects from remotely sensed images [32].
Next, the shape–density index [32] of each extracted object
is computed to distinguish A- and L-objects from P -objects.
After extracting A- and L-objects, the remaining pixels that
have a smaller fraction value are identified as P -objects as they
typically lie within a pixel and occupy a small area of the pixel
[24], [27], [34]. The two main parts are as follows.

1) Segmenting and Extracting Objects: Segmentation by
SRGM is defined as a partition of all pixels V into g separate
nonempty regions {Ri|i = 1, 2, . . . , g}. It is based on the fol-
lowing conditions [33].

1) Each region Ri consists of contiguous pixels.
2) ∪g

i=1Ri = V .
3) All pixels in Ri have the same properties, which are

different from those of the pixels in its neighboring region
(Rj , i �= j).

Before using SRGM to extract objects from fraction im-
ages, two homogeneity parameters and seeds are chosen. The
homogeneity criterion [35] states that a pixel is added to a
region if its fraction value during growing region exceeds a
predetermined threshold ε, which determines if a pixel belongs
to the object. The threshold is defined as ε = α/S, where α is
a parameter that is used as a balance to separate objects with
larger fraction values (such as A- and L-objects) from objects
with smaller fraction values (such as P -objects). In order to
extract objects with relatively large fraction values (A- and
L-objects), we set ε in this study to the empirical value 1/S,
which is required for L-objects to maintain connectivity [30].
Seeds {vjc|j = 1, 2, . . . , g} indicate the coordinates of ran-
domly selected pixels from the cth fraction image. Hence,
a set of initial regions {Rjc|j = 1, 2, . . . , g} is created for
the cth fraction image, and each region contains one pixel (the
“seed”). This is followed by expanding the region Rjc from the
start pixel by comparing the fraction values of its neighboring
pixels with the predefined threshold ε. A neighboring pixel is
included in the region if its fraction value exceeds the threshold
ε. This is repeated until all the pixels in each fraction image
have been considered, or the region cannot grow further. As
a result, a set of g′ final regions {Rjc|j = 1, 2, . . . , g′} is
obtained.

2) Pattern Determination: The shape–density index [32] of
each extracted region is calculated using

SD = ω1 · S + ω2/D

S =
E

(4 ·
√
O)

D =
N

M
(3)

where S is the shape index, E is the perimeter of an object
calculated by counting the boundary pixels of the region, O
is the area of an object computed by counting the number of
pixels inside the region, D is the density of an object in its
bounding rectangle, N is the number of pixels in an object, M
is the number of pixels in the bounding rectangle of an object,
and ω1, ω2 are weights with ω1 + ω2 = 1. The regions are then
classified as L- or A-objects according to a criterion in [32]
that an object is considered as an L-object if S ≥ 2.3, D ≤ 1.1,
and SD ≥ 1.6; otherwise, the object is an A-object. Note that
the criterion is slightly tuned to the needs of different remote
sensing images and objects.

After determining L- and A-objects in each fraction image,
the remaining pixels with fraction values greater than 1/S2 are
P -objects as the area of a subpixel is equal to 1/S2 [5]. This
way, for each fraction image, all pixels are identified as L-, A-,
or P -objects V̇ c = {V L

c ,V
A
c ,V

P
c }, c = 1, 2, . . . , C, and are

used in the subsequent SPM processes.

B. SPM for L-Objects (SPML)

The second step concerns SPML, i.e., SPM for L-objects.
SPML relies on finding the optimal template for representing
the direction of an L-object inside a mixed pixel. After de-
termining the optimal template, the spatial distribution of the
L-object is predicted using the fraction value constraints. There
are three main parts: defining linear templates, matching linear
templates, and SPM for L-objects.

1) Defining the Linear Templates: Different sizes of linear
templates have been designed for mapping linear objects from
remote sensing images. For example, Thornton et al. [30] used
four rectilinear templates of 3 × 3 pixels and eight rectilinear
templates of 5 × 5 pixels. In theory, templates can be designed
for any size. To facilitate representing all occurrences of linear
shape, we use linear 20 templates of 3 × 3 pixels, including
rectilinear and curvilinear shapes (see Fig. 2). Compared with
[30], which focused on four rectilinear directions (i.e., 0◦, 45◦,
90◦, and 135◦), the 20 templates in Fig. 2 represent rectilinear
and curvilinear shapes and thus are useful when determining
the appropriate direction for L-objects of various shapes. The
templates are represented by a binary matrix

Tk =

⎡
⎣t(−1,−1) t(−1, 0) t(−1, 1)

t(0,−1) t(0, 0) t(0, 1)
t(1,−1) t(1, 0) t(1, 1)

⎤
⎦, k=1, 2, . . . , 20

(4)

where Tk = [t(m,n) ∈ {1, 0}|m,n = −1, 0, 1]. The elements
t(m,n) = 1 (see gray pixels in Fig. 2) represent the template,
and the elements t(m,n) = 0 (see white pixels in Fig. 2) rep-
resent the background. In Fig. 2, the templates in the first row
are rectilinear templates in four directions, i.e., in the directions
0◦, 45◦, 90◦, and 135◦ from the horizontal axis, the second-
row templates are curvilinear shapes of broken lines along the
horizontal axis, the third-row templates are broken lines along
the vertical axis, the fourth-row templates are curvilinear shapes
with right angles oriented to the four quadrants, and the last-row
templates are U-bend shapes in four directions.
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Fig. 2. Linear templates with 3 × 3 pixels.

2) Linear Template Matching: Template matching is an ex-
tensively used a technique that is in image processing to find
targets in images. Standard correlation matching is a widely
used template matching technique that we use in this study [36].
To find the optimal template for the considered L-object within
a mixed pixel, the matching method considers the correlation
coefficient between a template and a local subset of an image,
which is defined as

rjk=

1∑
m=−1

1∑
n=−1

Tk(m,n) · Fjc(x+m, y+n)√
1∑

m=−1

1∑
n=−1

Tk(m,n)2 ·
1∑

m=−1

1∑
n=−1

Fjc(x+m, y+n)2

(5)

where (x, y) are the coordinates of the current pixel j in the
cth fraction image Fc, and Tk(m,n) is the element of the kth
template Tk. The closer rjk is to 1, the better the kth template
matches that fraction image in a local window. We view the
template with the highest rjk as the optimal template.

3) SPM for L-Objects: The previous two steps determine
the optimal template for an L-object within a mixed pixel. This
is used next to predict the spatial distribution of its subpixels.
To combine the coordinates of pixels, templates, and subpixels
into a unified coordinate system for facilitating following cal-
culations, we first define a new coordinate system as follows.

1) We take the origin with coordinates (0, 0) in the upper left
corner of a mixed pixel, as shown in Fig. 3.

2) The length of the mixed pixel is set equal to 1. Therefore,
the coordinates of the lower right corner of the pixel
are (1, 1).

3) Taking the length of the optimal template equal to that of
the current mixed pixel, the new coordinates of the pixels
in the templates are calculated by{

m′ = 2×(m+2)−1
6

n′ = 2×(n+2)−1
6

, m, n = −1, 0, 1. (6)

Fig. 3. Unified coordinate system for mapping L-objects.

4) The new coordinates of subpixels are then calculated using{
p′ = 2×p−1

2×S

q′ = 2×q−1
2×S

, p, q = 1, 2, . . . , S. (7)

Based on this new coordinate system, SPM for L-objects
involves the following four steps.

• For each mixed pixel in V L
c , the optimal template Tk of

the L-objects is identified using correlation matching.
• The shortest Euclidean distance between any subpixel v′i

and each element that has the value 1 in the optimum
template Tk is calculated using

d (v′i, Tk)=min

(√
(v′i(p

′)−m′)2+(v′i(q
′)−n′)2

)
. (8)

• The shortest distances of all subpixels within the current
mixed pixel are sorted in ascending order.

• According to the ascending list of subpixels, the first
Fjc × S2 subpixels in the list are allocated to the land
cover class c. This assigns the land cover class to each
subpixel to the closest optimal template. Fjc × S2 is the
fraction constraint in (2), and it determines the number of
subpixels in pixel j for land cover class c.

C. SPM for A-Objects (SPMV)

Since the introduction of SPM, there has been a proliferation
of methods that assume spatial dependence [1]. Meanwhile,
several studies reported a good performance of SPM by in-
cluding spatial dependence when applied to A-objects [14],
[24], [25], [37]. In this paper, SPMS deals with A-objects in a
similar way.

SPMV [15] is an improvement on the geometric SPM algo-
rithm [14], using spatial dependence when predicting the spatial
distribution of A-objects. SPMV first geometrically partitions a
mixed pixel using polygons by a vector boundary extraction
model. Second, a ray-crossing algorithm assigns land cover
classes to subpixels within each vector boundary [15]. It con-
sists of the following four main steps.

• For each mixed pixel in V A
c , the length and location

of each segment along the boundary of the mixed pixel
are estimated for all classes using the vector boundary
extraction model [15].
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Fig. 4. Flowchart of SPMSP for P -objects.

• According to these estimated segments, the initial poly-
gons for all land cover classes within the mixed pixel are
connected in the counterclockwise direction.

• These initial polygons are further adjusted to remove co-
incident vertices and segments to generate the final vector
boundaries {Bc|c = 1, 2, . . . , C} of all the A-objects in a
mixed pixel.

• According to the vector boundaries, the attribute values
of the subpixels of each vector boundary are determined
using the ray-crossing algorithm [15].

D. SPM for P -Objects (SPMSP)

SPMSP was developed for P -objects to achieve different
types of spatial point patterns: dispersed, random, and clus-
tered. P -objects are typically much smaller than a pixel and fol-
low either a dispersed, random, or clustered pattern. Moran’s I
is a popular index that describes the spatial autocorrelation (or
spatial patterns) of lattice objects [38], [39]. By considering
pixels in remote sensing images as lattice data, subpixels of
geographical objects (such as theP -objects) are also considered
as lattice data. Moran’s I is used to characterize the spatial
correlation of fraction images, i.e., to determine the mapping
order of land cover classes in the pixel-swapping algorithm [40]
and the visiting order when allocating classes using soft-then-
hard SPM [41]. Therefore, Moran’s I characterizes the spatial

patterns of P -objects in fraction images and in SPM results.
The spatial patterns of P -objects vary spatially, and thus, the
value of Moran’s I is computed in a local window. We have
used a window size of 3 × 3 pixels, as recommended in [42].
The implementation of SPMSP involves the following steps and
is shows in Fig. 4.

• The spatial distribution of all subpixels of P -objects in
V P

c is initialized using SPMV applied to fraction images.
• For each mixed pixel in V P

c , the target value of Moran’s I
for the cth class (i.e., Ic) in a local window of the fraction
image is determined as

Ic =

M
M∑
j=1

M∑
j′=1

wjj′ (Fjc − F c)(Fj′c − F c)(
M∑
j=1

M∑
j′=1

wjj′

)
M∑
j=1

(
Fjc − F c

)2

(9)

wjj′ =

{
1, if j and j ′ are neighbors

0, otherwise
(10)

where Fjc is the fraction value of class c in mixed pixel
j, Fc is the mean of all fraction values of class c in a
local window, and M is the number of pixels in the local
window of fraction images.

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 26,2023 at 06:30:23 UTC from IEEE Xplore.  Restrictions apply. 



GE et al.: SUBPIXEL MAPPING WITH SPATIAL DISTRIBUTION PATTERNS OF GEOGRAPHICAL OBJECTS 2361

• Moran’s I for the cth class (i.e., I ′c) in the current SPM
realization is determined as

I ′c =

N
N∑
i=1

N∑
i′=1

wii′ (xic − xc)(xi′c − xc)(
N∑
i=1

N∑
i′=1

wii′

)
N∑
i=1

(xic − xc)
2

(11)

where xic is the attribute value of class c in subpixel
i, xc is the mean of the attribute values of class c in a
local window with the same spatial coverage as in Step 3,
and N = M × S2 is the number of subpixels in a local
window of the current SPM realization.

• The value of Ic from the fraction images is compared
with I ′c from the current SPM realization. If |Ic − I ′c| ≤
0.06, no changes are made to this mixed pixel, and the
next mixed pixel that contains P -objects is considered.
Otherwise, we proceed to the next step.

• We randomly exchange the attribute values of two differ-
ent subpixels within the mixed pixel to change the spatial
distribution of P -objects after applying SPM. This way,
the results become consistent with the spatial pattern in
the fraction images.

• The previous three steps are repeated until either a maxi-
mum number of iterations is reached or no further swaps
are made.

E. Integration

After obtaining the spatial distributions of the three patterns’
objects, this step integrates these results to obtain an SPM map.
To preserve the connectivity of the L-objects and the various
spatial distribution patterns of the P -objects while maximizing
the spatial dependence of the A-objects, we first consider
A-objects as the background and overlay this with P -objects,
followed by overlaying with L-objects. During integration, a
land cover class may not be assigned to those subpixels to
which no land cover class was assigned using the three separate
SPM processes of L-, A-, and P -objects. To adjust for this, an
extra step was implemented: if a subpixel is detected to be a
null value by moving a window with 3 × 3 subpixels on the
SPM map, the class is assigned that has the largest number of
subpixels in a surrounding neighborhood (i.e., 3 × 3 subpixels)
of the central subpixel.

IV. EXPERIMENTS AND ANALYSIS

We used an artificial and two remotely sensed images to
evaluate the performance and effectiveness of the proposed
SPMS method. It was compared with a traditional hard clas-
sifier and seven existing SPM methods: the spatial attraction
model (SAM) [6], the hybrid intra- and interpixel depen-
dence (HIIPD) [16], [43], the pixel-swapping algorithm (PSA)
[2], the linearized pixel-swapping algorithm (LPSA) [30],
Markov random fields (MRF) [7], [16], maximum a posteriori
models (MAP) with a single image [19]–[21], and SPMV. Two
measurements of visual interpretation and accuracy assessment
were used to validate the experimental results of the proposed
method.

Fig. 5. Experiment using the artificial image. (a) Artificial (reference) image.
(b) Hard classification (S = 5).

Fig. 6. Spatial objects for each land cover class of the artificial image (S = 5).
(a) L-objects. (b) P -objects. (c)–(g) A-objects.

A. Artificial Imagery

An artificial image with 500 × 500 pixels was constructed
to contain seven land cover classes: class C1 of L-objects,
class C2 of P -objects, and classes C3, C4, C5, C6, and C7 of
A-objects [see Fig. 5(a)]. The artificial image in Fig. 5(a) was
used as the reference image. Three scale factors of 2, 5, and
10 were considered to degrade the reference image into coarse
fraction images. These coarse fraction images were taken as
input for SPM methods to produce SPM maps with the same
spatial resolution of the reference image by the three scale
factors. A hard classification map [see Fig. 5(b)] that was
obtained by hardening the fraction images (S = 5) was used
as a benchmark for comparing the image quality of SPM maps
with a hard-classified map.

1) SPM for Artificial Image: After recognition of the spatial
distribution pattern, all objects were correctly recognized as
L-objects[seeFig. 6(a)],P -objects[seeFig. 6(b)],andA-objects
[see Fig. 6(c)–(g)], respectively. This was no surprise, because
the artificial image was purposely created to test SPMS.

Next, the determined pattern types and fraction images were
input into SPMS to obtain the spatial distribution of the subpix-
els for each pattern of objects. The final SPMS result (S = 5)
is shown in Fig. 7(h). The SPM results (S = 5) using SAM,
HIIPD, PSA, LPSA, MRF, MAP, and SPMV are displayed in
Fig. 7(a)–(g), respectively. Fig. 7 shows no evident difference
between the SPM results of A-objects. Unsmooth boundaries
of L-objects appeared in Fig. 7(a)–(e) and (g), whereas smooth
boundaries appeared in Fig. 7(f) and (h). The spatial distribution
of P -objects in Fig. 7(a)–(g) was more clustered than that of
SPMS in Fig. 7(h). Fig. 7(f) shows that many P -objects were
not preserved due to oversmoothing in MAP.
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Fig. 7. SPM results (S = 5) for artificial image. (a) SAM. (b) HIIPD. (c) PSA. (d) LPSA. (e) MRF. (f) MAP. (g) SPMV. (h) SPMS.

TABLE I
OA (%) OF ARTIFICIAL IMAGE

2) Accuracy Assessments: For the entire image, A- and
L-objects, the overall accuracy (OA) was determined to quanti-
tatively evaluate the performance of the SPM results. Note that,
in this experiment, OA was calculated as the total number of
correctly classified subpixels divided by the total number of
reference subpixels only within mixed pixels because fraction
images generated by degrading reference images are error free
[5], [13]. When consideringP -objects, SPM cannot identify the
absolutely accurate locations of subpixels. Therefore, we used
the classified image quality in terms of visual interpretation and
landscape indexes, e.g., the perimeter-area fractal dimension
(PAFRAC) [44] and the aggregation index (AI) [44], to quanti-
tatively compare the SPMS patterns of the reference image [24].
Table I shows the OA values for three scale factors. Table I in-
dicates that SPMS produces the highest OA for each scale
factor and it obtained increases of 2.87%, 3.11%, and 3.97%
for S = 2, 5, and 10, respectively, by comparing the average of
the OA values from the other seven existing SPM methods.

The eight SPM methods for A-objects (see Fig. 7) produced
more detailed information and better classifications than the
hard classification [see Fig. 5(b)]. Table II presents the OA of
A-objects (classes C3, C4, C5, C6, and C7) and shows that the
eight SPM methods produced nearly the same OA values for
A-objects, except MRF with S = 2 and MAP with S = 5 and
S = 10. Note that SPMS used the same algorithm as SPMV

to predict the locations of A-objects and LPSA used PSA for
A-objects, thus resulting in the same OA. This showed that
SPM using spatial dependence is an effective solution for
accurately identifying the spatial locations of A-objects.

TABLE II
OA (%) OF A-OBJECTS

Fig. 7(a)–(e) and (g) shows that some spatial locations of
L-objects were incorrectly predicted by SPM methods, re-
sulting in unsmooth boundaries. Connectivity of several fine
L-objects was not preserved, resulting in irregular boundaries
for larger L-objects, particularly for PSA. Results of the SPML

step in SPMS, however, indicated that the connectivity of the
fine L-objects and the smoothness of the larger L-objects were
effectively preserved. Results for L-objects in the subarea S1
[marked by a red rectangle in Fig. 5(a)] are displayed in
Fig. 8(a2)–(a9), illustrating that the result by SPMS in Fig. 8(a9)
was closer to the reference image in Fig. 8(a1) than those by
the other seven methods, although LPSA and HIIPD produced
more accurate results than SAM, PSA, MRF, MAP, and SPMV.
Although the result by MAP in Fig. 8(a7) shows that the
connectivity of fine L-objects and the smooth boundaries of
large L-objects were preserved, the result was oversmoothing,
and the width ofL-objects was smaller than that of the reference
image in Fig. 8(a1). Table III shows that SPMS produced
the highest OA for L-objects, showing an increase of 4.21%,
6.22%, and 6.36% for scale factors of 2, 5, and 10, respectively.

These large improvements were mainly due to the SPML step
for L-objects. When traditional spatial dependence-based SPM
approaches are applied to linear objects, the fine L-objects lose
their connectivity, resulting in a loss of spatial dependence.
Similarly, larger L-objects result in unrealistically jagged
boundaries [45]. This means that the spatial dependence-based
SPM yields unsmooth boundaries for the larger L-objects, as
shown in Fig. 8. In contrast, SPMS first recognizes theL-objects
from fraction images and then uses the SPML algorithm to find
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Fig. 8. SPM results (S = 5) for L-objects in the subarea S1 and P -objects in the subarea S2. (a1)–(a9) Reference image, SAM, HIIPD, PSA, LPSA, MRF, MAP,
SPMV, and SPMS results in the subarea S1, respectively. (b1)–(b9) Reference image, SAM, HIIPD, PSA, LPSA, MRF, MAP, SPMV, and SPMS results in the
subarea S2, respectively.

TABLE III
OA (%) OF L-OBJECTS

TABLE IV
ACCURACY ASSESSMENT OF P -OBJECTS

the optimal direction of the current L-objects according to the
linear templates, followed by prediction of the locations of the
L-objects. These linear templates play a key role in preserving
the connectivity of the fine L-objects and in producing smooth
boundaries for the larger L-objects. The linear templates are
thus regarded as a new constraint when mapping L-objects.
In this experiment, LPSA was slightly more accurate than
HIIPD for L-objects, whereas SPMS obtained an average in-
crease of 2.05% compared with LPSA for the three scale
factors. This is likely due to the fact that more templates were
used in SPMS, which can deal with more various L-objects,
including linear and curvilinear cases, than LPSA. These im-
provements for L-objects indicated that SPML in SPMS pro-
vides a solution for accurately predicting the spatial distribution
of fine and large L-objects.

The class C2 contained P -objects. Fig. 5(b) shows that
most of those were lost when applying the hard classification,
whereas Fig. 7(a)–(h) shows that the SPM methods retained at
least some of the information. The P -objects using SPMSP were
more similar to the reference image compared with the other
seven methods that produced more clustered P -objects. The
results in subarea S2 [marked by the red rectangle in Fig. 5(a)]
are shown in Fig. 8(b2)–(b9). They indicate that the SPMSP

algorithm resulted in a spatial distribution of P -objects that
was more similar to the reference image when compared with
the SAM, HIIPD, PSA, LPSA, MRF, MAP, and SPMV results.
Note that, due to LPSA, utilizing the PSA algorithm to handle
P -objects, results for P -objects in Fig. 8(b4) and (b5) are the

Fig. 9. Synthetic remotely sensed images. (a) ASTER pseudocolor composi-
tion imagery. (b) Hard classification map of (a).

same. MAP resulted into oversmoothing and hence into a loss
in P -objects [see Fig. 8(b7)].

PAFRAC and AI indexes were used to quantitatively evaluate
the accuracy of P -objects. PAFRAC describes the patch shape
complexity, taking values between 1 and 2, with an increasing
patch shape complexity with increasing PAFRAC value. AI
characterizes how patches aggregate or disaggregate in the
landscape [46], taking values in the range [0, 100]. AI = 0
indicates that the patch types are maximally disaggregated,
whereas AI = 100 indicates maximal aggregation. We have
used these indexes to evaluate the performance of SPMSP for
P -objects and compare it with the spatial dependence-based
methods (see Table IV). For scale factors equal to 2, 5, and
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Fig. 10. Spatial patterns of each land cover class of ASTER image (S = 3). (a) Buildings. (b) Grass. (c) Water. (d) Trees. (e) Bare Ground. (f) Farmland.

Fig. 11. SPM results (S = 3) for synthetic remotely sensed images. (a) SAM. (b) HIIPD. (c) PSA. (d) LPSA. (e) MRF (f) MAP. (g) SPMV. (h) SPMS.

10, absolute PAFRAC differences between the reference image
and SPMS were equal to 0.02, 0.09, and 0.07; average absolute
PAFRAC differences between the reference image and the other
seven methods were equal to 0.10, 0.25, and 0.35; absolute AI
differences between the reference image and SPMS were equal
to 3.12, 2.19, and 0.63; and the average absolute AI differences
between the reference image and the other seven methods were
equal to 9.03, 13.48, and 21.53, respectively. The PAFRAC
results indicate that the patch shape complexity of the P -objects
from SPMS was closer to the reference image, whereas the AI
results indicate that aggregation of P -objects from SPMS was
closer to the reference image. The two indexes in Table IV
imply that SPM methods based on spatial dependence obtain
a more clustered distribution of P -objects, whereas SPMSP

results in patterns closer to the reference image. This is mainly
because SPMS uses Moran’s I to characterize spatial patterns
when predicting the spatial distribution of P -objects.

B. Synthetic Remotely Sensed Image

We next tested SPM methods on a 15-m multispectral
Advanced Spaceborne Thermal Emission and Reflection Ra-
diometer (ASTER) image (600 × 600 pixels), as shown in
Fig. 9(a). Six main land cover classes, including buildings,
grass, water, trees, bare ground, and farmland, are considered as

endmembers for classification, SPM, and validation. Training
samples of each endmember were manually selected from the
image in Fig. 9(a) for hard classification. Fig. 9(b) shows the
hard classification map by a support vector machine (SVM)
[32], and it is used as the reference image for the validation
of SPM results. Two scale factors S = 3 and S = 6 were
tested. By applying the two scale factors, the ASTER image
in Fig. 9(a) was first disaggregated into coarse remote sensing
images; soft classification was then performed on these coarse
images to obtain the fraction images, which were finally used
as inputs of SPM methods.

1) SPM for the ASTER Image: SPMS first recognized the P -,
L-, and A-objects from each coarse fraction image, and the
recognition results for S = 3 are shown in Fig. 10. It shows
that A-objects are mainly in the classes trees and farmland,
whereas L-objects appear in the classes buildings, grass, water,
and farmland. Classes buildings and bare ground contain many
P -objects. Recognition results and fraction images were then
used as inputs to SPMS to obtain the SPM maps. The SPM
results (S = 3) using SAM, HIIPD, PSA, LPSA, MRF, MAP,
SPMV, and SPMS are displayed in Fig. 11(a)–(h), respectively.

2) Accuracy Assessments: Table V presents the accuracy
assessment of SPM results for the entire ASTER image and
each class and shows that SPMS produced the greatest OA
for each scale factor. It can be found from Table V that it
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TABLE V
ACCURACY ASSESSMENT OF THE ASTER IMAGE

Fig. 12. Real remotely sensed images. (a) TM pseudocolor composition
imagery. (b) High-resolution DigitalGlobe image for validation.

achieved increases of 1.06% and 1.46% for S = 3 and S = 6,
respectively, by comparing the average of OA values from the
other seven SPM results. The accuracy of each class in SPMS

maps was above 83% for S = 3 and 73% for S = 6. Compared
with the average accuracy of each class by the existing seven
SPM methods, classes buildings, grass, water, bare ground, and
farmland in the SPMS result, respectively, increased by 10.74%,
2.48%, 0.91%, 5.61%, and 4.63% for S = 3 and by 7.57%,
4.45%, 2.79%, 7.88%, and 3.97% for S = 6. Classes build-
ings, bare ground, and farmland had significant improvements
as they contained a lot of L- and P -objects, as shown in Fig. 11.

C. Real Remotely Sensed Image

We finally tested SPMS on a Landsat TM 5 imagery (400 ×
400 pixels) in Fig. 12(a) with a spatial resolution of 30 m, ac-
quired on August 17, 2010. A high-resolution reference image
(DigitalGlobe image) acquired on August 20, 2011, covering
the same area, was taken from Google Earth with a resampled
spatial resolution of 6 m [see Fig. 12(b)]. Four main land
cover classes, namely, vegetation, water, road, and buildings,
are observed in the high-resolution reference image and are
considered as endmembers for classification, SPM, and valida-
tion. Representative pixels of each endmember were manually
selected from the image. To compare the performance of SPMS
with that of the seven existing SPM methods, we applied a
classification of SVM to generate hard and soft classification
results.

1) Hard and Soft Classifications: Representative pixels for
vegetation, water, road, and buildings were used as input to
the hard and soft classifiers. The hard classification result using
SVM is shown in Fig. 15(a), and the soft classification results of
the fraction images are displayed in Fig. 13. They show that the
classes vegetation and water take a large part of the study area,
whereas the classes road and building account for a smaller
proportion.

2) SPM for the TM Image: With S = 5, the seven SPM
methods (SAM, HIIPD, PSA, LPSA, MRF, MAP, and SPMV)
produced the finer land cover maps in Fig. 15(b)–(h). The
proposed SPMS method first recognized the P -, L-, and
A-objects from each fraction image, as shown in Fig. 14.P -,L-,
and A-objects were almost correctly recognized. Recognition
results show that A-objects are mainly in the classes vegetation
and water. L-objects evidently appear in the class road. Classes
vegetation and road, however, contain many P -objects, and the
class building has a few A- and L-objects. Pattern recognition
results and fraction images were then used as inputs to SPMS to
individually determine the locations of P -, L-, and A-objects,
followed by their integration into the fine land cover map shown
in Fig. 15(i).

3) Accuracy Assessments: One thousand eight hundred val-
idation sites were randomly selected from the high-resolution
reference image [see Fig. 12(b)]. These validation sites were
first visually interpreted into land cover classes using prior
knowledge of this study area. Next, they were compared with
the hard classification and the different SPM methods by de-
termining confusion matrices and statistical indexes. OA and
the accuracy of each class were derived from each confusion
matrix.

Table VI lists the OA and the accuracy of each class for
the hard classifier of SVM and the eight SPM methods. It
shows that the eight SPM methods were more accurate than the
hard classifier (SVM). Specifically, the OA of SAM, HIIPD,
PSA, LPSA, MRF, MAP, SPMV, and SPMS was 3%, 5.61%,
3.06%, 5.39%, 5%, 6.61%, 4.56%, and 10.84% higher than
the OA of SVM, respectively. The SPM methods generated
more accurate and detailed land cover maps at the subpixel
scale. SPMS had the highest OA equal to 84.17%, and its OA
was 7.84%, 5.23%, 7.78%, 5.45%, 5.84%, 4.23%, and 6.28%
higher than the OA of SAM, HIIPD, PSA, LPSA, MRF, MAP,
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Fig. 13. Soft classification results of the TM image.

Fig. 14. Spatial patterns of each land cover class. (a) Vegetation. (b) Water. (c) Road. (d) Building.

and SPMV, respectively. In particular, for the classes roads
and buildings, which contained the most L- and P -objects
according to the pattern recognition results, OA increased by
12.92% and 14.89% compared with the average OA values for
each class in the seven SPM results. The main improvements in
OA were due to L- and P -objects being significantly enhanced
by the SPML and SPMSP algorithms incorporated into SPMS.

V. DISCUSSION

A. Analysis of Scale Factor S

The performance of SPM with different scale factors were
analyzed for the artificial image and the synthetic remote
sensing image as the scale factor strongly affects the accuracy
of SPM maps [24], [29], [41], [47]. Three scale factors S = 2,
S = 5, and S = 10 were tested on the artificial image,
and two scale factors S = 3 and S = 6 were tested on the
synthetic ASTER image for the purpose of evaluating the
performance and accuracy of SPM methods at various subpixel
scales. Tables I and V show that the accuracy of the seven
existing SPM methods gradually decreased as the scale factor
increased. Similar to the seven SPM methods, the accuracy
of the proposed SPMS in this paper also decreased with an
increased scale factor. As the scale increased, the OA of
artificial image decreased by about 8%, and the OA of the
synthetic ASTER image decrease by about 7%. The possible
reason was that the SPM process became more complicated
with the increase of scale factor and the uncertainty increased
for SPM because more spatial locations of subpixels within
mixed pixels needed to be predicted [5], [13].

B. Comparison of SPM Methods

When comparing SPM methods for different images, we
found that the accuracy of MRF and MAP was lower than those
of the other five traditional SPM methods SAM, HIIPD, PSA,
LPSA, and SPMV in several scales for the artificial image. The
OA of MRF was lower than those of the other methods when
using S = 2 for A-objects, whereas the OA of MAP was lower
than those of other methods when using S = 5 or S = 10 for
A- and L-objects on the entire image. This was likely because
MRF usually produced overly smooth results as it did not
guarantee the constraint of fraction image when predicting the
spatial distribution of subpixels [7]–[10], [16], [41], [48] and
MAP also did not maintain the fraction constraint as it used
the winner-take-all strategy for class allocation [5], [20]. For
the accuracy of the synthetic ASTER image and the TM image
in Tables V and VI, the OA of MRF and MAP was almost
identical with those of the other five traditional SPM methods
SAM, HIIPD, PSA, LPSA, and SPMV. In particular, the OA
of MAP was slightly greater than those of SAM, HIIPD, PSA,
LPSA, and SPMV. This was largely due to that MRF and MAP
can avoid some errors from soft classification with the winner-
take-all strategy for class allocation [5], [20]. An interesting
finding is that the winner-take-all strategy for class allocation
in SPM produces slightly more accurate results than traditional
class allocation algorithms using the fraction constraints [5],
[41] (e.g., units of subpixel and highest attribute values first)
for real remote sensing images, whereas it may generate slightly
less accurate SPM maps than class allocation algorithms with
fraction constraint for the downscaled error-free fraction im-
ages. Therefore, the winner-take-all strategy in SPM was an

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 26,2023 at 06:30:23 UTC from IEEE Xplore.  Restrictions apply. 



GE et al.: SUBPIXEL MAPPING WITH SPATIAL DISTRIBUTION PATTERNS OF GEOGRAPHICAL OBJECTS 2367

Fig. 15. SPM results for the TM image. (a) SVM. (b) SAM. (c) HIIPD. (d) PSA. (e) LPSA. (f) MRF. (g) MAP. (h) SPMV. (i) SPMS.

TABLE VI
ACCURACY ASSESSMENT OF TM IMAGE (S = 5)

effective solution to avoid some errors from soft classification
of real remote sensing images in practical applications [20].

HIIPD and LPSA were slightly more accurate than SAM,
PSA, and SPMV. In particular, HIIPD generated more accurate
results of A-objects, whereas LPSA produced more accurate
results of L-objects. The reason was that HIIPD used both
pixel- and subpixel-level spatial dependence, whereas SAM,
PSA, and SPMV used either pixel-level or subpixel-level spatial
dependence [4], [43], and that LPSA improved the PSA with
anisotropic exponential distance decay model [30]. Moreover,
similar performances of HIIPD and LPSA on A- and L-objects
were determined on the synthetic ASTER image and the real
TM image. Although HIIPD and LPSA were more accurate
than the other five methods, the proposed SPMS was the most
accurate one among the eight SPM methods in the three experi-

ments. Note that the spatial distribution prediction of A-objects
can be also done with any of the SPM methods under spatial de-
pendence, such as HIIPD, MRF, and MAP. In that case, SPMS

would produce more accurate results as it produced slightly
higher accuracy than SPMV for A-objects in most cases.

C. Sensitivity Analysis for SPMS

During the implementation of SPMS, the weight of shape
index is important to determinate the spatial pattern of objects,
and the threshold of Moran’s I also plays a crucial role in
the iterative process of predicting the spatial distribution of P -
objects. Sensitive analysis of the shape index weight and the
Moran’s I threshold was performed to evaluate their impacts
on the accuracy of SPMS results.
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Fig. 16. Sensitivity analysis of the parameters. (a) Weight of shape index for the synthetic ASTER image (S = 3). (b) Threshold of Moran’s I for the artificial
image (S = 5).

Fig. 16(a) shows changes in OA with different shape index
weights for the synthetic ASTER image using S = 3. It shows
that the OA fluctuated between 87% and 89.5%. The weights
between 0.4 and 0.6 achieved slightly greater OA than the other
weights, and the OA reached the highest at the equal weight
for the shape index and the density index. It implies that shape
index and density index may have the same impact on the final
SPM results. Fig. 16(b) presents the PAFRAC error between the
reference image and the SPMS results changes with different
Moran’s I thresholds for P -objects in the artificial image using
the scale factor of 5. It shows that the thresholds between
0.5 and 2 almost led to no changes for the spatial distribution
of P -objects as the threshold is too large. When the threshold
was less than 0.5, particularly below 0.06, the error of PAFRAC
declined greatly to be minimized and become stable. It indicates
that a relatively smaller threshold may result in a similar spatial
pattern of P -objects to that in the fraction images.

D. Computational Complexity Analysis for SPM Methods

For the fixed input coarse pixels n, land cover classes c,
scale factor S, the number of iterations k, and the local window
size w used for calculating memberships of each subpixel to
classes, the worst case scenario [49] is considered in ana-
lyzing the computational complexity of the eight compared
SPM methods. SAM contains two main processes: calculating
attractions and allocating land cover classes to subpixels. When
calculating attractions, the number of instructions depends upon
the number of coarse pixels n, the number of land cover
classes c, the number of subpixels within each pixel S2, and
the local window size w. Thus, the computational complexity
is equal to O(n · w · c · S2). When allocating land cover classes
to subpixels in SAM, the complexity also depends upon sorting
all attractions within each pixel. If the sorting process is a
Quicksort algorithm, the computational complexity for the sec-
ond SAM process is equal to O(n · c2S4). By combining these
two processes, the complexity of SAM is seen to be equal to
O(n ·max(wcS2, c2S4)). PSA is an iterative method and has a
main process to maximize the attractiveness scores by swapping
the land cover classes of two subpixels, and its complexity is
thus equal to O(k · n · c · w · S2). Compared with PSA, LPSA
has an extra process to find the preferred anisotropic model
for each pixel before applying PSA, but the complexity of the

extra process is far below that than that of PSA. Therefore,
the complexity of LPSA is similar to that of PSA and is equal
to O(k · n · c · w · S2), once more according to the worst case
scenario. HIIPD as an iterative method that combines the pixel-
and subpixel-level attractions. The main difference between
HIIPD and PSA is that PSA only considers the subpixel-level
attraction, whereas HIIPD considers both pixel- and subpixel-
level attractions. The complexity of HIIPD is thus equal to
O(k · n · c · w · S4). MRF has the prior energy function and the
conditional energy function as its two main functions. The prior
energy function is obtained iteratively, whereas the conditional
energy function is to be calculated once from the spectral values
of the original remote sensing images. The complexity of MRF
is thus equal to O(k · n · c · w · S2). The complexity of MAP is
associated with calculating the data fidelity term and the prior
term, and its complexity is therefore equal to O(k · n · c · w ·
S2). SPMV first determines the polygons of classes within each
pixel, with a complexity equal to O(n · c · w). Next, SPMV

allocates the land cover classes of subpixels, with a complexity
equal to O(n · S2). Combining these two steps, the complexity
of SPMV is equal to O(n ·max(cw, S2)). Finally, SPMS uses
three algorithms to determine the land cover classes for A-, L-,
and P -objects, respectively. For A-objects, SPMV is used,
whereas for L-objects, the complexity is equal to O(n · c · S4),
and for P -objects, it is equal to O(k · n · c · w2 · S4). If an
entire image only contains P -objects, therefore, in the worst
case, the complexity of the proposed SPMS is equal to O(k · n ·
c · w2 · S4). The proportion of P -objects in real applications,
however, is usually below 5% in an entire image. Therefore, the
complexity of the proposed SPMS is close to the complexity of
SPMV or the complexity of SPML.

VI. CONCLUSION

This paper has proposed a new strategy (SPMS) for SPM.
It aimed to separately recreate the spatial distribution of three
different patterns (linear pattern, area pattern, and point pattern)
of geographical objects. In SPMS, we used SPMV to maximize
the spatial dependence of area pattern objects, developed SPML

to deal with linear pattern objects, and proposed SPMSP for
point pattern objects. We used three experiments to demonstrate
that SPMS can achieve highly accurate results for A-objects. At
the same time, the study shows that SPMS is able to preserve
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connectivity of fine L-objects and yield relatively smooth
boundaries for larger L-objects, as compared with traditional
spatial dependence-based SPM methods. Furthermore, it is able
to recreate the spatial patterns of P -objects that are closer to the
reference image. Hence, SPMS is an effective solution to the
SPM of objects that follow the three main spatial patterns (area
pattern, linear pattern, and point pattern) in remotely sensed
images.

For further research, we note that SPMS needs to identify
the spatial pattern of objects as inputs for SPM. In spatial
pattern recognition of objects, the threshold of shape–density
index needs to be subjectively set to distinguish between
A- and L-objects. It is worthwhile to make efforts on the
adaptive selection of the threshold in future research. SPMS

performs the prediction of spatial locations for A-, L-, and
P -objects, respectively; and the three resulting maps are then
integrated into a final SPM map. Prediction processes of each
of the three patterns of objects, however, are regarded as a single
objective, which, in turn, may lead to subpixels being assigned
to more than one class, whereas other subpixels are not assigned
to classes due to the ignorance of the relationships between
the three objectives. Therefore, we plan to further formulate
SPMS as a multiobjective optimization issue in prediction of
the spatial distribution of geographical objects.
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