49,191 research outputs found

    A survey on adaptive random testing

    Get PDF
    Random testing (RT) is a well-studied testing method that has been widely applied to the testing of many applications, including embedded software systems, SQL database systems, and Android applications. Adaptive random testing (ART) aims to enhance RT's failure-detection ability by more evenly spreading the test cases over the input domain. Since its introduction in 2001, there have been many contributions to the development of ART, including various approaches, implementations, assessment and evaluation methods, and applications. This paper provides a comprehensive survey on ART, classifying techniques, summarizing application areas, and analyzing experimental evaluations. This paper also addresses some misconceptions about ART, and identifies open research challenges to be further investigated in the future work

    Enhancing adaptive random testing for programs with high dimensional input domains or failure-unrelated parameters

    Get PDF
    Adaptive random testing (ART), an enhancement of random testing (RT), aims to both randomly select and evenly spread test cases. Recently, it has been observed that the effectiveness of some ART algorithms may deteriorate as the number of program input parameters (dimensionality) increases. In this article, we analyse various problems of one ART algorithm, namely fixed-sized-candidate-set ART (FSCS-ART), in the high dimensional input domain setting, and study how FSCS-ART can be further enhanced to address these problems. We propose to add a filtering process of inputs into FSCS-ART to achieve a more even-spread of test cases and better failure detection effectiveness in high dimensional space. Our study shows that this solution, termed as FSCS-ART-FE, can improve FSCS-ART not only in the case of high dimensional space, but also in the case of having failure-unrelated parameters. Both cases are common in real life programs. Therefore, we recommend using FSCS-ART-FE instead of FSCS-ART whenever possible. Other ART algorithms may face similar problems as FSCS-ART; hence our study also brings insight into the improvement of other ART algorithms in high dimensional space

    One-domain-one-input: adaptive random testing by orthogonal recursive bisection with restriction

    Get PDF
    One goal of software testing may be the identification or generation of a series of test cases that can detect a fault with as few test executions as possible. Motivated by insights from research into failure-causing regions of input domains, the even-spreading (even distribution) of tests across the input domain has been identified as a useful heuristic to more quickly find failures. This finding has encouraged a shift in focus from traditional random testing (RT) to its enhancement, adaptive random testing (ART), which retains the randomness of test input selection, but also attempts to maintain a more evenly distributed spread of test inputs across the input domain. Given that there are different ways to achieve the even distribution, several different ART methods and approaches have been proposed. This paper presents a new ART method, called ART-ORB, which explores the advantages of repeated geometric bisection of the input domain, combined with restriction regions, to evenly spread test inputs. Experimental results show a better performance in terms of fewer test executions than RT to find failures. Compared with other ART methods, ART-ORB has comparable performance (in terms of required test executions), but incurs lower test input selection overheads, especially in higher dimensional input space. It is recommended that ART-ORB be used in testing situations involving expensive test input execution

    Enhancing mirror adaptive random testing through dynamic partitioning

    Get PDF
    Context: Adaptive random testing (ART), originally proposed as an enhancement of random testing, is often criticized for the high computation overhead of many ART algorithms. Mirror ART (MART) is a novel approach that can be generally applied to improve the efficiency of various ART algorithms based on the combination of ''divide-and-conquer'' and ''heuristic'' strategies. Objective: The computation overhead of the existing MART methods is actually on the same order of magnitude as that of the original ART algorithms. In this paper, we aim to further decrease the order of computation overhead for MART. Method: We conjecture that the mirroring scheme in MART should be dynamic instead of static to deliver a higher efficiency. We thus propose a new approach, namely dynamic mirror ART (DMART), which incrementally partitions the input domain and adopts new mirror functions. Results: Our simulations demonstrate that the new DMART approach delivers comparable failure-detection effectiveness as the original MART and ART algorithms while having much lower computation overhead. The experimental studies further show that the new approach also delivers a better and more reliable performance on programs with failure-unrelated parameters. Conclusion: In general, DMART is much more cost-effective than MART. Since its mirroring scheme is independent of concrete ART algorithms, DMART can be generally applied to improve the cost-effectiveness of various ART algorithms

    PhysicsGP: A Genetic Programming Approach to Event Selection

    Full text link
    We present a novel multivariate classification technique based on Genetic Programming. The technique is distinct from Genetic Algorithms and offers several advantages compared to Neural Networks and Support Vector Machines. The technique optimizes a set of human-readable classifiers with respect to some user-defined performance measure. We calculate the Vapnik-Chervonenkis dimension of this class of learning machines and consider a practical example: the search for the Standard Model Higgs Boson at the LHC. The resulting classifier is very fast to evaluate, human-readable, and easily portable. The software may be downloaded at: http://cern.ch/~cranmer/PhysicsGP.htmlComment: 16 pages 9 figures, 1 table. Submitted to Comput. Phys. Commu

    PULP-HD: Accelerating Brain-Inspired High-Dimensional Computing on a Parallel Ultra-Low Power Platform

    Full text link
    Computing with high-dimensional (HD) vectors, also referred to as hypervectors\textit{hypervectors}, is a brain-inspired alternative to computing with scalars. Key properties of HD computing include a well-defined set of arithmetic operations on hypervectors, generality, scalability, robustness, fast learning, and ubiquitous parallel operations. HD computing is about manipulating and comparing large patterns-binary hypervectors with 10,000 dimensions-making its efficient realization on minimalistic ultra-low-power platforms challenging. This paper describes HD computing's acceleration and its optimization of memory accesses and operations on a silicon prototype of the PULPv3 4-core platform (1.5mm2^2, 2mW), surpassing the state-of-the-art classification accuracy (on average 92.4%) with simultaneous 3.7Ă—\times end-to-end speed-up and 2Ă—\times energy saving compared to its single-core execution. We further explore the scalability of our accelerator by increasing the number of inputs and classification window on a new generation of the PULP architecture featuring bit-manipulation instruction extensions and larger number of 8 cores. These together enable a near ideal speed-up of 18.4Ă—\times compared to the single-core PULPv3
    • …
    corecore