1,208 research outputs found

    Emotional Brain-Computer Interfaces

    Get PDF
    Research in Brain-computer interface (BCI) has significantly increased during the last few years. In addition to their initial role as assisting devices for the physically challenged, BCIs are now proposed for a wider range of applications. As in any HCI application, BCIs can also benefit from adapting their operation to the emotional state of the user. BCIs have the advantage of having access to brain activity which can provide signicant insight into the user's emotional state. This information can be utilized in two manners. 1) Knowledge of the inuence of the emotional state on brain activity patterns can allow the BCI to adapt its recognition algorithms, so that the intention of the user is still correctly interpreted in spite of signal deviations induced by the subject's emotional state. 2) The ability to recognize emotions can be used in BCIs to provide the user with more natural ways of controlling the BCI through affective modulation. Thus, controlling a BCI by recollecting a pleasant memory can be possible and can potentially lead to higher information transfer rates.\ud These two approaches of emotion utilization in BCI are elaborated in detail in this paper in the framework of noninvasive EEG based BCIs

    Hybrid Brain-Computer Interface Systems: Approaches, Features, and Trends

    Get PDF
    Brain-computer interface (BCI) is an emerging field, and an increasing number of BCI research projects are being carried globally to interface computer with human using EEG for useful operations in both healthy and locked persons. Although several methods have been used to enhance the BCI performance in terms of signal processing, noise reduction, accuracy, information transfer rate, and user acceptability, the effective BCI system is still in the verge of development. So far, various modifications on single BCI systems as well as hybrid are done and the hybrid BCIs have shown increased but insufficient performance. Therefore, more efficient hybrid BCI models are still under the investigation by different research groups. In this review chapter, single BCI systems are briefly discussed and more detail discussions on hybrid BCIs, their modifications, operations, and performances with comparisons in terms of signal processing approaches, applications, limitations, and future scopes are presented

    Brain-Switches for Asynchronous Braināˆ’Computer Interfaces: A Systematic Review

    Get PDF
    A brainā€“computer interface (BCI) has been extensively studied to develop a novel communication system for disabled people using their brain activities. An asynchronous BCI system is more realistic and practical than a synchronous BCI system, in that, BCI commands can be generated whenever the user wants. However, the relatively low performance of an asynchronous BCI system is problematic because redundant BCI commands are required to correct false-positive operations. To significantly reduce the number of false-positive operations of an asynchronous BCI system, a two-step approach has been proposed using a brain-switch that first determines whether the user wants to use an asynchronous BCI system before the operation of the asynchronous BCI system. This study presents a systematic review of the state-of-the-art brain-switch techniques and future research directions. To this end, we reviewed brain-switch research articles published from 2000 to 2019 in terms of their (a) neuroimaging modality, (b) paradigm, (c) operation algorithm, and (d) performance

    BrainBrush, a multimodal application for creative expressivity

    Get PDF
    We combined the new developments of multimodal Brain-Computer Interfaces (BCI) and wireless EEG headsets with art by creating BrainBrush. Users can paint on a virtual canvas by moving their heads, blinking their eyes and performing selections using a P300 BCI. A qualitative evaluation (n=13) was done. A questionnaire was administered and structured interviews were conducted to assess the usability and user experience of the system. Most participants were able to achieve good control over the modalities and able to express themselves creatively. The user experience of the modalities varied. The use of head movement was considered most positive with the use of eye blinks coming in second. Users were less positive about the use of the BCI because of the low reliability and higher relative cost of an error. Even though the reliability of the BCI was low, the BCI was considered to have an added value: the use of BCI was considered to be fun and interesting

    "You have reached your destination" : a single trial EEG classification study

    Get PDF
    Studies have established that it is possible to differentiate between the brain's responses to observing correct and incorrect movements in navigation tasks. Furthermore, these classifications can be used as feedback for a learning-based BCI, to allow real or virtual robots to find quasi-optimal routes to a target. However, when navigating it is important not only to know we are moving in the right direction toward a target, but also to know when we have reached it. We asked participants to observe a virtual robot performing a 1-dimensional navigation task. We recorded EEG and then performed neurophysiological analysis on the responses to two classes of correct movements: those that moved closer to the target but did not reach it, and those that did reach the target. Further, we used a stepwise linear classifier on time-domain features to differentiate the classes on a single-trial basis. A second data set was also used to further test this single-trial classification. We found that the amplitude of the P300 was significantly greater in cases where the movement reached the target. Interestingly, we were able to classify the EEG signals evoked when observing the two classes of correct movements against each other with mean overall accuracy of 66.5 and 68.0% for the two data sets, with greater than chance levels of accuracy achieved for all participants. As a proof of concept, we have shown that it is possible to classify the EEG responses in observing these different correct movements against each other using single-trial EEG. This could be used as part of a learning-based BCI and opens a new door toward a more autonomous BCI navigation system

    Brain-wave measures of workload in advanced cockpits: The transition of technology from laboratory to cockpit simulator, phase 2

    Get PDF
    The present Phase 2 small business innovation research study was designed to address issues related to scalp-recorded event-related potential (ERP) indices of mental workload and to transition this technology from the laboratory to cockpit simulator environments for use as a systems engineering tool. The project involved five main tasks: (1) Two laboratory studies confirmed the generality of the ERP indices of workload obtained in the Phase 1 study and revealed two additional ERP components related to workload. (2) A task analysis' of flight scenarios and pilot tasks in the Advanced Concepts Flight Simulator (ACFS) defined cockpit events (i.e., displays, messages, alarms) that would be expected to elicit ERPs related to workload. (3) Software was developed to support ERP data analysis. An existing ARD-proprietary package of ERP data analysis routines was upgraded, new graphics routines were developed to enhance interactive data analysis, and routines were developed to compare alternative single-trial analysis techniques using simulated ERP data. (4) Working in conjunction with NASA Langley research scientists and simulator engineers, preparations were made for an ACFS validation study of ERP measures of workload. (5) A design specification was developed for a general purpose, computerized, workload assessment system that can function in simulators such as the ACFS

    Electroencephalographic evidence of vector inversion in antipointing

    No full text
    Mirror-symmetrical reaching movements (i.e., antipointing) produce a visual-field-specific pattern of endpoint bias consistent with a perceptual representation of visual space (Heath et al. in Exp Brain Res 192:275-286, 2009a; J Mot Behav 41:383-392 2009b). The goal of the present investigation was to examine the concurrent behavioural and event-related brain potentials (ERP) of pro- and antipointing to determine whether endpoint bias in the latter task is related to a remapping of the environmental parameters of a target (i.e., vector inversion hypothesis) or a shift of visual attention from a veridical to a cognitively represented target location (i.e., reallocation of attention hypothesis). As expected, results for antipointing-but not propointing-yielded a visual-field-specific pattern of endpoint bias. In terms of the ERP findings, an early component (i.e., the N100) related to the orienting of visuospatial attention was comparable across pro- and antipointing. In contrast, a later occurring component (i.e., the P300) demonstrated a reliable between-task difference in amplitude. Notably, the P300 has been linked to the revision of a 'mental model' when a mismatch is noted between a stimulus and a required task goal (so-called context-updating). Thus, we propose that the between-task difference in the P300 indicates that antipointing is associated with a remapping of a target's veridical location in mirror-symmetrical space (i.e., vector inversion). Moreover, our combined behavioural and ERP findings provide evidence that vector inversion is mediated via perception-based visual networks

    Brain-Computer Interfaces in Medicine

    Get PDF
    Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroenceph-alography-based spelling and single-neuron-based device control, researchers have gone on to use electroenceph-alographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function
    • ā€¦
    corecore