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Towards Improved Adaptive Random Testing

for Programs with High Dimensional Input

Domains and Failure-Unrelated Parameters∗†

F. -C. Kuo ‡§ T. Y. Chen ‡ H. Liu ‡ W. K. Chan ¶

Abstract

Adaptive Random Testing (ART), an enhancement of Random

Testing (RT), aims to both randomly select and evenly spread test

cases. Recently, it has been observed that the effectiveness of some

ART algorithms may deteriorate as the number of program input pa-

rameters (dimensionality) increases. In this paper, we analyse various

problems of Fixed-Sized-Candidate-Set ART (FSCS-ART) (one ART

algorithm) in the high dimensional input domain setting, and study

how FSCS-ART can be further enhanced to address these problems.

We propose that FSCS-ART algorithm incorporates a filtering pro-

cess of inputs to achieve a more even-spread of test cases and better

failure detection effectiveness in high dimensional space. This solution
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sium on Applied Computing (SAC’07) (Kuo et al. 2007).

†This research project is supported by an Australian Research Council Discovery Grant.
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Technology, Hawthorn, Victoria 3122, Australia
§Contact author. Email: dkuo@ict.swin.edu.au
¶Department of Computer Science, City University of Hong Kong, Tat Chee Avenue,

Hong Kong
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is called the FSCS-ART with Filtering by Eligibility (FSCS-ART-FE).

Our study shows that FSCS-ART-FE can improve FSCS-ART not only

in the case of high dimensional space, but also in the case of having

failure-unrelated parameters. Both cases are common in real life pro-

grams. Therefore, we recommend to use FSCS-ART-FE instead of

FSCS-ART whenever possible. Other ART algorithms may face sim-

ilar problems as FSCS-ART; hence our study also brings insight into

the improvement of other ART algorithms in high dimensional space.

1 Introduction

Software testing is a major software engineering activity to assure the qual-

ity of software under test. It assures software quality by actively detecting

bugs before serious software failures actually take place in operation. One

approach of testing is by executing software (Myers et al. 2004). Inputs used

for testing are called test cases, and those that lead to software failures are

called failure-causing inputs. Software often cannot be completely tested due

to limited testing resources and its huge set of inputs (known as input do-

main). Thus, one focus of software testing is to select test cases that can

cost-effectively reveal failures.

Test case selection is a critical task in software testing. Many testing

methods (Myers et al. 2004) have been developed to guide the selection of

test cases. One simple method is Random Testing (RT), in which test cases

are selected in a random manner from the input domain (Hamlet 2002, Myers

et al. 2004). There are many merits of using RT in software testing. For

example, it can generate numerous test cases automatically at low cost. Its

generation of test cases needs not to involve software specifications or source

code. It brings “randomness” into the testing process, so it can detect certain
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failures unable to be revealed by deterministic approaches (those designing

test cases to target certain faults or test objectives). Because of these merits,

RT has been widely used for detecting failures (Bird and Munoz 1983, Cobb

and Mills 1990, Miller et al. 1990, 1995, Slutz 1998, Forrester and Miller 2000,

Yoshikawa et al. 2003, Dabóczi et al. 2003, Godefroid et al. 2005, Miller 2005,

Regehr 2005, Sen et al. 2005, Nyman), and has been incorporated into many

industrial software testing tools, such as RAGS (Random Generation of SQL)

used by the Microsoft SQL Server testing group (Slutz 1998) as well as those

developed by IBM (Bird and Munoz 1983) and Bell Laboratories (Godefroid

et al. 2005). Miller et al. used RT to test UNIX utilities, and observed that

25% to 30% of these utilities had been crashed (Miller et al. 1990). Five

years later, they repeated and extended their study of testing UNIX utilities,

and continued to find a lot of failures revealed by RT (Miller et al. 1995).

Regehr used RT for testing embedded systems because RT can “create a

large number of uncorrelated test cases automatically. These can be used

to drive a system into interesting states, with the goal of eliciting failure

modes that cannot be found using other testing methods or static analysis”

(Regehr 2005). In brief, RT is particularly desirable if complete specifications

and source code are unavailable (as a result, some testing methods may not

be applicable) or automation of other testing methods is expensive.

In spite of the popularity, some people criticised RT for utilizing little or

no information to guide its test case selection. It had been observed that

failure-causing inputs tend to cluster together (Ammann and Knight 1988,

Finelli 1991, Bishop 1993). This observation inspired Chen et al. to improve

the effectiveness of RT by enforcing a more even-spread of random test cases.

They referred to this testing approach as Adaptive Random Testing (ART)

(Mak 1997, Chen et al. 2001). ART aims for generating random test cases

3



(same goal as RT), at the same time, evenly spreading them (not concerned

by RT). This approach of testing can be implemented in various ways. Previ-

ous studies (Mak 1997, Chen et al. 2001, 2004, 2005, Mayer 2005, Chan et al.

2006) showed that their ART algorithms can outperform RT when failure-

causing inputs do cluster into contiguous regions (known as failure regions

(Ammann and Knight 1988)). In addition to such an improvement, ART

can be automated and its test case selection involves randomness like RT.

Therefore, it is strongly recommended to consider ART as an alternative to

RT.

It has been recently observed that the effectiveness of some ART algo-

rithms may deteriorate as the number of program input parameters (dimen-

sionality) increases (Chen et al. 2005). It should be noted that the curse of

dimensionality (defined as the remarkable growth in the difficulty of problems

as the dimensionality increases (Bellman 1957)) is a well-known problem in

many disciplines. For example, it is more difficult to generate a truly uni-

form distribution of points in higher dimensions (Matsumoto and Nishimura

1998). It is worthwhile to study several problems of ART in high dimensional

space (referred to as high dimension problems of ART in this paper).

In this paper, we investigate the high dimension problems of one ART

algorithm, namely Fixed-Sized-Candidate-Set ART (FSCS-ART) (Mak 1997,

Chen et al. 2001) and propose a solution, namely FSCS-ART with Filtering

by Eligibility (abbreviated as “FSCS-ART-FE”) algorithm, to address these

problems. Our study shows FSCS-ART-FE can improve FSCS-ART not only

in the case of high dimensional space, but also in the case of having failure-

unrelated parameters. Both cases are common in real life programs. There-

fore, we recommend that FSCS-ART-FE should be used instead of FSCS-

ART whenever possible. FSCS-ART is not the only one ART algorithm that
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encounters high dimension problems. Our study also brings insight into the

improvement of other ART algorithms that face similar problems as FSCS-

ART.

This paper is organized as follows. Section 2 introduces the algorithm of

FSCS-ART and the experimental setup related to the study of ART. Section 3

discusses several problems of FSCS-ART when dealing with high dimensional

space. Section 4 details our approach to enhancing FSCS-ART with respect

to high dimension problems. Section 5 reports our findings regarding to

the effectiveness and test case distribution of FSCS-ART-FE. These findings

lead us to conclude that FSCS-ART-FE is an enhancement of FSCS-ART

with the presence of high dimensional input domains and failure-unrelated

parameters. Paper conclusion is given in Section 6.

2 Background

Any faulty program has at least two attributes: failure rate (the ratio of the

number of failure-causing inputs to the number of all possible inputs) and

failure pattern (the geometric shapes of failure regions and the distribution

of these regions within the input domain). Both attributes are fixed upon

completion of coding but unknown to testers before testing. Program 1 gives

a sample program fault that causes a strip failure pattern as illustrated in

Figure 1. Other sample faults related to failure patterns can be found in

(Chen et al. 2005).

Since the introduction of ART, great attention has been paid to how well

ART can outperform RT. There are three commonly used metrics to mea-

sure the effectiveness of a testing method: E-measure (the expected number

of detected failures), P-measure (the probability of detecting at least one
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Program 1 A sample program fault that causes a strip failure pattern.
INPUT X, Y

IF (Y <= 0) /* ERROR: Should be if(Y <= 1) */

{ Z = X - 2Y }

ELSE

{ Z = X + 2Y }

OUTPUT Z

Figure 1: Failure pattern for program 1

failure) and F-measure (the expected number of test cases for revealing the

first failure). There are two fundamental differences between F-measure and

the other two measures, that we wish to point out. First, P-measure and

E-measure are computed based on (i) the estimated failure rate and (ii) the

amount of tests that testers plan to conduct; however, F-measure can be ob-

tained without pre-knowledge of these two parameters. Second, given a set

of test cases, P-measure and E-measure do not depend on the test sequence,

but F-measure does depend on the test sequence. ART is an adaptive testing

strategy, “in which the results of previous testing influence subsequent test

selection” (Chen and Merkel - to appear). In ART, the key issue is how to

sequence tests among all possible inputs to effectively detect failures, and

hence the test sequence should be considered to reflect the effectiveness of

ART. Therefore, F-measure is considered the most appropriate metric in the

study of ART (also see (Chen et al. 2006)). A theoretical evaluation of ART

is known to be extremely difficult as the effectiveness of ART depends on
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many factors (Chen et al. 2005). As a result, almost all studies of ART were

carried out by experiments and using F-measure. Like all other ART studies

(Mak 1997, Chen et al. 2001, 2004, 2005, Mayer 2005, Chan et al. 2006), we

evaluate ART using F-measure and assume that test cases are selected with

replacement according to the uniform distribution.

When testing is carried out on a real life faulty program, a failure is said

to be found if an incorrect output is observed. When testing is conducted

using simulations, in order to simulate the testing process, failure rates and

failure patterns must be predefined, and failure regions are randomly placed

inside the input domain. A failure is said to be found if a point inside one

of the failure regions is picked by a testing method.

Like all other ART studies, we collect F-measures of ART using the fol-

lowing procedure. Given a faulty program (or given a predefined failure

rate and failure pattern), conduct testing by an ART algorithm. Collect the

F-measure of ART (FART ) in each testing. Repeat testing s times until a

significantly reliable mean of FART (±5% accuracy range and 95% confidence

level) has been obtained. The value of s is determined dynamically according

to the formula given in (Chen et al. 2004).

As mentioned before, ART is often compared with RT in terms of F-

measure. We will use the ART F-ratio (= FART /FRT ) metric given in (Chen

et al. 2005) to show the improvement of ART over RT, where FART and

FRT denote the F-measures of ART and RT, respectively. A smaller ART

F-ratio means a greater saving of test cases by ART to detect the first failure,

and hence indicates a greater improvement of ART over RT. Since test cases

are selected with replacement according to the uniform distribution in this

paper, FRT is expected to be 1/θ in theory, where θ denotes the failure rate

of a faulty program.
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ART aims to both randomly select and evenly spread test cases. Several

researches have been conducted to investigate the test case distribution of

ART algorithms inside the input domain. As explained by Chen et al. (2007),

a good even-spread of test cases should possess at least two properties -

low dispersion and low discrepancy. Formal definitions of dispersion and

discrepancy would be discussed in Section 5.4.

FSCS-ART is known to have an edge preference (that is, generating test

cases more frequently in the edge than in the central part of the input domain)

(Chen et al. 2005). FSCS-ART (Mak 1997, Chen et al. 2001) maintains two

sets of test cases, namely, the executed set(E) and the candidate set(C), where

E stores all executed test cases that do not reveal failures, and C stores k

random inputs, from which the next test case will be selected. The candidate

with the longest Euclidean distance to its nearest neighbour in E is chosen

as the next test case. The pseudo-code of FSCS-ART is given in Figure 2. In

this paper, k is set to 10 as suggested by previous studies (Mak 1997, Chen

et al. 2001).

1. n := 0 and E := { }.
2. Randomly select a test case, t, from the input domain (according to

the uniform distribution).
3. n := n + 1.
4. IF t reveals a failure, THEN GOTO Step 9; ELSE, store t in E.
5. Randomly generate k inputs to construct C (according to the

uniform distribution).
6. FOR each ci ∈ C, calculate the Euclidean distance di between ci and

its nearest neighbour in E.
7. Find cb ∈ C such that its db ≥ di where k ≥ i ≥ 1.
8. t := cb and GOTO Step 3.
9. RETURN n and t, and EXIT.

Figure 2: The pseudo-code of FSCS-ART
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Chen et al. carried out a detailed study on the effectiveness of FSCS-ART

(Chen et al. 2005). They designed a series of experiments and observed that

FSCS-ART performs best when the failure pattern is a single square failure

region. As the number of failure regions increases or the compactness of

failure regions decreases, the improvement of FSCS-ART over RT decreases.

In this paper, we will conduct a similar experimental study as Chen et al.

(2005) to compare FSCS-ART with FSCS-ART-FE (our proposed solution

to high dimension problems of FSCS-ART).

For ease of discussion, we will use 1D, 2D, ... and ND to denote one-

dimensional, two-dimensional, ... and N -dimensional, respectively.

3 High dimension problems of FSCS-ART

In this paper, we aim to study high dimension problems of FSCS-ART. Two

major problems are discussed in the following sections.

3.1 Problem 1

In the first experiment of Chen et al. (2005), it has been observed that when

the failure pattern consists of a single square failure region, FSCS-ART could

perform even worse than RT under high failure rates (θ). The range of θ in

which FSCS-ART is worse than RT grows as the dimensionality increases.

It is interesting to investigate the cause of this phenomenon.

For ease of discussion, M is used to denote an N dimensional input do-

main. Mcentre and Medge are two disjoint subregions of M, and Mcentre ∪
Medge = M. Mcentre resides at the centre of M, and Medge encloses Mcentre.

The shapes of M and Mcentre are identical, and |Mcentre| = a|M |, where

0 < a < 1, and |Mcentre| and |M | denote the sizes of Mcentre and M, respec-
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tively.

Theorem 3.1. Assume that there exists one and only one rectangular failure

region (F) inside M. Further assume that |Mcentre| = a · |M | and the shapes

of M and Mcentre are identical. Li, L̂i and li denote the lengths of M, Mcentre

and F in the ith dimension, respectively. For any 0 < a < 1, if ∀i, li > Li

2

(so θ > 1
2N ),

(i) the chance (p) of picking an element of F from Mcentre is greater than θ,

and

(ii) the chance (q) of picking an element of F from Medge is smaller than θ.

Proof. Suppose that for every i, 1 ≤ i ≤ N , we have li > Li

2
. In other

words, li = xi+Li

2
, where 0 < xi ≤ Li. Let |Fcentre| and |Fedge| denote the size

of F inside Mcentre and Medge, respectively. wi is used to denote the length

of F inside Mcentre in the ith dimension. Clearly, |Fcentre| =
∏N

i=1 wi and

|Fedge| = |F| − ∏N

i=1 wi. Since M and Mcentre are identical in shape, we have

L̂i = N
√

a · Li. When F attaches to a corner of M, wi = li − Li−L̂i

2
= xi+L̂i

2
.

However, F can be any place of M, hence we have wi ≥ xi+L̂i

2
.

Clearly, (xi + N
√

aLi) > ( N
√

axi + N
√

aLi) (because 0 < a < 1 and 0 < xi)

⇒
∏N

i=1
xi+L̂i

2
> a ·

∏N

i=1
xi+Li

2

⇒ ∏N

i=1
xi+L̂i

2
> a · ∏N

i=1 li

⇒ ∏N

i=1
xi+L̂i

2
> a · |F|

⇒ 1
a|M |

∏N

i=1 wi > |F|
|M |

(because wi ≥ xi+L̂i

2
)

⇒ |Fcentre|
|Mcentre|

> |F|
|M |

⇒ p > |F|
|M |

= θ

As proved above,
∏N

i=1
xi+L̂i

2
> a · |F|

⇒ |F| − ∏N

i=1
xi+L̂i

2
< |F| − a|F|

⇒ 1
|M |

(

|F| − ∏N

i=1
xi+L̂i

2

)

< 1−a
|M |

|F|
⇒ 1

(1−a)|M |

(

|F| − ∏N

i=1
xi+L̂i

2

)

< |F|
|M |

(remark: (1 − a) > 0)

10



⇒ 1
(1−a)|M |

(|F| −
∏N

i=1 wi) < |F|
|M |

(because wi ≥ xi+L̂i

2
)

⇒ |Fedge|

|Medge|
< |F|

|M |

⇒ q < |F|
|M |

= θ

Normally, if we select test cases from M, the chance of detecting failures is

θ. If there exists one rectangular failure region, Theorem 3.1 shows that when

θ > 1
2N , the chance of detecting failures is higher for test cases selected from

Mcentre than those selected from Medge. This theorem is valid irrespective of

the size of Mcentre.

Since 1
2N decreases exponentially as N increases, a small increase in N

will significantly increase the likelihood of satisfying (θ > 1
2N ) which gives

test cases from Mcentre a higher chance of detecting failures than those from

the whole M. On the other hand, an increase in N will increase the edge

preference of FSCS-ART (Chen et al. 2005, 2007). More details about the

test distribution of FSCS-ART can be found in Section 5.4. These two facts

explain why Chen et al. (2005) have the following two observations. First,

FSCS-ART performs worse than RT for large values of θ in high dimensional

space. Second, the larger N is, the larger the ART F-ratio of FSCS-ART

is, and the wider the range of θ where the ART F-ratio of FSCS-ART being

greater than 1 is.

3.2 Problem 2

FSCS-ART tries to keep test cases apart from each other. Every its test

case is selected from a candidate set, C. Selection criterion is based on the

Euclidean distance between a candidate c and its nearest neighbour in E.

The candidate with the maximum distance to its nearest neighbour in E

is selected for testing. This way of distributing test cases does not take

11



dimensionality into consideration. Next, we will explain the problems of this

simple selection criterion in high dimensional space.

When the input domain is 1 dimensional (1D), no matter where points

(inputs) are located, they will all appear on one line. Therefore, merely keep-

ing test cases apart in distance is sufficient to achieve an even-spread of test

cases. However, when the input domain is N dimensional (where N > 1),

the spatial distribution of points is more complicated. If FSCS-ART only

aims at keeping test cases apart, it cannot fully ensure an even-spread of

test cases all over the input domain. Consider two sets of test case distri-

bution in 2D space (Figure 3). The test cases in Figure 3(a) are farther

apart from one another than those in Figure 3(b). According to the disper-

sion metric (refer to Section 5.4 for details), the former is considered less

even-spread (equidistributed) than the latter because the former dispersion

is larger than the latter dispersion. However, FSCS-ART tends to produce

test case distribution like Figure 3(a) rather than Figure 3(b) because it test

selection criterion does not take the spatial complexity (incidental to higher

dimensionality) into consideration, but rather picks the farthest candidate

for testing.

As shown in Section 2, software failures of Program 1 are only sensi-

tive to Y parameter, not X. Hereafter, we will call these two types of pa-

rameters (those related to failures, and those unrelated to failures) “failure-

related” and “failure-unrelated” parameters, respectively. Probability tells

that the larger the dimensionality is, the less likely all input parameters are

failure-related (or equivalently, the more likely some parameters are failure-

unrelated). FSCS-ART would need to take this feature into consideration

when selecting the best candidates for testing.

Consider testing Program 1 using FSCS-ART, where C consists of two

12



e2 e1

e3

e2

e1

e3

(a) (b)

Figure 3: Different distributions of test cases

candidates c1 (cX
1 , cY

1 ) and c2 (cX
2 , cY

2 ). Assume that both c1 and c2 have an

identical distance from their each nearest neighbour in E. In other words, they

both are entitled to be the next test case according to the existing selection

criterion used in FSCS-ART. Further assume there exists an element ei of E

such that eX
i = cX

1 or eY
i = cY

1 , while no such a relationship exists between

c2 and any element in E (in other words, c2 is different from every element

of E in all parameters (dimensions)). Even c1 and c2 have such difference

characteristics, FSCS-ART will not distinguish these two candidates and

should randomly select any one of them for testing. We, however, argue that

c2 should be preferable to c1 as the next test case, because of the following

reasons.

• Besides keeping test cases apart, intuitively speaking, having test cases

different in all dimensions should cover larger parts of the input domain

than allowing test cases to be similar in some dimensions. Thus, from

a spatial coverage point of view, c2 should be preferable to c1.

• Since failures of Program 1 are only sensitive to Y parameter, if we have

failed to detect a failure by a test case t, we know that failure-causing

inputs must be different from t with respect to Y. Since it is normally

unknown in advance which input parameter is failure-related, in order

to effectively detect failures, the next test case is better to be different

13



from E (its elements are the inputs unable to reveal failures) as much

as possible, not just from the aspect of the Euclidean distance but also

from the aspect of each dimension. Therefore, c2 should be preferable

to c1.

In summary, when dimensionality is high, simply using “Euclidean dis-

tance” as the selection criterion may generate test cases which are neither

evenly spread nor effective in detecting failures. Problem 2 suggests that we

should enforce test cases different from each other in all dimensions, while

keeping them apart in distance. Our solution to high dimension problems of

FSCS-ART will be presented in Section 4. Experimental results (Section 5)

show that our solution can both alleviate Problems 1 and 2.

4 The proposed solution: FSCS-ART with

Filtering by Eligibility (FSCS-ART-FE)

In this section, we provide one solution to high dimension problems of FSCS-

ART. The following notations and concepts are required to facilitate our dis-

cussion. In N dimensional input domains (Ii denotes each of its dimensions),

the coordinates of two points A and B are denoted as (a1, a2, ..., aN) and

(b1, b2, ..., bN), respectively. dist(A, B) is used to denote the Euclidean

distance between point A and point B, and disti(A, B) is used to denote |ai

− bi| with respect to Ii. Among all disti(A, B), the shortest and the longest

distance are denoted as minDist(A, B) and maxDist(A, B), respectively. At

last, we define DistRatio(A, B) as the ratio of minDist(A, B) to maxDist(A,

B). Obviously, the range value of DistRatio(A, B) is [0, 1].

Consider the same example as discussed in Section 3.2. There are two

candidates c1 and c2 that have the same shortest distance from E; but unlike

14



c1, the candidate c2 differs from E with respect to all coordinates. In that

example, we have argued that c2 is more preferable than c1. Following the

same argument, we will choose candidates that have as large DistRatio as

possible from all elements of E, as test cases.

Our enhanced FSCS-ART is basically the same as the original FSCS-

ART, but with one additional feature, that is, an eligibility filtering process

to ensure that the candidates are far apart from previously executed test

cases in terms of “input parameters”. An input c is eligible if for every ei of

E, DistRatio(c, ei) is greater than v where v is a value chosen from the range

of [0, 1]. For ease of discussion, the condition that determines the eligibility

of a candidate is referred as the eligibility criterion. In the sequel, we will

elaborate the details of our algorithm (namely, FSCS-ART with Filtering by

Eligibility or “FSCS-ART-FE” for short). Without loss of generality, we will

illustrate this algorithm using 2D space.

For the sake of explaining the notion of eligible inputs, consider Figure 4

where e is the only element in E, which is intersected by Lines A, B, C and

D having the slope of v, −v, −1
v

and 1
v
, respectively. In such a scenario,

the eligible inputs occupy the dotted regions, and are separated from the

ineligible inputs by Lines A, B, C and D.

I1

I2

Line A

Line B

Line CLine D

Line A

Line B

Line C Line D

e

Figure 4: Eligible inputs (forming the dotted regions), v and e (an element
of E)
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Next, the impact of v and the size of E (|E|) on the number of eligible

inputs is investigated. Suppose the input domain consists of 49 elements

and |E| = 1, as shown in Figure 5. There are 0, 20 and 36 elements out of

49 elements, which are eligible when v = tan(45◦), tan(30◦) and tan(15◦),

respectively. Obviously, the number of eligible inputs increases as v decreases.

On the other hand, for a fixed v, the growth of E will “exclude” more and

more elements from being eligible. As an example of illustration, refer to

Figure 6 where v remains unchanged but the number of elements in E is

different (|E| = 1 or 2 in Figure 6(a) or 6(b), respectively). As can be seen,

the number of eligible inputs will decrease with the increase of |E| if v remains

unchanged.

v = tan(45°) v = tan(30°) v = tan(15°)

Figure 5: The relationship between v and the number of eligible inputs (tri-
angles and squares represent eligible and illegible inputs, respectively)

The pseudo-code of FSCS-ART-FE is given in Figure 7 where Steps 6-14

are introduced to replace Step 5 of Figure 2 (pseudo-code of FSCS-ART).

The basic difference is that we need to construct a candidate set C such that

all its elements are eligible.

To use FSCS-ART-FE, the tester needs to set 2 parameters v and r.

The role of v has been explained above, and the role of r is explained as

follows. Since E grows along with the testing, we will eventually reach a
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e1

(a) |E| = 1

e
1

e
2

(b) |E| = 2

Figure 6: The relationship between |E| and the number of eligible inputs
(forming the dotted regions)

situation where it is impossible or too expensive to construct C. To resolve

this problem, we propose to dynamically relax the eligibility criterion during

the testing process when an insufficient number of eligible candidates has

been generated after g attempts. The role of r, which is within the range (0,

1), is to reduce the value of v (by resetting v to be v ·r) so that the eligibility

criterion will be relaxed.

Since the filtering effect will disappear when v becomes 0, v should be

adjusted gradually and only when necessary. Clearly, the larger g is, the less

frequently v is to be adjusted. After g attempts to incrementally construct

C, if fewer than p% of elements inside C are eligible, we consider the current

eligibility criterion too strict and thus there is a need to reduce v. Note that

in this study, g and p were arbitrarily set to 4 and 70, respectively.

The filtering process in FSCS-ART-FE checks the eligibility of candidates

according to their DistRatios. Since minDist and maxDist for all 1D inputs

are identical, any candidate selected at random will satisfy the eligibility

criterion. As a result, FSCS-ART-FE and FSCS-ART are equivalent in 1D

input domains.
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1. INPUT v and r, where 1 > r > 0 and 1 ≥ v ≥ 0.
2. n := 0, E := { }, C := { }.
3. Randomly select a test case, t, from the input domain (according

to the uniform distribution).
4. n := n + 1.
5. IF t reveals a failure, THEN GOTO Step 18; ELSE, store t in E.
6. Randomly generate k inputs to construct C (according to the

uniform distribution).
7. FOR each ci ∈ C, examine the eligibility of ci and mark ci ‘eligible’

or ‘ineligible’ accordingly.
8. IF all elements of C are eligible, THEN GOTO Step 15.
9. nTrial := 0.
10. REPEAT Steps 11-14 UNTIL all ci of C are eligible.
11. Replace each ineligible ci by another random input.
12. Examine the eligibility of all replacements, and mark them ‘eligible’

or ‘ineligible’ according to v.
13. nTrial := nTrial + 1.
14. After 4 attempts (when nTrial = 4), IF fewer than 70% of

candidates are eligible, THEN nTrial := 0 and v := v·r.
15. FOR each ci ∈ C, calculate the Euclidean distance di between

ci and its nearest neighbour in E.
16. Find cb ∈ C such that its db ≥ di where k ≥ i ≥ 1.
17. t := cb and GOTO Step 4.
18. RETURN n and t, and EXIT.

Figure 7: The pseudo-code of FSCS-ART-FE
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5 Analysis into FSCS-ART-FE

In this section, we investigate how well FSCS-ART-FE can resolve the high

dimension problems of FSCS-ART. This study consists of the following.

First, we study the ART F-ratio of FSCS-ART-FE using simulations. In

addition, we compare the test case distributions of FSCS-ART-FE and FSCS-

ART. Unless otherwise specified, the designs of all experiments in this section

are the same as those described in Section 2.

5.1 Impact of key settings on the effectiveness of FSCS-

ART-FE

We conducted simulations to investigate the impact of v and r on the ef-

fectiveness of FSCS-ART-FE. First, we set both v and r to 0.5 (so v ≈
tan(26.57◦)) and applied FSCS-ART-FE to the first simulation settings re-

ported by Chen et al. (2005), where the failure pattern consisted of a single

square (or cubic) failure region, the failure rate (θ) varied from 1 to 0.00005,

and dimensionality (N) varied from 2 to 4. For comparison purpose, the

ART F-ratios of FSCS-ART previously reported by Chen et al. (2005) are

also reproduced in this section. Note that it is unnecessary to study FSCS-

ART-FE in 1D input domains because it is equivalent to FSCS-ART in 1D

space.

The results of this study are summarized in Figure 8, from which we have

the following observations.

• Like FSCS-ART, the ART F-ratio of FSCS-ART-FE depends on N and

θ.

• When θ is large, the ART F-ratio of FSCS-ART-FE is smaller than the

corresponding ART F-ratio of FSCS-ART.

19



• As θ decreases, the difference between the ART F-ratios of FSCS-ART-

FE and FSCS-ART decreases.

• For a larger N , there exists a wider range of θ where the ART F-ratio

of FSCS-ART-FE is smaller than that of FSCS-ART.

This study shows that the process of filtering does make FSCS-ART-

FE more effective than FSCS-ART. FSCS-ART-FE outperforms FSCS-ART

when θ is large, but the improvement decreases as θ decreases. The rational

is explained as follows. It is known that for a smaller θ, more test cases are

required to detect the first failure (that is, a larger F-measure), and hence

there will be a larger E just prior to detecting the first failure. Since v

tends to decrease as E grows, FSCS-ART-FE will become more and more

FSCS-ART-like as testing proceeds. As a consequence, the smaller the θ is,

the closer the ART F-ratios of FSCS-ART-FE and FSCS-ART are. Having

said that, for a large N , FSCS-ART-FE can outperform FSCS-ART across

a wider range of θ.

We conducted further experiments with the following settings. In these

experiments, the input domain is set to be 4D.

• v is either 0.9 (≈ tan(41.99◦)), 0.5 (≈ tan(26.57◦)) or 0.1 (≈ tan(5.71◦))

• r is either 0.9, 0.5 or 0.1

There are 9 different scenarios in total. We group the results into Figure

9. Based on these data, we have the following observations:

• The larger r is, the smaller the ART F-ratio is.

• The impact of v on the ART F-ratio of FSCS-ART-FE decreases with

the decrease of r.
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Figure 8: Comparison of FSCS-ART and FSCS-ART-FE when the failure
pattern is a single square failure region

• For a given r, when v is larger than a certain value, increasing v will

not significantly affect the ART F-ratio of FSCS-ART-FE.

As mentioned before, it is desirable to have test cases different from each

other as much as possible in all dimensions, in order to better cover the whole

input domain and increase the chance of detecting failures. The eligibility

criterion imposed during the filtering process serves this purpose. Note that

the eligibility criterion depends on v which in turn depends on r. Since the

effect of r is accumulative because of its repeated use to adjust v, it is under-

standable that r has a more dominating impact than v on the effectiveness

of FSCS-ART-FE as seen in the second observation.
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(b) v = 0.5
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(c) v = 0.1
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(d) r = 0.9
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(e) r = 0.5
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(f) r = 0.1

Figure 9: Impact of key settings on the effectiveness of FSCS-ART-FE
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Since v affects how much the next test case could differ from E in all

dimensions, the initial value of v cannot be too small; otherwise, FSCS-

ART-FE will behave just like FSCS-ART. Nevertheless, our last observation

shows that a large initial value of v does not imply a small ART F-ratio. We

further investigated the impact of v and observed that a large initial v could

seldom generate a sufficient number of eligible candidates within a permitted

number of trails. As a result, a large initial v is almost certain to be adjusted

immediately after its first use.

This study shows that the most dominating factor affecting the effective-

ness of FSCS-ART-FE is r. In summary, an effective FSCS-ART-FE requires

a sufficiently large v, and more importantly, a significantly large r. Hence,

we will set v and r both to 0.9 in the rest of our experimental study.

5.2 Impact of failure patterns on the effectiveness of

FSCS-ART-FE

FSCS-ART-FE is an enhanced version of FSCS-ART. It is interesting to

repeat the same investigation of Chen et al. (2005) into the impact of failure

patterns on the effectiveness of FSCS-ART-FE.

First, we applied FSCS-ART-FE to the second simulation settings re-

ported by Chen et al. (2005), where θ was either 0.005, 0.001 or 0.0005, and

N was either 2 or 3. The failure pattern is set to a strip failure region (a

long rectangle or cuboid), and the parameter of α is used to determine the

compactness of the failure region. In 2D space, the width and length of a

rectangle are in the ratio of 1 : α, while in 3D space, the edge lengths of a

cuboid are in the ratio of 1 : α : α. The smaller α is, the more compact

the failure region is. The simulation results are reported in Figure 10. Our

study shows that in general, FSCS-ART-FE behaves similarly as FSCS-ART,
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whose effectiveness depends on compactness of a failure region.

Next, we applied FSCS-ART-FE to the third simulation settings by Chen

et al. (2005), where the number of square failure regions varied from 1 to

100. The simulation results are reported in Figure 11. Our study shows that

FSCS-ART-FE behaves similarly as FSCS-ART, whose effectiveness depends

on the number of failure regions.

The findings of this investigation are consistent with those by Chen et al.

(2005). Both simulations show that FSCS-ART-FE is like FSCS-ART, whose

ART F-ratio depends on the failure pattern. Furthermore, both FSCS-ART

and FSCS-ART-FE perform best when the failure pattern is a single square

failure region. As the number of failure regions increases or the compactness

of failure regions decreases, their ART F-ratios increase and approach to a

constant.

5.3 Impact of the number of failure-unrelated param-

eters on the effectiveness of FSCS-ART-FE

As mentioned in Section 3.2, the Euclidean distance metric is inappropriate

test case selection criterion for FSCS-ART when there are failure-unrelated

parameters (a common case in high dimensional space). Moreover, the

higher dimensionality is, the more likely some input parameters are failure-

unrelated. Hence, we propose to make test cases different in all dimensions

while keeping them apart. This triggers the development of FSCS-ART-

FE. It is important to examine the effectiveness of FSCS-ART-FE with the

presence of failure-unrelated parameters.

We conducted a simulation to investigate the effect of the number (m)

of failure-unrelated parameters on the effectiveness of FSCS-ART-FE. As

shown in Section 3.2, when there exist failure-unrelated parameters, the fail-
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Figure 10: Comparison of FSCS-ART and FSCS-ART-FE when the failure
pattern is a strip failure region with different degrees of compactness
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Figure 11: Comparison of FSCS-ART and FSCS-ART-FE when the failure
pattern consists of some failure regions
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ure pattern will consist of failure regions that span across failure-unrelated

dimensions.

As an example of illustration, consider a 3D rectangular input domain,

whose edge length is Li in dimension i, and a rectangular failure region,

whose edge length is li in dimension i. Suppose θ is 0.01. If program failures

are unrelated to the 1st and 2nd parameters (so m = 2), then we have l1 :

l2 : l3 = L1 : L2 : 0.01L3. If failures are unrelated to the 1st parameters (so

m = 1), then we have l1 : l2 : l3 = L1 : aL2 : bL3 where ab = 0.01.

Obviously, for any faulty program, there must exist at least one failure-

related parameter, therefore, m must be smaller than the dimensionality (N).

In our simulation, one single rectangular failure region was assumed to reside

in a rectangular N dimensional input domain, where N varied from 2 to 4.

The edge length of the failure region in each failure-related dimension was

N−m
√

θ, where θ was either 0.01, 0.005, 0.001 or 0.0005.

The simulation results for various combinations of N and m are summa-

rized in Table 1, which shows that FSCS-ART-FE outperforms FSCS-ART

when there exist failure-unrelated parameters, and FSCS-ART-FE has the

most significant improvement over FSCS-ART when m = N − 1.

5.4 Test case distribution of FSCS-ART-FE

As explained in Section 3.1, FSCS-ART may not ensure a truly even-spread

of test cases if it simply enforces test cases far apart from each other in

distance. Furthermore, it has been explained in Section 3.2 how the edge

preference of FSCS-ART contributes to effectiveness deterioration of FSCS-

ART in high dimensional input domains. Therefore, we aim to assess the

test case distribution of FSCS-ART-FE in this section.

Chen et al. (2007) used three metrics to measure the test case distribu-

27



Table 1: Impact of the number of failure-unrelated parameters on effective-
ness of FSCS-ART-FE

N m algorithm
FART

θ = 0.01 θ = 0.005 θ = 0.001 θ = 0.0005

2 1
FSCS-ART 96.08 189.48 996.84 1975.79
FSCS-ART-FE with v = 0.9 and r = 0.9 68.00 137.67 704.77 1490.81

3
2

FSCS-ART 103.12 197.64 1020.31 2009.87
FSCS-ART-FE with v = 0.9 and r = 0.9 71.89 148.86 745.14 1535.78

1
FSCS-ART 93.21 192.79 973.18 1987.53
FSCS-ART-FE with v = 0.9 and r = 0.9 84.14 184.34 958.56 1801.86

4

3
FSCS-ART 98.37 197.98 970.15 2022.04
FSCS-ART-FE with v = 0.9 and r = 0.9 73.86 149.58 809.42 1546.10

2
FSCS-ART 108.97 214.50 1044.55 2126.33
FSCS-ART-FE with v = 0.9 and r = 0.9 101.79 196.92 1012.63 2003.46

1
FSCS-ART 104.81 208.93 983.61 1927.09
FSCS-ART-FE with v = 0.9 and r = 0.9 90.70 185.15 942.24 1932.91

tions (the distribution of E inside the input domain (M)) of various ART

algorithms. Among these metrics, the discrepancy and dispersion (denoted

as MDiscrepancy and MDispersion, respectively) are two commonly used metrics

for measuring the equidistribution of sample points (Branicky et al. 2001),

while the MEdge:Centre metric was particularly introduced to measure the edge

preference of some ART algorithms (Chen et al. 2007). These metrics are

formally defined as follows.

MDiscrepancy = max
i=1...m

∣

∣

∣

∣

|Ei|
|E| −

|Mi|
|M|

∣

∣

∣

∣

(1)

where Mi denotes a randomly defined subset of M; and Ei denotes a subset

of E residing in Mi. Like (Chen et al. 2007), m is set to 1000 in the following

simulations.

MDispersion = max
i=1...|E|

dist(ei, nn(ei, E)) (2)
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where ei ∈ E and nn(ei, E) denotes the nearest neighbour of ei in E.

MEdge:Centre =
|Eedge|
|Ecentre|

(3)

where Eedge and Ecentre denote two disjoint subsets of E residing in Medge and

Mcentre, respectively; and Medge = Mcentre = 0.5M.

MDiscrepancy indicates whether all subregions of M have an equal density

of the points. MDispersion indicates whether any point in E is surrounded by

a very large empty spherical region (containing no points other than itself).

MEdge:Centre indicates whether there is an equal density of points in Mcentre

and Medge. E is considered reasonably equidistributed if the MDiscrepancy

is close to 0, MDispersion is small, and MEdge:Centre is close to 1. An edge

preference (or a centre preference) is said to occur when MEdge:Centre > 1

(or MEdge:Centre < 1). Clearly, in order for Mdiscrepancy to be small, the

MEdge:Centre should be close to 1; otherwise, different parts of M have different

densities of points.

We repeated the simulations of Chen et al. (2007) on FSCS-ART-FE. The

comparisons among RT, FSCS-ART and FSCS-ART-FE using MEdge:Centre,

MDiscrepancy and MDispersion are summarized in Figures 12, 13 and 14, respec-

tively. From these data, we have the following observations:

• In all cases, FSCS-ART-FE has a smaller MEdge:Centre than FSCS-ART.

FSCS-ART-FE even has a centre preference in 2D space.

• In 2D space, MDiscrepancy of FSCS-ART-FE is larger than that of FSCS-

ART, but the relationship is reversed for 3D and 4D space.

• In general, FSCS-ART-FE has a smaller MDispersion than FSCS-ART.
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Figure 12: Comparison of RT, FSCS-ART and FSCS-ART-FE using
MEdge:Centre
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Figure 13: Comparison of RT, FSCS-ART and FSCS-ART-FE using
MDiscrepancy
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Figure 14: Comparison of RT, FSCS-ART and FSCS-ART-FE using
MDispersion
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The first observation is consistent with our expectation, that is, the edge

preference of FSCS-ART can be alleviated by the FSCS-ART-FE. The second

observation can be explained as follows. As explained above, if MEdge:Centre

is far away from 1, MDiscrepancy cannot be very small. This explains why

FSCS-ART has a larger MDiscrepancy than RT in 3D and 4D space. In 2D

space, the value of 1/MEdge:Centre for FSCS-ART-FE is much larger than the

value of MEdge:Centre for FSCS-ART, that is, the centre preference of FSCS-

ART-FE is more serious than the edge preference of FSCS-ART. Therefore,

it is intuitively expected that FSCS-ART-FE has a larger MDiscrepancy than

FSCS-ART. FSCS-ART-FE has a lower edge preference than FSCS-ART in

3D and 4D space, so the former has a smaller MDiscrepancy than the latter.

Chen et al. have analysed the relationship between the test case distri-

bution and effectiveness of ART algorithms, and concluded that MDispersion

should be more appropriate than MDiscrepancy to measure the even-spread of

test cases of ART algorithms (Chen et al. 2007). Together with their conclu-

sion, our last observation implies that test cases generated by FSCS-ART-FE

are generally more evenly spread than those generated by FSCS-ART.

6 Discussion and Conclusion

ART was originally proposed to improve the fault-detection effectiveness of

RT, especially when failure-causing inputs are clustered together. Recently, it

has been observed that the effectiveness of some ART algorithms deteriorates

with the increase of dimensionality. In this paper, we analysed the high

dimension problems of Fixed-Sized-Candidate-Set ART (FSCS-ART), and

proposed a new algorithm, namely FSCS-ART with Filtering by Eligibility

(abbreviated as “FSCS-ART-FE” in this paper) to address these problems.
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FSCS-ART-FE uses a filtering process to enforce test cases far apart from

each other in all dimensions. A by-product of this additional filtering process

is a lower edge preference (one of the causes deteriorating the effectiveness of

FSCS-ART in high dimensional space). Our study shows that FSCS-ART-

FE not only has a lower edge preference but also lower dispersion. In other

words, test cases generated by FSCS-ART-FE are generally more evenly

spread those generated by FSCS-ART.

It has been observed that FSCS-ART-FE behaves similarly as FSCS-

ART, but the effectiveness deterioration in higher dimensional space is less

significant for FSCS-ART-FE than FSCS-ART. As the dimensionality in-

creases, the ART F-ratio of FSCS-ART-FE is smaller than that of FSCS-

ART in a wider range of failure rates. In addition, when there exist failure-

unrelated parameters (a common situation in high dimensional input do-

mains), FSCS-ART-FE outperforms FSCS-ART.

Our investigation into higher dimensionality confirms that FSCS-ART-

FE is an enhancement of FSCS-ART. Its ART F-ratios in 10D and 20D space

(summarized in Table 2) are smaller than those of FSCS-ART, and the data

trends are consistent with the observation given in Section 5.1. The test

case distribution of FSCS-ART-FE is considered more evenly spread than

FSCS-ART with respect to all three metrics (note that distribution data are

not presented here due to the page limit).

In this paper, we only work on the settings of v and r in FSCS-ART-FE.

We did not investigate various settings of g, p and the adjustment criteria

for v. It is worthwhile to study the impact of these settings and find out

how these settings can tune up the test methodology to meet the increase of

dimensionality.

Other ART algorithms could face similar problems as FSCS-ART. For
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Table 2: FSCS-ART-FE in 10D and 20D space

θ
10D 20D

FSCS-ART FSCS-ART-FE FSCS-ART FSCS-ART-FE
0.5 1.24 1.16 1.18 1.16

0.25 1.93 1.51 1.67 1.55
0.1 3.39 2.31 3.00 2.47

0.05 4.14 2.96 4.54 3.7
0.005 3.62 3.03 13.24 10.94

0.0005 2.61 2.42 N/A N/A

example, Restricted Random Testing (Chan et al. 2006) (RRT) also has the

preference of selecting test cases from the boundary part of the input do-

main, and uses the Euclidean distance as the metric of selecting the next

test case. Therefore, our study brings insight into the improvement of other

ART algorithms in high dimensional space. Our future work will be on these

relevant algorithms.

In our simulations, we studied the behaviour of FSCS-ART-FE without

restricting the location of failure regions because failure regions in real life

programs can be in any place within the input domains. When studies are

carried out on real life faulty programs, since each faulty program is a special

real life case, we have to select a great amount of sample programs in order

to conduct a meaningful study. This empirical study is worthwhile but very

labour-intensive, and hence should be part of our future work.

Our study shows that FSCS-ART-FE can improve FSCS-ART not only

in the case of high dimensional space, but also in the case of having failure-

unrelated parameters. It should be noted that both cases are common in

real life programs. Therefore, we recommend that FSCS-ART-FE should be

used instead of FSCS-ART whenever possible.
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