
This is the author's accepted manuscript of an article published in IEEE Pervasive Computing, 9(2), 72-76. The final
published article is available from http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5437545. Copyright @ 2010
IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including
reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or
redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

Human-Display Interaction Technology

Emerging remote interfaces for pervasive display environments

Andrea Bellucci, Alessio Malizia

1
, Paloma Diaz and Ignacio Aedo

Universidad Carlos III de Madrid, Laboratorio DEI. Madrid, Spain.

abellucc@inf.uc3m.es, amalizia@inf.uc3m.es, pdp@inf.uc3m.es, aedo@ia.uc3m.es

1. Introduction

We are living in a world where information processing is not only confined in desktop

computers, but is being integrated into everyday objects and activities. Pervasive

computation is human-centered: it permeates our physical world, helping us to achieve our

goals and fulfill our needs with a minimum effort, exploiting natural interaction styles.

In such an environment, “every object is confined in space by its surface. Surfaces

are pervasive and play a predominant role in human perception of the environment.”
2
.

Therefore, as “surfaces dominate the physical world”, the use of pervasive screen displays,

LCD or based on front and rear projection, has gained interest in the last years and several

prototypes have been developed for exploring their potential applications. In particular, we

are assisting in a widespread development of new emerging interaction technologies

allowing researchers to experiment with multi-modal remote interaction methods in the

effort of providing a more intuitive human-display interaction.

Remote interaction with screen displays requires a sensor-based multi-modal

touchless approach. By allowing user to employ hand gestures, this paradigm removes the

constrains related to physical contact interactions so to permit natural interaction with

digital information, made tangible in our real world. In fact, touchless interaction can be

multimodal: in this case the interaction events are generated exploiting different human

senses (visual, auditory and olfactory).

2. Emerging human-display remote interfaces

We provide here a list of emerging technologies allowing remote interaction with screen

displays (see Table 1).

1
 Corresponding Author

2
 S. Borkowski, J. Letessier, J. Crowley. “Spatial Control of Interactive Surfaces in an

Augmented Environment”, in "European Conference on Human Computer Interaction,

EHCI 04", July 2004.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/20496266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5437545

Table 1.
A BASIC REFERENCE LIST FOR TOUCHLESS INTERACTION DEVICES AND

LIBRARIES.

DEVICE LIBRARY SCOPE FEATURES REFERENCE

WIIMOTE, VR

GLOVES
GLOVEPIE

Supporting basic interactions

with Nintendo’s Wii Remote
Controller.

Provides a Scripting Language.
http://carl.kenner.googlepages

.com/glovepie

WIIMOTE
WIIMOTELIB(

CODEPLEX)

Supporting basic and advanced

interactions with Wiimote.

Can be combined with C# and

DirectX.

http://Wiimotelib.codeplex.co

m/Release/ProjectReleases.as

px?ReleaseId=21997

HAND

GESTURES

AND

WEBCAM

MICROSOFT

TOUCHLESS

Natural interaction experiences
using only a webcam

Webcam multi-"touch" object

tracking SDK using color

markers

http://www.codeplex.com/tou

chless

HAND

GESTURES

AND

CAMERA

SIXTHSENSE
Hand gesture recognition using

fiducial markers and a camera

Hand gestures act as interaction

instructions for projected
application interfaces

http://www.pranavmistry.com

/projects/sixthsense/

HUMAN

BODY AND

WEBCAM

MICROSOFT

PROJECT

NATAL

Natural user interface using

gestures, spoken commands or
presented objects and images

SDK not yet available for

developers.

http://www.xbox.com/en-

US/live/projectnatal/

HAND

GESTURES

AND

ELECTRIC

FIELD

POINTSCREEN

Providing touchless interaction

using Electric Field proximity

sensors

Proprietary SDK
http://www.iais.fraunhofer.de/

600.html

EYES AND

GLASS-

MOUNTED

CAMERA

EYEWRITER Tracking eye movements
Provides an eye-tracking and a
drawing software designed for

drawing with eye movements
http://www.eyewriter.org/

Microsoft Touchless (http://www.officelabs.com/projects/touchless/Pages/default.aspx) is

an open-source Office Labs Grassroots prototype (currently available for download from

the Office Labs website) which goal is to create a multi-touch remote environment by

simply using a webcam. Touchless Software Development Kit (SDK) enables developers to

create multi-touch based applications (but without touching the screen) using a webcam and

color markers (visual tracking fiducial markers). Following the same rationale Pranav

Mistry (a PhD student of the Fluid Interface Group at MIT Media Lab) developed

SixthSense (http://www.pranavmistry.com/projects/sixthsense/), a wearable gestural

interface that exploits natural hand gesture interactions with digital information displayed

in the tangible world. At its very core, the prototype is a pocket projector, a mirror and a

camera. The projector turns tangible surfaces, walls and physical objects into screen

displays by projecting visual information. The camera is employed to recognize and track

user's hand gestures. As for Microsoft Touchless, a software processes the data captured by

the camera and tracks the locations of the colored markers at the tip of the user’s fingers

using naive computer-vision techniques. As Pranav states, the current prototype system

costs approximate $350 to build.

Hand gestures recognition has also been employed in the PointScreen project

(http://www.iais.fraunhofer.de/600.html) from the Fraunhofer IAIS. PointScreen is a novel

interface to manipulate digital artefacts touchlessly: the user navigates by pointing toward

the screen and the interaction with the system is carried out completely without touch.

Conversely from the previous project, the technology used in PointScreen is not based on

fiducial markers but on Electric Field (EF) proximity sensors. Employing non-contact

http://www.pranavmistry.com/projects/sixthsense/
http://www.pranavmistry.com/projects/sixthsense/
http://en.wikipedia.org/wiki/Natural_user_interface
http://en.wikipedia.org/wiki/Speech_recognition
http://en.wikipedia.org/wiki/Object_recognition
http://www.officelabs.com/projects/touchless/Pages/default.aspx
http://www.pranavmistry.com/projects/sixthsense/

sensors that measure the interaction of a person (the dynamics of the body such as gestures

and movement) with the electric fields, it provides the possibility to produce touchless

input systems that efficiently use gestures for real-time navigation and interaction.

Virtual Reality wireless data gloves can be considered as other valuable devices for

providing touchless interaction through hand gestures. The Cybergloves II from Imation,

for example, is an instrumented glove that provides up to 22 high-accuracy joint-angle

measurements. The gloves use proprietary resistive bend-sensing technology that allows

transforming hand and finger motions into real-time digital data. Nevertheless, due to their

high price, such devices cannot be considered suitable for being adopted in low-cost

prototyping projects.

Another example of using human body as an interface is EyeWriter

(www.eyewriter.org). By providing a low-cost eye-tracking hardware, this research project

aims at allowing people who are suffering from Amyotrophic Lateral Sclerosis (ALS) to

draw using only their eyes. The eye-tracking software detects and tracks the position of a

pupil from a glass-mounted camera, and uses a calibration sequence to map the tracked

eye/pupil coordinates to positions on a computer screen or projection. The software library

of the EyeWriter project has been developed using openframeworks

(http://openframeworks.cc), a cross platform c++ library for creative development. The

eyetracking component exploits the clear and dark image of the pupil for traking the eye

movements. The DIY glasses they designed, in fact, use near-infrared leds to illuminate the

eye and create a dark pupil effect. The eye-drawing part was designed to work with the

EyeWriter tracking software as well as commercial eye-trackers such as the MyTobii

(http://www.tobii.com).

The idea of body-as-sensor is supposed to be the main feature of the Microsoft

Project Natal (http://www.xbox.com/en-US/live/projectnatal/), which is the code name for a

"controller-free gaming and entertainment experience" for the Xbox 360 video game

platform. It aims at enabling users to control and interact with the Xbox 360 without the

need to touch a game controller through a natural user interface using body gestures,

spoken commands, or present objects and images. The device features: an RGB camera,

depth sensor, multi-array microphone, and custom processor running proprietary software,

which should provide full-body 3D motion capture, facial recognition, and voice

recognition capabilities.

Muscle sensing is another cutting-edge technology for touchless user interfaces.

Electromyography (EMG) sensors can decode muscle signals from the skin's surface as a

person performs certain gestures. Researchers attached such sensors to their forearms, and

built a gesture recognition library by monitoring muscle signals related to each gesture. The

project emerged as a collaborative effort between Microsoft, University of Washington in

Seattle, and the University of Toronto in Canada. Scott Saponas et al. demonstrated the

feasibility of “using muscle-computer interfaces for always-available input in real-world

applications” at the last UIST conference.

Within the emerging remote human-computer interaction devices, the Nintendo Wii

controller (Wii Remote or Wiimote) can be considered as one of the most popular, due to

the widespread of the console. It also turns out to be one of the most sophisticated, for

providing a variety of multimodal I/O functionalities. The Wiimote is mostly advertised for

its motion sensing capabilities: users can interact with a computer system via gesture

recognition or pointing, by exploiting the built-in accelerometer and the InfraRed camera

tracker. The most interesting part of the controller is the IR camera builted-in in the front of

http://www.eyewriter.org/
http://www.tobii.com/

it. The camera provides an image processing engine, which can track up to 4 moving

objects and can send coordinates to a host relative to objects position, thus giving the user

fast and high precision tracking at a very low cost. Specification of the camera's hardware

and software are confidential, but information can be found on Wii related websites like

wiibrew.org or wiili.org (check http://www.wiibrew.org/wiki/Wiimote for further

information as well as an exhaustive list of Wiimote known features and status of the

reverse engineering process).

3. Remote interactions for screen displays with the Wiimote

The Wiimote clearly stimulates the development of touchless post-WIMP interactions

intended as going beyond the WIMP (Windows, Icons, Mouse and Pointers) paradigm and

interacting by exploiting new styles like multi-touch input in augmented reality

environments.

Due to its interaction capabilities and its low cost, the Wiimote has gained

significant attention within the homebrew software developer and Do-It-Yourself (DIY)

communities, boosting the creation of several project involving multimodal interaction

techniques by means of a Wiimote. These projects are usually shared over the Internet (via

youtube.com or DIY websites such as instructables.com) so that other can reproduce and

extend them. As professor Eric Klopfer, at MIT, said: "The advantage of the Wiimote is

that it's a human-centric device". There are many input devices that: "map well onto the

computer's interface, but not to the person's". By a contrast: "The Wiimote fits the user [...]

People know intuitively what to do with it when they pick it up because we use it like

devices we are familiar with". In fact, post-WIMP interfaces are about "Minority Report"

style interactions (see http://www.youtube.com/watch?v=NwVBzx0LMNQ for an excerpt of

the movie) and the Wiimote provides a cheap and effective solution to develop these kind

of applications at home or in our lab without requiring so much effort than employ the

adequate APIs, build small led-based devices and programming.

The integration of the Wiimote with the surrounding environment is thus quite easy

and can promote the use of pervasive post-WIMP applications even when both economic

and engineering factors are an issue. In fact, developing a solution like a low-cost multi-

point interactive whiteboard using the Wiimote can be achieved with a relatively small

budget (the cost of a Wiimote, a pen with few leds and a laptop computer, aproximately

600$) compared to off-the-shelf solutions according to the DIY philosophy.

Researchers and developers, like Johnny Chung Lee (http://johnnylee.net/projects/wii/),

demonstrated how it is possible to develop applications, exploiting the Wiimote, to

perform: 3D head-tracking, touchless interactions and interacting with haptic feedback. Lee

used a library called WiimoteLib released under the Microsoft Public License (Ms-PL) to

develop his prototypes. Nevertheless there are many libraries available for public use

providing the same kind of interactions with Wiimote, like: GolvePie, and RMX

automation under windows or LinuxCWiid under Linux, and the WiiRemoteJ which is

platform independent (Java code). Readers could refer to

http://wiibrew.org/wiki/Wiimote/Library for a quite complete list of available libraries.

The WiimoteLib library is based on the well-known Microsoft .Net Framework

providing a set of visual Express Tools for developing code. The Coding4Fun web site

(http://blogs.msdn.com/coding4fun/archive/2007/03/14/1879033.aspx) supplies articles and

information on different prototypes and applications developed for the Wiimote by using

WiimoteLib such as many C# and Visual Basic examples provided by Brian Peek. He also

publishes instructive articles on its blog (http://www.brianpeek.com/blog/) about many

subjects related to the use of Wiimote for advanced interactions (post-WIMP) such as:

WiiEarthVR that shows how to link Wiimote to Microsoft’s Live Maps for interfacing with

geo-referenced data. Starting from these examples it is quite easy to develop complex

prototypes such as the one published by Johnny Lee on http://johnnylee.net/projects/wii/

web site.

Another interesting example is GlovePIE
3
, a software application developed by Carl

Kenner (http://carl.kenner.googlepages.com/glovepie), intended to emulate computer input

hardwares. The PIE acronym stands for Programmable Input Emulator and, as its name

suggests, it was originally developed for Virtual Reality data gloves. Nevertheless, in its

last updates the library offer support to a wide range of input hardware, including the

Wiimote controller. Exploiting a simple scripting language it is possible to use the

Wiimote to interact with different applications taking advantage of a wide library of

existing script.

4. Case study: GoogleEarth and the Wiimote.

Figure 1. GLOVEPIE: USING THE WIIMOTE TO INTERACT WITH GOOGLE EARTH.

3
 GlovePIE is only compatible with Windows Operating Systems.

We present in this section a simple example to show how the Wiimote can be succesfully

employed as a device to control and remotely interact with physical object with digital

properties on large display surfaces. Our example regards employing the GlovePIE library

to map Wiimote inputs into mouse and keyboard outputs.

Writing scripts for GlovePIE does not require any particular programming

experience for the application has been designed to be user-friendly. The language syntax is

extremely simple and it is easy to master in a short time for Java or C programmers.

Moreover, there exists a large community of GlovePIE developers willing to share some

tips and code with novices. You can try to figure out how things work by picking apart

some of the Wiimote scripts that come bundled with GlovePIE.

In order to start using the GlovePIE application you need to get your PC to

recognize the Wiimote, via a Bluetooth wireless device (built-in in for laptops or an USB

dongle for desktop computers). The Wiimote, in fact, is essentially a wireless device that

employs the standard Bluetooth HID (Human Interface Device) protocol to communicate

and that any Bluetooth host can recognize as a standard input device. Once started the

Bluetooth connection procedure you need to put the controller in discovery mode holding

down the buttons 1 and 2, while the Bluetooth controller is searching for new devices to

coupling with. No PIN is needed for the Wiimote, so you can skip this step. The pairing

procedure is not fully reliable and you may need to repeat it several times, once the

Blueetooth controller recognize the Wiimote as a proper HID devices (named Nintendo

RVL-CNT-01).

GlovePIE comes with a library of existing scripts, that can be really useful to start

developing your own script. By opening the GoogleEarth.PIE file placed in the

WiimoteScripts directory (in GlovePIE 0.29), we can analize the steps needed to calibrate

and use the Wiimote as an input device to interact with the GoogleEarth user interface.

Calibrating the Wiimote results in a simple: you have to place the Wiimote face up

on a flat surface and adjusting the offsets for the three axis, changing these values until

reaching a zero value for each axis. After calibrating you are ready to interact with the

GoogleEarth application through your Wiimote: tilting up, down, left and right will

simulate arrow keys; holding B while tilting up and down will tilt the view up and down;

holding B while tilting left and right will rotate the view; pressing + and - will zoom when

the Wiimote is level; pressing Home will center the view and pressing 1 will toggle

fullscreen. You can now add your own functions into the code or edit premade ones. As an

example you can assign the buttons to execute certain Wiimote functions such as rumble.

GlovePIE provides also variables to control: a) the force with respect to the three

axis (a stationary Wiimote has a force of 1G) Wiimote.gx, Wiimote.gy and Wiimote.gz, b)

the acceleration on the three axis (in m/s/s) RelAcc (all 3 axis), RelAccX, RelAccY, RelAccZ,

c) the roll/pitch rotation in the Wiimote (in degrees) and d) the extension port. Moreover,

GlovePIE support more than one Wiimote at time, giving the developer to build

collaborative map-based applications for interact with in a pervasive screen display

environment.

Nowadays, we live in an environment where digital artifacts and especially large

pervasive displays represent a continuous support for our activities: communication and

collaboration, entertainment, daily life, working and learning. The emergent use of

touchless interfaces and efforts of both industries and academics seem to stimulate a

pervasive and human-centric approach in Human-Display Interaction research. Among the

possibilities offered by technology, both at hardware and software level, we think that the

Wiimote is impacting research in this area especially for its abilities to provide interesting

features at low cost and the wide support offered by the developers and researchers

communities. Nevertheless, we can foresee that other approaches like Microsoft project

Natal will encourage the growing community of researchers in Human-Display Interaction.

