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Brain-Computer Interfaces in Medicine
Jerry J. Shih, MD; Dean J. Krusienski, PhD; and Jonathan R. Wolpaw, MD

Abstract

Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are
relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The
main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as
amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroen-
cephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroenceph-
alographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors,
robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabil-
itation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other
medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development
enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will
depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient,
portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in
long-term studies of real-world use by people with severe disabilities, and effective and viable models for their
widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI
performance must be improved so that it approaches the reliability of natural muscle-based function.

© 2012 Mayo Foundation for Medical Education and Research � Mayo Clin Proc. 2012;87(3):268-279

U ntil recently, the dream of being able to con-
trol one’s environment through thoughts
had been in the realm of science fiction.

However, the advance of technology has brought a
new reality: Today, humans can use the electrical
signals from brain activity to interact with, influ-
ence, or change their environments. The emerging
field of brain-computer interface (BCI) technology
may allow individuals unable to speak and/or use
their limbs to once again communicate or operate
assistive devices for walking and manipulating ob-
jects. Brain-computer interface research is an area of
high public awareness. Videos on YouTube as
well as news reports in the lay media indicate
intense curiosity and interest in a field that hope-
fully one day soon will dramatically improve the
lives of many disabled persons affected by a num-
ber of different disease processes.

This review seeks to provide the general medical
community with an introduction to BCIs. We define
BCI and then review some of the seminal discoveries
in this rapidly emerging field, the brain signals used
by BCIs, the essential components of a BCI system,
current BCI systems, and the key issues now engag-
ing researchers. Challenges are inherent in translat-
ing any new technology to practical and useful clin-
ical applications, and BCIs are no exception. We
discuss the potential uses and users of BCI systems
and address some of the limitations and challenges
facing the field. We also consider the advances that
may be possible in the next several years. A detailed
presentation of the basic principles, current state,

and future prospects of BCI technology was recently
published.1

WHAT IS A BCI?
A BCI is a computer-based system that acquires
brain signals, analyzes them, and translates them
into commands that are relayed to an output device
to carry out a desired action. Thus, BCIs do not use
the brain’s normal output pathways of peripheral
nerves and muscles. This definition strictly limits
the term BCI to systems that measure and use signals
produced by the central nervous system (CNS).
Thus, for example, a voice-activated or muscle-acti-
vated communication system is not a BCI. Further-
more, an electroencephalogram (EEG) machine
alone is not a BCI because it only records brain sig-
nals but does not generate an output that acts on the
user’s environment. It is a misconception that BCIs
are mind-reading devices. Brain-computer inter-
faces do not read minds in the sense of extracting
information from unsuspecting or unwilling users
but enable users to act on the world by using brain
signals rather than muscles. The user and the BCI
work together. The user, often after a period of train-
ing, generates brain signals that encode intention,
and the BCI, also after training, decodes the signals
and translates them into commands to an output
device that accomplishes the user’s intention.

MILESTONES IN BCI DEVELOPMENT
Can observable electrical brain signals be put to
work as carriers of information in person-computer

From the Department of
Neurology, Mayo Clinic,
Jacksonville, FL (J.J.S.); De-
partment of Electrical and
Computer Engineering, Old
Dominion University, Nor-
folk, VA (D.J.K.); and Labora-
tory of Neural Injury and
Repair, Wadsworth Center,
New York State Depart-
ment of Health and State
University of New York,
Albany (J.R.W.).
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communication or for the purpose of controlling
devices such as prostheses? That was the question
posed by Vidal in 1973.2 His Brain-Computer Inter-
face Project was an early attempt to evaluate the
feasibility of using neuronal signals in a person-
computer dialogue that enabled computers to be a
prosthetic extension of the brain. Although work
with monkeys in the late 1960s showed that signals
from single cortical neurons can be used to control a
meter needle,3 systematic investigations with hu-
mans really began in the 1970s. Initial progress in
human BCI research was slow and limited by com-
puter capabilities and our own knowledge of brain
physiology. By 1980, Elbert et al4 demonstrated
that persons given biofeedback sessions of slow cor-
tical potentials in EEG activity can change those po-
tentials to control the vertical movements of a rocket
image traveling across a television screen. In 1988,
Farwell and Donchin5 showed how the P300 event-
related potential could be used to allow normal vol-
unteers to spell words on a computer screen. Since
the 1950s, the mu and beta rhythms (ie, sensorimo-
tor rhythms) recorded over the sensorimotor cortex
were known to be associated with movement or
movement imagery.6 In the late 1970s, Kuhlman7

showed that the mu rhythm can be enhanced by
EEG feedback training. Starting from this informa-
tion, Wolpaw et al8-10 trained volunteers to control
sensorimotor rhythm amplitudes and use them to
move a cursor on a computer screen accurately in 1
or 2 dimensions. By 2006, a microelectrode array
was implanted in the primary motor cortex of a
young man with complete tetraplegia after a C3-C4
cervical injury. Using the signals obtained from this
electrode array, a BCI system enabled the patient to
open simulated e-mail, operate a television, open
and close a prosthetic hand, and perform rudimen-
tary actions with a robotic arm.11 In 2011, Krusien-
ski and Shih12 demonstrated that signals recorded
directly from the cortical surface (electrocorticogra-
phy [ECoG]) can be translated by a BCI to allow a
person to accurately spell words on a computer
screen. Brain-computer interface research is grow-
ing at an extremely rapid rate, as evidenced by the
number of peer-reviewed publications in this field
over the past 10 years (Figure 1).

PHYSIOLOGIC SIGNALS USED BY BCIs
In principle, any type of brain signal could be used
to control a BCI system. The most commonly stud-
ied signals are the electrical signals produced mainly
by neuronal postsynaptic membrane polarity
changes that occur because of activation of voltage-
gated or ion-gated channels. The scalp EEG, first
described by Hans Berger in 1929,14 is largely a
measure of these signals. Most of the early BCI work
used scalp-recorded EEG signals, which have the

advantages of being easy, safe, and inexpensive to
acquire. The main disadvantage of scalp recordings
is that the electrical signals are significantly attenu-
ated in the process of passing through the dura,
skull, and scalp.15 Thus, important information
may be lost. The problem is not simply theoretical:
epileptologists have long known that some seizures
that are clearly identifiable during intracranial re-
cordings are not seen on scalp EEG. Given this pos-
sible limitation, recent BCI work has also explored
ways of recording intracranially.

Small intracortical microarrays like the one im-
planted in the previously mentioned case of tetra-
plegia11 may be embedded in the cortex. These in-
tracortical microarray systems can record the action
potentials of individual neurons and the local field
potentials (essentially a micro-EEG) produced by a
relatively limited population of nearby neurons and
synapses. The disadvantages of such implants are
the degree of invasiveness, with the need for crani-
otomy and neurosurgical implantation, the re-
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stricted area of recording, and the still unanswered
question of the long-term functional stability of the
recording electrodes. In addition to scalp EEG and
intracortical BCIs, ECoG-based BCIs use another
approach to record brain signals. These BCIs use
signals acquired by grid or strip electrodes on the
cortical surface12 or stereotactic depth macroelec-
trodes that record intraparenchymally16 or from
within the ventricles.17 These electrode arrays have
the advantage of recording intracranially and can re-
cord from larger areas of the brain than intracortical
microarrays. However, these electrodes also need neu-
rosurgical implantation, and the question of long-term
electrode signal recording stability is as yet unan-
swered. Each of these methods has its own strengths
and weaknesses. Which ones are best for which pur-
poses and which user populations remains to be seen.
As BCIs come into clinical use, the choice of the record-
ing method is likely to depend in considerable measure
on the needs of the individual BCI user and the techno-
logical support and resources available (Table).

The advance of functional neuroimaging tech-
niques with high spatiotemporal resolution now
provides potential new methods for recording brain
signals to control a BCI. Magnetoencephalography
(MEG) measures mainly the magnetic fields gener-
ated by electrical currents moving along pyramidal

cell axons. The mu rhythm as detected by MEG was
used by a sensorimotor BCI system to control a com-
puter cursor.18 Modulation of the posterior alpha
rhythm as recorded by MEG was felt to produce
satisfactory control of a 2-dimensional BCI task.19

Functional magnetic resonance imaging (fMRI) and
functional near-infrared imaging (fNIR) measure the
blood oxygenation of a cerebral region and correlate
with neural activity.1 Lee et al20 demonstrated that
control of a robotic arm only through the person’s
thought processes was possible using a real-time
fMRI-based BCI. These BCI methods are in the early
phases of research and development. MEG and fMRI
are at present extremely expensive and cumber-
some, and fMRI and fNIR have relatively slow re-
sponse times. Thus, the potential value of these
newer functional imaging methods for BCI purposes
remains uncertain (although fMRI could prove valu-
able in locating appropriate locations for implanta-
tions of microelectrode arrays).

COMPONENTS OF A BCI SYSTEM
The purpose of a BCI is to detect and quantify fea-
tures of brain signals that indicate the user’s inten-
tions and to translate these features in real time into
device commands that accomplish the user’s intent
(Figure 2). To achieve this, a BCI system consists of
4 sequential components22: (1) signal acquisition,
(2) feature extraction, (3) feature translation, and (4)
device output. These 4 components are controlled
by an operating protocol that defines the onset and
timing of operation, the details of signal processing,
the nature of the device commands, and the over-
sight of performance. An effective operating proto-
col allows a BCI system to be flexible and to serve the
specific needs of each user.

Signal Acquisition
Signal acquisition is the measurement of brain signals
using a particular sensor modality (eg, scalp or intra-
cranial electrodes for electrophysiologic activity, fMRI
for metabolic activity). The signals are amplified to lev-

FIGURE 1. Brain-computer interface articles in the peer-reviewed scientific
literature. Over the past 15 years, BCI research, which was previously con-
fined to a few laboratories, has become an extremely active and rapidly
growing scientific field. Most articles have appeared in the last 5 years. BCI �
brain-computer interface. Adapted from IEEE Trans Neural Syst Rehabil Eng.13

TABLE. Brain Signal Recording Techniques to
Control Brain-Computer Interface Systems

Electrical and magnetic signals

Intracortical electrode array

Electrocorticography

Electroencephalography

Magnetoencephalography

Metabolic signals

Functional magnetic resonance imaging

Functional near-infrared imaging
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els suitable for electronic processing (and they may
also be subjected to filtering to remove electrical noise
or other undesirable signal characteristics, such as
60-Hz power line interference). The signals are then
digitized and transmitted to a computer.

Feature Extraction
Feature extraction is the process of analyzing the
digital signals to distinguish pertinent signal charac-
teristics (ie, signal features related to the person’s

intent) from extraneous content and representing
them in a compact form suitable for translation into
output commands. These features should have
strong correlations with the user’s intent. Because
much of the relevant (ie, most strongly correlated)
brain activity is either transient or oscillatory, the
most commonly extracted signal features in current
BCI systems are time-triggered EEG or ECoG re-
sponse amplitudes and latencies, power within spe-
cific EEG or ECoG frequency bands, or firing rates of

EEG

ECoG

Single unit

Signal acquisition

Raw signal

Digitized
0010011100011101011101100

Signal processing

Feature
extraction

Translation
algorithm

Device
commands

Environmental controlCommunication

Movement control Locomotion

Neurorehabilitation

Feedback

FIGURE 2. Components of a BCI system. Electrical signals from brain activity are detected by recording electrodes located on the scalp,
on the cortical surface, or within the brain. The brain signals are amplified and digitized. Pertinent signal characteristics are extracted and
then translated into commands that control an output device, such as a spelling program, a motorized wheelchair, or a prosthetic limb.
Feedback from the device enables the user to modify the brain signals in order to maintain effective device performance. BCI �
brain-computer interface; ECoG � electrocorticography; EEG � electroencephalography. From IEEE Rev Biomed Eng21, with permission.
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individual cortical neurons. Environmental artifacts
and physiologic artifacts such as electromyographic
signals are avoided or removed to ensure accurate
measurement of the brain signal features.

Feature Translation
The resulting signal features are then passed to the
feature translation algorithm, which converts the
features into the appropriate commands for the out-
put device (ie, commands that accomplish the user’s
intent). For example, a power decrease in a given
frequency band could be translated into an upward
displacement of a computer cursor, or a P300 po-
tential could be translated into selection of the letter
that evoked it. The translation algorithm should be
dynamic to accommodate and adapt to spontaneous
or learned changes in the signal features and to en-
sure that the user’s possible range of feature values
covers the full range of device control.

Device Output
The commands from the feature translation algorithm
operate the external device, providing functions such
as letter selection, cursor control, robotic arm opera-
tion, and so forth. The device operation provides feed-
back to the user, thus closing the control loop.

CURRENT ELECTROPHYSIOLOGIC BCI SYSTEMS

BCIs That Use Scalp-Recorded EEG
Noninvasive EEG-based BCIs are the most widely
researched approach owing to the minimal risk in-
volved and the relative convenience of conducting
studies and recruiting participants. The applications
to date are generally limited to low-degree-of-free-
dom continuous movement control and discrete se-
lection. Sensorimotor rhythms have been used to
control cursors in 1, 2,10,23,24 and 325,26 dimen-
sions, a spelling device,27 conventional assistive de-
vices,28 a hand orthosis,29 functional electrical stim-
ulation (FES) of a patient’s hand,30 robotic and
prosthetic devices,31,32 and a wheelchair.33,34 Two-
dimensional cursor control has also been achieved
via attention modulation.19

Because of its relative ease of implementation
and performance, one of the most researched BCI
paradigms is the visual P300 speller,5 which has
been demonstrated successfully in both healthy and
disabled persons for typing,35-42 Internet brows-
ing,43 guidance of a wheelchair along predeter-
mined paths,44-47 and other applications. Like the
P300 evoked response, steady-state visual evoked
potentials are innate and require no training, but
they are capable of providing faster response times.
On the other hand, P300-based BCIs are much
less dependent than steady-state visual evoked

potentials based BCIs on eye-movement control.
Steady-state visual evoked potentials have been
used for binary selection,48-51 both discrete and
continuous control of a cursor in 2 dimensions,52

prosthesis control,53 FES,54,55 spelling,56 and en-
vironmental control.57 For patients with impaired
vision, various auditory39,40,58-61 and tactile62-65

paradigms have been investigated. A few studies are
now focused on the critical need to move BCI sys-
tems out of the laboratory and into patients’ homes,
which raises many complex patient, caregiver, and
implementation issues.41,42,66,67

In addition, some researchers are exploring the
use of BCIs in neurorehabilitation.68 The hypothesis
is that BCIs can augment current rehabilitation ther-
apies by reinforcing and thereby increasing more
effective use of impaired brain areas and connec-
tions.69,70 Studies in stroke patients have shown
that, with a motor relearning intervention, EEG fea-
tures change in parallel with improvement in motor
function71 and that sensorimotor rehabilitation us-
ing BCI training and motor imagery may improve
motor function after CNS injury.72 It also appears
that combining a BCI with FES or assistive robot-
ics may aid motor relearning in stroke patients.73

Brain-computer interface-based therapy might
provide a useful complement to standard neu-
rorehabilitation methods and might lower cost by
reducing the need for the constant presence of a
rehabilitation therapist.

BCIs That Use ECoG Activity
ECoG activity is recorded from the cortical surface,
and thus it requires the implantation of a subdural
or epidural electrode array. ECoG records signals of
higher amplitude than EEG and offers superior spa-
tial resolution and spectral bandwidth. In addition
to the lower-frequency (�40 Hz) activity that dom-
inates the EEG, ECoG includes higher-frequency
(ie, �40-Hz gamma band) activity up to 200 Hz and
possibly higher. Gamma activity is important be-
cause it exhibits very precise functional localiza-
tion; is highly correlated with specific aspects of
motor, language, and cognitive function; and is
linked to the firing rates of individual neurons
and to blood-oxygen level– dependent signals de-
tected by fMRI.74-79

Individual finger,80-83 hand,84,85 and arm86

movements have been decoded successfully from
ECoG. ECoG-based BCIs have controlled 1- or 2-di-
mensional cursor movements using motor or sen-
sory imagery or working memory (dorsolateral pre-
frontal cortex).87-91 An ECoG-based BCI can enable
users to control a prosthetic hand or to select char-
acters using motor-imagery or the P300 event-re-
lated potential.12,92-94 Most recently, ECoG signals
measured over speech cortex during overt or imag-
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ined phoneme and word articulation were used for
online cursor control95 and were also accurately de-
coded off-line for potential application to direct
speech synthesis.96,97

It has been shown that epidural ECoG can pro-
vide BCI control,98 that ECoG-based BCI perfor-
mance with fixed parameters is stable over at least 5
days,99 and that motor imagery–based BCI control
using locations over motor cortex can produce
ECoG changes exceeding those produced by actual
movements.100 A study in monkeys found that
ECoG recordings and the performance of the model
used to decode movement remained stable over sev-
eral months.101,102 These results suggest that ECoG
is likely to prove practical for long-term BCI use.

BCIs That Use Activity Recorded Within the Brain
Hochberg et al are continuing clinical trials using a
96-electrode microarray implanted in the right pre-
central gyrus of patients with tetraplegia (Figure 3).
These trials have demonstrated control of a robotic
arm, computer cursor, lights, and television, using
imagined arm movements.11 They have recently
demonstrated that accurate cursor control perfor-
mance was still obtainable 1000 days after implan-
tation.103 Current research is exploring the use of
this system for the control of prosthetic limbs and
brain-actuated FES of paralyzed muscles.104

Kennedy et al105 are continuing clinical trials of
a system that uses intracortical microelectrodes en-
capsulated in glass cones, in which the neurites
grow into the cones to provide stable and robust
long-term recording. In 1998, this technology was
implanted in a patient with locked-in syndrome af-
ter a brainstem stroke. During the 4-year trial the
patient learned to control a computer cursor.105,106

Current research seeks to restore speech by implant-
ing the device in the speech motor area and decod-
ing phonemes from imagined speech.107,108

In recent studies, 2 patients with stereotactic depth
electrodes implanted in the hippocampus before epilepsy
surgery were able to use signals from these electrodes to
accurately control a P300-based BCI speller.12,16

Ongoing studies in a number of laboratories are
working toward achieving natural control of devices such
asaprostheticarmusingelectrodemicroarrays implanted
in the motor cortex or other cortical areas of nonhuman
primates.109-114 Plans are under way in several centers to
translate these studies into human trials.

THE CURRENT STATUS OF BCI RESEARCH
AND DEVELOPMENT
At present, the striking achievements of BCI re-
search and development remain confined almost en-
tirely to the laboratory, and the bulk of work to date
comprises data gathered from able-bodied humans

or animals. Studies in the ultimate target population
of people with severe disabilities have been largely
confined to a few limited trials closely overseen by
research personnel. The translation of the exciting
laboratory progress to clinical use, to BCI systems
that actually improve the daily lives of people with
disabilities, has barely begun.

This essential task is perhaps even more de-
manding than the laboratory research that produces
a BCI system. It must show that a specific BCI sys-
tem can be implemented in a form suitable for long-
term independent home use, define the appropriate
user population and establish that they can use the
BCI, demonstrate that their home environments can
support their use of the BCI and that they do use it,
and establish that the BCI improves their lives. This
work requires dedicated, well-supported, multi-

1.0 mmA B

C D

FIGURE 3. Intracortical microelectrode array and its placement in a
patient with tetraplegia. A, The 100-microelectrode array on top of a US
penny. B, The microelectrode array in a scanning electron micrograph. C,
The preoperative axial T1-weighted magnetic resonance image of the
patient. The red square in the precentral gyrus shows the approximate
location of the array. D, The patient sitting in a wheelchair and working
with a technician on a brain-computer interface task. The gray arrow
points to a percutaneous pedestal that contains the amplifier and other
signal-acquisition hardware. Reprinted from Macmillan Publishers Ltd.:
Nature11, 2006.
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disciplinary research teams that have expertise in
the full range of relevant disciplines, including
engineering, computer science, basic and clinical
neuroscience, assistive technology, and clinical
rehabilitation.

There are several headsets with scalp sensors on
the market that can be used in conjunction with a
personal computer to create a system for controlling
third-party software applications.115-118 These and
similar headsets have been incorporated into several
commercial games, some of which claim to enhance
focus and concentration via EEG-based neurofeed-
back.119-124 The central issue with these devices is
that the nature of the signals they record is not clear.
It seems probable that almost all of these devices
record mostly nonbrain signals such as electromyo-
graphic signals from cranial or facial muscles or elec-
tro-oculographic signals from eye movements and
blinks. Thus, they are unlikely to be actual BCI sys-
tems.22 One actual BCI that is commercially available
is IntendiX (Guger Technologies, Graz, Austria).125 It
is an EEG-based BCI system that implements the clas-
sic P300 speller protocol5 to type messages, produce
synthesized speech, or control external devices.

THE FUTURE OF BCIs: PROBLEMS
AND PROSPECTS
Brain-computer interface research and development
generates tremendous excitement in scientists, engi-
neers, clinicians, and the general public. This excite-
ment reflects the rich promise of BCIs. They may
eventually be used routinely to replace or restore
useful function for people severely disabled by neu-
romuscular disorders; they might also improve re-
habilitation for people with strokes, head trauma,
and other disorders.

At the same time, this exciting future can come
about only if BCI researchers and developers engage
and solve problems in 3 critical areas: signal-acqui-
sition hardware, BCI validation and dissemination,
and reliability.

Signal-Acquisition Hardware
All BCI systems depend on the sensors and associ-
ated hardware that acquire the brain signals. Im-
provements in this hardware are critical to the future
of BCIs. Ideally, EEG-based (noninvasive) BCIs
should have electrodes that do not require skin
abrasion or conductive gel (ie, so-called dry elec-
trodes); be small and fully portable; have comfort-
able, convenient, and cosmetically acceptable
mountings; be easy to set up; function for many
hours without maintenance; perform well in all en-
vironments; operate by telemetry instead of requir-
ing wiring; and interface easily with a wide range of
applications. In principle, many of these needs

could be met with current technology, and dry elec-
trode options are beginning to become available (eg,
from g.tec Medical Engineering, Schiedlberg, Aus-
tria). The achievement of good performance in all
environments may prove to be the most difficult
requirement.

Brain-computer interfaces that use implanted
electrodes face a range of complex issues. These sys-
tems need hardware that is safe and fully implant-
able; remains intact, functional, and reliable for de-
cades; records stable signals over many years;
conveys the recorded signals by telemetry; can be
recharged in situ (or has batteries that last for years
or decades); has external elements that are robust,
comfortable, convenient, and unobtrusive; and in-
terfaces easily with high-performance applications.
Although great strides have been made in recent
years and in individual cases microelectrode im-
plants have continued to function over years, it is
not clear which solutions will be most successful.
ECoG- or local field potential-based BCIs might pro-
vide more consistently stable performance than
BCIs that rely on neuronal action potentials. Never-
theless, it is possible that major as yet undefined
innovations in sensor technology will be required
for invasive BCIs to realize their full promise. Much
of the necessary research will continue to rely pri-
marily on animal studies before the initiation of hu-
man trials.

Validation and Dissemination
As work progresses and BCIs begin to enter actual
clinical use, 2 important questions arise: how good a
given BCI can get (eg, how capable and reliable) and
which BCIs are best for which purposes. To answer
the first question, each promising BCI should be
optimized and the limits on users’ capabilities with it
should be defined. Addressing the second question
will require consensus among research groups in
regard to which applications should be used for
comparing BCIs and how performance should be
assessed. The most obvious example is the question
of whether the performance of BCIs that use intra-
cortical signals is greatly superior to that of BCIs that
use ECoG signals, or even EEG signals. For many
prospective users, invasive BCIs will need to provide
much better performance to be preferable to nonin-
vasive BCIs. It is not yet certain that they can do so.
The data to date do not give a clear answer to this
key question.126 On the one hand, it may turn out
that noninvasive EEG- or fNIR-based BCIs are used
primarily for basic communication, while ECoG- or
neuron-based BCIs are used for complex movement
control. On the other hand, noninvasive BCIs may
prove nearly or equally capable of such complex
uses, while invasive BCIs that are fully implantable
(and thus very convenient to use) might be preferred
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by some people even for basic communication pur-
poses. At this point, many different outcomes are
possible, and the studies and discussions necessary
to select among them have just begun.

The development of BCIs for people with dis-
abilities requires clear validation of their real-life
value in terms of efficacy, practicality (including
cost-effectiveness), and impact on quality of life.
This depends on multidisciplinary groups able and
willing to undertake lengthy studies of real-life use
in complicated and often difficult environments.
Such studies, which are just beginning (eg, by Sell-
ers et al41), are an essential step if BCIs are to realize
their promise. The validation of BCIs for rehabilita-
tion after strokes or in other disorders will also be
demanding and will require careful comparisons
with the results of conventional methods alone.

Current BCIs, with their limited capabilities, are
potentially useful mainly for people with very severe
disabilities. Because this user population is relatively
small, these BCIs are essentially an orphan technol-
ogy: there is not yet adequate incentive for commer-
cial interests to produce them or to promote their
widespread dissemination. Invasive BCIs entail sub-
stantial costs for initial implantation, plus the cost of
ongoing technical support. Although the initial
costs of noninvasive BCI systems are relatively mod-
est (eg, $5,000-$10,000), they too require some
measure of ongoing technical support. The future
commercial practicality of all BCIs will depend on
reducing the amount and sophistication of the long-
term support required, on increasing the numbers
of users, and on ensuring reimbursement from in-
surance companies and government agencies.

Clear evidence that BCIs can improve motor re-
habilitation could greatly increase the potential user
population. In any case, if and when further work
improves functionality of BCIs and renders them
commercially attractive, their dissemination will re-
quire viable business models that give both financial
incentive for the commercial company and adequate
reimbursement to the clinical and technical person-
nel who will deploy and support the BCIs. The op-
timal scenario could be one in which BCIs for people
with severe disabilities develop synergistically with
BCIs for the general population.

Reliability
Although the future of BCI technology certainly de-
pends on improvements in signal acquisition and on
clear validation studies and viable dissemination
models, these issues pale next to those associated
with the problem of reliability. In all hands, no mat-
ter the recording method, the signal type, or the
signal-processing algorithm, BCI reliability for all
but the simplest applications remains poor. Brain-
computer interfaces suitable for real-life use must be

as reliable as natural muscle-based actions. Without
major improvements, the real-life usefulness of BCIs
will, at best, remain limited to only the most basic
communication functions for those with the most
severe disabilities.

Solving this problem depends on recognizing
and engaging 3 fundamental issues: the central role
of adaptive interactions in BCI operation; the desir-
ability of designing BCIs that imitate the distributed
functioning of the normal CNS; and the importance
of incorporating additional brain signals and pro-
viding additional sensory feedback.

Brain-computer interfaces allow the CNS to ac-
quire new skills in which brain signals take the place
of the spinal motor neurons that produce natural
muscle-based skills. Muscle-based skills depend for
their acquisition and long-term maintenance on
continual activity-dependent plasticity throughout
the CNS, from the cortex to the spinal cord. This
plasticity, which generally requires practice over
months or years, enables babies to walk and talk;
children to learn reading, writing, and arithmetic;
and adults to acquire athletic and intellectual skills.

The acquisition and maintenance of BCI-based
skills like reliable multidimensional movement con-
trol require comparable plasticity (eg, as described
by various investigators10,24,110,113). Brain-com-
puter interface operation rests on the effective inter-
action of 2 adaptive controllers, the CNS and the
BCI. The BCI must adapt so that its outputs corre-
spond to the user’s intent. At the same time, the BCI
should encourage and facilitate CNS plasticity that
improves the precision and reliability with which
the brain signals encode the user’s intent. In sum,
the BCI and CNS must work together to acquire and
maintain a reliable partnership under all circum-
stances. The work needed to achieve this partner-
ship has just begun. It involves fundamental neuro-
scientific questions and may yield important
insights into CNS function in general.

The principles that govern how the CNS ac-
quires, improves, and maintains its natural muscle-
based functions may be the best guide for designing
BCIs. Central nervous system control of motor ac-
tions is normally distributed across multiple areas.
Cortical areas may define the goal and the overall
course of an action; however, the details (particu-
larly high-speed sensorimotor interactions) are of-
ten handled at subcortical levels.

Brain-computer interface performance is also
likely to benefit from distributed control. For BCIs,
the distribution would be between the BCI’s output
commands (ie, the user’s intent) and the application
device that receives the commands and converts
them into action. The optimal distribution will pre-
sumably vary from BCI to BCI and from application
to application. Realization of reliable BCI perfor-
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mance may be facilitated by incorporating into the
application itself as much control as is consistent
with the action to be produced, just as the distribu-
tion of control within the CNS normally adapts to
suit each neuromuscular action.

The natural muscle-based outputs of the CNS
reflect the combined contributions of many brain
areas from the cortex to the spinal cord. This sug-
gests that BCI performance might be improved and
maintained by using signals from multiple brain ar-
eas and by using brain signal features that reflect
relationships among areas (eg, coherences). By al-
lowing the CNS to function more as it does in pro-
ducing muscle-based skills, this approach could im-
prove BCI reliability.

Using signals from multiple cortical and/or sub-
cortical areas might also resolve another obstacle to
fully practical BCIs. In current BCIs, the BCI rather
than the user typically determines when output is
produced. Ideally, BCIs should be self-paced, so
that the BCI is always available and the user’s brain
signals alone control when BCI output is produced.
Brain-computer interfaces that use signals from
multiple areas are more likely to be sensitive to the
current context and thus may be better able to rec-
ognize when their output is or is not appropriate.

Finally, current BCIs provide mainly visual
feedback, which is relatively slow and often impre-
cise. In contrast, natural muscle-based skills rely on
numerous kinds of sensory input (eg, propriocep-
tive, cutaneous, visual, auditory). Brain-computer
interfaces that control applications involving high-
speed complex movements (eg, limb movement) are
likely to benefit from sensory feedback that is faster
and more precise than vision. Efforts to provide
such feedback via stimulators in cortex or elsewhere
have begun. The optimal methods will presumably
vary with the BCI, the application, and the user’s
disability (eg, peripheral inputs may often be inef-
fective in people with spinal cord injuries).

CONCLUSION
Many researchers throughout the world are devel-
oping BCI systems that a few years ago were in the
realm of science fiction. These systems use different
brain signals, recording methods, and signal-pro-
cessing algorithms. They can operate many different
devices, from cursors on computer screens to wheel-
chairs to robotic arms. A few people with severe
disabilities are already using a BCI for basic commu-
nication and control in their daily lives. With better
signal-acquisition hardware, clear clinical valida-
tion, viable dissemination models, and, probably
most important, increased reliability, BCIs may be-
come a major new communication and control tech-
nology for people with disabilities—and possibly for
the general population also.
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ment of Neurology, Mayo Clinic, 4500 San Pablo Rd, Jack-
sonville, FL 32224 (shih.jerry@mayo.edu).
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