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PREFACE

This report, submitted to NASA by ARD Corporation as a deliverable under

Contract NASI-18019, is the final report for the Phase II Small Business

Innovative Research (SBIR) Contract entitled "Brain-wave Measures of Workload

in Advanced Cockpits." The Contract Officer's Technical Representative was Dr.

Alan Pope of the Crew/Vehicle Interface Research Branch, NASA Langley Research

Center. Dr. Randall Harris of the same organization also monitored the

contract during part of its three-year duration. We greatly appreciate their

guidance and support of our efforts.

We also wish to acknowledge the support and assistance of a number of other

people on various aspects of the present project:

o The empirical studies were conducted by ARD personnel using Dr. Daniel S.

Ruchkin's laboratory at the University of Maryland School of Medicine. Dr.

Ruchkin, acting as a consultant to ARD, offered valuable guidance in data

analysis. He also supported the single-trial analysis task, by designing

the software that generated a simulated electroencephalogram (EEG) with

embedded Event-related Potentials (ERPs), and the data analysis software

upgrade, by offering insights into the functioning of the existing code.

o Mr. Kemper Kibler and Mr. William Kahlbaum of NASA Langley and Mr. Myron

Sothcott of Unisys Corporation, an on-site support contractor at NASA

Langley, provided us with valuable information about the capabilities of

the NASA Advanced Concepts Flight Simulator (ACFS). They assisted us in

defining flight scenarios for eventual use in a simulator-based validation

of Event-Related Potential (ERP) measures of workload and in designing

communication protocols for passing information between the ACFS computer

and other laboratory data collection systems.

o Mr. George Sexton of Lockheed-Georgia Corporation, acting as a consultant

under Lockheed's LEND program, played a key role in our analysis of the

NASA Advanced Concepts Flight Simulator (ACFS) regarding cockpit events

that are likely to elicit ERPs related to workload. Mr. Sexton explained

the design of the "baseline" ACFS displays to us and offered guidance in

the definition of appropriate flight scenarios for use in validating our
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o

o

o

findings.

Dr. Richard Shannon of ARD worked closely with Mr. Sexton in the analysis

of the ACFS and was responsible for defining the flight scenario and likely

use of displays which resulted from this phase of the project.

Dr. Jorge Aunon of Colorado State University generously provided us with a

copy of the public domain FORTRAN software that he and Dr. Clare McGillem

developed at Purdue University to implement their approach to single-trial

ERP analysis. Acting as a consultant, Dr. Aunon also provided useful

guidance to us in understanding the approach that underlies this software.

Mr. Brian Foote of the Cognitive Psychophysiology Laboratory (CPL),

University of Illinois. working as a consultant to ARD, developed the

LABPAK software routines and associated documentation that were implemented

on the MINC computer at NASA Langley in preparation for the simulator-based

validation study. These routines were made available to AKD with the

permission of Dr. Emanuel Donchin, Director of the CPL. A more extensive

version of the LABPAK routines has been implemented on the PEARL system

developed by the CPL and is proprietary to that group.

Mr. Dan T. Smith, a consultant to ARD, contributed substantially to the

single-trial analysis study. He was responsible for many of the ideas

embodied in the approach we followed in implementing the Woody and

Aunon/McGillem techniques. He also coded the routines that generated

simulated data, as well as the program that implemented the comparative

single-trial analysis approach that we espouse.

Mr. C. Kenneth Bond of ARD designed and coded the data management "shell"

program which expedited the single-trial analyses that we performed. He

also contributed to the design and implementation of the graphics features

in the upgrade of our data analysis software.

Ms. Anne Francoeur of ARD supported the collection and analysis of

empirical data.

Mr. Kevin Quinn of ARD contributed to the upgrade of our data analysis

software, including the initial implementation of graphics features to

support interactive data analysis.

Mr. J. B. Winter of ARD supported the analysis of ACFS displays and

procedures.

Much of the work summarized here has been previously presented in separate
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reports submitted to NASAin the course of the present project. In particular,

the laboratory-based empirical studies (Chapter 2) have been discussed in the

report "Event-related Potential Indicants of Mental Workload, Attention, and

Target Recognition when Monitoring a Multi-Element Display"; the task analysis

of the ACFS (Chapter 3) has been documented in the report, "Analysis of

Advanced Concepts Flight Simulator Displays and Aircrew Tasks to Identify

Events Likely to Elicit Brain-Wave Correlates of Mental Workload"; the ANALYZ

software (Chapter 4) has been supplied to NASA(with SBIR rights) along with an

"ANALYZUser's Manual" and an "ANALYZProgrammer's Reference Manual"; the

single-trial analysis software (Chapter 5) has been delivered to NASA (with

SBIR rights) along with "Documentation for Event-related Potential Single-trial

Analysis Programs" and has been discussed in the report "An Approach to the

Comparative Study of Alternative Methods of Event-related Potential

Single-trial Analysis"; the Labpack software (Chapter 6) has been delivered to

NASA(with SBIR rights) along with "Documentation for LABPACKSubroutines"; and

the specifications for a workload assessment system (Chapter 7) have been

submitted (with SBIR rights) in the report, "Design Specification for a

General-Purpose Mental Workload AssessmentSystem."
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1.0 INTRODUCTION

Advances in technology have allowed man-in-the-loop control systems to become

more complex and automated. With these changes have come changes in the nature

of man-machine interactions. The tasks required of the human operators of such

systems place emphasis on supervisory skills rather than on the visual-motor

skills required to manually control the system. The cognitive functions

required of the system supervisor entail such processes as the ability to

distribute attention among competing inputs, to integrate large amounts of

information, to detect trends among interacting variables which indicate system

status, and to make sound decisions in the face of uncertainty. Nowhere are

these desig n trends and cognitive challenges more apparent than in recent and

near-term aircraft and spacecraft. Aircrews increasingly share tasks with

on-board computers and function as monitors of system performance, intervening

when automated systems fail or when conditions are encountered which require

human judgement and problem-solving.

The human factors problems that are inherent in such advanced control systems

span two extremes. Under high mental workload conditions, imposed by on-board

emergencies or environmental threats, there can be an overload of information

impinging on the crew. Under low workload conditions, when automated systems

are functioning properly and conditions are routine, the human operator can

lapse into inattentiveness and is ill-prepared to deal with emergencies. For

the full range of conditions bounded by these extremes, the effective and

timely transmission of information from system to operator is critical. It is

important, therefore, in the system design process to take mental workload into

account. This orientation requires that there be valid and reliable measures

of mental workload available to the system designer. Several recent review

articles document the scientific progress that is being made on this front

(Moray, 1979; Hart, 1987; Gopher & Donchin, 1987).

i.i Usefulness of Mental Workload Measures

Operator effectiveness is ultimately defined in terms of behavioral output.
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However, there seems to be both diagnostic and prescriptive value in attempting

to develop measuresof mental workload, rather than focusing just on observable

task performance. For example, task performance may deteriorate for a wide

variety of reasons. An operator may miss an alarm signal either because he was

cognitively overloaded or because he was bored and not sufficiently vigilant.

A system designer, or co-pilot, would take different remedial actions,

depending on which of these "mental states" led to the degradation in

performance. Furthermore, many task environments allow the humanoperator to
function with some spare capacity such that, to some extent, increased task
demandscan be met with increased effort in order to maintain behavioral output

at a relatively constant level. In such situations, mental workload indices

may predict susceptibility to an impending deterioration in performance, should
task demandsincrease still further. Finally, when task demandsare low, there

may be little behavioral output from which one can gauge the status of the

operator. A sense of the operator's mental workload in such situations could
be used to infer whether or not such lack of responding was appropriate and the

extent to which the operator is prepared to respond appropriately should

conditions change. Therefore, the diagnostic and, hopefully, prescriptive
value of the mental workload construct is somewhat akin to that of clinical

syndromes. Analogous to the different treatments which may be prescribed
depending on a clinical diagnosis, inferences about the mental workload which

underlies an observed performance deficit may suggest alternative design or

operational "treatments."

The danger in using mental workload conceptualizations to explain data, of

course, lies in our tendency to think that if we can label something, we have

understood it. Terms like "boredom" may not imply the same "syndrome" to

everyone. Therefore, until we have sufficient data to define what are the

distinguishing features and performance-related consequences of "boredom," it

is imperative that we continue to operationally define our use of such terms.

1.2 The Value of PhysioloEical Measures of Workload

Regardless of the stock one puts in the explanatory power of mental workload,

it follows from the above discussion that it would be unwise to evaluate and

predict an operator's ability to perform solely from observing behavior on a
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primary task. Performance on secondary tasks can be instructive for measuring
the processing capacity entailed by a primary task. However, with this

approach it is difficult to ensure that the operator always gives mental

priority to the primary task, the results may be of questionable validity if

used to generalize to situations in which the primary task is performed alone,

and incompatibilities between the behavioral responses required by the two

tasks may make it difficult to draw inferences about the demandsplaced on

perceptual or decision-making processes. Moreover, the sort of contrived

secondary tasks that have often been used in laboratory studies are clearly not
acceptable in operational settings, so secondary task measures must be found

among the activities that the operator is doing in the course of normal

operations.

Simply asking the operator for subjective ratings of his perceived state is

often useful, but is also fraught with difficulties. The operator may not

realize that his environmentally-defined workload is high when, in fact, it

is. Furthermore, such subjective ratings tend to be unreliable when
administered in operational settings while the operator is simultaneously

trying to maintain task performance, and the mere act of completing the rating

itself, of course, constitutes an additional task burden on the operator.

For these reasons, there is considerable appeal to the prospects of gaining

additional information about the functional status of operators from their

physiological signs. Much evidence now suggests (see Horst, 1988) that, if

interpreted in conjunction with behavioral and subjective measures,

physiological indices offer the possibility of objectively inferring, not only

the general physical fitness to perform, but also the cognitive status of an

operator. Physiological measures can often be used to confirm the conclusions

derived from behavioral or subjective measures. There are also instances in

the literature of physiological measures providing complementary information

regarding cognitive activity to that which is available from behavioral
measures.

1.3 ERP Measures of Workload

Transient ERPs are usually extracted from the ongoing EEG by signal averaging
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over numerous occurrences of the eliciting stimulus. The ERP waveform is

comprised of various "components," each having a characteristic scalp

topography, latency range, and polarity. It is assumedthat these components

reflect the electrical activity from numerous generators within the brain, the
activity of which overlaps in both space and time. For our purposes, it is not

critical to understand the brain loci and generator mechanismsunderlying these

scalp-recorded components. Instead the focus is on how these componentsvary

differentially with experimental manipulations and what these systematic

variations suggest about the mental operations that these manipulations call

into play. The components of most interest here are those which have been

shown by previous work to be related, not to the physical characteristics of

the stimuli to which an EKP was time-locked, but to the cognitive processing

which was required by the task within which these stimuli were presented.

Differential scalp topography and differential response to manipulations of the

cognitive task are the primary means for disentangling the functional

componentsof these waveforms.

Studies relating ERP components to mental workload grew out of previous

findings which showed consistent attention-related effects on the amplitude of

the P300 component. P300s are elicited by stimuli that are attended (i.e. task
relevant) and, in some sense, unpredictable (see e.g., reviews in Donchin, et

al., 1978). The basic hypothesis underlying most studies of P300 and workload
has been that P300 amplitude would be modulated by the amount of attention, or

the amount of central processing resources, that could be devoted to processing

the ERP-eliciting stimuli. Thus, in dual-task situations, when the attentional

demandsof the primary task are increased, there is less of the limited pool of

attention that can be devoted to secondary task stimuli, and hence the

amplitude of the P300 elicited by such secondary task stimuli should decrease.

Muchof this work has been performed by Donchin, Wickens, and their colleagues,
at the University of Illinois (see review in Donchin, et al., 1986). In the

early studies, tracking a computer-driven cursor was used as the primary task.

The secondary task involved the presentation of discrete stimuli which required
either an overt response to which choice reaction time was measured, or a

covert updating of a running count of the occurrence of some subset of the
stimuli.
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The initial results were somewhat discouraging. The amplitude of the P300

elicited by low probability auditory stimuli in a counting task was markedly
reduced when the counting was performed concurrently with a visual-motor

tracking task; however, there were no further systematic decreases in the P300

amplitude as the difficulty of the tracking task was increased, either by

requiring that tracking be performed in two dimensions (Wickens, et al., 1977)
or by increasing the bandwidth of the cursor in a one-dimensional tracking task

(Isreal, Chesney, Wickens, & Donchin, 1980).

More encouraging results were obtained when the auditory counting task was

time-shared with a visual monitoring task in which subjects detected

directional changes in a simulated air traffic control display. In this

situation, the P300 elicited by auditory stimuli decreased in amplitude as a

function of the number of elements which subjects monitored (Isreal, Wickens,

Chesney, & Donchin, 1980). The interpretation of these findings was consistent

with the viewpoint which was emerging frgm behavioral studies at the time

(e.g., Wickens, 1980) which posited that processing resources were segregated

into multiple "pools." Thus P300 amplitude elicited by secondary task stimuli

may have been modulated by the demandsof the primary task when it involved

visual monitoring, because the perceptual demandsof these two tasks may have
tapped the same pool of processing resources. On the other hand, the P300

amplitude elicited by secondary task auditory stimuli may not have reflected

the workload dynamics of the tracking tasks, because the visual-motor demands

of tracking tapped a different pool of resources.

Further evidence that P300 amplitude is related to available processing

resources was sought by examining the reciprocity between the amplitudes of the

P300 elicited in the context of primary versus secondary task stimuli in dual

task paradigms. In order to elicit ERPsrelated to primary task processing, a
task was developed which involved compensatory tracking with the cursor moving

in discrete steps, rather than moving continuously as before. Whensubjects

tracked these step changes in conjunction with a secondary task that consisted

of co-_nting oec1!rr_nces of certain auditory stimuli, the amplitude of the P300

elicited by the secondary task stimuli decreased as the difficulty of the
tracking task increased. However, when subjects were instructed to count

occurrences of the cursor step changes in a given direction (i.e., the
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secondary task stimuli were "embedded" in the primary task), the P300 elicited

by the step changes increased in amplitude as the tracking task was made more
difficult (Wickens, et el., 1983).

These studies provided valuable insights into the way in which cognitive

resources are allocated in complex tasks. In addition, they established P300
amplitude as a sensitive index of the amount of processing resources, in a

sense the degree of attention, that is devoted to particular classes of stimuli

in complex tasks. However, possible practical applications of these results
are subject to the previously discussed limitations of secondary task

methodologies. Granted, the fact that measures of attention allocation can be

extracted from ERPs elicited by stimuli being covertly counted, offers the

possibility of applying a secondary task methodology without the need to burden

the subject with additional manual response requirements (Donchin, et el.,

1986). However, even when the stimuli being counted are embeddedin the

primary task, as was the case when subjects counted step changes in a cursor

being tracked (Wickens, et el., 1983), the cognitive demandsof the counting

task are superfluous to the otherwise existent task demands. One question

addressed by our empirical studies was to what extent ERPselicited by stimuli

in a single, complex task, as they are processed naturalistically, will reflect
the cognitive workload demandsof the situation.

1.4 Phase I Empirical Study

For our Phase I study, we designed a laboratory task which provided discrete

stimuli to elicit ERPs and allowed for the manipulation of mental workload, but

yet was analogous, in many ways, to the types of monitoring activities which

are performed in operational environments. The richness of this task afforded

the opportunity to relate the waveforms elicited by similar physical stimuli to

a variety of information-processing constructs, but without requiring subjects

to concentrate on more than one task at a time. Our interest was in

determining the extent to which graded effects on ERP amplitude as a function

of mental workload could be observed within the context of this single-task.

Positive results will suggest the usefulness of ERPs as indicants of certain

mental processes in any setting which offers the ability to time-lock

recordings to a discrete eliciting stimulus, regardless of whether or not other
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tasks are being performed concurrently.

1.4.1 Task Definition

The subject's task was to monitor successive CRT displays of a circular array

of six two-digit readouts. On each presentation of the display, termed a

trial, one of the six readouts changed from its value on the previous trial.

The values of the readouts changed, either increasing or decreasing, in large

(30) or small (i0) steps, within the range from 00 to 99. Large step changes

were less frequent than small step changes. Presentations of the array of

readouts lasted 500 msec and were separated by intervals which varied randomly

from 1800 to 1900 msec.

Subjects were instructed to monitor a subset of the readouts to determine which

of these readouts reached 90 or above or fell to i0 or below. Readouts which

met or exceeded these target values were referred to as having gone

"out-of-bounds." Workload was manipulated by instructing subjects to monitor

one (low workload), two (medium workload), or three (high workload) of the six

readouts. After passively monitoring a "run" of twenty trials, subjects

reported the positions and sequence of occurrence of targets, i.e. attended

readouts that went out-of-bounds. A given subset of readouts was designated as

the targets for a sequence of six successive runs. The order of these workload

conditions and the arrangement of the target readouts were counterbalanced.

In the Phase I study, there was an equiprobable chance that each of the six

readouts would change on a given trial. Thus the probability of a monitored

readout changing was dependent on the number of readouts being monitored.

1.4.2 Rationale for the Task

In this present monitoring task, the way in which the stimuli varied from

observation to observation was different from the method used in most studies

in the literature. Typically, _^L.L=sequence _..........._m,]_ _n ERP studies consists

of a Bernoulli series; i.e., the particular stimulus presented on each trial is

independent of that presented on previous trials. The goal in designing the

present experiments was to construct a monitoring task which called into play
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the same cognitive processes that are invoked in real-world monitoring tasks.

In operational settings, the likelihood of a particular meter reading or

display state is determined by those of the recent past; drastic changes from

the last reading are less likely than relatively small changes; readings which

require an overt response, e.g. because they reflect a system with some
parameters "out-of-bounds," are preceded by readings in the "danger" zone.

In reflecting these features, the monitoring task used was analogous to a wide

variety of real-world challenges. A pilot's in-flight interaction with engine

performance and environmental system displays or a process control operator's

monitoring of plant status are fairly obvious examples of such circumstances.

However, in terms of the cognitive processes invoked, the present task was also

analogous, in perhaps less obvious ways, to other applied tasks. For example,

an air traffic control display of planes moving about an airspace also presents

information which, while not entirely predictable, is nevertheless dependent on

trends. Monitoring such displays as planes move towards or away from "danger
zones" and, at times, enter "out-of-bounds" conditions, such as impinging on

another plane's circumscribed airspace, presents many of the same mental

challenges as the present laboratory task.

This monitoring task afforded the opportunity to investigate a number of
cognitive influences on ERPs. Selective attention effects on ERPs could be

distinguished by comparing responses to changes in a readout being monitored as

opposed to changes in a readout for which there was no such task requirement.

Similarly, processing which specifically reflected the occurrence of a "target"

stimulus, could be distinguished by comparing the responses elicited by

attended readouts that went out-of-bounds to those elicited by attended

readouts that stayed or went in-bounds, or those elicited by unattended

readouts which changed in any manner. In addition, we were interested in the

ERPeffects related to both "tonic" changes in information processing workload,

imposed by the number of readouts being monitored throughout a run of trials,

and the more "phasic," dynamic influences imposed by the number of attended

readouts that were close to, i.e. in "danger" of, going out-of-bounds.

It is interesting to consider how the pattern of effects related to these

variables, aside from demonstrating the sensitivity of ERPsto these cognitive
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influences, can reveal specific aspects of subjects' performance in the task.

For example, the extent to which the ERPsreflect the influence of attention,
the differences between targets and non-targets, or effects related to number

of monitored readouts that are "in danger," might change with the level of

"tonic" workload. Will the need to monitor more readouts cause a focusing of
attention, and thus perhaps greater differences between responses to monitored

and non-monitored readouts? Might increasing task demandscause target stimuli

to be processed differently? Might the number of readouts "in danger" be more

readily noticed when workload is high, because this information could be used

by the subject to distinguish which of the readouts being monitored are most

likely to become targets in the near future, or will this information be

disregarded when workload is high, due to the fact that there are fewer central

processing resources available to devote to this additional processing?

1.4.3 Phase I Results

The Phase I results indicated several ERP effects related to mental workload

and attention (see Horst, et al., 1984; Horst, et al., 1985):

The amplitude of a long-latency, slow positivity in the average ERP

waveforms elicited by both monitored and non-monitored readouts increased

with the number of readouts being monitored

A slightly earlier region of the waveforms, which contained the peak

positivity, increased in amplitude with the number of monitored readouts

"in danger"; no such effect was found when the number of non-monitored

readouts "in danger" were examined

o This same peak positivity was markedly larger in response to "target"

readouts, i.e., those that took an attended readout out-of-bounds, than in

response to non-targets

0 The pe_k pos4t4v_ty was also somewhat influenced by the number of readouts

being monitored; peak amplitude increased with such increases in workload,

but surprisingly, this effect was seen only in responses elicited by the

non-monitored readouts and not in the responses elicited by the monitored
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readouts

No differences were found in the level of the pre-stimulus baseline region

of these ERPs, suggesting that the workload effects influenced post-

stimulus processing of the readouts.

The timing, polarity, scalp distribution and differences between the ERPs

elicited by target and non-target readouts suggested that the peak positivity
in these waveforms was due to the P300 component. The increasing amplitude of

P300 with increases in workload were consistent with previous reports (e.g.,

Wickens, et al., 1983), although the lack of any effect in the responses to
monitored readouts was perplexing. Because each of the six readouts changed

with equal probability, as more readouts were monitored, the likelihood of a

monitored readout changing increased, and the likelihood of a non-monitored

readout changing decreased. Therefore, probability effects may have confounded

a possible workload effect on the P300. The longer latency, slow positivity

was likely related to the Slow Wave component (see e.g., Ruchkin & Sutton,

1983), although the scalp distribution for this component in the Phase I data

was not characteristic of most Slow Waves reported in the literature. The

finding of a workload-related effect on Slow Waveamplitude, in both the ERPs

elicited by monitored and non-monitored readouts was unprecedented.

These results clearly suggested the feasibility of obtaining ERP indices of

workload in a single-task paradigm that was analogous to monitoring tasks

required in operational settings. However, questions remained as to the

effects of "tonic workload" on P300, the nature of the slow positivity, and the

generality of these results.

1.5 Overview of Phase II Study

The Phase II study was designed to address these issues and to examine the

feasibility of transitioning ERP indices of mental workload from the laboratory

towards operational settings. The purpose of such a transition would be to

develop the use of ERP measures as tools for application in the systems

engineering process. There may also be eventual uses of ERPs as real-time

measures of operator performance for input to automated decision-making support
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systems (see Horst, 1988).

The Advanced Concepts Flight Simulator (ACFS) at NASALangley was chosen as a

target environment for the first application of such ERPmeasures of workload.

The ACFSrepresents a test-bed for the flight deck of a 1995 transport aircraft

and has been developed jointly by NASAand Lockheed-Georgia Corporation for

research purposes. As in many such complex man-machine systems, the

determination of aircrew mental workload is a primary concern in making design

decisions. It is hoped that psychophysiological measures such as ERPs,

obtained from the pilot, may complement measures of workload based on

behavioral or subjective data.

ARD's Phase II project involved five main tasks, which define a logical

progression of the ERP measurement technology from a laboratory towards a
simulator-based environment:

i) Two laboratory studies were conducted in order to explore, under

controlled conditions, the generality of the encouraging ERP results

obtained in the Phase I study.

2) A "task analysis" of flight scenarios and pilot decision-making in the

ACFS was conducted for the purpose of defining events (i.e., displays,

messages, alarms) to which the aircrew are exposed during realistic flight

scenarios that would be expected to elicit ERPs related to workload.

3) Software was developed to support EKP data analysis; this task included

three subtasks -- the upgrade of an existing ARD-proprietary package of ERP

data analysis routines, the development of new routines for graphic

displays to enhance interactive data analysis, and the development of

routines to simulate single-trial ERP data for the purpose of

systematically comparing two alternative single-trial analysis techniques.

4) Working in conjunction with ..... T___I .......... h =_4on_4_ _n_

simulator engineers, preparations were made for a validation study of ERP

measures of workload using the ACFS and laboratory facilities at Langley.
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5) A design specification was developed for a general purpose,
computerized, workload assessment system that can function in simulators

such as the ACFSor in related operational environments.

For the present report, the single-trial analysis subtask will be dealt with

separately from the other software development activities. The inter-relations

of the various project tasks is shown in Figure i-i. The preparations for a

simulator-based validation of the present methodologies is seen to draw upon

the ACFS "task analysis" as well as the results of the laboratory empirical

studies. The design specification of a workload assessment system draws upon

the results of the five other tasks and, in many respects, represents the
culmination of the project as a whole.

In the following sections of the present report, each of these project tasks

are reviewed in detail. For each task, background information is provided,

methods are reviewed, results are summarized, and implications for the overall

technical objectives of the project are highlighted.
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2.0 FURTHER LABORATORY-BASED RESEARCH ON ERP INDICANTS OF MENTAL WORKLOAD

As discussed in Chapter i, most previous investigations that have addressed the

relationship between ERPs and mental workload have focused on responses

elicited in dual-task paradigms. Typically the waveshape of the ERP elicited

by secondary task stimuli has been related to changing levels of difficulty of

the primary task and has been interpreted as reflecting the spare cognitive

capacity that remains after the demands of the primary task have been met.

While the results of these studies have revealed important insights regarding

the influence of cognitive processes on ERPs, it is not clear how widely

applicable this methodology will be in evaluating the workload of human

operators in real-world systems.

The secondary tasks used in most laboratory studies of mental workload have

been relatively simplistic and contrived. They have been chosen for the

convenience with which their stimuli elicit the responses of interest, whether

physiological or behavioral. Although such tasks offer a conceptual similarity

to operational systems in which human operators must time-share between tasks

and process stimuli which compete for attention, they do not lend themselves

readily to use in operational or simulated systems. In most operational

systems in which mental workload is a concern, the operator is already

over-burdened. To further burden him with contrived stimuli and tasks, in

order to assess the workload of existing tasks, is impractical at best and

invalid at worst. Even if certain existing tasks offer stimuli to which ERPs,

and reaction times, can be time-locked, it is unlikely that they will be

functionally equivalent to the contrived secondary tasks used in the

laboratory. Such "secondary" tasks will likely be performed in conjunction

with differing configurations of other existing tasks, and it is difficult to

ensure that these other "primary" tasks are given priority, as implicitly

assumed if one is to interpret secondary task measures as reflecting spare

cognitive capacity.

Because of these considerations, we examined ERPs that were elicited by stimuli

presented in a single (primary) task as the difficulty of that task was varied.
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Workload-related effects obtained in such a paradigm would suggest the

usefulness of ERP measures of cognition, both for systems in which processing

resources can be devoted to a single-task, as well as those in which the

ERP-eliciting task must be time-shared with others.

2.i Objectives of the Phase II Empirical Studies

Our previous work has demonstrated differences in cognitive-related ERP

responses in complex tasks. In our previous investigation, subjects monitored

a circular display of six two-digit readouts. On each trial, the value of one

of the readouts changed. 0nly a subset of the display was salient to subjects

in that they were instructed to monitor one, two, or three of the readouts and

to report values in these monitored readouts that exceeded pre-specified

boundaries. There were larger amplitude late positivities at approximately 600

msec post-stimulus onset on trials where a change occurred in a salient (i.e.,

monitored) as opposed to non-salient (i.e., non-monitored) readout. The

amplitude in this region also increased with increasing workload, but only for

responses to the non-monitored readout changes. Responses to changes in

monitored readouts showed no apparent effect of workload. Consequently, the

difference between monitored and non-monitored readouts decreased as the number

of monitored readouts increased. However, there were workload-related

amplitude differences at approximately i000 msec after stimulus onset. ERP

amplitude in this region increased as the number of readouts being monitored

increased, regardless of whether the change occurred in a monitored or

non-monitored readout. The results of this study indicated that, under some

circumstances, different portions of the ERP waveform can reflect attention and

workload differences in complex tasks.

In this previous study, it was equiprobable that each readout would be the one

to change on a given trial. Therefore, as the subject monitored either one,

two, or three readouts, the probability of a change in a monitored (vs.

non-monitored) readout changed. It was possible that these varying

probabilities contributed to the differences seen in the effects of workload on

responses to changes in monitored and non-monitored readouts. Thus, in the

first of the current experiments, the probabilities of a monitored and

non-monitored readout changing were made equal, regardless of how many readouts
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were being monitored. In Experiment Z, we examined the extent to which the
obtained ERP effects related to attention and workload generalized to a

situation in which subjects responded trial-by-trial, rather than holding in

memorythe information about how manyand which attended readouts had gone out-

of-bounds.

2.Z Methods

2.2.1 Subjects

In each of the two experiments, 12 young adult males served as subjects.

Subjects were paid $7.00 per hour for their participation. All subjects had

normal or corrected-to-normal vision.

2.Z.Z Apparatus

Both experiments were programmed on and controlled by a DEC PDP 11/40

minicomputer. The computer controlled stimulus delivery, behavioral and

physiological data acquisition, and data storage. Subjects were seated in a

darkened, electrically shielded room approximately two and one-half feet from

the CRT display monitor. Each display subtended a visual angle of

approximately 1.8 by 2.3 degrees of visual angle. ERPs were recorded using

silver/silver chloride electrodes from five mid-line sites (Fpz, Fz, Cz, Pz,

and Oz). In addition, EOG was recorded from electrode placements above the

inner and below the outer canthi of the left eye.

2.2.3 General Characteristics of the Task

The aspects of the two experimental tasks that were the same for both studies

are described here. Task elements specific to each experiment are described

later. The subject's task in both experiments was to monitor successive CRT

presentations of a circular display of six two-digit numbers. The display was

arranged in a clock-like pattern with the two-digit "readouts" at the 2, 4, 6,

8, i0, and 12 o'clock positions. Subjects were instructed to monitor a

prespecified subset of the readouts. On each trial (i.e., presentation of the

display) one of the six readouts changed from its value on the previous trial.
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Changes in a readout being monitored occurred equally often as changes in a
non-monitored readout.

Subjects monitored the display to determine which of the monitored readouts
reached 90 or above or fell to i0 or below. Readouts which met or exceeded

these target values were referred to as having gone "out-of-bounds." Workload

was manipulated by instructing subjects to monitor one (low workload), two

(mediumworkload), or three (high workload) of the six readouts. The order of
the workload conditions and the arrangement of the target readouts were

counterbalanced.

Stimuli were presented in a sequence of 20 discrete displays called "trials."

The subject initiated a sequence of Z0 trials (a "run") by actuating an optical
switch. Presentations of trials lasted 500 msec and were separated by

intervals which varied randomly from 1800 to 1900 msec. For a "set" of six

consecutive runs, subjects monitored the same subset of readouts. At the

beginning of each set, all readouts were between 40 and 60. Within a set,
readout values were maintained across runs, except those readouts that were

out-of-bounds at the end of a run. These out-of-bounds readouts were reset to

a randomly chosen in-bounds value. Throughout, readouts that would have

exceeded 99 were presented as 99, and readouts that would have gone below 0

were presented as 00. At the beginning of a new "set" of trials, the first

display presented to the subject read "new," indicating that a different subset

of the display was to be attended. Before each run of trials, a display

appeared to remind the subject which readouts were to be monitored. This

display was a circular, clock-like pattern (like the "run-time" display) with

the numbers one, two, and/or three in the readout positions to be monitored.

The appearance of this display informed subjects that they could begin the run

by actuating the optical switch. There was a total of 2160 trials (18 sets;

108 runs) in each experiment. During a run, subjects were asked to focus their

gaze on a centrally located fixation point, rather than looking directly at any
one of the readouts.

In both experiments, subjects were given 15 to 30 minutes of practice, or they

were trained until it was clear that they understood the instructions and were

responding appropriately.
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2.2.4 Task Characteristics Specific to Experiment I

On each trial (i.e., presentation of the circular display of readouts), one of

the six readouts changed from its value on the previous trial. The values of

the readouts changed, either increasing or decreasing, in large (30) or small

(i0) steps, within the range from 00 to 99. Large step changes were less

frequent (33%) than small step changes (67%). The direction of the change was

completely random and could go in either direction, regardless of the direction

of the last change.

After passively monitoring a "run" of Z0 trials, subjects reported the

positions and sequence of occurrence of targets, i.e. attended readouts that

went out-of-bounds. This was done by pressing buttons on a response box

resting in the lap of the subject. It was important for the subject to report

both the order and the location of the positions that went out-of-bounds. If,

for example, readout 2 went out-of-bounds, then readout 1 went out-of-bounds,

then (after coming back in-bounds) readout 2 went out-of-bounds again, the

correct response, for that run, would be "2-1-2." Subjects were given

run-by-run feedback as to their accuracy as well as the correct sequence of

responses.

In a separate "behavioral" data collection session, each subject was presented

with all of the conditions under which ERP data had been collected. On each

trial, subjects indicated, with a two-choice reaction time response, whether or

not a monitored readout had gone out-of-bounds.

2.2.5 Task Characteristics Specific to Experiment Z

In Experiment 2, as in Experiment i, only one readout changed per trial;

however, unlike the first experiment, the readout always changed by a fixed

value of 20. Another difference in Experiment 2 was that the direction of the

change (increasing or decreasing) was not equiprobable. There were, in fact,

three levels of "trend" determining the direction of change for the next

readout. The trend levels were: high -- 90% of the time a change in value for

a given readout would continue in the same direction as the previous change for

that readout; medium -- 70% of the time the change for a given readout would
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continue in the same direction as the previous change for that readout; and low

-- 50% of the time a change for a given readout would continue in the same

direction as the previous change for that readout. The low (50%) level of

trend is equivalent to the directional probabilities in Experiment i.

In Experiment 2, subjects reported after each trial as to whether or not a

monitored readout had gone out-of-bounds. There were two alternative ways in

which subjects made their reports. The first response condition was called "go

on targets." In this condition, when a monitored (or target) readout went

out-of- bounds, the subject made a small finger movement with the index finger

of the right hand to actuate an optical switch. Otherwise, the subject

inhibited this response. The second response condition was called "no-go on

targets." In this condition, subjects made the finger movement on all trials

except when a monitored readout went out-of-bounds. Thus, in this second

response format, when a monitored readout went out-of-bounds, the subject did

not make the finger movement he was otherwise making.

ERP data were collected under several additional "control" conditions in

Experiment 2. These control conditions were as follows:

o A display of the same six readout values was repetitively presented for 50

trials, with subjects being instructed to passively view it with their eyes

fixated on a particular readout. The purpose of this condition was to

determine the waveshape of the sensory ERP elicited when subjects looked

directly at a readout. It was hoped that the sensory-related early

components in these waveforms would differ from those seen in the waveforms

collected during the monitoring task conditions, thus supporting the

assumption that, in the latter conditions, subjects successfully followed

the instructions to maintain eye fixation on the centrally located fixation

point during the task conditions.

o A display of the same six readout values was repetitively presented for 50

trials, with subjects being instructed to respond to each as quickly as

possible with a finger movement (i.e., simple reaction time). The purpose

of this control condition was to determine the ERP waveshape elicited by

the readout stimulus presentation and motor response, but without the
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cognitive decision-making that was required during the monitoring task.

o With no display being presented on the CRT screen, subjects made 50

self-paced finger movementsof the sort required in responding during the

monitoring task conditions. The purpose of this control conditions was to
determine the waveshape of the average motor potential that could be

assumed to affect the stimulus-locked ERP waveshapes when subjects

responded to the readout displays with a finger movement (i.e., readout

changes which took a monitored readout "out-of-bounds" during the "go on

target" condition and "in bounds" readout changes during the "no-go on

target" condition.

2.2.6 Processing of ERPs

The ERP waveforms from trials on which the E0G channel indicated that a blink

or eye movement had occurred were rejected from further analysis. Likewise,

the ERPs from trials on which an incorrect behavioral response occurred were

rejected. Therefore, average ERPs were formed only from trials on which a

correct response and no substantial E0G activity had occurred. The waveform

data were sorted according to the various condition variables of interest and

the resulting average ERPs were quantified as indicated below. ALL OF THE

EFFECTS DISCUSSED HERE WERE STATISTICALLY SIGNIFICANT AT THE P < .05 LEVEL OR

BETTER, AS INDICATED BY MULTIVARIATE ANALYSIS OF VARIANCE.

2.3 Results of Experiment 1

Both behavioral and ERP results are discussed below.

distinguished as follows:

The ERP effects are

"Target effects" -- effects related to whether or not the ERP-eliciting

readout change took a readout being monitored out-of-bounds.

o "R=l=ot_ve attention effects" -- effects related to whether or not the

ERP-eliciting readout change occurred in a monitored or non-monitored

readout.

2-7



"Tonic workload effects" -- effects related to whether or not the

ERP-eliciting readout change occurred in a run of trials during which
workload was low, i.e., only one readout was being monitored, versus a run

during which workload was high, i.e., three readouts were being monitored.

"Phasic effects" -- effects related to the number of monitored readouts

that were "in danger" of going out-of-bounds, i.e. those that were within

one large jump of going out-of-bounds when the ERP-eliciting readout change
occurred.

2.3.1 Behavioral Results

Figure 2-i presents the reaction time data from the "behavioral" test session.

Analysis of variance indicated that the trend towards increasing reaction times

with increasing number of readouts being monitored was highly significant. The

results provide converging evidence that by requiring subject to monitor

differing numbers of readouts, we were, indeed, manipulating workload.

2.3.2 General Aspects of Obtained ERPs

There were several aspects of the averaged ERP waveforms obtained here which

showed systematic variations in response to one or more of the factors of

interest. These features were designated and quantified as follows:

i) The "peak positivity" -- the mean amplitude over a 200 msec epoch centered

about the most positive peak between 500 and 900 msec post-stimulus onset.

2) The "slow positivity" -- the mean amplitude between 900 and 1050 msec

post-stimulus onset.

3) The N250 -- the mean amplitude between 200 and 300 msec post-stimulus

onset.

4) The N450 -- the mean amplitude between 400-500 msec post-stimulus onset.

Although ERP waveshapes were generally similar across subjects, there was
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considerable inter-subject variability in the latency of the peak positivity.

These measurement epochs were selected after inspection of across-subject,

grand-average waveforms, and were chosen to accommodate the systematic

differences in the waveforms despite this latency variability.

Figure 2-2 presents across-subject, grand-average waveforms from Experiment i,

obtained from the Cz electrode. Responseselicited under low and high workload

are superimposed. Responses elicited under the medium level of workload were

intermediate to those shown here. In the various columns are responses

elicited by readouts that were attended or unattended and which took the

readout out-of-bounds, as opposed to taking or leaving it in-bounds. The

waveforms elicited by target stimuli, i.e., monitored readouts that went

out-of-bounds, are presented in the right-most column. Figure 2-3 presents

difference waveforms in a similar layout to that of Figure 2-2. These

difference waveforms were calculated by subtracting, for each condition and

each subject, the waveforms elicited under low workload from the corresponding
waveforms elicited under high workload. The resulting difference waveforms

were then grand-averaged across subjects, to produce the plotted waveforms.

2.3.3 Target Effects

The most striking differences in the raw average waveforms of Figure 2-2 were

the large increases in the amplitude of the late positivity for the responses

elicited by target stimuli, i.e. monitored readouts that went out-of-bounds.

This effect was limited to the region of the peak positivity and probably

reflects a modulation of P300 amplitude that has been reported numerous times

in the past (e.g., Duncan-Johnson & Donchin, 1977).

There was an additional target effect, this one related to tonic workload, that

was evident in the difference waveforms. Figure 2-3 shows a negative-going

wave in the 400-500 msec latency region that was present only when the

responses to target stimuli elicited under low workload were subtracted from

the responses to target stimuli elicited under high workload. Whether this

waveform component should be seen as a negativity that enters in as the result

of increased workload or a positivity that enters in as workload is reduced,

can not be resolved.
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However, the present results provide strong evidence that the workload

manipulation added or enhanced a new component in the waveform, rather than

simply modulating a peak, or peaks, that were otherwise there. Peaks in a

difference waveform that are due to either increases or decreases in amplitude,

or to shifts in latency, of peaks that were evident in the raw average

waveforms, should have the same scalp distributions as those raw average

peaks. Instead, a comparison of Figures 2-2 and 2-3 indicates that the ERP

peak in the 400-500 msec region of the difference waveforms had a more

posterior distribution than either of the peaks in this vicinity of the raw

average waveforms. This impression was confirmed by statistically showing that

the profile of amplitudes across the scalp in this time region was different

for the raw average waveforms elicited under low workload than for those

elicited under high workload. Past references to endogenous ERP negativities

in this latency region (e.g., Ritter, Simson, & Vaughan, 1983) provide a

preliminary basis for interpreting this effect as an N450 component that is

enhanced as the result of increased workload.

2.3.4 Selective Attention Effects

As can be seen in Figures 2-2, there was, at least at the low workload levels,

a systematic difference between the ERPs elicited by changes in monitored (i.e.

attended) and non-monitored (i.e. unattended) readouts. The amplitude of the

peak positivity was larger in response to changes in monitored readouts as

compared to changes in non-monitored readouts. This difference is best seen by

comparing the responses elicited by in-bounds changes in the monitored and

non-monitored readouts. Interestingly, the attention-related effect diminished

with increasing workload, apparently due more to increasing peak positivities

in the responses elicited by non-monitored readouts than to those elicited by

monitored readouts. This same pattern of results was found in our Phase I

data, when probabilities varied with the number of readouts being monitored.

The differences between ERPs elicited by monitored and non-monitored readouts

at low workload may be related to selective attention differences that have

been interpreted as reflecting the activation of different sensory cha_e!s

(e.g., Harter & Aine, 1984, Mangun & Hillyard, 1987); however, the polarity and

timing of this effect, and its modulation by workload, is difficult to

interpret. Further investigation of this effect is needed.
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2.3.5 Tonic Workload Effects

Of primary concern in these data was whether there were differences in the ERP

as a function of the level of workload imposed by requiring subjects to monitor

different numbers of readouts. Two interactions with workload have already

been noted -- with increasing workload, an N450 component emerged in the

responses to target stimuli and the peak positivity increased in the responses

to all changes in non-monitored readouts. In addition, two main effects of the

tonic workload manipulation are evident in Figure 2-2 and 2-3. First, as the

subject was required to monitor an increasing number of readouts, the ERPs

elicited by all stimuli showed an increased slow positivity. This slow

positivity was manifest in the latency region following the peak positivity and

can be seen as a slow return to baseline, but with a more posterior scalp

distribution than the peak positivity itself. It is likely, although not

entirely clear, that this slow positivity is the Slow Wave component which has

been distinguished from the P300 on the basis of both scalp distribution and

relationship to experimental manipulations (e.g., Ruchkin & Sutton, 1983).

A second main effect of tonic workload was apparent in the difference

waveforms. When responses to readout changes from the low workload condition

were subtracted from the corresponding responses from the high workload

condition (Figure 2-3), a negative-going peak appeared in the 200-300 msec

latency region. This N250 occurred in the responses to both changes in

monitored and non-monitored readouts, regardless of whether these changes took

the readout out-of-bounds or took or left it in-bounds. As with the N450,

which was only present in the responses to target stimuli, we interpreted this

N250 as a negative-going component which entered or was enhanced as the result

of increasing workload. This interpretation was based on the fact that the

scalp distribution of this wave differed from that of the corresponding

activity in the raw average waveforms and the fact that processing negativities

related to selective attention have been reported in this latency region of ERP

waveforms (see e.g., Naataanen, 1982). Statistical tests confirmed that the

amplitude profile across the scalp in the 200-300 msec latency region differed

between the low and high workload conditions. To our knowledge, this

workload-related effect had not been reported previous to our data.
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It is possible that the standing requirement to monitor a given number of

readouts for minutes at a time may have caused differential DC-shifts in the

EEG. The transient ERPs elicited by readout changes might then have been

superimposed on different baselines, and the apparent main effects of workload

on post-stimulus ERP components could have resulted from a confound of, or

interaction with, such differential baselines. To determine whether or not

such differential pre-stimulus activity could have influenced the present

findings, we did the recordings for Experiment 1 in a manner which allowed us

to quantify the DC level of the pre-stimulus baselines. There were no

systematic differences in the pre-stimulus baselines of the ERPs elicited under

different workload conditions.

2.3.6 Phasic Effects of the Number of Readouts in Danger

As mentioned previously, the specific value of the readout presented on a given

trial was dependent on its value on the previous trials; namely, it increased

or decreased by a large or small increment from its value on the previous

trial. Therefore, at any given time, only those readouts that were within a

large increment of going out-of-bounds were "in danger" of becoming targets on

the next presentation. Although it was not part of the subject's defined task

to attend to this aspect of the situation, and no mention was made of it in the

instructions, subjects could have facilitated their performance on the task by

attending to this information. Therefore, we sorted the ERPs that were

elicited with different numbers of readouts "in danger," to see if the

waveforms showed evidence of this factor having influenced the processing of

the readouts.

Figure 2-4 presents the data sorted for this analysis, with the responses

superimposed that were elicited when 0, 1 or 2 monitored readouts were "in

danger." These waveforms showed an enhanced positivity in the long latency

regions with increasing numbers of monitored readouts in danger. Statistical

tests confirmed this effect for the peak positivity, with the slow positivity

showing the same trend but not reaching statistical significance. This

increased positivity was present in both the responses to monitored and

non-monitored readouts and was found to the same extent at all levels of tonic

workload. When the waveforms were sorted as to the number of non-monitored
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COVERPAGEFORFIGURES2-4-A THROUGH2-4-F
EXPERIMENT1 -- RAWAVERAGEWAVEFORMS,ILLUSTRATINGPHASICEFFECTS

Across-subject average waveforms from Experiment 1 at Pz, Cz, and Fz, for
trials on which a change in the display did not take the readout out-of-
bounds. The superimposed waveforms are from responses elicited when different
numbers of attended readouts were "in danger," i.e., within an incremental
value of going "out-of-bounds." The left column contains trials on which a
small jump occurred, i.e., a change of i0 in the value of the attended readout,
and the right column contains trials on which a large jump occurred, i.e., a
change of 30 in the value of the attended readout. The responses are sorted
according to whether the eliciting change occurred in an attended or an
unattended readout, and the number of readouts being attended at the time.

2-4-A

2-4-B

2-4-C

2-4-D

2-4-E

2-4-F

Changein an attended readout, when one readout is being attended

Changein an attended readout, when two readouts are being attended

Changein an attended readout, when three readouts are being attended

Changein an unattended readout, whenone readout is being attended

Changein an unattended readout, when two readouts are being attended

Change in an unattended readout, when three readouts are being
attended
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readouts "in danger," no systematic ERP differences were found.

These data, which also replicate our Phase I findings, clearly suggest that

subjects processed the readouts differently depending on the number of

monitored readouts that were close to going out-of-bounds, even though they

were not explicitly instructed to do so. It is not clear whether this

differential processing should be seen as an additional, albeit self-imposed,

workload demand of the task, or whether subjects chose to assume this

additional processing as a means of coping with the primary task of detecting

target readouts. A number of further manipulations are necessary in order to

arrive at a convincing interpretation of this effect. However, the fact that

this effect occurred, suggests the value of looking more closely at subjects'

strategies when dealing with non-Bernoulli sequences of stimuli.

2.4 Results of Experiment 2

2.4.1 Behavioral Results

Figures 2-5 and 2-6 present the behavioral results from Experiment 2. Figure

2-5 indicates that the accuracy of responding to targets, whether by overtly

responding or by inhibiting an overt response, decreased with increasing

workload. This trend was confirmed .... _o+;_o11,T _,r_ 2-6 indicates that

in both the "go on target" and "no go on target" tasks, reaction time increased

with increasing number of readouts being attended. This trend, which also was

highly statistically significant, replicates the findings from the behavioral

test session of Experiment i. Again, we can interpret these behavioral

findings as indicating that the present workload manipulation was effective.

2.4.2 General Aspects of Obtained ERPs

The waveforms obtained in Experiment 2 differed somewhat between the "go on

target" and "no-go on target" tasks, but in most important respects they

replicated the effects seen in Expcriment !. Some of these differences were,

no doubt, related to the fact that a motor potential was present in the

waveforms elicited by stimuli that required an immediate behavioral response.

For the present purposes, we focused primarily on determining the extent to
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"GO ON TARGET" TASK

%

Correct

100

TRIALS ON WHICH
TARG ET OCCU RED

1 2 3

Number Attended

100 --

m

90 --

% 80 _
Correct

TRIALS ON WHICH
NON-TARGET OCCURED

1 2 3

Number Attended

"NO - GO ON TARGET" TASK

%

Correct

100 --

90 --

TRIALS ON WHICH
TARGET OCCURED

%

Correct

TRIALS ON WHICH
NON-TARGET OCCURED

1 2 3 1 2 3

Number Attended Number Attended

Figure 2-5. Accuracy of responding, averaged across subjects, for the two

response conditions in Experiment 2.
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(msec)
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675 --
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"GO ON TARGET" TASK

(Correct Responses Only)

625 --

600 --

1 2 3

Number Attended

"NO - GO ON TARGET" TASK

(Correct Responses to Non-Targets Only)

525

500 1

475 --
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m
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(msec)
450 --

m

425 --
m

400 --

1 2 3

Number Attended

Figure 2-6. Mean reaction times, averaged across subjects, for the two

response conditions in Experiment 2.
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which the effects seen previously were replicated in the Experiment 2 waveforms

that were elicited in the absence of a behavioral response (i.e., by "in

bounds" readout changes that occurred during the "go on target" task and by

"out-of-bounds" changes that occurred during the "no-go on target" task).

There were no effects of trend (directional bias) on either the behavioral

measures or ERPs. Therefore, the ERP data were collapsed across trend. Figure

2-7 presents the raw, grand averaged waveforms from Experiment 2. Figure 2-8

presents the corresponding difference waveforms constructed by subtracting

responses elicited under low workload conditions from those elicited under high

workload conditions.

2_4.3 Target Effects

Again, a large increase in P300 amplitude was apparent in the responses

elicited by target stimuli, i.e. changes in attended readouts that took the

readout out-of-bounds. Interestingly, this target effect was clear no matter

whether subjects responded to the target readouts with a motor response or the

inhibition of a motor response. Also striking, particularly in the "no-go on

target" data was the appearance of the workload-related N450 in the responses

elicited by changes in target readouts. Both of these effects reached

statistical significance in the data from both tasks.

2.4.4 Selective Attention Effects

The same attention-related effects that were seen in Experiment i were again

found here. There were the same, difficult to interpret, differences in P300

between the responses elicited by attended and unattended readouts.

2.4.5 Tonic Workload Effects

The slow wave increases related to the number of readouts being monitored were

again apparent under some conditions, but were somewhat less robust than in

Experiment i. Again the N250 wave was found consistently in the difference

waveforms from all conditions when responses elicited under low workload were

subtracted from the responses elicited under high workload.
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COVERPAGEFORFIGURES2-7-A THROUGH2-7-D
EXPERIMENT2 -- RAWAVERAGEWAVEFORMS,ILLUSTRATINGTONICWORKLOAD

Across-subject average waveforms from Experiment 2 at all mid-line scalp sites
and EOG. Responses elicited under low workload (one readout being attended)
are overlaid with medium workload (two readouts being attended) and high
workload (three readouts being attended). The left column contains trials on
which the subject made a finger movementto indicate his response, and the
right column contains trials on which the subject's lack of finger movement
indicated his response. Responses are sorted according to whether the
eliciting change occurred in a monitored or non-monitored readout and whether
or not the eliciting change took the readout out-of-bounds.

2-7-A

2-7-B

2-7-C

2-7-D

Changein anunattended readout which remained in-bounds

Changein an attended readout which remained in-bounds

Changein an unattended readout which took the readout out-of-bounds

Changein an attended readout which took the readout out-of-bounds
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EXPERIMENT 2 -- RAW AVERAGE WAVEFORMS, ILLUSTRATING TONIC WORKLOAD

Figure 2-7-A. Change in an unattended readout which remained in-bounds
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EXPERIMENT 2 -- RAW AVERAGE WAVEFORMS, ILLUSTRATING TONIC WORKLOAD

Figure 2-7-B. Change in an attended readout which remained in-bounds
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EXPERIMENT2 -- RAWAVERAGEWAVEFORMS,ILLUSTRATINGTONICWORKLOAD
Figure 2-7-C. Change in an unattended readout which took the readout

out-of-bounds
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EXPERIMENT2 _ RAW AVEKAGE WAVEFORMS, ILLUSTRATING TONIC WORKLOAD

Figure 2-7-D. Change in an attended readout which took
out-of-bounds

the readout
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COVER PAGE FOR FIGURES 2-8-A THROUGH 2-8-D

EXPERIMENT 2 -- DIFFERENCE WAVEFORMS, ILLUSTRATING TONIC WORKLOAD

Difference waveforms corresponding to the data in Figure 2-7, with the

responses elicited under low workload conditions subtracted from the responses

elicited under high workload.

2-8-A

2-8-B

2-8-C

2-8-D

Change in an unattended readout which remained in-bounds

Change in an attended readout which remained in-bounds

Change in an unattended readout which took the readout out-of-bounds

Change in an attended readout which took the readout out-of-bounds
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EXPERIMENT 2 -- DIFFERENCE WAVEFORMS, ILLUSTRATING TONIC WORKLOAD

Figure 2-8-A. Change in an unattended readout which remained in-bounds
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EXPERIMENT 2 -- DIFFERENCE WAVEFORMS, ILLUSTRATING TONIC WORKLOAD

Figure 2-8-B. Change in an attended readout which remained in-bounds
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EXPERIMENT 2 -- DIFFERENCE WAVEFORMS, ILLUSTRATING TONIC WORKLOAD

Figure 2-8-C. Change in an unattended readout which took

out-of-bounds
the readout
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EXPERIMENT2 -- DIFFERENCEWAVEFORMS,ILLUSTRATINGTONICWORKLOAD
Figure 2-8-D. Change in an attended readout which took

out-of-bounds

the readout
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2.4.6 Phasic Effects of the Number of Readouts in Danger

Figure 2-9 presents the waveforms obtained when the data from the various

conditions of Experiment 2 were sorted according to the number of attended

readouts "in danger." Again, there were increases in the amplitude of the late

positivity when increasing numbers of attended readouts were close to going

out-of-bounds.

2.5 Discussion

Obviously, the monitoring task that we designed provided a rich environment for

eliciting cognition-related effects on scalp-recorded ERPs. To summarize, the

ERPs collected here were characterized by the following features:

o An N250 wave, possibly a Processing Negativity (e.g., Naataanen, 1982),

that emerged with increasing workload, in the responses to all readouts.

An N450 wave, possibly related to the N2 complex (e.g., Ritter, Simson, &

Vaughan, 1983), that emerged with increasing workload, in responses to the

target stimuli only.

A peak positivity, probably related to the P300 (e.g., Donchin, et al.,

1986), which dramatically increased in amplitude when a target stimulus

occurred, increased in amplitude as a function of the number of monitored

readouts "in danger," and showed an interaction with tonic workload and

selective attention, such that the differences between responses to

monitored and non-monitored readouts which were found at low workload

levels diminished with the requirement to monitor more readouts.

o A slow positivity, possibly related to the Slow Wave (e.g., Ruchkin &

Sutton, 1983), which increased in amplitude with workload, in the responses

to all readouts.

More work is required to determine the functional significance of the waveform

changes we observed and to relate them convincingly to ERP components that have

been identified in other paradigms. Nevertheless, the present findings warrant
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COVERPAGEFORFIGURES2-9-A THROUGH2-9-H
EXPERIMENT2 -- RAWAVERAGEWAVEFORMS,ILLUSTRATINGPHASICEFFECTS

Across-subject average waveforms from Experiment 1 at Pz, Cz, and Fz, with
responses elicited when different numbers of attended readouts were "in danger,"
i.e., within an incremental value of going "out-of-bounds." The left column
contains trials on which the change did not take the readout out-of-bounds, and
the right column contains trials on which the change did take the readout
out-of-bounds. The responses are sorted according to whether the eliciting
change occurred in a attended or an unattended readout, the number of readouts
being attended at the time, and whether the subjects finger movementindicated
his response (go), or whether the subjects lack of finger movementindicated his
response (no/go).

2-9-A

2-9-B

2-9-C

2-9-D

2-9-E

2-9-F

2-9-G

2-9-H

Change in an attended readout, when two readouts are being attended,

subject's finger movement indicates his response

Change in an attended readout, when three readouts are being attended,

subject's finger movement indicates his response

Change in an unattended readout, when two readouts are being attended,

subject's finger movement indicates his response

Change in an unattended readout, when three readouts are being attended,

subject's finger movement indicates his response

Change in an attended readout, when two readouts are being attended,

subject's lack of finger movement indicates his response

Change in an attended readout, when three readouts are being attended,

subject's lack of finger movement indicates his response

Change in an unattended readout, when two readouts are being attended,

subject's lack of finger movement indicates his response

Change in an unattended readout, when three readouts are being attended,

subject's lack of finger movement indicates his response
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several important general conclusions:

Workload-related ERP effects can be derived in single-task paradigms

without burdening the subject with competing task demands.

o The effects of different cognitive variables are specific to circumscribed

regions of the waveforms.

o Some regions of the waveforms are affected by multiple information-

processing manipulations.

These relationships confirm the exquisite sensitivity of scalp-recorded ERPs to

the cognitive milieu in demanding tasks and suggest the possibility of

eventually indexing specific cognitive processes with specific waveform

components or with the activity in specific latency regions of EKPs.

It is interesting to note, however, that even prior to attaining a thorough

understanding of the functional significance of specific ERP components, one

can infer, from the pattern of results, a number of indications about how

subjects performed the present task. Consider the fact that changes in

monitored readouts that went out-of-bounds (i.e. targets) elicited a markedly

different response from changes in monitored readouts that stayed in-bounds,

whereas responses to changes in non-monitored readouts did not distinguish

between in-bounds and out-of-bounds changes. These results suggest that

subjects did indeed selectively attend to the readout positions that they were

instructed to monitor. Likewise, the fact that the ERPs showed a significant

effect related to the number of monitored readouts "in danger," but no effect

of the number of non-monitored readouts "in danger," suggests that subjects

noticed the former but not the latter. Both of these findings are consistent

with the conclusion that subjects did not process the value of non-monitored

readouts, despite the fact that only one readout changed on a given

presentation and subjects did not know whether a monitored or non-monitored

readout was about to change.

On the other hand, this conclusion must be reconciled with the fact that both

the workload effect on the N250 and slow positivity, and the effect of number
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of monitored readouts "in danger" on the peak positivity, were found in the

responses to changes in both monitored and non-monitored readouts. This

finding suggests that these ERP effects reflect differential processing due to

the distributing of attention among the readouts being monitored, and that this

processing, in essence, is related to determining which readout changed, rather

than to determining the specific value of the readout that changed. Therefore,

the present ERP results can be used to infer that subjects selectively attended

to the readouts that they were to monitor, that they noticed the number of

monitored readouts that were "in danger" of going out-of-bounds, and that

workload modified some aspects of the processing of all stimuli, whether

monitored or not.

Such information would be useful to know in a number of practical

applications. Design issues such as configuring display formats which minimize

workload, maximizing the effectiveness of warning messages, and increasing the

salience of task-critical information often hinge on reliable measures of which

stimuli are being attended, whether extraneous information is intrusive,

whether subjects are taking advantage of useful information that is available,

and which of several alternative designs entail less mental workload. The

present results point towards the possibility of using ERPs to address such

issues, in situations where one can not rely on, or it is difficult to acquire,

subjective and behavioral measures. Moreover, in addition to playing a

confirmatory or surrogate role, ERPs may serve a diagnostic function. When

overt performance has been observed to fail, one may be able to glean

information from ERP effects like those obtained here in order to indicate the

particular aspects of information-processing, and by inference the particular

aspects of system design, that were deficient. Beyond the design arena, such

ERP measures may also be helpful for monitoring the progress of training on

demanding tasks or for selecting personnel who are particularly capable of

functioning in various tasks.

Of course, many of the ERP effects obtained here were small and required

extensive data analysis based on average waveforms. For some engineering

applications, one would have the luxury of collecting as much data and

analyzing it to the extent that we did here, but in other applications one

would be more constrained. Nonetheless, the present results may point the way

Z-48



towards other manipulations or measures that would better emphasize the effects

of interest. It will be interesting to see, as studies like the present ones

are recast into operational systems or simulators whose task demands have been

approximated in the laboratory, to what extent the cognitive-related patterns

of ERP results become more pronounced.
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3.0 TASKANALYSISOFADVANCEDCONCEPTSFLIGHTSIMULATOR
DISPLAYSANDAIRCREWTASKS

Previous attempts to record physiological indices related to mental workload

in-flight or in a cockpit simulator have usually introduced contrived stimuli

and tasks such as those used in the laboratory. For example, in studies of

scalp-recorded event-related potentials (ERPs), subjects might be given a

"secondary" tone counting task to be performed while they control the aircraft

or simulator. ERPselicited by, for example, rare and frequency tones are then

examined as someaspect of "primary" task workload, i.e. the difficulty of the

flying task, is varied. This approach has the obvious advantages of providing

discrete stimuli (the tones) to which the ERPscan be time-locked and allowing

the triggering of these recordings with instrumentation that is independent of

the cockpit instruments and controls. However, this approach clearly has very

limited applicability in the context of realistic scenarios. The tone counting
task is obtrusive in that it burdens pilots with additional workload as

compared to that which they would otherwise experience. Therefore, conclusions

drawn from such contrived situations are of questionable validity and limited
generality.

3.1 0b_ectives of the Present Analysis

If ERPs are to find a place in the system design process, they will have to be

recorded unobtrusively in response to events to which the pilot will be exposed

in the course of normal flight operations. The objective in the present effort

was to take a first step in this direction by conducting an analysis of cockpit

displays and pilot tasks, for the purpose of identifying cockpit events which

might be expected to elicit ERPs related to pilot mental workload.

The Advanced Concepts Flight Simulator (ACFS) at NASA Langley provided the

context in which to conduct this analysis. This state-of-the-art simulator,

designed to model a 1995 time-frame transport aircraft, was being implemented

during the present period of performance as a research simulator at NASA

Langley, NASA Ames and Lockheed-Georgia. It provided an attractive framework
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in which to address the possibility of ERP recordings, because it makes

extensive use of CRT displays to convey flight information to the aircrew,

these displays are well documented, it will support a wide range of full-task

mission scenarios in which workload can be manipulated, and because the

aircraft it foreshadows will probably be available during the time-frame within

which one might hope ERP technology will find its way into operational

systems. Moreover, a number of methodological issues that must be addressed in

considering the recording of ERPsin the ACFSare typical of those that will be

faced by investigators working with other simulators.

The present effort focused on the following issues:

o How to identify events in the cockpit that should elicit EKPs related to

workload. The dual goals were to develop a methodology that could also be

applied for such purposes in other systems and to specifically identify
ACFS events that could be used in a subsequent validation effort to test

hypotheses about ERPindices of workload under realistic conditions.

o What ACFStasks and scenarios would likely impose high workload demandson
the aircrew and how to manipulate workload during realistic scenarios in

the ACFS. In that it models an aircraft that is presently somewhatbeyond

the state-of-the-art, the ACFS incorporates a number of automated

capabilities that were designed to reduce the information processing load

on the aircrew. Nonetheless, the continuing expansion of instrumentation

and sensors being forecast for near-term implementation in cockpits ensure
that, at least under certain operational conditions, high mental workload

will continue to be an operational problem.

o How to derive converging measures of workload that can be correlated with

ERP measures, again without resorting to contrived or overly obtrusive

indices. Such converging measures are important, both in order to confirm

that workload is indeed being manipulated in experimental efforts and to
explore the extent to which ERPmeasures correlate with other indices of
workload.

These issues were addressed using modified task analysis techniques. In most
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task analyses, the humanfactors engineer takes great care to characterize the

operator's tasks in terms of observable stimuli and consequent actions. The

present approach was, by necessity, somewhat different. We wished to

characterize the pilot's tasks in terms of the psychological constructs that

have been related to ERP activity -- selective attention, expectancy for
specific events, uncertainty resolution, workload and spare capacity to process

incoming stimuli, and stimulus discriminability (for example, see reviews by

Donchin, Ritter, & McCallum, 1978; Donchin, Kramer, & Wickens, 1986). By

analyzing the pilot's tasks and cockpit displays in terms of such inferred

mental constructs, it was possible to predict the particular cockpit events,

occurring in specific contexts, to which it may be fruitful to time-lock ERP
recordings for the purpose of assessing pilot workload.

3.2 Analysis Methods

As mentioned previously, one reason for selecting the ACFS for the present

analysis was the fact that there was extensive conceptual design documentation

available (Sexton & Needles, 1982; Sexton, 1983). Drawing upon the expertise

of subject matter experts at Lockheed-Georgia and NASA Langley, ARD human

factors engineers first familiarized themselves with the key "baseline"

displays planned for the ACFS (see Addendum 3A-I), as documented in Sexton,

1983. Each display was then analyzed in turn, with the tasks during which each

would be utilized being documented. The display elements for each display were

characterized according to the following criteria, which addressed the extent

to which each element was a candidate for our purposes:

o The extent to which the display element changes discretely. In order to

elicit ERPs, using conventional recording techniques, one must be able to

time-lock to a discrete point in time at which the event begins. This

requirement need not imply the appearance of a stimulus (e.g. on a CRT)

which had been absent prior to that time, but it does imply a discrete,

non-continuous change in the display element. For the time being, we did

not consider how to provide the appropriate timing information.

o The extent to which the display element delivers information to the aircrew

in a manner that might elicit ERP components related to workload.
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Candidate display elements were examined in the context of loosely defined

tasks to determine the extent to which they would elicit the mental

processes that have been associated with the P300 and other late positive

components of the ERP. In particular, does the display element convey

information that is somewhat unexpected or uncertain, is it readily
discriminable (e.g. with respect to clutter on the CRT or to its

distinctiveness relative to other changes that could occur), and does it
commandattention, at least during certain tasks? It should be noted that

the interest here was not in all display changes that are discrete enough

to elicit an ERP or in all those that afford the opportunity for

time-locking a recording. Rather, we were interested specifically in those

ERP-eliciting display changes for which the ERP would be expected to

contain the endogenous components that have been shown to vary with

workload.

the extent to which the display or display element would likely be attended

in situations that lend themselves to the manipulation of task difficulty

and to ERP recordings. This criterion obviously required some

hypothesizing about aircrew tasks and sources of workload in the ACFS. It

also raised the question of whether the candidate changes in displays could

realistically be presented repetitively, in order to perform conventional

signal averaging of ERPs over at least some small number of occurrences.

A question that arose in the course of the above analysis was the likelihood

that pilots would be attending to a given display when the candidate

ERP-eliciting change occurred. This likelihood would clearly depend on such

factors as the importance of the task which involved the display or display

element of interest, the number and importance of competing tasks, and

individual differences in pilots' style and preferences. In order to better

determine likely pilot attentional patterns, and to work towards defining

flight scenarios that would be useful for validating the speculated workload

influence on candidate ERPs, a more detailed task analysis of one particular

flight scenario was conducted.

An approach and landing scenario (see Addendum 3A-2) was adopted for this

purpose, because it seemed to encompass most of the candidate display features
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identified in the foregoing analysis. The scenario was broken down into

detailed tasks and subtasks, and at the subtask level the displays and display
elements were identified to which pilots would likely attend in order to obtain

the information they required.

Also considered in this analysis of displays and tasks were the capabilities of

the ACFS to support realistic manipulations of mental workload and the subset

of these manipulations that should be selected for use in the planned

validation studies. Likewise, alternative converging measures of workload were

considered and the feasibility of obtaining various measures in the ACFS was

delineated.

It became apparent during this analysis that it would be premature to attempt a

comprehensive validation study of ERP indices of workload without first

exploring, in a more limited way, the reasonableness of our conjectures

regarding candidate displays and the extent to which pilots would be expected

to observe and attend to these displays during realistic scenarios. Therefore,

a need was identified for pre-validation behavioral and, if possible,

occulometric testing in the ACFS, as a prelude to ERP recordings. Such testing

is needed in order to confirm that we are focusing on the display events which

...... _ th_ ._I_,Q =rr_nr_on at crucial times during a scenario.

3.3 Findings from the Task Analysis of ACFS Displays and Aircrew Tasks

Three ACFS displays proved most useful for our purposes. These three displays,

the primary Flight Display with attitude format, the Navigational Display, and

the Engine Power Display, are presented in Addendum 3A-I. Below, we list some

changes in elements of these displays, and a few other cockpit events that

appear to be candidates for eliciting ERPs related to workload. The approach

and landing scenario that was adopted for the analysis of likely pilot use of

displays is summarized in Addendum 3A-2. Possibilities for manipulating mental

workload in the ACF$ are listed below, as are a number of possible converging

measures that could be examined in conjunction with ERP changes.
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3.3.1 Candidate Display Events

The ACFS at Langley was running at a 16 Hz display update rate at the time of

the present analysis, and it was slated to eventually run with a 20 Hz update

rate. With these rapid cycle times, the displays change smoothly and

continuously, without the "jumpiness" that would result from a slower update

rate. It is not feasible, therefore, to time-lock ERPs to the updating of the

displays per se. The present analyses did, however, reveal a number of

candidate display elements which change discretely in task situations that

would be expected to meet the criteria for eliciting endogenous ERP components

related to mental workload:

o The onset of various discrete messages on the Flight Display (see Addendum

3A-I), namely:

0UTERMARKER

MIDDLE MARKER

INNER MARKER

DECISION HEIGHT

FLARE BAR

FLAPS?

STEER POINT

Upon initiation, these messages flash several times. The ERP of interest

would be elicited by the initial onset of each message. These ERPs may

reflect the extent to which the pilot is preoccupied with other mental

processing.

o Changes in the color of the bar graphs on the Engine Power Display,

reflecting the movement of engine performance parameters into Caution or

Warning zones.

o The appearance or disappearance of the Indicated Air Speed Deviation bar on

the Flight Display.

o The appearance or disappearance of the Radar Altitude Digital Readout on

the Flight Display.
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Other display changes pose an interesting possibility for eliciting endogenous

ERPcomponents. This category of "events" is not related to a discrete onset,

offset or abrupt perturbation in a display, but rather to a smoothly changing

display element attaining a state or screen position that is meaningful to the

pilot. It is not clear whether such changeswill elicit an ERPat all, but it

should be recalled that endogenousERPcomponentssuch as P300 can be emitted,

as opposed to evoked, in the absence of external stimulation (e.g., Rucb_kin,

Sutton, & Stega, 1980) if the information conveyed by that absence is

meaningful to the subject. If preliminary empirical studies suggest that the

following display changes elicit such ERPs, it is likely that these responses

will be modulated by attentional demands:

o Whenthe position of the Flight Director Ball on the Flight Display leaves

or enters the target area within which the pilot is trying to maintain it.

o Whenthe Air Speed "bug" on the Flight Display exceeds a specified level.

o When the movxng bars on the Engine Power Display reach or fall below

thresholds which signify Caution or Warning conditions.

Whenthe changing digital values for Altitude, Indicated Air Speed, Radar

Altitude, Vertical Velocity, and the To and From Waypoint Altitudes on the

Flight Display match or depart from commandedor intended levels.

o Likewise, when the analog-like dials and indicators for Altitude, Air

Speed, Flight Path Angle, and Horizontal Deviation and Track Angle Error on

the Flight Display match or depart from commandedor intended levels.

o When the Lubber Line on the Navigational Display crosses the Track Marker

or Aircraft Heading Index.

Finally, other cockpit events, which are not CRT-based, but which meet our

criteria for eliciting ERPs, should be mentioned. These include:

o Onset of Caution and Warning indicators.
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Onset of auditory annunciators to alert the aircrew to emergency

conditions. There are three types of auditory signals, reflecting three

levels of problem severity.

3.3.2 Possibilities for ManipulatinK Workload in the ACFS

Although the aircraft modeled by the ACFS will contain a number of

"intelligent" capabilities and semi-automated systems designed to lower the

workload of the aircrew, the power and flexibility of this simulator provides

many opportunities to vary workload, attentional demands and task difficulty.

For example:

Several display formats (e.g. the Navigational Display) offer cluttered or

decluttered alternatives.

Cross-winds, turbulence, and wind shears are modeled and can be introduced

into different phases of flight.

Engine failure is modeled and can be used to introduce additional

sensitivity into the "feel" of the controls. This manipulation can be

introduced in gradations of difficulty -- e.g., no loss, loss of engine

with center line thrust, loss of engine with asymmetrical thrust.

Various alarm conditions requiring an immediate pilot response (e.g.,

engine fire) can be introduced.

The sensitivity of the sidearm controller can be varied, giving the control

of the simulated aircraft a different "feel".

Different airports are modeled and flight path approaches of varying

difficulty can be manipulated.

The Flight Director Ball, a compelling pilot aid, can be switched on or

off.

o The frequency of occurrence or memory demands entailed by verbal
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communications with ground-based air traffic controllers can be varied in

realistic ways.

o The frequency of required navigational changes enroute, for example to

avoid weather patterns, can be varied.

3.3.3 Converming Measures of Workload

A number of possibilities exist for implementing other measures of workload in

the ACFS for use in validating and evaluating the relative sensitivity of ERP

effects:

Subjective ratings such as the SWAT technique (e.g., Reid, Shingledecker, &

Eggemeier, 1981) or the NASA TLX technique (e.g., Hart & Staveland, 1986)

are readily implemented. Granted, these measures entail either intruding

on the pilot's task performance, in order to make the ratings on-line, or

deferring the ratings until after the scenario, in which case crucial

information can be lost. Nonetheless, these measures are easy to obtain

and can prove enlightening.

The ACFS provides for the logging of many measures, derived from flight

performance, that may vary with task difficulty and workload. The pilot's

adherence to an ideal flight path or landing pattern should be revealing.

Speed and appropriateness of response to emergencies or unexpected

occurrences may be useful, although it may be necessary to instruct the

pilot to respond rapidly if such measures are intended. It was noted that

few conditions in the ACFS require a rapid response and many pilots are of

the opinion that it is better to do nothing until the appropriate response

is apparent rather than to act with undue speed and rashness. Despite the

aforementioned limitations of contrived secondary task performance

measures, if naturalistic secondary tasks can be defined, the speed and

accuracy of performing such tasks should be useful.

Other physiological measures may also be instructive as concomitants of

task difficulty and mental workload, although in many cases their validity

is as much in question as that of ERPs. Eye blink rate, duration and
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latency have been related to workload (e.g., Bauer, Ooldstein, & Stern,

1987), and are particularly useful under relatively low vigilance

conditions. Heart rate and heart rate variability have likewise been shown

to be sensitive to workload manipulations, at least under certain

conditions (e.g., Roscoe, 1982; Veldman, Mulder, Mulder, & van der Heide,

1985). Voice stress measures such as those presently being examined at
NASALangley, if they prove reliable, could be readily gathered from verbal

communications by the pilot with ground control.

3.4 Discussion and Recommendations for Studies to Validate the Results of

These Analyses

A general conclusion that can be drawn from the present analyses is that there

are events in modern cockpits and cockpit simulators that are candidates for

eliciting ERPs related to mental workload. Moreover, the general methods and

issues examined in our analyses proved to be workable and should generalize to

other settings.

Clearly, the present conjectures about display changes that will elicit ERPs of

interest need to be validated. Likewise, the ease with which workload can be

manipulated and converging measures that can be obtained in the ACFS need to be

tested. Ideally, such validation testing should take place in several, well-

considered steps. First, systematic "dry runs" without ERP recording should be

conducted. The purpose of these studies would be twofold -- to determine the

likelihood that pilots will observe the display elements on which the candidate

events occur, when they occur, and to confirm that the workload manipulations

to be used in the subsequent ERP studies are salient enough to influence the

more conventional measures of workload against which ERP susceptibility is to

be judged. If problems occur in the initial aspects of validation, they will

need to be addressed by further analyses or ACFS experimentation before the

possibility of ERP indices of workload in the ACFS can be subjected to a fair

evaluation.

These "dry run" tests should involve the manipulations of workload that are

planned for the subsequent ERP studies. The introduction of cross-winds or

turbulence while landing, or the failure of an engine upon final approach
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appear to be good candidates for manipulating aircrew workload. The extent to

which these manipulations affect subjective, behavioral and flight performance

measures of workload should be examined. Pilot's attention to displays should
be assessed by having the pilot "think aloud" as he performs the scenario and,

if possible, by monitoring eye fixations and scan patterns using an

oculometer. If it is problematic that pilots will observe the candidate

display changes as they initially occur, it may be advisable to also use the

oculometer during the ERP-recording studies to sort out the trials on which

workload-related ERP changes would be precluded by inappropriate (for the

present purposes) eye fixation or scan patterns.

It should be recognized that the present analyses were conducted with the

constraint of identifying cockpit events that lend themselves to conventional

ERP recordings. The power of working in the simulator setting could be more

fully realized by someadvances in ERPrecording and analysis techniques:

An ability to trigger ERPs off eye movements themselves would greatly
increase the number of candidate events one could consider and the number

of trials one could expect to obtain in a given scenario. The brain's

response to the display information provided when the eye fixates on a new

display element after a saccadic movement, regardless of whether the

external display changed or not, may elicit a similar response to that

which occurs when the display itself changes. If so, these ERPswill also

likely be modulated by workload. This possibility seems to be readily
testable.

o One could further expand the numberof candidate events if it were possible

to derive the measures related to workload on the basis of single trial

ERPs. The present project, of course, included a task that was aimed at

further developing such capabilities.

o As mentioned previously, it is possible that certain continuous display
changes would elicit an ERPwhen the changing indicator passes somepoint

or enters some condition that is significant to the pilot. If empirical

tests of this phenomenonshould suggest the feasibility of "time-locking"

to such continuous changes, the number of display events available for
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analysis would be greatly expanded.

Somefurther observations about future directions and the degree to which the
present ACFSfindings generalize are in order:

O While the ACFS provides many advantages as a test-bed for the transition of

ERP measures from the laboratory to more practical settings, it also

provides some impediments. Because the simulation is updated at 16-20 Hz,

the displays appear to change more continuously than would be the case in

less powerful simulators. Therefore, in many less high-fidelity

simulators, the "jerkiness" in displays could be used to advantage in that,

with each update cycle of the simulation, a perceptually discrete stimulus

is provided to which ERPs could be time-locked.

O Simulators with an out-the-window visual scene would create additional

possibilities for introducing workload manipulations. Task difficulty

could be readily manipulated by day versus night flying comparisons or by

varying the cloudiness of the visual scene.

o Cockpit Display of Traffic (CDTI) formats were not considered here in any

detail, because none are planned for installation in the Langley ACFS.

However, preliminary analyses suggest that this display format, and the

situations in which it would be used, contain a number of ERP-eliciting

events that might be related to workload. Interestingly, some aspects of

these displays appear to be conceptually analogous to the task we designed

for the empirical laboratory work conducted under the present contract.

O Although the present analyses focused on high workload conditions, lower

than optimal mental workload may be more of a problem in sophisticated,

semi-automated systems such as the ACFS. If the pilot is lulled into a

false sense of security or loses vigilance, he may not be prepared to

respond appropriately when uniquely human capabilities are called into play

by emergencies or other unexpected conditions. ERPs and other

physiological measures may be sensitive indicators of such pilot mental

states, so, at some point, analyses should be performed and studies

conducted to examine the problems associated with low levels of workload.
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Of course, under such conditions, there may be, by definition, fewer

cockpit events being attended by the aircrew, so more ongoing indices of

physiological activity (e.g., EEG, heart rate variability, EOG)may prove
more fruitful than ERPs.
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ADDENDA TO CHAPTER 3
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ADDENDUM3A-I

KEYDISPLAYFORMATSFROMADVANCEDCONCEPTSFLIGHTSIMULATOR

These display formats are taken from:

Sexton, G. A. (1983). Crew Systems and Flight Station Concepts for a 1995

Transport Aircraft (Report No. 166068). Hampton, Va.: NASA Langley Research

Center.

ADDENDUM 3A-I.I -- FLIGHT DISPLAY WITH ATTITUDE FORMAT (Figure 22)

ADDENDUM 3A-1.2 -- NAVIGATION DISPLAY FORMAT (Figure 24)

ADDENDUM 3A-1.3 -- ENGINE POWER DISPLAY (Figure 29)

ADDENDUM 3A-1.4 -- SAMPLE FLIGHT DISPLAY WITH SUPERIMPOSED MESSAGES

3-15



ADDENDUM3A-I. I

5O0

TO : 40

FM : 25

1011
29.86

# S_OL COLOR LOCAT_.ON & MOVEW'_-N'r

1 AZRCRA.rT %_it •
& CIRCLE

2 HORIZON White

Li"NE

3 PITCH _/te

SCALE

4 ROLL White

SCALE

5 ROLL Whir..e

I'_0EX

6 DELETED

Center of ADI ball. Always statlonarT. Shcvs aircraS:

attitude in reference to horizon llne and pitch and roll
scales. Max climb or descent is 90° . Max roll is 90° .

Across the ADI ball. In relation to aircraft s.vmbol it

moves up during descent, down durin_ climb, and pivots
aro,-_ center of aircraft sTmbol to indicate roll. Laf:

end of horizon line is lower during right bank And hi_her
during left bank. Area inside the ball above the

horizon line is shaded cvan; below the horizon line, black.

Centered above and below horizon llne.

to horizon line during roll maneuvers.
ar_l below aircraft symbol.

Remains parallel:
Shows 20 ° above

Centered above pitch scale. Rotates with the horizon lice

as the aircraft banks. Scale markers are at I0, 20, 30,

45, azzl 60 degrees. Angle of bank is shown under the roll
_-d_'-. Max angle of bank is 90° .

Centered on outside of AEI ball at the top. Always sta-

tionarT. Shows angle of bank by Fointing to the roll scale.

Figure 22. Flight Di_lay wlth Attitude Format, (Sheet 1 of 4)
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# SYMBOL COLOR LOCATION & MOVEMLNT

I0

ii

12

13

14

FLIGHT

D IRECTOR

BALL

Araber

(Fil!ed)

IAS

DEVIATION

BAR

Amber

(Filled)

IAS

SCALE

_hite

AIRSPEED

DIGITAL

READOUT

& LABEL

White

White

COMM.%ND ED

AIRSPEED

LNDLX

Amber

MACH

DIG ITAL

RL%DOUT

& LABEL

White

BAROMETRIC

ALTITUDE

SCALE

White

Figure 22.

Moves left, right, up or down to indicate co---ended
vertical and lateral track. When the circle is flown

so as to encircle the flight director ball, the aircraft

will be flying the correct vertical and lateral profile

to intercept or remain on desired paths. Disappears
when flight director fails or is turned OFF

Bar grows down fr_ bottom of left wing of the aircraft

symbol =o show deviation below commanded indlcated air-

speed (IAS). It grows up from top of the left wing to

show deviation above commanded IAS. The length of the

bar changes at a rate of _ inch per i0 K/AS deviation

to a maximum of 1.9 inches (38 KIA5). It disappears

cQmpletely with plus or minus 2 knots deviation.

Occupies fixed position in upper left corner of display
Scaled in 5 knot increments from actual aircraft IAS

(shown in digits and under the tip of _he pointer). It

shows a ranBe of plus or minus 50 knots frc_ actual L%S.

The numbers on r.he scale change at a point 180 ° from

the tip of _he pointer. The total range of airspeed is
from 0 to 999 knots.

Upper center of airspeed circle. Digits show the IAS of

the aircraft and agree with the position of the pointer

on the airspeed scale. When acceleration or deceleration

is so rapid that the last digit changes too fast to be

readable, only the even numbers are displayed. If it

gets too fast again only the 0s and 5s are displayed.

Total range is from 0 to 999 knots.

Extends from center to edge of airspeed scale, pivoting

around the center. Tip points to the actual IAS on the
scale.

Moves around the circumference of _he airspeed scale and

points to the commanded indicated airspeed. Difference

be_;een this index and _he airspeed pointer is shown on

IAS Deviation bar. The index disappears from view when
the commanded value is more _han 50 knots from the

indicated.

Lower center of _he airspeed circle. Digir.s show the

Math of the aircraft. It has a range from 0.&0 to 1.0

Math. It disappears fron vi_ below 0.40.

Occupies fixed position in upper right corner of the

display. Scaled in I00 foot increments indicated by

single digits from 0 to 9.

Flight Display with Attitude Format, (Sheet 2 of 4)

3-17



# SYMBOL COLOR LOCATION & MOVL-MF_NT

15

16

17

18

19

20

21

BAROMETRIC

ALT ITUD E

D IG ITAL

RF.%DOUT

White

BAROMETRIC

ALTITUD E

POINTER

White

HORIZONTAL

DEVIATION

& TRACK

ANGLE

ERROR SCALE

Whi =e

HORIZONTAL Box-White

DEVIATION Letters

POINTER -Green

or Amber

TRACK

ANGLE

ERROR

POINT_

Amber

VERTI CAL

D EVIAT ION

SCALE

VERTICAL

DEVIATION

POINTER

White

Box-Wqzi=a

Figure 22.

Upper center of altimeter circle. Digits show the baro-

metric altitude of the aircraft. The last three digits

ref!ec= the position of =he tip of the pointer. The

total range necessary is from 0 to 50,000 feet. Be='xeen

1000 and 9990 the first digit is replaced with a hatched

box. Below 990 feet only the i, 2, or 3 digits are dis-

played, without hatched boxes. The number is rounded to

the nearest 10 feet so that the last digit is always 0.

Extends from center to edge of altimeter scale, pivoting

around the center. Tip points to the 100 feet of alti-

tude scale.

Centered below ball in a fixed posiclon. Used with

horizontal deviation pointer above a_ track angle error

pointer below.

Moves along the =up of the scale. Indicates amount of

lateral deviation from flight plan. It is a "fly-to"

indicator similar to the CDI on an HSI. Full scale is

plus or minus 3 nm while enroute or 1 um on approach when

aircraft is outside the final approach fix (F._F). _en

inside the FAF and witkin 2.5 ° horizontal deviation, full

scale ¢_hanges to 2._. Pointer stops moving when devia-

tion reaches full scale at which time the letters change

from green =o amber. _en inside the F.A2 and with.i= 2.5 °

horizontal deviation, letters c_nge from _ to L.

Moves along the bottom of the scale to indicate tt_ of

aircraft =rack from desired course. Full scale is plus

or minus 20 °. Pointer stops moving at max deviation.

When aircraft track and desired course are parallel,

regardless Of whether it is on desired course, TAE

pointer is centered. It moves away from center in the

opposite direction to which the aircraft track (nose of

aircraft with no wind) moves from a position parallel to

desired course.

Centered along right-hand side of ADI ball in fixed

posi=ion.

Moves along the vertical scale to indicate vertical

deviation from flight plan. Full scale is plus or minus

500 feet when alrcraf= is outside the FAF. _en inside

the FAF and within 2.5 °TAE, full scale changes to plus

or minus 0.7 ° vertical deviation from glide slope.

Pointer stops moving when deviation reaches full scale

at which time =he letters change from green to amber.

When inside the FAF the letters c.hange from V to G.

Flight Display with Attitude Format, (Sheet 3 of 4)
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# SYPf_OL COLOR LOCATION& MOV_rMENT
22

23

24

25

26

27

28

29

30

31

RADAR Amber

ALTITUDE

D IGIT-_L

READOUT

VERTICAL White

VELOCITY

POINTLR

& DIGITAL

READOUT

TO Green

WAYPOINT

FROM Green

WAYPOLNT

ALTITUDE

ANGLE-OF- Red (S)

ATTACK Green (C)

Amber (F)

FLIGHT Green

PHASE

& MODE

ANNOUNCIATION

BAROMETRIC Green

PRESSURE

FLIGHT

PATH

ANGLE INDEX

FLIGHT

PATH

ANGLE SCALE

CARDINAL

HEAD ING

MARKERS

Araber

Amber

Green

Right center of display. Indicates height above grour_

below 2500 feet. Disappears above 2500 feet AGL. R

indicates radar altitude. Readout shows lower than 2C0

feet - nearest foot; above 200 feet - nearest i0 feet.

Right center of display. Indicates descent with a down-

arrow or climb with an up-arrow. Digital readout indi-

cates feet per minute of change. Readout shows less

than 500 ft/min, nearest i0 fooc/min; 500 Co 2000 ft/min,

nearest 50 feet/mln; above 2000 ft/min, nearest i00

ft/min.

Lower right corner of display. Indicates desired a!=i-

rude of the TO waypoint (the one the aircraft is

proceeding towards) in hundreds of feet. Changes to
indicate the altitude of the next waypoint when over or

90 ° abeam the TO waypoin=.

Lower right corner of display. Indicates f!ighc planned

altitude of the waypoint =hat the aircraft has just

passed (FR_ waypoint). Changes when the TO waypolnc

changes.

Left center of display. Split donut indicates on proper

angle-of-attack (AOA) for weight and configuration.
"F" indicates too fast or Coo iow AOA. "S" indicates

too slow or coo high AOA. As AOA changes one-half the

donut fades away, as the ocher symbol comes into view.

F or S gets more pronounced as donut completely dis-

appears.

Lower left corner of display. Indicates selected mode

of flight and status of Chat selection.

Lower right corner of display. When barometric set knob

is pulled out, altimeter setting is displayed in milibars

and inches of mercury. Digits disappear when knob is

pushed in.

Right center of display. Moves along flight path

angle scale.

Right center of display. FPA scale is always centered

on the aircraft symbol and has a range of +--6° FPA.

Under horizon line. Move laterally across horizon line

to show each 10 ° of Crack change.

F_gure 22. Flight Display with Art|rude Format, (Sheet 4 of 4)
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ADDENDUM3A-1.2

DIS
TIME

/

/

/

TAS
GS
WIND 9O

21
24

DIR CRS 239

DSR C_/230

4o

..'; S'CIBOL COLOR LOCATION & MOVEMENT

i 0_ White
AIRCKAFT

COMPASS _'nit e

ROS E

3 TRACK White

LUBBER

LINE

4 AIRCRAFT I,%ire

TRACK

DIGITAL

READOUT

A_VD BOX

5 TRACK Amber

HAgX_

Always remains in a flied position wi_h the uppermost uoinc

of the _riangle at: _he cen_er of the smallest range =arker
circle.

120 ° arc with aircraft =rack at =oo center. Arc is divided

into 5 ° increments wi=h digits each 30 ° starting a= 0°.

Arc posi=ion does not move but scale c,hanges as alrcraSt
_urT_.

Always oriented vertically from the own aircraft s.vubol _o
_he compass rose. Shows aircraft _rack on _he scale.

Above top center of compass rose. Shows numbers frc= 001

to 360 degrees and a_rees wi=h reading under lubber line

on compass rose.

Rotates around circumference of compass rose. I_ is

positioned by pilot.

Figure 24. Navigation Display Format, (Sheet 1 of 3)
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!/ SY)_OL COLOR LOCATION & MOVEMENT

AIRCR2LFT

HEADING

INDEX

10

ll

12

13

14

15

16

7 RANGE

MARKERS

WAYPOINT

SYMBOLS

AND

IDENTIFIERS

PL%NNED

COI:_SE

LINE

POSITION

PREDICTOR

OR TRLND

VECTOR

DIST.%NCE

TO GO

DIGITS

TIME

£U _U

DIGITS

DIRECT

COURSE

DIGITS

DESIRED

COURSE

DIGITS

TRUE

AIRSPEED

DIGITS

GROUND

SPEED

DIGITS

Amber

_q_ite

White

Green

White

Green

Green

Green

Green

Green

Green

Figure 24.

Rotates around circumference of compass rose. Sho_s

aircraft heading on the compass rose and drift correction

angle as the difference between aircraft heading index
and track lubber line.

Equidistant marks between Own aircraft and maximum range

selected. Marks maintain fixed position. Scaled in

and identified on right hand end.

Three dimensional points defining route of flight. They

move with respect to Own aircraft symbol at rate based

upon ground speed and range scale selected. When aircraft

is on desired track, nearest waypoint is always shc_-u

vertically above Own aircraft symbol.

Line be_;een waypoints defining route of flight. Mmves

with the waypoints. Terminates at largest range m&rker

or furtherest waypoint on one end and bottom of display

on other end.

Three dashed lines extending from front tip of Own air-

craft symbol. The end of each dash shows the predicted

position of the tip of the Own aircraft symbol at 20, 40

and 60 seconds from the present time based upon present

aircraft course and ground speed. Lines chan_e length

with respect to ground speed and display range scale.

Upper left corner of display. Shows nautical miles

bec;een tip of Own aircraft and nearest (TO) waypoint.

Figure is shown in full miles (no decimal) until under

I0 NM; then miles and tenths of miles.

Upper left corner of display. Shows hours, minutes and

sac=rids required to trav_l from present position to next

(TO) waypoint. Leading zeros (insignificant) are no=

shown.

Upper right corner of d/splay. Shows course (typically

magnetic) between Own aircraf_ and next (TO) waypoint.

Upper right comer of display. Shows course (typically

magnetic) between last (FROM) waypoin_ and ne.T_ (TO)

waypolnt.

Lower left corner of display. Shows true airspeed of

aircraft.

Lower left corner of display. Shows ground speed of

aircraft.

Nav|gatlon Display Format, (Sheet 2 of 3)
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# SY._OL COLOR LOCATION& MOVEMENT

17

18

19

20

21

22

WIN-D
ARROW
AND
DIGITS

NAVIGATION
MODE

NAVIGATION
SOURCE

NAVAIDS,
AIRPORTS
AND
OBSTACLES

WEATHER
RADAR
CONTOURS

TLME

BOX

Green

Green

Red

Green

Amber

Araber

Lower left corner of display. Shows wind vector (arrow)

pointing from the direr=ion =ha= =he wind is blc_ing

relative to the aircraft track. Arrow disappears when

wind is calm. Digits show wind velocity in knots.

Lower right corner of display. Shows navigation _ode

selected for display.

Lower right corner of display. Shows sources of naviga-

=ion signals being used to obtain navlga=ion display.

Symbols for nay aids, airports and/or obstacles may be

selected for display.

Weather radar returns may be selected as an overlay

to the map.

Appears when TNAV is selected on GCP. Moves along

desired course llne of moving map. Indicates the

position that the aircraft should be in to arrive at

a metering fix at a particular time.

Figure 24. Navigation Display Format, (Sheet 3 of 3)
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ADDENDUM 3A-1.3

FF

X I 000

31.8 31 .7

1. ALL PARAMETER LABELS AND UNITS - GREEN

2. RPM TOUCH PANEL SWITCH OUTLINE - GREEN

3. DIGITAL READOUT OF PARAMETERS -

- EPR- NORMAL, GREEN; WARNING, RED

EGT - NORMAL, GREEN; CAUTION, AMBER; WARNING, RED

RPM- NORMAL, GREEN; WARNING, RED

FF - GREEN

4. ALL SCALES - WHITE

5. EPR LIMIT MARKER - RED

6. COMMANDED EPR MARKER - WHITE

7. THROI-rLE EPR SETTINGS - AMBER

8. ACTUAL ENGINE EPR BARS - NORMAL, GREEN; WHEN THE EPR LIMIT IS EXCEEDED,

THAT PORTION OF THE BAR ABOVE THE LIMIT LINE PLUS THE INNER HALF OF THE

VERTICAL BAR BELOW THE LIMIT LINE TURNS RED

9= EGT WARNING LIMIT MARKER - RED

10. EGT CAUTION LIMIT MARKER - AMBER

Figure 29. Engine Power Display, (Sheet I of 2)

3-23



11.

12.

13.

14.

15.

16.

ACTUAL EGT BARS - NORMAL, GREEN. WHEN EGT EXCEEDS THE CAUTION
LIMIT, THAT PORTION OF THE BAR ABOVE THE CAUTION LIMIT LINE PLUS THE
INNER TWO-THIRDS OF THE VERTICAL BAR BELOW THE CAUTION LIMIT LINE TURNS
AMBER. WHEN EGT EXCEEDS THE WARNING LIMIT PLUS THE INNER THIRD OF
THE VERTICAL BAR BELOW THE CAUTION LIMIT TURNS RED; THE OUTER TWO-
THIRDS OF THE BAR BETWEEN THE WARNING AND CAUTION LIMITS PLUS THE
CENTER THIRD OF THE VERTICAL BAR BELOW THE CAUTION LIMIT REMAIN AMBER;
AND THE OUTER THIRD OF THE VERTICAL BAR BELOW THE CAUTION LIMIT REMAINS
GREEN.

RPM LIMIT MARKER - RED

ACTUAL RPM BARS - NORMAL, GREEN; WHEN RPM LIMIT IS EXCEEDED, THAT
PORTION OF THE BAR ABOVE THE LIMIT LINE PLUS THE INNE,R HALl: OF THE
VERTICAL BAR BELOW THE LIMIT LINE TURN RED

ACTUAL FUEL FLOW BARS - GREEN

TOUCH PANEL SWITCHES - GREEN

SWITCH LEGENDS - WHITE IF SELECTED (SHOWN AS HEAVY FONT), GREEN
OTHERWISE

Figure 29. Engine Power Display, (Sheet 2 of 2)

En6ine Power Format - The enEine power (ENG PWR) format displays

engine pressure ratio (EPR), exhaust gas temperature (EGT), either NI RPM

or N2 RPM selectable with the touch switch around the label, and fuel flow

(FF).
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ADDENDUM 3A-1.4

- _T <t

RNY 10000

HDLD
TU=E
i E_

DES
_LT 0__

RLT ARM

AT! CSS

LOC ARM

TC_3

. FLAPS
DESCEND MAX 2000

-i
#,IM/

_. ALERI_ j

I r _ I I

DZS

/

P /
• /

<30/"

TAS
GS

H!HD

: _:_Z DiR" C_S C5Z

S CSZ

/ t_ A ""

/ \ X "\

/ _ A \ \"/ KLMN_I .I'" "_'_'_ FC-HIJ \ 08

/ / "- 200
\ \

/ / _ "-/ \ 120
, \

/ _ 80
/ \

IE3 x4 FME I
I_" / _0 MLS 1

' 02Z \ A I TRUE

/

r_=_ / 0000 0000

SAMPLE FLIGHT DISPLAY WITH SUPERIMPOSED MESSAGES
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ADDENDUM 3A-2

SUMMARY OF REPRESENTATIVE LANDING SCENARIO

FOR WORKLOAD ANALYSIS IN THE ADVANCED CONCEPTS FLIGHT SIMULATOR
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The following table indicate_ flight parameters and control actions that are

likely to be of primary interest to the ACFS aircrew during various stages of a

representative approach and landing- The scenario is broken down in terms of

tasks (columns) and the aspects of flight that are being controlled (rows):

PITCH = Pitch Axis control

ROLL = Roll Axis control

THRUST = Thrust Axis control

ANT = Anticipatory control of the aircraft

NAV = Navigational control of the aircraft

DISCRETE CONTROL = Control of the aircraft involving individually distinct

movements or mediating responses

The flight parameters and control actions in the cells of the table are coded

as follows:

ADD = Increase throttle

ADJ = Adjust throttle

ALT = Altitude

ANGLE OF BANK (Self explanatory)

AS = Air Speed

DIST = Distance

FLAPS (Self explanatory)

FLT ANG = Flight Angle

GEAR (Self explanatory)

GS = Ground Speed

POSIT = Position

RANGE MARKERS (Self explanatory)

RET = Retard throttle

TIME (Self explanatory)

TRK = Track (i.e. Flight Path)

WIND (Self explanatory)
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PITCH

ROLL

THRUST

ANT

NAV

DISCRETE

CONTROL

ENTRY

(A)

ENROUTE TO _0LDING

I

DECREASE MAINTAIN MAINT

AIR SPEED AIR SPEED CRUISE

(B) (B) (C)

ALT ALT ALT ALT

AS AS AS

IRK TRK TRK TRK

ADJ PET ADD ADJ

POSIT

TIME

DIN

WIND

GS

RANGE

MARKERS

POSIT AS

COMMENCE

& MAINTAIN

TURN

(A)

ALT

AS

ANGLE

OF

BANK

ADD

ADJ

POSIT

HOLDING

II

ROLLOUT

& MAINTAIN

LEVEL LEG

(3)

ALT

AS

TRK

RET

ADJ

TRK

SET

AS

POSIT

TIME

DIST

WIND

GS

POSIT POSIT

TIME

DIST

WIND

GS

CONTINUE

TURNS

(c)

ALT

AS

ANGLE

OF

BANK

ADD

ADJ

POSIT

POSIT

CONTINVE

LEVEL

LEGS

(c)

ALT

AS

TRK

RET

ADJ

TRK

POSIT

TIME

DIST

WIND

GS
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PITCH

ROLL

rI-D_UST

NAV

ARCING

III

COMMENCE

& MAINTAIN

TURN

ALT

AS

ANGLE

OF BANK

TRK

ADD

ADJ

POSIT

POSIT

TRANSITION TO FINAL APPROACH

IV

ROLLOUT

& MA/NTAIN

LEG

(A)

DECREASE

AIR SPEED

(B)

MAINTAIN

AIR SPEED

(s)

ALT ALT ALT ALT

AS A_ AS

TRK TRK TRK TRK

RET RET

ADJ

TRK POSIT AS

SET AS

GEAR

FLAPS

POSIT

TIME

DIST

WIND

GS

ADD

MAINTAIN

LEG

(c)

ADJ

POSIT

TIME

DISI

WI_)

G5

GLIDE SLOPE

V

COMMENCE

& MAINTAIN

DESCENT

(A)

AS

FIT

ANG

TRK

RET

ADJ

POSIT

FLAPS

LAND

DECISION

(B)

ALT
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4.0 DATA ANALYSIS SOFTWARE UPGRADE

As part of the present effort, ARD upgraded an existing, proprietary data

analysis software package. This software was used for analysis of ERP data

from the present laboratory experiments and a version of it was delivered to

NASA. This software was initially written by Dr. Daniel S. Ruchkin and his

assistants at the University of Maryland School of Medicine to support an

extensive range of ERP data analysis capabilities. ARD obtained the rights to

this software from Dr. Ruchkin in order to support the analysis of data from

the present project as well as others. We named the package ANALYZ and

upgraded it in a number of ways, as detailed below.

There were some limitations, for the present purposes, in the initial

implementation of the software, due to the fact that it was developed to run on

a PDP-II/40 computer under the RT-II Single Job operating system (RT-IISJ).

This environment is one in which available memory is limited. The RT-IISJ

monitor and associated device handlers use approximately 6K 16-bit words of

memory (of the total available 32K), thus requiring that programs occupy no

more than ZZK words. As a result, the ANALYZ programs were heavily overlaid

and array sizes were limited. These constraints entailed some severe

limitations when these programs were applied to data sets from repeated

measures designs involving numerous experimental factors with several levels of

each factor. In addition, certain routines were coded in PDP-II assembly

language, decreasing the package's portability to other systems. Finally, the

graphic display capabilities of the package were limited and the graphics

routines were specific to the VT-II display with which the package was

initially used.

As part of the present effort, ARD converted the ANALYZ package to run on ARD's

VAX-II/730 computer under the VMS operating system. In so doing, a number of

features of the code were changed to er_anee the portability of the package.

This resulted in a more powerful version of the package for both RT-I1 and VMS

systems, and one which can more readily be ported to other systems in the

future. In addition, the existing graphics routines were rewritten and the
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package's interactive graphics capabilities were enhanced. The graphics
routines were structured in a modular fashion, such that most of the data

managementand user-system interaction code were implemented in generic FORTRAN

routines, with the calls that are specific to the particular color graphics

terminal that we used (a Raster Technologies One-10) being embeddedin separate

FORTRANsubroutines. With this configuration, the programs could be ported to

another system with only the latter routines needing modification. In the

following sections we offer an overview of the capabilities of ANALYZand a

description of the upgrades that were accomplished under the present contract.

4.1 Overview of ANALYZ

4.1.1 Summary of Capabilities

The ANALYZ software first operates upon a disk file of single-trial ERPs, where

a "trial" refers to the response(s) elicited by one occurrence of a particular

event. At the beginning of each such data file is a header record which

contains an alphanumeric label and the numeric parameters that are common to

the entire file (e.g., the number of channels, inter-sampling interval, number

of time points in the analysis epoch, etc.). Following the header record there

is a record for each ERP trial. Each ERP record consists of:

o

"Identifying" parameters, which describe such characteristics as:

-- Stimulus and response conditions under which that trial was elicited.

-- Timing information, such as when in a sequence of stimuli this trial

was elicited.

-- Code for subject's behavioral response.

-- Flags to indicate condition information to the experimenter.

Information about each scalp channel, such as:

-- Root-mean square (RMS) variability of the digitized time points.

-- Mean pre-stimulus baseline levels.

-- Number of time points that were "clipped" by the A/D converter.

The ERP waveforms for each channel.

4-2



The programs that operate upon single-trial data feature the following
operations :

o Inspection -- display and plotting of single-trial ERP waveforms, with
optional digital filtering.

o Editing -- correct or modify parameters, correct measurementsof baseline
and/or RMSlevels.

o

o

Selection and summarization -- indicate which trials have parameters which

meet specific conditions, compute statistics for specified parameters, RMS
levels and/or baseline levels.

Comput_!_ionof average waveforms averages are computed over trials that

meet s_ecified conditions. The averages can be synchronized to either a

stimulus or to a response. A program is available that will compute

latency-corrected averages via the Woody latency correction algorithm
(Woody, 1967).

Average ERPsare stored in files consisting of a header record, which indicates
the current number of average ERPs in the file and a 7Z-character comment that

contains _nformation that is common to the whole file of ERPs (e.g., the

subject aed experiment), followed by a_record for each ERP in the file. Key

informatica in each average ERP record _onsists of:

o Alphanumeric labelling information -- a 36-character comment that is

specific to an individual average ERP (e.g., the electrode location and

experimental condition).

o Numeric labels (e.g., the experiment number, subject number).

Identifying parameters (e.g., time at which the stimulus occurred, number

of time points in the analysis epoch, number of time points in the

pre-stimulus baseline, inter-sample time).

o The average ERP waveform.
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o The associated standard deviation waveform.

o If relevant, reaction time or latency statistics (including histograms).

There are a number of programs that then operate upon the average ERPs.

Programs of this type are concerned with operations such as the following:

o Inspection -- display and plotting of average ERP waveforms, with optional

digital filtering.

o Grand averaging -- pooling across average ERPs to compute grand average

ERPs within-subjects or across-subjects.

o Computing difference waveforms, l _

o Extraction of amplitude measures -- baseline-to-peak or area under the

curve measures, with optional digital filtering.

Data management -- e.g. listing of average ERP files, moving ERP records

between files.

Principal Components Analysis -- computation of component loading waveforms

for a set of average ERPs, with optional digital filtering; computation of

component scores as an estimate of EP_P component amplitude.

The derived measures of ERP amplitude may then be subjected to several types of

further analysis, including:

o Inspection -- display and plotting of average ERP amplitudes, with the data

nested.

o

o

Analysis of Variance -- repeated measures ANOVA with Geisser-Greenhouse or

Epsilon correction for Type I error.

Multivariate Analysis of Variance -- repeated measures MANOVA with optional

"profile analysis."
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Data and control parameters are stored in files with standardized formats. Two

kinds of files were alluded to above, namely single-trial ERP files and average

ERP files. The same format is used for files of unpooled average ERPs, files

of ERPs pooled across conditions and/or subjects, and files of average ERP

difference waveforms. In order to speed up the execution of programs that

operate via sorting on parameters such as experimental conditions, condensed

disk files can be generated which contain parameters used for sorting, but do

not contain waveform data. These condensed files are used for high-speed

look-ups and, when data (e.g., single-trials) are found that match the

specified sorting conditions, the original, complete data file is then

accessed. In addition to the above-mentioned data files, there are also data

files which contain amplitude measures (e.g., base-to-peak at a given time

point or average area under the curve) extracted from average ERP waveforms.

Depending upon its type, a program may operate in either an interactive or a

batch mode. Some programs can operate in both modes. Most programs have

specialized control parameter disk files associated with them. These files

contain information that directs the operation of the program. In some cases,

such as in an interactive display program, the control file may be relatively

small. In such applications it serves as a means of "remembering" specific

control parameters, so that the user need not type in control parameters each

time the program is invoked. If the control parameters are satisfactory, then

the program can immediately start its operation (e.g., display). In programs

that run in a batch mode the control parameter file may be relatively large

(e.g., for computing average ERPs from single-trial data, the specifications

for computing each average ERP are contained in the control file). Typing such

large amounts of information directly into a computer at the start of program

execution can be a cumbersome, error-prone procedure. Thus there are programs

that prepare such files before executing the batch run. Such programs take

advantage of nesting arrangements in the data to "semi-automatically" build up

the control file and provide rapid listing routines so that the contents of the

control files can be readily checked.

4.1.2 Summary of Data File Types

The programs prompt the user for the file names from which to input data or

4-5



control information. Thus the files can be namedby whatever nomenclature the

user chooses• However, there is considerable advantage in adopting a
convention for naming certain kinds of files• The following convention is

assumed here and by the menus, prompts, and other messages presented to the
user on the screen:

.PAR--

•OUT--

•W0D--

.ACS--

.TTS --

•DFF --

•BPR --

.001 --

•BTP --

Single-trial data file.

Condensed single-trial data file, containing trial-by-trial

identification parameters but not the digital waveforms
themselves.

File containing control parameters for computing average ERP
waveforms.

Average ERP waveform file•

Latency-corrected average ERP waveform file.

File of average ERP waveforms pooled across subjects; same
structure as .OUT file.

Condensed average waveform file (used for merging).

File of difference ERP waveforms

Extension used for files that contain control parameters for a

given program. The structure of these control files depends upon

the program -- in effect, the disk "memory" for program control

parameters. This extension is usually used for batch mode
operations.

Numeric extensions, preceded by the program name, are also used

to designate control parameter files for a given program. This

kind of file designation is usually used for the disk "memory" of

interactive mode operations•

File containing baseline-to-peak amplitude measures extracted

from .OUT type files.

4.1.3 Summary of Main Programs

The ANALYZ package should be viewed as a set of software tools for

understanding particular sets of ERP data. The programs employed and the

options chosen will depend on the data and the experimental design within which

it was collected• Nonetheless, it is easiest to summarize the package's

capabilities by examining the programs in the sequence with which one would
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typically explore such a data set:

General utility program:

CRFILI -- "Create file" -- create files for data or control information;

copy subsets of data from one file to another.

Main programs associated with inspection, editing, and displaying single-trial

ERP data:

EDSSDI -- "Edit SSD files" -- inspect/edit files of single-trial ERP data.

EDTTDI -- "Edit TTD files" -- apply auxiliary identifying information,

i.e., that which was not coded with the ERP data at the time of data

collection, to files of single-trial ERP data; summarize single-trial data

based on identifying information.

DISSDI -- "Display SSD files" -- display single-trial ERP waveforms.

Main programs associated with sorting and averaging the single-trial data and

displaying average ERP data:

EDPARI -- "Edit PAR files" -- construct control files for selective

averaging.

SOSSDI -- "Sort SSD files" -- sort single-trial data to be selectively

averaged, using a compressed file of identifying information only to obtain

a quick sort.

AVSSDI -- "Average SSD files" -- average single-trial ERPs time-locked to

eliciting stimuli or behavioral response times.

PWOODI -- "Prepare for Woody" -- set up for Woody latency-correction

analysis.

WOODYI -- "Woody analysis" -- average single-trial ERPs with latency
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adjustment for trial-to-trial latency "jitter."

DIOUTI-- "Display OUTfiles" -- display average ERPs.

Main programs associated with data managementof average ERPdata, extracting

derived measurementsfrom average ERPs, and displaying these derived measures:

LIOUTI -- "List OUTfiles" -- list average ERPdata files and identifying
information.

EDBTPI-- "Edit baseline-to-peak" -- derive amplitude measures from average

ERPwaveforms.

DIBTPI -- "Display baseline-to-peak" -- display amplitude measures.

DIFWVI-- "Difference waves" -- compute difference waveforms betweenpairs

of average waveform data.

MERGE1-- "Merge" -- merge average waveforms within or across subjects.

4.2 Upgrades for Transportability

The tasks which ARD performed in upgrading the ANALYZ software were aimed at

producing a package of programs and subroutines which could be easily

transported to any environment which supports FORTRAN. The environment into

which the software was initially ported was the VMS operating system (Version

3.4) using the VAX VMS (Version 3.4-56) compiler. Specifically, the following

tasks were performed:

o Replacement of RT-II System Specifics -- Virtually all of the I/0 functions

(e.g., file opening/closing, reading/writing from/to disk) in the RT-II

version of ANALYZ were accomplished using system service routines and/or

MACRO-If assembly language routines which were called from FORTRAN

subroutines. A library of VAX FORTRAN routines, which emulated the

functions performed by this combination of system service calls and

assembly-language subroutines, was written in VAX FORTRAN. The goal in
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constructing these routines was to provide the programmer with a calling
form for file opening and closing, and for input/output which was
consistent with those used in the RT-II version of ANALYZ. The

VAX-specific routines were nameddifferently, however, to insure that the
RT-II versions of these FORTRAN-callablesubroutines were replaced in all

routines.

o DCL Compilation and Linking Routines -- The indirect commandfiles (.COM
files) which were used under RT-II to direct the compilation and linking of

programs were converted to their functional equivalent in the VAX/VMS

Digital CommandLanguage (DCL). In addition, these .COM files were
modified to allow for the relatively automatic updating of object modules

when changes to source code had been made. One important difference
between the RT-II and VMSversions of the .COMfiles concerns overlay

structures. Recall that under RT-II there is very little available memory

space (approximately 44K bytes) to accommodatecode and data. As a result,

in many programs in the RT-II version of ANALYZ, it was necessary to

"overlay" object modules such that only those modules which referenced each

other were simultaneously memory-resident. Under VMS, such memory

restrictions are largely transparent to the applications programmer and are

handled by the task swapper.

o Conversion of all Macro-ll Routines to FORTRAN-- In addition to the file

I/0 functions discussed above, there were many assembly language routines
used in the RT-11 version of ANALYZfor other purposes. These assembly

language routines had been implemented primarily in order to speed up

numerical calculations. While it was possible to convert these Macro-ll

routines to their equivalent in VAX-II assembly language, it was decided

that the goal of portability of the package took precedence over the

relatively small gain in computational speed that would result from using

assembly language instead of FORTRAN. As a result, VAX FORTRANroutines

equivalent to those implemented in Macro-ll assembly language were

written. As always, the interface to the calling routine was maintained.

o Identification of DEC-Specific Conventions -- With some relatively minor

exceptions, VAXFORTRAN77 provides for compatibility with RT-II FORTRANin
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their extensions to the ANSI X3.9-1978 standard of FORTRAN77. In the

course of converting from RT-II FORTRANto VAX FORTRAN77, we identified a

number of features which, although not requiring a change at this time,
might cause compatibility problems if the code were ported to another

system. Someexamples of such features, which may require attention at
some point in the future, are: i) storage of characters in LOGICAL*I
variables; 2) use of ENCODEand DECODEstatements to convert between

numeric and character variables; 3) use of the $ character to suppress

carriage returns; and 4) use of DATA statements for initialization of
variables in COMMON.

4.3 Graphics Enhancements

It was necessary to develop an enhanced graphics capability for the display of

ERP data since the graphics capabilities of the initial RT-II version of ANALYZ

were largely specific to display devices which are obsolete (i.e. the VT-II

display processor for CRT graphics and a Houston Instruments plotter). In

addition, there was some inflexibility in the design of the display programs in

the RT-II version of ANALYZ and, because they had been written for a monochrome

display, they didn't exploit the power of color displays for revealing patterns

in the data. In order to address the need for a display capability, ARD

implemented a series of FORTRAN callable subroutines for both CRT displays and

hardcopy plots of the following:

o Single-trial ERPS.

o ERP average waveforms.

o Baseline-to-peak amplitude measures.

o Principal Components Analysis weighting coefficients and basis waveforms.

The display terminal selected for CRT display of data was the Raster

Technologies Model 0ne/10. This terminal has 640 x 480 x 8 display memory, 60

Hz refresh rate, a 255-color lookup table, and is typical of the type of

relatively inexpensive display terminal used throughout the field. It is a
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bit-mapped device which uses display list architecture, such that when an

element of the display is changed, only the state of those pixels affected by

the change are updated; the balance of the display need not be redrawn into

display memory.

Raster Technologies supplies a library of FORTRAN-callablesubroutines with the
One/10 ("ONELIB"), thus obviating the need for development of primitive

functions. During Phase II, ARD defined the functions necessary for
interactive examination of ERP data and designed and implemented VAX FORTRAN

programs, using the 0NELIB library, to perform these functions. The features

built into these programs were ones which allowed the experimenter to

dynamically configure the display on the basis of the characteristics of his
data. These features included:

o Up to 16 waveforms/line drawings per set of axes.

o User-specified color and line type of each waveform.

o User-specified horizontal and vertical scales.

o Option for different vertical scales for different sets of axes.

o User-specified polarity of waveforms.

o Cursor movementand digital readout of latency and amplitude.

o Optional FIR filtering of waveforms.

o Displays of ERPwaveforms, standard deviation waveforms, or response time

histograms.

In addition to this CRT graphics display capability, ARDalso implemented a

series of FORTRANprograms which allowed for hardcopy plots which were

analogous to the graphics displays. These hardcopy plots were implemented

using a Hewlett-Packard 7550A plotter and HPGLcommandset. FORTRANroutines

were written which allowed for more mnemoniccalling conventions for the basic
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functions necessary to construct these plots. These routines were then called
by FORTRANprograms to generate the resulting plots. In addition to the

features implemented in the CRT graphics display programs, the hardcopy
plotting programs also implemented additional features which allowed for the

flexible of near publication quality plots. These features included:

o User-specified line type and color.

o User-specified number of rows, columns, and waves/lines per page.

o Legends and header labels.

Automatic checking of user layout to determine if appropriate records
should be plotted on the sameaxes.
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5.0 DEVELOPMENTOFANAPPROACHTOSTUDYALTERNATIVEMETHODS

OFERPSINGLE-TRIALANALYSIS

5.1 Background and Overview of the Single-Trial Analysis Task

Scalp-recorded ERPs are usually extracted from the ongoing EEG by signal

averaging the brain activity recorded in response to numerous occurrences of an

eliciting stimulus. The waveform that is recorded in response to a single such

event is referred to here as a "single-trial." The number of trials typically

included in time-locked averages range from several dozen to several thousand,

depending upon the type of ERP activity of interest and its signal-to-noise

ratio with respect to the background EEG. For ERP components related to

cognition (e.g., see Donchin, et al., 1978), several dozen trials are typically

averaged.

For many applications in operational settings, such signal averaging is

impractical, because the eliciting conditions can change unpredictably and one

wishes to quantify ERP activity on a moment-to-moment basis. Even if stimulus

conditions can be presented repeatedly, as they can for some "open-loop"

studies in which system design issues are being addressed and the data can be

analyzed off-line, there is a problem with ERP components varying in latency

from nriai-_o-t_i_i. Because thc components nf interest are related to

cognitive processes, and in complex tasks the timing of these processes may

vary from trial-to-trial, the ERP components may "jitter" in time from one

trial to the next. Average ERPs calculated under such conditions will contain

broader, lower amplitude waveshapes than were present on the single-trials that

were averaged together.

Several techniques have been developed to extract useful information from ERPs

on a single-trial basis (see recent review by Childers, et al., 1987). Step-

Wise Discriminant Analysis (SWDA) has proven to be remarkably successful in

...... I_+,,A_o _ _n_l_-trial responses (Donchin & Herning,characterizing _x _._ .............. _

1975; Horst & Donchin, 1980; Squires & Donchin, 1976; Squires, et al., 1976).

However, SWDA assumes that the latencies of ERP components will be fixed from

5-1



trial-to-trial. Other techniques have been proposed to quantify the trial-to-

trial variability of ERPs(e.g., Coppola, et al., 1978), but again the implicit
assumption has been that the ERPsignal is relatively stable in time.

Dealing with latency variability in ERP components, either between or within

conditions, has been more difficult. One technique that has been used is a

cross-correlational approach developed by Woody (1967). A template that
corresponds to the ERPwaveshapeof interest is cross-correlated with a segment

of EEG in which that waveshape occurs, and the offset at which the maximal

correlation occurs is chosen as the latency of the component. This technique
has been used by a variety of ERP investigators over the last ten to fifteen

years, but a number of knownproblems in its application have becomeapparent.

Aunon and McGillem (1975) have proposed an alternative technique which, in some
respects, is different. It precedes the cross-correlation with a minimummean

square error (MMSE) filter (i.e., Wiener filter) and has provisions for

independently latency adjusting different regions of an ERP. This technique

has not been as widely used as the Woodyfilter, so its virtues and limitations
are not as well known.

A systematic comparison of these two techniques on simulated data has not been

attempted. Such an analysis would be a major step towards clarifying the

conditions under which latency varying ERPscan be identified and quantified on

a single-trial basis. The purpose of the present task was initially to conduct

such a comparative analysis and, in the course of so doing, to develop the
necessary software to create simulated EEGrecords with known ERPsembeddedin
them.

Early on in this project it becameapparent that a direct comparison between

these two techniques would not be straightforward. As discussed in Chapter 2,

both techniques contain a number of user-selectable parameters and options, and
the extent to which an appropriate set of choices is made largely determines

how well each technique will fare under a given set of conditions. When

dealing with real data, one obviously has much less information about the

signals that are present in a waveform than when dealing with simulated data.

Nevertheless, in practice, the sophisticated data analyst usually has some idea
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of the characteristics of the signals that are present. Therefore, we found

the need for an exploratory software tool that would allow various analyses to
be implemented interactively, with differing assumptions being made about the

nature of the underlying data.

Another initial impediment was that our existing software implementations of

the Woody and Aunon/McGillem approaches were both stand-alone packages of

routines that were somewhat cumbersometo use. Both packages were written in

FORTRAN,but the Woody routines were implemented on ARD's VAX-II/730 system,

while the Aunon/McGillem routines were implemented initially on a PC-AT and

modified to run on the VAX. There was little commonality in the input formats
required, the statistics of merit calculated, or the output measures made

available. In the VAX environment, graphics output was available only in

post-processing display and hard-copy plotting routines.

Therefore, we focused our efforts on creating a software environment to support

the sort of exploratory analyses that seemed desirable. As discussed more

fully in Section 5.3, we followed an integrative approach, implementing aspects

of the Woody and Aunon/McGillem techniques within the framework of a program

which also generates the simulated EEG/ERPdata, calculates commonstatistics

of merit, and provides an on-line display of the output of various stages of

the analysis process. The numeroususer-selectable parameters are input to the

....i_ _v6 .... from ASCII control f_]e_ which can be modified using any standard

text editor. The analyses are implemented in a manner which supports user

interaction and encourages exploratory data analysis. At the same time,

provisions were made for setting up batch process "production runs" using a

data management"shell" program. This feature allows the user to specify a

series of comparative analyses, systematically varying a user-selectable

parameter or set of parameters, for unattended execution.

Source code for the software developed here has been delivered to NASAalong

with user documentation. The results of initial comparative analyses conducted

with this software are presented in Section 5.4. These analyses confirmed some

of our preconceptions about the strengths and weaknesses of the Woody and

Aunon/McGillem approaches and revealed aspects of the two approaches which had

not been apparent from published reports. No far-reaching conclusions about
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the relative virtues of the two techniques seemwarranted as yet, but it is
apparent that the software approach developed here can provide the basis for a

variety of future explorations of the conditions under which the Woody and
Aunon/McGillem techniques may be useful. Somefuture directions for the use

and/or enhancement of this software by either ARD or NASAare presented in
Section 5.5.

5.2 Discussion of Alternative Latency Correction Techniques

5.2.1 Overview of the Woody Approach

C. D. Woody (1967) reported on the development of a generic, adaptive technique

for extracting a latency-varying signal from background noise. He applied the

technique to a variety of neuroelectric data recorded from anesthetized cats.

The technique worked successfully for detecting electrical stimulation

responses and auditory evoked potentials recorded from the surface of the

cortex, eye blink potentials elicited by mechanical stimulation of the

glabella, and miniature synaptic potentials recorded from single motor units in

the spinal cord. It was also applied to the detection of petit-mal

spike-and-dome discharges in human scalp recordings. An attractive feature of

the technique appeared to be that, with sufficient signal-to-noise ratios,

little or no prior knowledge was required about the waveshape of the signal.

Additional properties of this approach for functioning under different signal-

to-noise conditions were described by Harris and Woody (1969).

Figure 5-1 presents the flow of this data analysis approach. The heart of the

technique involves a cross-correlation between a template of the signal of

interest with single-trial recordings in which that signal is embedded, in a

latency-varying manner. For each such single-trial record, the template is

cross-correlated at a variety of time lags (offsets) and the lag at which the

cross-correlation is maximal is taken to be the latency of the signal in that

record. Over trials, a latency-corrected average of the signal is constructed

by aligning the single-trial records time-locked, not to the time of occurrence

of the eliciting stimulus, but to the point at which each record was maximally

correlated with the template.
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Figure 5-I. Flow of the Woody Analysis (Adapted from Woody, 1967)
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The adaptive nature of the algorithm stems from the choice of the template

waveform. The latency-corrected average from one pass through a given set of

data can be used as the template for the next pass. With iterations through

the data, this technique successively approximates the waveshape of the

underlying signal. The stimulus-locked average is typically used as the

template for the first pass. Various stopping rules, such as the failure of

the mean maximal cross-correlation (of template to single-trials) to improve by

a specified amount, can be invoked to determine when to end this iterative

process.

The application of the Woody approach for latency-correcting human ERP data was

pioneered by Ruchkin (see Ruchkin & Sutton, 1978, 1979; Ruchkin, et al, 1980,

1981) and has been employed by a number of other investigators (e.g., see

Kutas, et al., 1977; Horst, et al., 1980; Wastell, 1977 for some of the earlier

uses of the technique). These uses of the Woody technique proper had been

preceded by several related cross-correlational analyses (e.g., Weinberg &

Cooper, 1972; Pfurtscheller & Cooper, 1975). Typically, the ERP component of

interest in studies utilizing the Woody technique has been P300. Data analysis

issues have included characterizing the latency-corrected waveshape, amplitude

and mean latency of P300 across different experimental conditions in which

variables expected to affect amplitude and/or latency were manipulated.

Some serious problems with applying the Woody approach to scalp-recorded ERP

data have become apparent, and, despite widespread recognition of the latency

variability problem in interpreting endogenous ERP components, the approach has

never gained general acceptance in the field. The problems in applying the

Woody procedure concern the following issues:

o The procedure will always result in a latency-corrected average having a

sharper peak than was present in the raw, stimulus-locked average, even

when the technique is applied to EEG data containing no ERP signal.

Therefore, it is incumbent on the investigator to demonstrate that the

latencies chosen by the cross-correlation across trials follow a non-random

distribution. To address this concern, Ruchkin & Sutton (1978, 1979) have

suggested applying Chi-square and Kolmogorov-Smirnov statistics to the

histogram of latencies chosen by the technique. One can test the observed
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histogram of latencies against the rectangular distribution that would be
expected if latencies were being chosen at random, or against the latencies

actually chosen when the technique is applied to "noise only" data (i.e.

epochs of background EEGor a long-latency part of the ERP epoch beyond

where the ERPpeaks of interest would be expected to occur).

o When ERP component amplitudes vary across experimental conditions, the

latency estimates will be less reliable in the low amplitude conditions,
and mean latencies derived for those conditions will tend towards the

midpoint of the epoch that is being searched for the componentof interest.

The technique is confounded when more than one component of the same

polarity is active in the epoch searched. Two or more componentsshifting

together from trial-to-trial would not pose a problem, but if more than one

component "jitters" in time independently, the technique can be expected to

pick one component on some trials and the other component(s) on other

trials. In this latter case, the latency-corrected average will clearly be

a misrepresentation of the underlying waveshape. Unfortunately, it is now

clear that, under many task conditions of interest, there are typically

multiple, positive-going endogenous positivities overlapping in the

long-latency region of the ERP.

o Although templates can be derived by an iterative process, whereby the

latency-corrected average from one pass through the data is used as the

template for the next pass, the fidelity with which the derived template

corresponds to the underlying ERPcomponentof interest is crucial. It is

not yet clear under what signal-to-noise conditions the iterative process

proposed by Woodywill fail to converge on the underlying waveshape.

The signal-to-noise properties of the data, and thus the applicability of

the Woody technique, can be greatly enhanced by pre-filtering the

single-trial records. Most investigators, being interested in P300 and

other relatively low frequency ERP components, have used a simple,

low-pass, "box car" filter (see Ruchkin & Glaser, 1978). However, it is
not clear to what extent the success of the technique is dependent on

appropriate pre-filtering, and what, if any, advantages would be derived by
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the application of other digital filtering techniques.

o Woody (1967) identified some confounds that can arise in the pattern

recognition process because of the nature of the cross-correlation

algorithm. Somepractitioners have found a cross-covariance approach to be

more satisfactory in that it better takes into account a correspondence
between the amplitude of the template and the amplitude of waveshapes

similar to the template that occur in the single-trial ERP. Alternatively,

amplitude criteria could be used in conjunction with local maxima in the
cross-correlation function to decide when an appropriate correspondence

between template and single-trial waveshapehas been found.

5.2.2 Overview of the Aunon/McGillem Approach

J. I. Aunon and C. D. McGillem (1975, 1979; also see McGillem & Aunon, 1976,

1977) developed an alternative pattern recognition approach which attempts to

circumvent some of these problems with the Woody procedure. Their interest was

specifically in the detection and latency correction of scalp-recorded human

ERPs. However, their studies focused on the ERPs elicited by simple visual

stimuli in non-task situations, so the components of interest were the

relatively high-frequency, sensory-related exogenous components of ERPs, rather

than the slower frequency, longer latency endogenous activity that has

concerned most practitioners of the Woody technique.

Figure 5-2 presents the flow of the Aunon/McGillem technique. An aspect of

this approach that has been given considerable emphasis by Aunon and McGillem

is a pre-filtering of the single-trial data with a minimum mean square error

(MMSE) filter (i.e. Wiener filter) in order to improve signal-to-noise ratios.

After pre-filtering, the single-trial EEG record is cross-correlated with a

template in order to identify peaks. This step is somewhat similar to the

Woody cross-correlation, but differs in that Aunon and McGillem used an

artificial waveshape (triangular wave) as their template, the process is not

iterative (in the sense of the multi-pass Woody approach), and the goal is to

identify all local maxima in the cross-correlation function, rather than the

single latency at which the maximal cross-correlation occurs. Over trials, a

histogram is constructed of the latencies at which these putative peaks occur,
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and statistical criteria are applied to the running mean of the histogram to

identify those peaks which can be presumed to have come from a population that

is not random in polarity, as noise would be. The running mean is also used to

determine the regions over which peaks should be grouped together by combining

into common groups those peaks lying between zero crossings of the running mean

(Aunon & McOillem, 1979). Having thus identified the subepochs in which

latency-varying peaks occur, the raw, unfiltered single-trial records are

characterized with respect to the means and variances of the amplitudes and

latencies of these peaks and with respect to the probabilities of occurrence of

the various peaks. A latency-corrected average is then constructed by

separately averaging time-shifted segments of the waveform in the subepochs

delineating these peaks, and then piecing together these averages with certain

assumptions being made to avoid discontinuities in the waveform.

Aunon & McGillem (1979) argue that their technique reveals latency variability

in the visual ERP components which can not be explained by the effects of

background EEG. The technique has been used by several other investigators

(Aunon, personal communication), but with each customizing aspects of the

algorithms to suit their needs. Therefore, the field as a whole has not had

nearly the experience with the Aunon/McGillem technique as with the Woody

technique.

The possible advantages of the Aunon/McOillem approach are that it provides a

way of addressing the problem of multiple ERP components shifting independently

in time from trial-to-trial and it offers criteria for inferring the presence

or absence of a given ERP component on a particular single-trial, rather than

assuming, as does the Woody approach, that the signal is always present.

Nonetheless, many questions remain as to the signal-to-noise conditions under

which this technique will be successful, the necessity of some of the steps in

the peak-picking algorithm, and the criticality of the MMSE filter, as opposed

to other filtering approaches, for the success of the technique.

5.2.3 User Choices and the Difficulty of Direct Comparisons Between

Techniques

Clearly, systematic evaluations are needed of both the Woody and Aunon/McOillem
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techniques applied to simulated data. However, as mentioned previously, it

becameapparent, as we familiarized ourselves with the inner workings of both

techniques, that the outcome of these simulation tests could be easily biased

for or against either technique by an informed choice of the many user-

selectable parameters that are inherent in each approach. This fact highlights

the extent to which the results obtained by an investigator working with real

data will be influenced by the presuppositions that are made in implementing

the analyses. Furthermore, it emphasizes the need for an exploratory approach

to the analyses of simulated data, providing for a systematic evaluation of the

accuracy of each technique given the fidelity with which the assumptions made

by the investigator mirror the parameters which were used to generate the data.

The success of both techniques is critically affected by an appropriate choice

of search epochs, i.e. the time points of an ERP in which the latency-varying

waveform of interest is presumed to occur over trials. Choosing an epoch which

fails to bound the ERP component(s) of interest will result in a distorted

latency-corrected average, a truncated histogram of peak latencies, and

incorrect mean latencies for the component of interest. Likewise, an

appropriate choice of pre-filtering parameters will either enhance the

signal-to-noise ratio of the component(s) of interest or confound the

application of either technique by worsening the accuracy of the pattern

recognition algorithms. The choice of an appropriate artificial waveshape as

the template in the Aunon/McGillem procedure will obviously have a profound

influence on the accuracy with which latency-varying peaks are identified.

Furthermore, as alluded to earlier, it is not clear to what extent either

technique is dependent on some of the analytic choices made by its developers.

At least under some conditions, the Woody procedure works better if a

cross-covariance algorithm is used instead of cross-correlation. Might the

same also be true of the Aunon/McGillem procedure? Would the Woody procedure

benefit from a pre-filtering of the data by the Aunon/McGillem MMSE filter, or

conversely, how well would the Aunon/McGillem approach work with the much less

computationally intensive box-car filter? Could single-trial signal-to-noise

criteria be added to the Woody procedure to provide an indication of trials en

which no discernible signal is present? Might the Aunon/McGillem procedure

benefit from a multi-pass, iterative approach modeled after the Woody adaptive
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procedure?

These questions emphasize the fact that neither the Woody nor the Aunon/

McGillem technique, in its original form, may be optimal for application to

human scalp-recorded data, as well as the fact that the two techniques need not

be viewed as mutually exclusive. It may well be that an amalgamation of the

two approaches, which utilizes some aspects of both, may prove optimal for

dealing with ERP data.

These considerations, in addition to the logistical difficulties presented by

the implementations of the two procedures which existed at the beginning of the

project, led us to focus on the development of a software environment that

would support the sort of exploratory analyses and further development of both

techniques that seemed necessary.

5.3 Approach to a Comparative Evaluation of Alternative Techniques

5.3.1 Overview of a Comparative Approach

Because of the numerous interacting parameters that could affect the

functioning of both the Woody and Aunon/McGillem techniques, the need to

systematically explore the implications of user choices and assumptions on both

techniques, and the desire to "cross-pollinate" the two techniques, a modular

framework was adopted which integrated both analytical approaches. The

software we developed was, therefore, designed to perform several functions:

o To generate simulated EEG with user-selectable frequency parameters and

root mean square variability.

o To allow simulated ERP components (at present, one or two half sine-waves)

to be embedded in the background EEG; the ERP components can be of a user-

selectable amplitude and their latency "jitter" from trial-to-trial is

governed by user-selectable latency parameters.

o To implement parts of the Woody and Aunon/McGillem procedures for

application to the simulated EEG/ERP records.
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o To provide as a "statistic of merit" the difference in latency (i.e. time

point) between where the simulation algorithm positioned the ERP signal(s)

on each trial and where each data analysis technique determined the signal

to be.

The above functions were all integrated into a single program. This program

was written in the C language to run under the DOS operating system on an IBM

PC/XT/AT or compatible. In order to make this program a useful tool for

exploratory data analysis and to provide the user/analyst with a

straightforward, efficient means for modifying program parameters, it was

outfitted with a number of additional features:

o Integrated EGA (enhanced graphics adapter) graphics which display

cumulative records of several key parameters and waveforms on a

trial-by-trial basis.

o A control file for supplying key parameters to the main program; thus

parameters can be changed by editing the control file, without the need to

recompile the program each time a change is made. There are separate

control files for data analysis and display parameters (see documentation

supplied under separate cover).

Output stst_stics of merit are appended to the control file so that

information about the program parameters which produced a given set of

results are stored with the results.

The main program can run in either an "interactive mode," in which the user can

inspect the trial-by-trial graphics display for as long as he wishes before

moving on to the next trial with a carriage return, or in a "production mode,"

wherein the program runs to completion for a given set of user-defined input

parameters. In the production mode, the graphics display is still presented,

but it is updated at a rate which is pre-selected by the user and, therefore,

is not ,,_p_der_nteractive control.

It was anticipated that after initial exploratory data analysis in the

interactive mode, the user would want to define multiple sets of parameters and
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execute a series of production runs, systematically varying one or more

parameters of the data or data analysis process (e.g., signal-to-noise ratio of

the ERPamplitude to background EEG; time epoch over which latency jitter could

occur; search epoch over which data analysis algorithms operate). Therefore, a

very flexible data management"shell" program was developed. This shell allows

the user to readily define such a series of analyses and then execute the

consequent production runs unattended, with results and a log being saved for

later inspection. The shell routines are programmedin QuickBASIC*.

5.3.2 Data Simulation

The simulation of background EEG records is performed by feeding the output of

a random noise generator, i.e. white noise, into a digital, autoregressive

filter. The user specifies the center frequency, band width, and sampling time

for this process. At the present time, up to two sets of frequencies may be

specified, and in our preliminary studies we have used a combination of alpha

and delta power bandwidths. The delta bandwidth, centered on a frequency of

zero, is generated with a single-pole filter, while the alpha bandwidth,

centered at approximately 20 Hz, requires a two-pole filter. Any given set of

waveforms may be exactly duplicated by re-using the same initial seed given to

the random number generator. During the initialization of the EEG generator

routine, the root mean square of a sample of each component is recorded and

used to normalize the subsequent output for each component to a preamplified

power of approximately unity. The approach that we have implemented generally

follows that developed by Zetterberg and associates (see Wennberg & Zetterberg,

1971; Zetterberg, 1969; Zetterberg & Ahlin, 1975; Narasimhan & Dutt, 1985).

A separate routine is used to simulate ERP signals. It can generate one or two

half sine-waves of a specified amplitude and latency and add these waveshapes

into the generated EEG record with the signal being randomly and independently

jittered around its median latency. The probability spectrum for the jitter is

a triangular shape, the base length of which is specified by the user. The

probability envelope for the jitter may be displayed on the user's terminal.

*QuickBASIC is a trademark of the Microsoft Corporation.
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The latency histograms resulting from the Woodyand Aunon/McGillem procedures
should, to the extent that either technique is successful, correspond in shape

and position to these envelopes. As displayed, the relative amplitude of each

triangle corresponds to the amplitudes of the generated signals.

A Fast-Fourier transform computes a power spectrum for the combined signal and

background EEG. It is to be used primarily to provide a visual check on the
above simulation techniques. It employs a simple Fast-Fourier algorithm, and

it gives a meaningful spectrum only when the number of points of the waveform

is an integral power of Z.

5.3.3 Partial Implementation of the Woody Technique

Unlike the Aunon/McGillem procedure, which uses a constant artificial template

to correlate with the single-trial record, the Woody procedure creates a

template based on the data itself. On the initial pass, a stimulus-locked

average of the single-trial waveforms is used as the template, but subsequently

the latency-corrected average computed from the previous pass is used as the

template for the next pass. In the present implementation, the template

evolves with each trial and can also be displayed with each trial. The user

can watch as the template progressively assumes a shape closer to that of the

input signal, and can decide at what point to halt the iterative process. The

initial average template is created in a separate initialization process

visually controlled by the user.

The template is subsequently correlated against the input waveform at every so

many points as specified by the user. The position of the maximum point in

this correlation function is taken to be the latency for the ERP signal for

that trial. The latency is then recorded in the histogram of latencies and

used to time-shift the input waveform before it is added to the running average

waveform that will then serve as a template for the next trial.

5.3.4 Partial Implementation of the Aunon/McGillem Technique

Aunon and McGillem's implementation of their own approach embodies three main

procedures -- filtering, signal detection, and signal reconstruction. 0nly the
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second of these procedures was implemented by the software developed here. By
thus narrowing the focus of this study, we were able to make a more direct

comparison between the basic detection schemesof the Woodyand Aunon/McGillem
approaches.

In the initialization of the Aunon/McGillem routine, a half sine-wave template

of user-specified length is created. Unlike the Woodyprocedure, this routine

uses a cross-correlation with the template only as a preliminary stage to the
actual signal detection process, and so it will be tolerant to even a rough

correspondence between template and signal.

In the main portion of the Aunon/McGillem routine, the template is correlated

against the filtered input waveform at every so manypoints of the waveform, as

specified by the user. The skipping of points will speed up this most time-

consuming part of the procedure, but with a corresponding loss of resolution.

The normalized correlation function may then be displayed.

Next the correlation function is passed to a peak detection routine. That

routine checks for maximaby testing for changes in the sign of the slope. To

be recorded, the putative peaks must also be greater in height than a specified

fraction of the highest peak in the function. A cumulative count of the peaks

is stored in a histogram. It is this histogram which is used to determine the

placement of the signal detection "epochs." Within each of these epochs, a

latency-corrected average waveform is recorded and displayed.

A single commonlength for each of the epochs is specified by the user. The

middle of an epoch is placed at each maxima in the histogram of correlation

peak frequencies, which meet certain criteria specified in the program and also

by the user. Another routine creates and displays a histogram of the net

number of positive minus negative peaks. It makes an absolute value copy of

this histogram, similar to the Woodyhistogram of latencies, and passes it to

another, quasi-recursive procedure. This procedure finds the maximumof the

"latency" histogram and then determines which adjoining bins can be considered

a part of that peak, i.e. the "shoulders,,, according to a combination of

programmed and user-specified criteria. It then zeroes that peak and its

corresponding shoulders. The above procedure is repeated on the remaining
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parts of the histogram, until no part of the histogram is greater than a

specified minimum, relative to the total numberof peaks recorded thus far.

The program then determines if any of the correlation function peaks have

occurred within a given epoch. If any of these peaks meet criterion, the

routine will determine the appropriate latency correction and add a portion of

the latency-corrected waveform to the average waveform being maintained within

that epoch. After each trial, the accumulated average for each of the epochs
may be displayed as a single, but discontinuous, wave.

5.3,5 Graphics Output

Figure 5-3 illustrates a typical display that would appear on the user's

terminal for a run in which a single simulated ERP component was added to the

simulated background EEG. All important parameters which control the data

generation, application of analyses, and display are user-selected via control

files.

The various frames displayed here are as follows:

o EEG2 -- the simulated background EEG for the latest IZ80 msec single-trial.

BOX -- the simulated single-trial EEG with simulated ERP added, with the

resulting waveform having been digitally filtered with a box-car filter.

WOOD -- the running latency-corrected average that has been obtained thus

far from application of the present partial implementation of the Woody

procedure.

ENVL -- the triangular waveshape indicates the latency distribution of ERP

center points with which the generated ERP components are being added to

the background EEG records; the amplitude of this triangle is proportional

to the amplitude of the simulated ERP waveshapes being generated; the

histogram represents the latency histogram of points chosen by the Woody

algorithm thus far; the RMSE value is the running root mean square latency

error for the Woody procedure.

o AUN -- the cross-correlation function that resulted from the cross-

correlation of the artificial template with the latest single-trial

waveform within the present partial implementation of the Aunon/McGillem

procedure; the tick marks indicate the points in this function that have

met the criterion for "peaks."

o The unlabelled frame is the running histogram of peak latencies that have

been accumulated across trials thus far by the Aunon procedure; the two
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Figure 5-3. A sample display

o

RMSE values are the running root mean square latency errors for the Aunon

procedure (note that because only one ERP component has been generated per

trial for this run, the second RMSE value is not meaningful).

EPOCH -- the running latency-corrected average that has been obtained thus

far from the application of the present partial implementation of the

Aunon/McGillem procedure.

5.3.6 Other OutPut

At the end of a data analysis run, the root mean square latency error for each

procedure, in addition to being displayed on the user's screen, is appended to

the control file of input parameters. This statistic of merit is calculated as

the difference between the time point at which the generated ERP was actually

centered and the time point at which the program determines that it was

centered, averaged over trials. Mean latency errors are, of course, presented

separately for the Woody and Aunon/McGillem techniques, providing a measure of
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the relative performance of each technique.

5.3.7 Shell for Data Management of Production Runs

The data management shell provides for the automatic generation and unattended

execution of a series of analysis "production" runs over which a specified

input parameter(s) will be systematically manipulated. If multiple parameters

are specified for manipulation, runs of the analysis routines will be generated

for all combinations (nested) of the desired parameters. These routines

accomplish the following objectives:

o For every control file parameter, they allow the user to define the

sequence of values that the variable is to take on over a series of

production runs; changes in the values of more than one variable at a time

can be specified.

o Automatically generates, in a nested manner, the necessary series of

appropriate control files with all combinations of the specified variables

being varied (e.g., if ERP amplitude is to be varied from 1 to 7 units in

steps of 2, and the period of the ERP half sine-wave is to be varied from

i0 to 50 time points in steps of 20, the shell program will generate twelve

control files, varying these two variables in a parametric manner).

o Automatically calls the main data generation and data analysis program

multiple times, passing it a different control file each time.

o Traps errors so that, for example, inappropriate user choices of variable

values in a given control file will not cause the whole production run to

abort.

o Keeps a log of this process so that the user has a quick reference for

determining which analyses during a multiple-analysis production run

executed suee_ssfully.
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5.4 Results of Feasibility Tests

5.4.1 Functionality of the Software

The software developed here was shown to be quite functional. It provides the

initiated user with a great deal of flexibility and control over the data

generation and analysis process. On the one hand, the present implementation

saves the investigator considerable time in exploratory data analysis by

providing immediate, interactive feedback on the progress of a given analysis.

Thus, analyses based on a particular combination of parameters can be initiated

and, if found wanting, can be aborted, and another set of parameters can be

chosen. On the other hand, the investigator who already has completed some

exploratory, interactive analyses or who has a feel for what set of parameters

will meet his needs, can readily specify a set of analyses to be run in the

"production" mode. These analyses, which may run for hours, will then execute

automatically, with results being stored conveniently along with the input

parameters that generated them, and with a log of the production run being

produced for later inspection.

The modularity of the present implementation has also proven useful in

debugging code and adding features. Our initial experience, therefore, seems

to confirm that the present implementation is workable and should foster its

further evolution as a data analytical tool.

5.4.2 Results from Manipulations of Simulated Data

The results from initial analyses using this software are presented on the

following pages. The following manipulations are illustrated:

o Figures 5-4 through 5-6 -- Effect of varying the amplitude of the embedded

ERP from a minimal signal-to-noise level to one which is easily detected by

both techniques. At a poor signal-to-noise ratio (i.e., low amplitude

ERPs, see Figure 5-4), the Aunon/McGillem approach provided a considerably

more accurate estimate of the location of the ERP signal than did the Woody

procedure. For data with sufficient signal-to-noise ratios, both

techniques performed approximately equally. At the highest signal-to-noise
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ratio examined here (Figure 5-6), there is the suggestion of an advantage
for the Woodyprocedure.

Figures 5-7 through 5-9 -- Effect of jittering a medium-sized ERP over

three different latency ranges. Both techniques performed reasonably well
at all degrees of jitter. However, as the degree of jitter in the

simulated ERPwas increased, the Aunon/McGillem technique developed a bias
in the latencies chosen. The explanation for why this occurred is not

apparent at present, and further exploration is needed to determine if this

effect is artifactual or not.

o Figures 5-10 through 5-12 -- Effect of introducing a second ERP component

at three different mean distances (in latency) from a first ERP component.

As expected, the Aunon/McGillem technique fared better than the Woody

technique at reproducing waveforms in which more than one ERP component

occurred. At the signal-to-noise ratio used here, the Woody procedure did

a good job of detecting the first (and larger) peak. The second peak was

consequently diluted in the Woody latency-corrected average. The

Aunon/McGillem procedure's ability to identify the second (and smaller)

peak increased as that peak occurred at a further distance in time from the

first peak.

O Figures 5-13 through 5-15 -- Effect of varying the frequency composition of

the background EEG, simulating more or less alpha band activity in the

EEG. The Aunon/McGillem technique was unperturbed by the presence of

relatively more activity in the background EEG in the frequency band of the

ERP signal, while the Woody procedure performed somewhat less well as the

spectrum of the background EEG impinged on the signal.

These results must be treated as preliminary and suggestive rather than

definitive. The manipulations performed here are representative of the sort of

analyses that need to be performed in more detail, and the present results

provide encouragement that the approach implemented here is a fruitful one.
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Figure 5-4. _ amplitude manipulation, low siEnal-to-noise.

Conditions :

Typical background EEG (1280 msec epoch)

Single ERP of low amplitude

50 trials

Latency jitter of 400 msec

Note:

Woody technique does poorly at finding the ERP signal; Aunon/McGillem

technique does reasonably well.
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Fi_Ltre 5-5. ERP amplitude manipulation, medium signal-to-noise.

Conditions :

Typical background EEG (1280 msec epoch)

Single ERP of mediumampiitude

50 trials

Latency jitter of 400 msec

Note:

Both techniques perform well in finding the ERP signal.
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Figure 5-6. ERP amplitude manipulation, high signal-to-noise.

Conditions :

Typical background EEG (1280 msec epoch)

Single ERP of high amplitude

50 trials

Latency jitter of 400 msec

Note:

Both techniques perform well in finding the ERP signal. RMSEs are still

lower (indicating better performance) than with medium amplitude signals.

Interestingly, there is the suggestion of an advantage for the Woody

procedure.
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Conditions:

Typical background EEG (1280 msec epoch)

Single ERP of medium amplitude

50 trials

Latency jitter of 200 msec

Note:

Both techniques perform well in finding the ERP signal, with the sug&e_tion

of an advantage for the Woody procedure.
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Figure 5-8. ERP jitter length manipulation, medium distribution of

latencies.

Conditions:

Typical background EEG (1280 msec epoch)

Single ERP of medium amplitude

50 trials

Latency jitter of 400 msec

Note:

These conditions are the same as those in Figure 5-5.

perform well in finding the EEP signal.

Both techniques
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Figure 5-9. ERP jitter length manipulation, wide distribution of latencies.

Conditions:

Typical background EEG (1280 msec epoch)

Single ERP of medium amplitude

50 trials

Latency jitter of 800 msec

Note:

Both techniques perform reasonably well in finding the ERP signal, although

the Aunon/McGillem procedure ha_ developed an offset in the latency at

which it reports the signal. This bias may be artifactual.
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Figure 5-10. Two ERP component manipulation, small distance between the two.

Conditions :

Typical background EEG (1280 msec epoch)

Two ERP components; first of larger amplitude than the second; i00 msec

mean separation

50 trials

Latency jitter of 400 msec in both ERP components

Note:

Left-most RMSE values are mean latency error with respect to the first ERP

component. Because this ERP component was the larger of the two, both

techniques tended to lock onto it.
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Two ERP component manipulation, medium distance between the

two.

Typical background EEG (1280 msec epoch)

Two ERP components; first of larger amplitude than the second; 250 msec

mean separation

50 trials

Latency jitter of 400 msec in both ER2 components

Note:

Left-most RMSE values are mean latency error with respect to the first ERP

component. Because this ERP component was the larger of the two, both

_--_:_=_,_,_=_..... _A:_ ....,_ _ A_o_4ng_....... _t_ In the re_ion_ of the second peak, the

Woody latency-corrected average presents a "smeared out" rendition of the

underlying waveshape, while the Aunon/McGillem latency-corrected average

provides a more accurate representation of this second component.
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Figure 5-12. Two EILP component manipulation, large distance between the two.

Conditions :

Typical background EEG (1280 msec epoch)

Two ERP components; first of larger amplitude than the second; 400 msec

mean seDar_ion

50 trials

Latency jitter of 400 msec in both ERP components

Note:

Left-most RMSE values are mean latency error with respect to the first ERP

component. Because this ERP component was the larger of the two, both

techniques did well at detecting "it. In the region of the second peak, the

Woody latency-corrected average presents a "smeared out" rendition of the

underlying waveshape, while the Aunon/McGillem latency-corrected average

provides an accurate representation of this second component.
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Conditions:

Typical background EEG (1280 msec epoch); eoual _ains for delta and alpha

freouencv bands

Single ERP of medium amplitude

50 trials

Latency jitter of 400 msec

Note:

These conditions are the same as those in Figures 5-5 and 5-8.

techniques perform well in finding the EBB signal.

Both
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Figure 5-14. Background EEG manipulation, moderate spectral overlap with

EXP.

Conditions:

Typical background EEG (1280 msec epoch); alpha band _ain twice that of

delta band _ain

Single _ with medium amplitude

50 trials

Latency jitter of 400 msec

Note:

The Aunon/McGillem procedure does as well as when there was little spectral

overlap between signal and noise (see Figure 5-13); however, the Woody

procedure does not do as well in accurately detecting the ERP signal.
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Conditions :

Typical background EEG (1280 msec epoch); alph@ band gain four _imes that

of delta band _ain

Single ERP with medium amplitude

50 trials

Latency jitter of 400 msec

Note:

The Aunon/McGillem procedure does as well as when there was little spectral

overlap between signal and noise (see Figure 5-13); however, the Woody

procedure does not do as well in accurately detecting the ERP signal.
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5.5 Future Directions

It is hoped that the software tool developed here, and the approach that it

embodies, will support a number of future explorations by both NASA and ARD

investigators. The present implementation will be useful for exploring, in a

much more extensive manner than was possible within the present scope of work,

the conditions under which the Woody and Aunon/McGillem approaches are

successful and the conditions under which they falter. The analyses reported

in the last chapter are representative of several types of manipulations that

need to be studied in more detail before firm conclusions can be drawn about

the relative merits of the two techniques.

In addition, the present software implementation may serve as a starting point

for future enhancements that could extend the present approach in a number of

different directions. These future directions fall into several categories --

enhancements to the present code that would be desirable based on our

experience with the software to date, uses of segments of the present package

to support other data analytical efforts, and prospects for enhancements that

would qualitatively effect the algorithmic approaches or the conditions under

which single-trial analysis of ERPs may be possible. In the following

sections, each of these categories will be summarized in turn.

5.5.1 Useful Enhancements to the Current Version of the Software

The following modifications and enhancements to the present software would

supplement the capabilities already implemented:

o Implementation of the Aunon/McGillem MMSE filter as an option that could be

applied to the simulated data prior to passing it into both analytical

procedures.

Allow the Woody procedure to be applied in its original iterative, multi-

pass form, so that the possible advantages of the adaptive feature

envisioned by Woody can be more fully explored.

o As additional statistics of merit, implement measures derived from the
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latency-corrected average waveforms; these measures could include a simple
amplitude measure, the ratio of latency-corrected average amplitude to

actual ERP signal amplitude, and/or the cross-covariance of the latency-

corrected average waveform with the ERPsignal waveform.

o Provide an option for the user to generate more than two ERPcomponents;
this would allow more realistic modeling of actual data with which an

investigator may be faced.

Provide for the possibility of the generated ERPcomponentsbeing waveforms
other than half sine-waves.

5.5.2 SeKmentation of the Current Version for Other Data Analytic Uses

While the present implementation is optimal for the comparative analysis of

simulated data, the data generation and analytical routines could also be

useful in other configurations. In particular, the output of the data

generation processes may be of use for testing other ERP data analytical

approaches (e.g. principal components analysis, step-wise discriminant

analysis, cluster analysis) or for modeling EEG/ERP data. Conversely, the

power and flexibility of the present Woody and Aunon/McGillem routines should

be useful for processing real data in a manner quite analogous to the present

analysis of simulated data. These possibilities argue for either implementing

segments of the present code in new programs, or providing additional options

for output of generated data and input of "live" data at appropriate

intermediate stages of the present analyses. The modularity with which the

present software has been designed will serve such new applications well.

5.5.3 Prospects for 0ualitative Enhancements to the Present Single-Trial

Analysis Approach

As mentioned previously, one advantage of the approach taken here is that it

may encourage the development of a single-trial analysis approach that works

better than either the Woody or Aunon/McGillem approaches as originally

implemented. In this vein, there are several qualitatively new directions in

which the present explorations may lead:
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o In that both the Woodyand Aunon/McGillem techniques are applied to only
one channel of scalp data at a time, they both ignore a valuable source of

additional information, namely characteristic differences in ERPamplitude

across the scalp. Recently, a technique has been suggested for

incorporating scalp distribution information (Gratton, et el., 1989).

Termed "Vector Analysis," this technique takes amplitudes across an array
of scalp sites and uses them to define a line in multidimensional space, in

which each axis corresponds to the amplitude at one scalp site. Thus, if

the scalp distribution of a componentof interest (e.g., P300) is known in

advance, this approach can be used as a filter to quantify the extent to
which the data at a given time point match this known distribution.

Gratton, et el., (personal communication) have applied this technique for

detecting P300s on a single-trial basis and found it to be superior to

either the Woodyprocedure or to a simple peak detection algorithm. The

Vector Filter, in fact, proved useful as a pre-treatment to the data prior

to doing a conventional Woodyanalysis. This approach has not, however,

been compared to the Aunon/McGillem procedure. It would be interesting to

add a Vector Filter option to the present software and to more fully
explore its virtues with simulated data.

Aside from the latency correction of conventional ERP averages, a more

general single-trial analysis issue involves the detection of ERP

components in ongoing EEGwithout prior knowledge of the timing of the

eliciting stimulus. If the present pattern recognition algorithms, with
appropriate pre-filtering of the data, should prove so powerful as to

provide such a means for identifying ERPsin ongoing EEG, there would be

enormousimplications for the application of this technology in operational
settings. One could, in effect, forego, or at least be less dependent

upon, the "artificial intelligence" that is presently required in

uncontrolled environments to detect the fact that a stimulus of potential

interest has occurred. The software developed here, perhaps in conjunction

with enhancements such as the Vector Filter (and consequent modifications

to the data generation routines to simulate concurrent activity at

different scalp sites), can provide the basis for exploring such issues.

o Related to the above two sets of issues, and the present interest in
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applications in operational settings, is the matter of a real-time

implementation of some version of these single-trial analysis techniques.

Ultimately, if a real-time ERP pattern recognition approach appears

feasible, it may be necessary to implement it in special-purpose hardware

or firmware, in order to accomplish the processing speed required.

However, applying various algorithms to EEG/ERPdata in a single pass, in

non-real-time, would be the first step in exploring and developing an
approach that might eventually work in real-time. The interactive

philosophy and displays of accumulating data which are manifest in the

software developed in the present project are quite consistent with an

eventual real-time application. Therefore, the present software could

serve as a developmental test-bed for the necessary real-time algorithms.
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6.0 PREPARATIONSFORSIMULATOR-BASEDVALIDATIONOF

ERPMEASURESOFWORKLOAD

In keeping with the ultimate goal of transitioning ERPtechnology into settings

where it can be used as a tool for systems engineering or on-line decision-

making, the present project included a number of activities to prepare for a

validation of ERP measures of mental workload in the NASAAdvanced Concepts

Flight Simulator (ACFS). The objective of such a validation would be to

demonstrate workload-related effects on ERPs elicited unobtrusively by

naturally occurring events in the ACFSduring one or more realistic flight

scenarios. The preparatory activities conducted here drew upon the results of

the present "task analysis" of the ACFSdisplays and aircrew tasks as well as

the results of the laboratory-based ERP studies. These activities, which

involved key input from NASA Langley research scientists and simulator
engineers, included the following:

o A preliminary experimental design, choice of ACFSscenario and preliminary
specification of ACFSperformance measuresto be viewed in conjunction with
ERPmeasures.

o Specification of a communication protocol by which information about the

scenario, timing and nature of ACFS events, and pilot's performance would

be passed from the VAX 8650 controlling the simulation to a laboratory

computer recording ERPs.

o Installation of a package of subroutines on the laboratory computer at NASA

Langley to support ERP data acquisition functions.

6.i Preliminary Specification of Experimental Design and ACFS Scenario

The objectives of an initial, simulator-based validation can best be met by

limiting the study to a scenario involving a single phase of flight, in which

mental workload can readily be manipulated and in which a number of display

features will be exercised. For the purpose of specifying a set of such
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manipulations and corresponding ACFSmeasures, we assume a landing scenario.

It is envisioned that a series of landing runs would be "flown" by each

subject, with workload being manipulated across runs by varying simulated wind
conditions or turbulence and/or "one engine out" versus both engines

functioning normally.

ERPswould be triggered by such events as the following:

The onset of certain discrete messageson the screen:
-- OUTER MARKER

-- MIDDLE MARKER

-- INNER MARKER

-- DECISION HEIGHT

-- FLARE BAR

-- FLAPS?

o The position of the Flight Director Ball relative to the target area in

which the pilot is trying to maintain it.

o When the Air Speed Error "bug" exceeds a specified level.

o When discrete alarms go off, to be manually reset.

These ERPs would be coded as to the eliciting event and the workload conditions

under which they were elicited. At a minimum, the following variables should

be logged by the ACFS for use as converging performance measures for comparison

to these recorded ERPs:

o Deviation from Indicated Air Speed.

o Vertical Air Speed.

o Deviation from Vertical Velocity.

o Track Angle Error.
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o Deviation from Glide Slope.

o Landing footprint:

-- X deviation from touch downpoint

-- Y deviation from touch downpoint

-- Sink rate (vertical loss)

-- "Crab angle"

o Stick Inputs:

-- Roll

-- Pitch

-- Rudder

-- Pedals

-- Throttle

6.2 Communication Protocol Between Simulator Computer and Laboratory Data

Acquisition Computer

It was assumed that the DEC MINC computer (LSI-II/23 based) in the Crew-Vehicle

Interface Research Branch at NASA Langley would be used to digitize, label and

store event-related potential (ERP) data time-locked to specified display

elements in the ACFS. These physiological waveforms would be digitized at a

rate of i00 Hz for approximately 1.5 seconds after being triggered by the onset

of a simulator event, which for this study would be a specified change in the

_im_y flight _-_-+" _^_v_ _ _ _mpnr_n_ _h_ _h_s tri_erin_ occur

with, at worst, I0 msec accuracy, so that the error in time-locking ERPs would

never be more than one digitized time point.
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The information displayed on the cockpit CRTs, as well as the fact that an

event of interest is about to occur, would be computed by the ACFS model

running on the VAX 8650 and then downloaded into the Ikonas display generator.
Because it is advisable to time-lock to the actual presentation of the event to

the pilot, and the "repainting" of the cockpit CRTs by the Ikonas occurs

asynchronously with respect to the downloading of information from the VAX, it

is necessary to pick up a timing pulse from the Ikonas in order to trigger the

recording of ERPsby the MINCwith the required accuracy of timing.

In addition to this time-critical trigger information, it is advisable to tag

each digitized waveform with a code delineating which of the numerous ACFS

events of interest elicited a given ERP (i.e., caused the trigger to occur).
This coding will allow the waveforms to be sorted properly during off-line data
analysis.

In that the information about which event occurred will reside on the VAX, it
is necessary to send an event code from the VAX to the MINC in real-time.

Other information about the condition of the simulation at the time the ERPis

elicited (i.e., values of specified global variables indicating flight
parameters, pilot control actions, etc.) can be logged on the VAX and combined

with the ERP data off-line. A commontime code is necessary to allow this

off-line combination of condition data from the VAX and ERPdata from the MINC,

so the VAX should also pass the MINC, in real-time, an indication of elapsed

time in addition to the event code. However, unlike the transmission of the

trigger pulse from the Ikonas to the MINC, this transmission of event and

elapsed time information from the VAX to the MINC need not be strictly

synchronized with the recording of an ERP. At present, it appears that the

transmission of condition information from the VAX to the MINC should precede

the transmission of a display update from the VAX to the Ikonas, and

consequently the transmission of the trigger pulse from the Ikonas to the MINC.

The oculometer which is being implemented in the ACFS is another source of

input to the MINC. Most of the outputs on the oculometer are analog signals
which can be digitized by the MINCalong with EEGand E0Gdata coming from the

pilot. However, there is one digital output from the oculometer, a data

quality flag. Obviously, changes in this source of digital input to the MINC
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will occur asynchronously with respect to both the timing information coming

from the Ikonas and the condition information coming from the VAX8650.

6.2.i Ikonas/MINC Link

The Ikonas display generator is a raster-scanning device with two display

buffers. The information in one buffer, referred to as an "animation frame,"

is displayed on the CRT while the information in the other buffer is updated

with a transmission from the VAX. The two buffers then switch, so that the

animation frame that has already been displayed can be updated with a

subsequent transmission from the VAX. Each display screen, referred to as a

"video frame," is painted in an interlaced manner, such that it takes 1/60 of a

second to display one field (every other line) of the screen and 1/30 of a

second to display an entire video frame. The number of video frames per

animation frame is dependent on the speed at which animation frames can be

generated. The Ikonas is presently set to display two video frames before

switching buffers to a new animation frame.

It is necessary to time-lock the onset of an ERP to the actual occurrence of

the eliciting event on the display screen. In any given scenario there will be

numerous such events of interest and they will occur at different places on the

screen. The approach proposed by NASA Langley engineers to achieve i0 msec

accuracy in this time-locking is to draw an invisible cursor into a spare bit

plane, at the place on the screen that the event o_ interest will occur

(visibly on one or more of the other bit planes), and to send out a pulse on

the cross-bar switch bit when the raster strobes the pixels that comprise this

cursor. Cursors at different positions would be drawn for different events,

and which, if any, cursor is drawn on a given animation frame would depend on

the information being downloaded from the VAX. The onset of a signal on the

cross-bar switch will thereby correspond, within nanoseconds, to the onset of

the event of interest on the screen. In that this signal may occur only while

the raster is scanning over the pixels which compose the cursors, it may be

necessary to send this signal through a one-shot logic gate in order to shape

it into a signal that will be appropriate for digital input to the MINC.
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6.2.2 VAX/MINC Link

In order to accommodate the transmission of event number and elapsed time from

the VAX to the MINC, a serial communication link was considered and rejected,

largely due to the reportedly slow speed of the MINC in handling serial data

inputs. Instead, a parallel transmission link can be fashioned by using

"discrete variables" which the ACFS model uses for controlling indicator lights

and other binary switches in the cockpit. A bank of these lines from the VAX

which are currently not being used in the cockpit, or which are expendable, can

be wired to digital input bits on the MINC. The discrete variables would then

be used to send out TTL level signals on these lines, in a pattern which

constitutes a meaningful binary code.

It should be possible, in one parallel transmission, to have this code convey

both the information as to which event is about to occur and a time code from

which elapsed time can be derived. It is likely that a typical experimental

design will entail the triggering of ERPs by approximately a dozen different

events (e.g., onset of CRT messages such as "OUTER MARKER"; drift of the Flight

Director Ball out of the target area, drift of the Air Speed Indicator out of a

pre-defined region of its scale). NASA Langley engineers have suggested that

these events be entered into a look-up table on the VAX, such that when the

simulation model calculates that an event of interest is to occur on the next

display update, a numeric code associated with that event will be looked up and

output to the MINC.

The VAX keeps time in terms of a frame counter, which increments with each

updating of the simulation model (presently, approximately 16 times per

second). The easiest way to pass elapsed time from the VAX to the MINC will be

to alternately set and reset a single "discrete," as each new frame update

occurs The MINC can then keep an incremental count of these frames, as does

the VAX. By thus coding time, it will be possible to pass information about

the triggering event and the corresponding time of its occurrence in a single

parallel transmission from the VAX to the MINC. If eight bits of information

(i.e., eight discretes) are available on the VAX, seven can be used for coding

event information (thus providing for up to 127 different events, should anyone

ever need that many) and the eighth can be used for transmitting the timing
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code.

Other ACFS condition information will also be useful for sorting and

interpreting the ERPs, but there is no need to pass this additional information

to the MINC in real-time. Some of this additional condition information will

remain the same for an entire scenario (e.g., workload level, wind condition,

turbulence condition), while other condition variables will reflect the

moment-to-moment performance of the man-machine system (e.g., air speed,

altitude, stick position). This condition information will reside in global

variables in the VAX simulation software and will be logged into a data file on

the VAX throughout a scenario, written to mag tape at the end of a scenario or

experimental session, and combined with the ERP data off-line. A time code

will be stored along with this logged data and will provide the means for

linking the ERY data from the MINC with corresponding condition information

from the VAX.

The scheduling of the output from the VAX to the MINC could be timed to occur,

in the duty cycle of the simulation, either before or after the transmission of

the corresponding screen update from the VAX to the Ikonas. Because of the

asynchrony between the VAX sending this information and the Ikonas displaying

the new frame, it appears preferable to have the VAX send the event code to the

MINC after it has calculated the screen update on which the event of interest

will occur, but before it transmits this information to the Ikonas. In

addition to the screen update information that is presently passed from the VAX

to the Ikonas, it will now be necessary to also pass a code that designates the

event which is about to be displayed, and consequently which cursor the Ikonas

should draw in the background.

6.2.3 Qculometer/MINC Link

The outputs from the oculometer that is presently in use at NASA/Langley are as

follows:

X and Y coordinates - two analog channels, indicating the location of gaze

with respect to a predefined origin.
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o Pupil diameter - one analog channel, indicating the degree of pupil

dilation when positive and a variety of error conditions when negative.

o Gaze window - one analog channel, with incremental values separated by 0.3

volts over a range of i0 volts, indicating in which of approximately 30

predefined windows the user's gaze falls.

o Data quality flag - one digital channel, indicating whether or not the eye

is in track.

The oculometer thus provides four analog channels, in addition to the EEG and

EOG channels, that can be input to the A-to-D converter on the MINC and sampled

at i00 Hz.

6.2.4 ConfiKuration of MINC DiKital Input Bits

Based on the design implied by the above information, we presently envision the

configuration of the MINC parallel (digital) input register to be as follows:

Bits 0-6

Bits 7

Bits 8-13

Bit 14

Bit 15

- ACFS discretes carrying condition information from the VAX

- ACFS discrete carrying time code counter from the VAX

- Unused

- Data quality bit from the oculometer

- ERP trigger pulse from the Ikonas

Changes in the value of this digital input register would send an interrupt to

the program running on the MINC. The LABPACK software that ARD has installed

on the MINC contains subroutines to service these interrupts and an application

program can be written to read and interpret this register, as well as clear it

appropriately to enable further input.

This program running on the MINC would make the following assumptions regarding

digital input:

o That an event code from the VAX will always precede a trigger pulse from

the Ikonas.
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o That the subsequent trigger pulse will never occur more than 128 msec (two

animation frames) after the arrival of the event code.

o That more than one event can occur in a given animation frame.

O That a different event can occur on the animation frame immediately

following a preceding event, and that any event which occurs during the

approximately 1.5 second recording epoch of an ERP should be noted.

6.2.5 Some Remaining 0uestions for Consideration

The primary unresolved issues are the following:

o The range of times that can be expected from the arrival of the parallel

input from the VAX until the arrival of the trigger pulse from the Ikonas;

it appears that the minimum time would be the duration of the transmission

of a display update from the VAX to the MINC; the maximum time would be

this time plus one animation frame time plus one video frame time.

O The nature of the crossbar switch output and how it should be shaped to

avoid spurious trigger signals.

O Whether the proposed communication interface can accommodate and

distinguish multiple events in a given frame and different events on

adjacent frames, or whether there will be some constraints on the temporal

resolution for detecting and coding events.

6.3 LABPAK Software Routines for the MINC Computer

The use of general-purpose microcomputers to control psychophysiological data

collection is now widespread, and hardware from numerous vendors has been used

in accomplishing this goal. Whereas hardware costs have continued downward, as

new technology has become available and competition in the marketplace has

increased, software development costs have increased because of the

labor-intensive nature of this process. Given the status of psychophysio-

logical research in general, and that of event-related potentials (ERPs) in
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particular, it does not seem advisable to saddle researchers with turn-key

systems that limit their creativity and flexibility to implement new data

collection protocols or data analytic procedures. However, productivity is

greatly increased by the availability of a package of general purpose

subroutines that perform the basic functions which are characteristic of

virtually every psychophysiological research study. Such functions include

starting and stopping timers, activating analog-to-digital (A-to-D) conversion,

and issuing and receiving digital input and output (I/O), respectively.

Routines that perform these functions can be implemented in a "canned" manner

and then integrated, by the sophisticated programmer, into main programs that

address specific experimental goals. The availability of such a package of

"low-level" functional subroutines allows the programmerof such main programs

to work in a higher level language, without worrying about the need to program

the device handlers for each experiment.

The LABPAKsubroutines which ARDinstalled on the MINCcomputer at NASALangley

were developed to provide this type of flexible capability for data collection

and experimental control. They are written in MACRO-Ifassembly language for
use on Digital Equipment Corporation processors. The present version of these

routines was adapted to run specifically on the MINC (LSI ll/23-based

processor) computer system in the Crew Vehicle Interface Research Branch at

NASALangley. Typically these routines would be called from FORTRANmain

programs of the user's own design, with the LABPAKlibrary being linked with

the FORTRANsource code and system specific FORTRANlibrary after compilation.

LABPAKprovides the FORTRANprogrammer with control over various peripherals

(i.e. the real-time clock, the A-to-D converter, and the digital I/0

interface). Moreover, it allows for the functions performed by these devices

to be executed in the "background," in a somewhatasynchronous manner from the

programmer's point of view. LABPAKis based on interrupt service routines
which execute whenever either the real-time clock or digital interface produces

an interrupt. Most of the LABPAKroutines are used by the FORTRANprogrammer

to set parameters which direct how the interrupt service routines process the

interrupts produced by these devices. During the time when the interrupt

service routines are not executing, the FORTRANprogram has control of the

processor and may execute other tasks such as monitoring the status of various
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flags set by the interrupt service routines, accessing disk files, manipulating

other peripherals, or performing numerical calculations. In this way, data

collection, timing, and digital I/O functions may take place in "parallel" with

other program functions.

Specifically, LABPAK contains assembly language subroutines for performing the

following functions:

o Programmable Clock Handler:

-- Start the programmable clock.

-- Start software timers.

-- Turn off a software timer.

-- Turn off the programmable clock.

-- Clock interrupt service routine.

o Analog to Digital Converter Handler:

-- Perform an A-to-D conversion.

-- Stop a direct memory access A-to-D conversion.

-- Start the digitizer cycling through a pre-stimulus wrap-around buffer.

-- Stop the digitizer and unwrap the buffer.

-- Write a marker to an active A-to-D buffer.

-- A-to-D clock interrupt service routine.

o Digital Input/0utput Handler:
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-- Enable digital inputs (all bits).

-- Enable digital inputs for given bits.

-- Wait for an external digital input.

-- Disable digital input reporting on given bits.

-- Turn off digital inputs.

-- Set a specific digital output bit.

-- Turn off a specified digital output bit.

-- Write a value to the digital output register.

-- Clear the digital output register.
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7.0 DESIGNSPECIFICATIONSFORA GENERAL-PURPOSEMENTALWORKLOAD

ASSESSMENTSYSTEM

The culmination of the present Phase II SBIR project was a design specification

for a computerized workload assessment subsystem that could be integrated into

a variety of man-machine settings of interest to NASA. The immediate context

for the design of such a system is the NASAAdvancedConcepts Flight Simulator

(ACFS) (see Sexton, 1983). Although the ACFSis a state-of-the-art transport

cockpit simulator, the approach which underlies it is representative of the

simulators available for many other man-machine systems in which the

measurementof humanperformance is of interest. Moreover, as discussed below,

the ACFSdoes not, as yet, have well-established means for dealing with the

performance data it logs, let alone any systematic analyses for mental

workload. The system specified here would provide this capability. In

addition, it would provide a generic workload assessment system with the tools

available to accommodateother man-machineenvironments of interest to NASA,

both simulators and selected operational systems.

7.1 Overview of the Proposed System

As detailed herein, the hardware components and software tools now exist to

warrant the cost-effective development of a prototype, microcomputer-based

workload assessment system that will provide for state-of-the-art measurement

of human performance in naturalistic task environments. The system that we

propose will involve a powerful, personal computer work-station which could be

transported and rapidly set up in locations of interest. Such a system will

provide the means to amplify and record event-related potentials (ERPs) and

other psychophysiological indices of workload, as well as subjective and

behavioral data, from a system operator. It will implement state-of-the-art

algorithms for processing these complementary measures and for making

inferences about human functionality in operational scenarios. In addition, it

will provide for digital communications with a host computer controlling a

simulator or operational system, so as to encode system performance indices

from the platform the operator is controlling. The software will provide for
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the logging and database managementof these measures in real-time during

operational scenarios, the calculation of derived measures of human

performance, and the off-line application of data analysis tools, including

statistics, to the stored data. This off-line analysis capability will include

optional knowledge-based guidance for the data analyst. The user will have the

ability to interact with this system in various ways, both during real-time

data acquisition and off-line data analysis, and to view the encoded

information with interactive color graphics.

The system will be powerful, flexible, user-friendly and readily expandable, so

as to accommodatenew measures of workload, or new derived variables based on

existing measures, as they are proposed. Most importantly, it will work in the

engineering environment, processing data recorded, for example, during

realistic flight scenarios in a simulator. While this workload assessment

capability is envisioned as a tool-kit for use by design engineers, it has been

configured with the possibility of later enhancement for real-time measurement
of workload. Such real-time capabilities would allow a modified version of the

hardware to be integrated into operational systems, so as to provide on-line

measures of human performance that could be used as inputs to automated task

allocation or decision-aiding algorithms.

The present design specification process identified not only design

requirements that the workload assessment system must satisfy, but also
alternative hardware and software components that will meet these requirements

as well as the ways in which the specified system will foster further

engineering or research and development in the workload assessment arena.

The following sources of information were used in this design specification:

Knowledge of the workload assessment literature and ongoing efforts in the
field.

o Knowledgeof the nature of ERPsand other psychophysiological measures, and
the characteristics of recording systems that are in now in use.

o Results of the present empirical ERPresearch.

7-2



o The results of the single-trial data analysis of simulated EEGdata.

o The results of the task analysis to identify cockpit events to which
psychophysiological recordings could be time-locked.

o Design documentation on advancedcockpits.

o Available state-of-the-art technology in electronic circuit design and
miniaturization.

7.2 Background and Justification for the Approach Advocated

7.2.1 Need for a Tool-kit Approach

The conclusion that we and a number of other groups have reached in recent

years is that THERE IS NO SINGLE MEASURE OF WORKLOAD THAT WILL WORK IN ALL

SITUATIONS, NOR IS ONE LIKELY TO EMERGE. We thus rejected the idea of

advocating a system that specifically provides just for the measurement of ERP

indices of workload. On the other hand, THERE IS A DIVERSITY OF EXISTING

MEASURES OF WORKLOAD (including ERPs) THAT HAVE PROVEN USEFUL FOR VARIOUS

SYSTEM ENGINEERING PURPOSES, BOTH IN THE LABORATORY AND IN THE FIELD. In fact,

the technology required to provide for ERP and other psychophysiological

measures of mental workload will readily support a variety of these other

measures.

Taken together, these conclusions suggest the need for a multidimensional,

tool-kit approach, whereby a variety of measures of workload could be readily

applied, in various combinations, at the discretion of the engineer or

behavioral scientist user. The user will be able to choose, for particular

applications, which variables to record and which workload measures to derive.

This approach is not unlike that used by physicians in diagnosing an illness.

Numerous clinical tests may be conducted, none of which is completely reliable

in and of itself; but based on the preponderance of evidence, taken together,

conclusions are drawn and interventions (in this case, design decisions) are

initiated.
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We therefore chose to specify the development of a man-machine performance

assessment system that will support subjective, behavioral and psychophysiolog-
ical measures of workload, including ERPs, and which will readily interface

with a variety of simulated or fielded systems. The system will allow

performance data, e.g. flight variables such as those displayed in the ACFS
cockpit, to be related to variables which indicate the mental status of the

crewmen.

7.2.2 Lack of Such a System at Present

No such system is currently in existence. The PEARL system that was developed

at the University of Illinois under contracts from the Air Force and

Environmental Protection Agency (Heffley, et al., 1985), and its successor, the

Air Force's Neuropsychological Workload Test Battery (NWTB) developed by

Systems Research Labs, Inc., perhaps come closest to meeting this need. The

design of both these systems was driven by the desire to present contrived

secondary tasks in order to elicit behavioral and physiological indices of

workload. They are configured primarily for acquiring event-related data, in

laboratory or simulator environments. Unfortunately, both these systems are

based on somewhat outdated technology which is no longer cost effective, and

and their computer architecture places severe limitations on their ability to

effectively acquire, reduce and store data collected in an ongoing manner over

long periods of time (minutes or hours). Furthermore, neither system is

readily usable by the non-programmer engineer or researcher. Their present

software does not allow for data being collected on different channels at

different rates. The Air Force is currently involved in the design of an

upgrade to the NWTB, but it is not yet clear what features it will encompass.

A software package known as Performance and Workload Analysis (PAWAN), which

was developed several years ago by the Computer Technology Associates group at

Edwards Air Force Base, is also relevant. This package, which apparently is no

longer being actively used at Edwards, was developed to intercorrelate flight

parameters, measures of pilot behavior, and heart rate, recorded in-flight

during fighter aircraft test and evaluation. PAWAN was implemented on

mainframe computers which did not facilitate interactive data analysis. From

the limited information available to us, it appears that PAWAN incorporated
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some of the features that we envision for the recommendedworkload assessment

system. However, the proposed system will be more generic, interactive, and
comprehensive with respect to current workload measurementtechniques.

Subjective ratings techniques for workload assessment have received

considerable attention in recent years. Two particularly well-developed

techniques, the Subjective Workload Assessment Technique (SWAT) (e.g.

Eggemeier, et al., 1982; Reid, et al., 1981; Reid, 1985) and the NASATask Load

Index (e.g. Hart, et al., 1982; Hart & Staveland, 1986), are now available for

IBM-PCcompatible systems. The workload assessment system specified here would

accommodatethese techniques in their present implementation.

7.2.3 Current Means of Handling ACFS Performance Data

There are three implementations of the ACFS -- one at NASA Langley, one at NASA

Ames and one at Lockheed-Georgia. There are some differences in the

implementation among these three sites. For example, the ACFS at Langley is

the only one driven by a VAX 8600 computer. However, at all sites the ACFS

software provides extremely powerful and flexible means for logging numerous

variables from the aircraft model during a flight scenario. The user can

specify which variables are to be logged for a given scenario and select, for

each one, how frequently it will be sampled and stored. These data are stored

into memory along with time stamps (number of elapsed update cycles thus far in

the scenario) on the host system and then dumped to a hard disk. The

information that can thus be saved includes time-coded flight status variables

that are presented on cockpit CRT displays, the binary status of other cockpit

indicators such as Caution and Warning lights, current positions of the side

stick controllers, switch positions of other controls actuated by the aircrew,

and condition variables such as the wind or turbulence values that are being

used by the model at the moment. Therefore, the means are provided for

encoding practically all of the variables that one would need to characterize

platform performance, and many of the variables from which operator behavior

can be derived.

However, there are not, as yet, well-established means for processing these

logged variables and deriving the needed performance data. At NASA Ames, where
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the first ACFS came on-line, researchers have written the logged data onto

magnetic tape media, loaded it onto a mainframe and analyzed it with the INGRES

data base management package and the S data analysis package. While extremely

powerful, these packages are also very expensive and somewhat cumbersome to

use. The workload assessment system that we specify here would provide many of

these same data analytic features, in a readily usable manner, along with

additional measures of operator physiology and behavior which are not feasible

to implement on the same system controlling the simulation. Moreover, it

offers sufficient processing power for dealing with these type data, at a

fraction of the start-up costs, and with the considerable savings in time and

convenience that is provided by implementation on a personal computer

workstation.

7.2.4 The Advantages of Implementing a PC-Based Workstation

From the present analysis of the needs of NASA and other potential users of the

proposed workload assessment system it was concluded that the proposed workload

assessment tool-kit system will best be implemented on a personal computer (PC)

workstation. The stunning advances in speed (cycle times now up to 25

megahertz) and miniaturization that is now available in PCs, coupled with the

vast amount of relatively inexpensive software that has been written for that

environment, allows one to attain the kind of processing power that until

recently was associated only with minicomputers, if not mainframes. Moreover,

our experience indicates that it is possible to configure a PC-based system

that will meet the present needs, for a fraction of the cost (we estimate I/I0

to 1/3) of minicomputer processors, peripherals, and software. Furthermore,

the architecture of chips such as the Intel 80286 and 80386 (or for that matter

the Motorola 68020 and its derivatives) allow for the addressing of much more

on-board memory than is possible with conventional minicomputer architectures.

This random access memory allows for larger programs to be linked without

cumbersome overlay structures, as well as greater buffering of data being

continuously acquired. Finally, there are software tools that will be useful

in the present effort that are currently available only for PCs.

For recording in simulators, where space is not constrained and it is feasible

to tether the subject to the recording equipment, the use of off-the-shelf PC
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hardware is quite adequate. However, in considering the need to eventually
develop a subsystem that could be integrated into operational settings such as

flying aircraft, the necessary design specifications becomemuch more severe.

Space will be at a premium, it may not be desirable to tether the pilot, and

the effects of the avionics and environmental conditions on the recording

equipment are difficult to predict. Therefore, for the near-term development

of this technology, it seemsreasonable to limit oneself to a system that will

interface with simulators or ground-based systems and which does not entail

special-purpose hardware. By providing a tool-kit for managing and analyzing

human performance data that have been recorded by conventional means, the

specified workload assessment system offers NASAthe most cost-effective means

of enhancing its workload evaluation capabilities.

The use of general purpose A-to-D converters and digital input/output registers

(both serial and parallel) in the present system are envisioned in order to
provide a generic capability to interface with a wide variety of potential

systems. The software would include easily usable, menu-driven means for the

user to configure these I/0 lines for communicating with a given host system.
Such features would accommodatethe sort of communication protocols that we

developed in the present project for the VAX 8600 and MINC data acquisition
computer at NASALangley (see Section 6). If necessary, it would be possible

to provide for special-purpose hardware with direct memoryaccess to the solid

state or optical memories of future flight data recorders, or the ability to
encode data in an "intelligent" w_y d_r_otqy off thp d_t_ bus of operational

systems. However, by avoiding these levels of specificity and designing a

generic tool-kit system, one minimizes the possibility of developing

special-purpose instrumentation for inflight recordings that may be obsolete by

the time it would actually be used in this ambitious manner.

7.3 Workload Measures Supported

The specified workload assessment workstation will allow the derivation of at

least the following measures of operator workload, based on simulator data

encoded along a time b_ with mqq]_second accuracy:

o Subjective Workload Assessment Technique (SWAT) -- this subjective rating
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technique has been used extensively over the last several years by a number

of groups. PC-based software to implement the conjoint analyses involved

in this approach are provided upon request by the Air Force for use on

government projects. It is assumed that the SWATratings would be

collected either after-the-fact, via interviews, or during simulated flight

scenarios by interrogating the crewmanvia voice communications.

o NASATask Load Index (TLX) -- this subjective rating technique has been

used largely by its developers at NASAAmes. Upon request, NASAAmes

supplies PC-based software to implement TLX data collection and analysis

for use on government projects. It is assumedthat the TLX ratings would
be collected in a similar manner to the SWAT.

o Behavioral measures from flight-related tasks -- e.g., control stick

movements (frequency, magnitude, timing in response to distinguishable

events), time and nature of manual responses (on appropriate switches,

keyboards, pushbuttons) after an event that warrants a response.

o Event-related potential (ERP) amplitude and latency -- derived from

Electroencephalogram (EEG) recordings, ERPs are voltage fluctuations

recorded from the scalp that are time-locked to external stimuli. As

illustrated by the empirical research accomplished on the present project

(see Section 2), transient ERPsare usually characterized by the amplitude,

latency from stimulus onset, and scalp distribution of the various

componentpeaks in the waveform. Our work and others (see e.g., Donchin,

et el., 1986) have related ERPs to mental workload and other cognitive
constructs. It is difficult with conventional electrodes to record EEG

data in-flight or in somesimulator settings, because the scalp electrodes

interfere with the flight helmet or other equipment. However, this should

not be a problem in the ACFSsimulator, where the aircrew need not wear

helmets or life support gear. Efforts are underway at several sites to

integrate recording electrodes in flight helmets and to reduce

contaminating electrical artifacts that can occur in naturalistic settings;

therefore, it may soon be feasible to accomplish high-quality scalp

recordings on a routine basis in even the most demandingenvironments.
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o Blink frequency and duration -- derived from Electrooculogram (EOG)

recordings with amplifiers specified herein. Blink rate increases appear

to reflect the deterioration in attention and performance which occurs over

a prolonged task (Beideman & Stern, 1977; Bauer, et al., 1985).

Additionally, Goldstein, et al., (1985) reported that blink durations

generally increase with time on task. As workload increases, blink rates

decrease and the latency of the blink, after presentation of the stimulus

of interest, increases (Bauer, et al., 1987). The pattern of these results

are consistent with the notion that as visual information processing

demands increase, the eye reflects the subject's attempt to take in more

visual input.

o Heart rate and vagal tone -- derived from Electrocardiogram (EKG)

recordings with amplifiers specified herein. Heart rate increases during

periods of increased workload, for example during take-offs and landings,

have been reported (Roscoe, 1978, 1982; Hart, et al., 1984); but others

have not found heart rate to be sensitive to cognitive aspects of simulated

flight (e.g., Casali & Wierwille, 1983). More consistent relationships

with workload have been reported for heart-rate variability. The typical
finding has been that with increased attention and workload, heart-rate

variability decreases (e.g., Sayers, 1975; Egelund, 1985; Veldman, et al.,

1985). The inter-beat intervals of the heart define a complex time series

that reflects a variety of influences on the heart. Respiratory sinus

arrhythmia ......

breathing, is one such influence that is mediated by the brain. Vagal tone

provides a pure estimate of RSAwhich avoids the statistical assumptions of

other procedures, such as spectral analysis, for analyzing heart-rate

variability (Porges, 1985).

Voice stress -- In recent years, there has been considerable interest in

the ability to detect operator workload and stress levels using speech and

vocal patterns (e.g., Chambers, et al., 1983; Mosko, et al., 1983; Peckham,

1979; Peckham, 1980). Much of this activity has stemmed from the

_v=±opment ^= -'^=......... _ _t_m_ r_n_h1_ nF r_pq_n_ keved data

entry and manual control of complex platforms in operational settings. In

these environments a number of variables challenge the accuracy of voice
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recognition capabilities -- e.g., acoustic noise, vibration, feedback

techniques, training strategies, speech pattern access, response time,
vocabulary size and characteristics of particular populations of users.

7.4 Functional Characteristics of the Workload Assessment System

The workload assessment system envisioned here will offer the design engineer

or behavioral scientist the following capabilities:

Ability to transduce and amplify a user-selectable number of physiological

signals from a system operator.

Ability to digitize these analog waveforms at a user-selectable sampling

rate and store them via direct memory access.

Pattern recognition routines to detect artifacts in the physiological

recordings (e.g. due to electrical noise from the environment or

contaminating electrical potentials from the subject) and state-of-the-art,

adaptive algorithms to remove these artifacts from the data.

o User input facilities for entering subjective ratings of workload.

Ability to communicate via digital input/output, both serial and parallel,

with a host computer that is running a simulation or operational system in

order to acquire behavioral and platform performance data; the system would

accommodate a communication protocol similar to the one that was developed

in the present project for the VAX 8600 to convey information to the MINC

system at NASA Langley; the specified workload assessment system would, of

course, be used instead of the MINC.

o Ability to display an incoming stream of data on a color graphics monitor

so that an experimenter can monitor the data acquisition process; the

displayed data might be "raw" waveforms, running average waveforms,

continuous behavioral indices such as stick outputs, or annunciation of

certain events detected by the host system software.
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Ability to compute derived values of the workload indices mentioned

earlier; for example, one might wish to compute vagal tone from EKG, to

compute blink frequency from EOG, to compute reaction time from the onset

of some event in the cockpit until a switch actuation is accomplished by

the pilot, to compute "tracking accuracy" from flight parameters such as

altitude (assuming that the simulator can report the altitude profile of an

ideal flight path), or to calculate Task Load Index workload values based

on bipolar rating data entered by the subject.

o Ability to display, correlate and otherwise relate different variables that

have been recorded at different sampling rates along a common time base;

for example, if may be of interest to relate altitude during a particular

phase of flight (a measure of primary task performance assuming that the

commanded altitude is known) with heart rate and vagal tone, computed from

the EKG; altitude may have been encoded at 5 Hz while the EKG was sampled

at 500 Hz; the workstation would allow the operator to specify heart rate

and vagal tone values to be calculated at a rate of 1 per every i0 seconds

and the altitude data to be collapsed (e.g. by averaging) into

corresponding I0 second epochs, so that a point by point comparison can be

made graphically or statistically.

o Ability to display, on a color graphics monitor, raw or derived values of

groups of variables on an X-Y plot with the X axis being a common time

base; ability to display appropriate derived variables on bar graph_, X-Y

scatter plots, or stem and leaf displays.

o Ability to sort, merge, average or otherwise combine data across flights,

sessions or subjects.

Ability to apply descriptive and inferential statistics to the data; the

system should include a general purpose statistical package.

o Ability to apply knowledge-based rules to the data reduction and

interpretation process; this expert system capability _ ......

incoming data for particular meaningful patterns or might act as an

interpretative aid to the data analyst.
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Ability to perform the above functions in a completely menu-driven manner,

without the need for the user to program the workstation; the system will

be "user-friendly" with appropriate prompts, diagnostic error messages, and

on-line help screens; throughout the software implementation activities a

major effort should be made to coordinate the various ongoing development

activities and to ensure that a user-friendly man-machine interface

results. Current published human factors design guidelines should be
followed.

o Ability to program the system, using an upper-level commandlanguage, to
perform functions not initially foreseen.

7.5 System Hardware and Softwarp

A system that meets the functional specifications in the last section was

configured based largely on off-the-shelf hardware. This system specification

was detailed in a separate report to NASA which contains information protected

by SBIR rights.

7.6 Usefulness of ARD's ANALYZ Packag_

ARD's proprietary software package for analyzing psychophysiological data (see

Section 4) may be useful as part of the present software configuration. It

comprises an extensive set of data analysis and data management routines that

can be applied to a wide variety of physiological measures. Written in

FORTRAN, the package has been made largely transportable, user-friendly, and

well-documented. It constitutes a modular, yet well-integrated set of tools

for processing ERPs and aspects of other electrophysiological signals.

ANALYZ was initially developed for use on PDP-II systems running the RT-II

operating system. AKD has adapted it for use on VAX systems running the VMS

operating system. The present preliminary analyses suggest that the ANALYZ

package can be ported, with some modifications, to run in a PC environment

(where there are, in fact, some advantages in terms of memory space available

for executable code) and that significant parts of the package provide

capabilities that would be difficult to implement in existing scientific
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software tool-kits. Even if the existing code proves to be difficult to adapt

for the present application, the data analytical approaches that it embodies

will serve as a useful model for the code to be developed for the present

workload assessment system.

7.7 Usefulness of LABPAK Subroutines

The routines that ARD installed on the MINC laboratory computer system at NASA

Langley (see Section 6) will also prove useful in the workload assessment

system specified here. These routines, written in assembly language (MACRO-If)

for that system would be used in applications programs to provide such

functions as starting and stopping timers, activating analog-to-digital

(A-to-D) conversion, and issuing and receiving digital input and output (I/0).

Routines that perform these functions can be implemented in a "canned" manner

and then integrated, by the sophisticated programmer, into main programs that

address specific experimental goals. The availability of such a package of

"low-level" functional subroutines allows the programmer of such main programs

to work in a higher level language, without worrying about the need to program

the device handlers for each experiment. While this package of subroutines

would not be compatible with the hardware architecture of the envisioned

workload assessment system, they serve as a useful model for a functionally

similar set of routines that should be developed for the specified system.

7.8 Knowledge-based Capabilities

There are two aspects to the expert knowledge that could be brought to bear on

the present workload assessment application. On the one hand, there should be

pattern recognition algorithms that monitor the incoming data in real-time, to

supplement the expert observer, and detect the occurrence of patterns of

interest. Depending on their significance, these detections could trigger a

message to the user or simply result in the data being tagged for later

perusal. In addition, there should be software tools that make it easy for the

expert data analyst to retrieve data after-the-fact and to process it in

various "intelligent" ways. At this stage of analysis, ........ _-_^_

information could be implemented to direct the automated computation of certain

derived measures or to aid the data analyst by suggesting interpretations based
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on patterns in the data.

The data should be labelled in a meaningful way such that the expert can

rapidly get to the parts of the data base that he is likely to find most

informative, and the system should offer strong interactive graphic

capabilities for inspecting these segments of the data. Certain ways of

quantifying the data could be automated and could be used to suggest possible

interpretations to the data analyst. For example, difference waveforms could

be calculated between two conditions of interest, or multiple regression and

analyses of variance could be performed to examine the effects of different

experimental manipulations. Although there is considerable debate as to the

feasibility or desirability of carrying this automated inference capability to

the point of inferring the functional significance of the data, one can make a

strong case for the advisability of attempting to automatically infer trends
and interrelationships in the data themselves, as an aid to the humanobserver.

The sort of artificial intelligence required to implement such capabilities

suggests the use of expert system techniques, to compare a set of observables

against a set of possibilities, to make probabilistic judgments about the
results, and to present the inferences and possible courses of action that

follow from a given set of input conditions. However, underlying this higher

level decision-making structure, and working in conjunction with it, must be a

set of software tools that are specific to the nature of the data being

processed. These software tools would provide means of quantifying the

electrophysiological phenomenain terms of derived measures, abstracting and

trending these measures over time, and recombining them in various ways to

reveal their interrelationships. Such capabilities are offered by a number of
existing expert system "shell" programs.

7.9 Potential Applications of the Specified System

The workload assessment system that we envision should have wide-ranging

usefulness, both for military and non-military applications. While the system

we have specified responds directly to the needs of NASA for better workload

assessment tools in the ACFS environment and others, the system is by no means

specific to any one environment, nor for that matter to cockpit performance
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issues. Thus the system recommendedhere can be readily used with different

front-end data acquisition systems in a variety of environments. While the

instrumentation that supports this data acquisition may be system-specific, the
workload measures that are to be derived are generic, as are the data

manipulation and analysis capabilities that the engineer requires at the
workstation.

Although the system specified here constitutes a finished system for many

workload assessment applications, there are several ways in which it could be

expanded with future R & D. Such future development could include the

following objectives:

To develop interfaces with the next generation(s) of in-flight recording

instrumentation; such instrumentation is likely to include data bus

recorders with solid-state memoryor optical disk-based bus recorders.

To develop an in-flight recording package that would provide selective

(i.e., "smart") recording of physiological parameters.

o To develop a microprocessor-based unit for soliciting and encoding pilot's

subjective ratings in-flight or during simulated scenarios. In order to be

maximally non-intrusive, this unit might make use of voice synthesis and

voice recognition algorithms.

o To develop additional software modules for the ground-based workstation, in

order to support "off-line" testing of pilots with batteries of performance
tests such as the Criterion Task Set (see e.g., Schlegel, et al., 1986;

Shingledecker, 1984); such computerized test batteries may prove useful for

predicting individual differences in susceptibility to high workload

conditions or for developing benchmarkperformance measures for comparison

with those obtained in simulator or operational settings.
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8.0 CONCLUDINGSUMMARY

The present Phase II SBIR study was designed to address issues related to

scalp-recorded event-related potential indices of mental workload and to

examine the feasibility of transitioning ERP indices of mental workload from

the laboratory towards operational settings. Such a transition will facilitate

the usefulness of psychophysiological measures such as ERPs in the systems

engineering process. ERPs obtained from a pilot flying a simulator may

complement measures of workload based on behavioral or subjective data and,
thereby, support design decisions.

ARD's Phase II project involved five main tasks, which defined a logical
progression of ERPmeasurement technology from a laboratory environment to a
simulator-based environment:

i) Two laboratory studies were conducted in order to explore, under

controlled conditions, the generality of the encouraging ERP results

obtained in the Phase I study. The Phase I findings were generally

replicated, even when very different response requirements were imposed on

subjects. In addition, two new ERPnegativities which were consistently

related to workload were discovered. They occurred to a greater extent in
the waveforms elicited under high workload conditions than in those
elicited under low workload conditions.

2) A "task analysis" of flight scenarios and pilot decision-making in the

ACFS was conducted for the purpose of defining events (i.e., displays,

messages, alarms) to which the aircrew are exposed during realistic flight

scenarios that would be expected to elicit ERPsrelated to workload. This

analysis resulted in a set of candidate cockpit events which can now be

validated for use in eliciting ERPsrelated to workload. In addition, this

analysis provided a preliminary test plan for such a validation, as well as

some ideas regarding research which could advance the state-of-the-art for

recording ERPsunder naturalistic conditions.
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3) Software was developed to support ERPdata analysis; this task included

three subtasks -- the upgrade of an existing ARD-proprietary package of ERP
data analysis routines, the development of new routines for graphic

displays to enhance interactive data analysis, and the development of

routines to simulate single-trial ERP data and to systematically compare

two alternative single-trial analysis techniques.

4) Working in conjunction with NASA Langley research scientists and

simulator engineers, preparations were made for a validation study of ERP

measures of workload using the ACFSand laboratory facilities at Langley.

A test plan was delineated, incorporating the candidate cockpit events from

the task analysis, and provisions were made for implementing ERPmeasures
in the ACFSat Langley. These provisions included the installation of a

package of software subroutines on the laboratory MINC computer at NASA

Langley and a plan for interfacing the MINCand the ACFScomputer.

5) A design specification was developed for a general purpose,

computerized, workload assessment system that can function in simulators

such as the ACFSor in related operational environments. This system would

be of immediate usefulness to NASAin conducting engineering studies in
environments such as the ACFS.
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