287 research outputs found

    A Newcomer's Guide to EICS, the Engineering Interactive Computing Systems Community

    Full text link
    [EN] Welcome to EICS, the Engineering Interactive Computing Systems community, PACMHCI/EICS journal, and annual conference! In this short article, we introduce newcomers to the field and to our community with an overview of what EICS is and how it positions with respect to other venues in Human-Computer Interaction, such as CHI, UIST, and IUI, highlighting its legacy and paying homage to past scientific events from which EICS emerged. We also take this opportunity to enumerate and exemplify scientific contributions to the field of Engineering Interactive Computing Systems, which we hope to guide researchers and practitioners towards making their future PACMHCI/EICS submissions successful and impactful in the EICS community.We acknowledge the support of MetaDev2 as the main sponsor of EICS 2019. We would like to thank the Chairs of all the tracks of the EICS 2019 conference, the members of the local organization team, and the web master of the EICS 2019 web site. EICS 2019 could not have been possible without the commitment of the Programme Committee members and external reviewers. This work was partially supported by the Spanish Ministry of Economy, Industry and Competitiveness, State Research Agency / European Regional Development Fund under Vi-SMARt (TIN2016-79100-R), the Junta de Comunidades de Castilla-La Mancha European Regional Development Fund under NeUX (SBPLY/17/180501/000192) projects, the Generalitat Valenciana through project GISPRO (PROMETEO/2018/176), and the Spanish Ministry of Science and Innovation through project DataME (TIN2016-80811-P).López-Jaquero, VM.; Vatavu, R.; Panach, JI.; Pastor López, O.; Vanderdonckt, J. (2019). A Newcomer's Guide to EICS, the Engineering Interactive Computing Systems Community. Proceedings of the ACM on Human-Computer Interaction. 3:1-9. https://doi.org/10.1145/3300960S193Bastide, R., Palanque, P., & Roth, J. (Eds.). (2005). Engineering Human Computer Interaction and Interactive Systems. Lecture Notes in Computer Science. doi:10.1007/b136790Beaudouin-Lafon, M. (2004). Designing interaction, not interfaces. Proceedings of the working conference on Advanced visual interfaces - AVI ’04. doi:10.1145/989863.989865Bodart, F., & Vanderdonckt, J. (Eds.). (1996). Design, Specification and Verification of Interactive Systems ’96. Eurographics. doi:10.1007/978-3-7091-7491-3Gallud, J. A., Tesoriero, R., Vanderdonckt, J., Lozano, M., Penichet, V., & Botella, F. (2011). Distributed user interfaces. Proceedings of the 2011 annual conference extended abstracts on Human factors in computing systems - CHI EA ’11. doi:10.1145/1979742.1979576Graham, T. C. N., & Palanque, P. (Eds.). (2008). Interactive Systems. Design, Specification, and Verification. Lecture Notes in Computer Science. doi:10.1007/978-3-540-70569-7Proceedings of the 1st ACM SIGCHI symposium on Engineering interactive computing systems - EICS ’09. (2009). doi:10.1145/1570433Lawson, J.-Y. L., Vanderdonckt, J., & Vatavu, R.-D. (2018). Mass-Computer Interaction for Thousands of Users and Beyond. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems. doi:10.1145/3170427.3188465Lozano, M. D., Galllud, J. A., Tesoriero, R., Penichet, V. M. R., Vanderdonckt, J., & Fardoun, H. (2013). 3rd workshop on distributed user interfaces. Proceedings of the 5th ACM SIGCHI symposium on Engineering interactive computing systems - EICS ’13. doi:10.1145/2494603.2483222Proceedings of the 2014 Workshop on Distributed User Interfaces and Multimodal Interaction - DUI ’14. (2014). doi:10.1145/2677356Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems. (2019). doi:10.1145/3319499Tesoriero, R., Lozano, M., Vanderdonckt, J., Gallud, J. A., & Penichet, V. M. R. (2012). distributed user interfaces. CHI ’12 Extended Abstracts on Human Factors in Computing Systems. doi:10.1145/2212776.2212704Vanderdonckt, J. (2005). A MDA-Compliant Environment for Developing User Interfaces of Information Systems. Active Flow and Combustion Control 2018, 16-31. doi:10.1007/11431855_2Vatavu, R.-D. (2012). User-defined gestures for free-hand TV control. Proceedings of the 10th European conference on Interactive tv and video - EuroiTV ’12. doi:10.1145/2325616.2325626Vatavu, R.-D. (2017). Beyond Features for Recognition: Human-Readable Measures to Understand Users’ Whole-Body Gesture Performance. International Journal of Human–Computer Interaction, 33(9), 713-730. doi:10.1080/10447318.2017.1278897Wobbrock, J. O., & Kientz, J. A. (2016). Research contributions in human-computer interaction. Interactions, 23(3), 38-44. doi:10.1145/290706

    Workshop on Technical Feasibility: Initial Lessons from an IFIP WG2.7 Virtual University Case Study

    Full text link

    Collaborative explicit plasticity framework: a conceptual scheme for the generation of plastic and group-aware user interfaces

    Get PDF
    The advent of new advances in mobile computing has changed the manner we do our daily work, even enabling us to perform collaborative activities. However, current groupware approaches do not offer an integrating and efficient solution that jointly tackles the flexibility and heterogeneity inherent to mobility as well as the awareness aspects intrinsic to collaborative environments. Issues related to the diversity of contexts of use are collected under the term plasticity. A great amount of tools have emerged offering a solution to some of these issues, although always focused on individual scenarios. We are working on reusing and specializing some already existing plasticity tools to the groupware design. The aim is to offer the benefits from plasticity and awareness jointly, trying to reach a real collaboration and a deeper understanding of multi-environment groupware scenarios. In particular, this paper presents a conceptual framework aimed at being a reference for the generation of plastic User Interfaces for collaborative environments in a systematic and comprehensive way. Starting from a previous conceptual framework for individual environments, inspired on the model-based approach, we introduce specific components and considerations related to groupware

    Beyond Formal Methods for Critical Interactive Systems: Dealing with Faults at Runtime

    Get PDF
    International audienceFormal methods provide support for validation and verification of interactive systems by means of complete and unambiguous description of the envisioned system. They can also be used (for instance in the requirements/needs identification phase) to define precisely what the system should do and how it should meet user needs. If the entire development process in supported by formal methods (for instance as required by DO 178C [7] and its supplement 333 [8]) then classical formal method engineers would argue that the resulting software is defect free. However, events that are beyond the envelope of the specification may occur and trigger unexpected behaviors from the formally specified system resulting in failures. Sources of such failures can be permanent or transient hardware failures, due to (when such systems are deployed in the high atmosphere e.g. aircrafts or spacecrafts) natural faults triggered by alpha-particles from radioactive contaminants in the chips or neutron from cosmic radiation. This position paper proposes a complementary view to formal approaches first by presenting an overview of causes of unexpected events on the system side as well as on the human side and then by discussing approaches that could provide support for taking into account system faults and human errors at design time

    Verification-guided modelling of salience and cognitive load

    Get PDF
    Well-designed interfaces use procedural and sensory cues to increase the cognitive salience of appropriate actions. However, empirical studies suggest that cognitive load can influence the strength of those cues. We formalise the relationship between salience and cognitive load revealed by empirical data. We add these rules to our abstract cognitive architecture, based on higher-order logic and developed for the formal verification of usability properties. The interface of a fire engine dispatch task from the empirical studies is then formally modelled and verified. The outcomes of this verification and their comparison with the empirical data provide a way of assessing our salience and load rules. They also guide further iterative refinements of these rules. Furthermore, the juxtaposition of the outcomes of formal analysis and empirical studies suggests new experimental hypotheses, thus providing input to researchers in cognitive science

    Using formal methods in safety-critical interactive system design : from architecture-based approaches to tool-based development

    No full text
    10p.International audienceAlthough formal methods are increasingly used by researchers in HCI, their usage in actual interactive developments has not been put in practice. In this article, we describe our experience with a specific formal method -the B method- from two viewpoints. On the one hand, we demonstrate how it is possible to use formal methods on real development, from specification to actual code. Our case study concerns a real-time functional core. Doing so, we notice that some HCI concepts, such as architecture models, may have to be adapted or recreated. On the other hand, we show how it is possible to make formal methods easier to use by the way of a complete integration into HCI tools. We conclude in eliciting the lessons learned from this experience
    corecore