1,366,412 research outputs found

    Modeling student pathways in a physics bachelor's degree program

    Full text link
    Physics education research has used quantitative modeling techniques to explore learning, affect, and other aspects of physics education. However, these studies have rarely examined the predictive output of the models, instead focusing on the inferences or causal relationships observed in various data sets. This research introduces a modern predictive modeling approach to the PER community using transcript data for students declaring physics majors at Michigan State University (MSU). Using a machine learning model, this analysis demonstrates that students who switch from a physics degree program to an engineering degree program do not take the third semester course in thermodynamics and modern physics, and may take engineering courses while registered as a physics major. Performance in introductory physics and calculus courses, measured by grade as well as a students' declared gender and ethnicity play a much smaller role relative to the other features included the model. These results are used to compare traditional statistical analysis to a more modern modeling approach.Comment: submitted to Physical Review Physics Education Researc

    A 2009 survey of the Australasian clinical medical physics and biomedical engineering workforce

    Get PDF
    A survey of the Australasian clinical medical physics and biomedical engineering workforce was carried out in 2009 following on from a similar survey in 2006. 621 positions (equivalent to 575 equivalent full time (EFT) positions) were captured by the survey. Of these 330 EFT were in radiation oncology physics, 45 EFT were in radiology physics, 42 EFT were in nuclear medicine physics, 159 EFT were in biomedical engineering and 29 EFT were attributed to other activities. The survey reviewed the experience profile, the salary levels and the number of vacant positions in the workforce for the different disciplines in each Australian state and in New Zealand. Analysis of the data shows the changes to the workforce over the preceding 3 years and identifies shortfalls in the workforce

    A survey of the Australasian clinical medical physics and biomedical engineering workforce

    Get PDF
    A survey of the medical physics and biomedical engineering workforce was carried out in 2006. 495 positions(equivalent to 478 equivalent full time (EFT) positions) were captured by the survey. Of these 268 EFT were in radiation oncology physics, 36 EFT were in radiology physics, 44 were in nuclear medicine physics, 101 EFT were in biomedical engineering and 29 EFT were attributed to other activities. The survey reviewed the experience profile, the salary levels and the number of vacant positions in the workforce for the different disciplines in each Australian state and in New Zealand. Analysis of the data identifies staffing shortfalls in the various disciplines and demonstrates the difficulties that will occur in trying to train sufficient physicists to raise staffing to an acceptable level

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2

    Quantum Communication Technology

    Full text link
    Quantum communication is built on a set of disruptive concepts and technologies. It is driven by fascinating physics and by promising applications. It requires a new mix of competencies, from telecom engineering to theoretical physics, from theoretical computer science to mechanical and electronic engineering. First applications have already found their way to niche markets and university labs are working on futuristic quantum networks, but most of the surprises are still ahead of us. Quantum communication, and more generally quantum information science and technologies, are here to stay and will have a profound impact on the XXI century

    Engineering physics of superconducting hot-electron bolometer mixers

    Full text link
    Superconducting hot-electron bolometers are presently the best performing mixing devices for the frequency range beyond 1.2 THz, where good quality superconductor-insulator-superconductor (SIS) devices do not exist. Their physical appearance is very simple: an antenna consisting of a normal metal, sometimes a normal metal-superconductor bilayer, connected to a thin film of a narrow, short superconductor with a high resistivity in the normal state. The device is brought into an optimal operating regime by applying a dc current and a certain amount of local- oscillator power. Despite this technological simplicity its operation has been found to be controlled by many different aspects of superconductivity, all occurring simultaneously. A core ingredient is the understanding that there are two sources of resistance in a superconductor: a charge conversion resistance occurring at an normal-metal-superconductor interface and a resistance due to time- dependent changes of the superconducting phase. The latter is responsible for the actual mixing process in a non-uniform superconducting environment set up by the bias-conditions and the geometry. The present understanding indicates that further improvement needs to be found in the use of other materials with a faster energy-relaxation rate. Meanwhile several empirical parameters have become physically meaningful indicators of the devices, which will facilitate the technological developments.Comment: This is an author-processed copy of an Invited contribution to the Special Issue of the IEEE Transactions on Terahertz Science and Technology dedicated to the 28th IEEE International Symposium on Space Terahertz Technology (ISSTT2017

    Simulation of granular soil behaviour using the bullet physics library

    Get PDF
    A physics engine is computer software which provides a simulation of certain physical systems, such as rigid body dynamics, soft body dynamics and fluid dynamics. Physics engines were firstly developed for using in animation and gaming industry ; nevertheless, due to fast calculation speed they are attracting more and more attetion from researchers of the engineering fields. Since physics engines are capable of performing fast calculations on multibody rigid dynamic systems, soil particles can be modeled as distinct rigid bodies. However, up to date, it is not clear to what extent they perform accurately in modeling soil behaviour from a geotechnical viewpoint. To investigate this, examples of pluviation and vibration-induced desification were simulated using the physics engine called Bullet physics library. In order to create soil samples, first, randomly shaped polyhedrons, representing gravels, were generated using the Voronoi tessellation approach. Then, particles were pluviated through a funnel into a cylinder. Once the soil particles settled in a static state, the cylinder was subjected to horizontal sinusoidal vibration for a period of 20 seconds. The same procedure for sample perparation was performed in the laboratory. The results of pluviation and vibration tests weere recorded and compared to those of simulations. A good agreement has been found between the results of simulations and laboratory tests. The findings in this study reinforce the idea that physics engines can be employed as a geotechnical engineering simulation tool
    corecore