314 research outputs found

    Engineering Multi-Agent Systems: State of Affairs and the Road Ahead

    Get PDF
    The continuous integration of software-intensive systems together with the ever-increasing computing power offer a breeding ground for intelligent agents and multi-agent systems (MAS) more than ever before. Over the past two decades, a wide variety of languages, models, techniques and methodologies have been proposed to engineer agents and MAS. Despite this substantial body of knowledge and expertise, the systematic engineering of large-scale and open MAS still poses many challenges. Researchers and engineers still face fundamental questions regarding theories, architectures, languages, processes, and platforms for designing, implementing, running, maintaining, and evolving MAS. This paper reports on the results of the 6th International Workshop on Engineering Multi-Agent Systems (EMAS 2018, 14th-15th of July, 2018, Stockholm, Sweden), where participants discussed the issues above focusing on the state of affairs and the road ahead for researchers and engineers in this area

    Multi-agent systems for power engineering applications - part 1 : Concepts, approaches and technical challenges

    Get PDF
    This is the first part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examines the potential value of MAS technology to the power industry. In terms of contribution, it describes fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications. As well as presenting a comprehensive review of the meaningful power engineering applications for which MAS are being investigated, it also defines the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented

    On stability and controllability of multi-agent linear systems

    Get PDF
    Recent advances in communication and computing have made the control and coordination of dynamic network agents to become an area of multidisciplinary research at the intersection of the theory of control systems, communication and linear algebra. The advances of the research in multi-agent systems are strongly supported by their critical applications in different areas as for example in consensus problem of communication networks, or formation control of mobile robots. Mainly, the consensus problem has been studied from the point of view of stability. Nevertheless, recently some researchers have started to analyze the controllability problems. The study of controllability is motivated by the fact that the architecture of communication network in engineering multi-agent systems is usually adjustable. Therefore, it is meaningful to analyze how to improve the controllability of a multi-agent system. In this work we analyze the stability and controllability of multiagent systems consisting of k + 1 agents with dynamics xÂżi = Aixi + Biui, i = 0, 1, . . . , kPostprint (published version

    Multi-agent systems for power engineering applications - part 2 : Technologies, standards and tools for building multi-agent systems

    Get PDF
    This is the second part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examined the potential value of MAS technology to the power industry, described fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications, and presented a comprehensive review of the power engineering applications for which MAS are being investigated. It also defined the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented. Given the significant and growing interest in this field, it is imperative that the power engineering community considers the standards, tools, supporting technologies and design methodologies available to those wishing to implement a MAS solution for a power engineering problem. The paper describes the various options available and makes recommendations on best practice. It also describes the problem of interoperability between different multi-agent systems and proposes how this may be tackled

    Controllability properties for multi-agent linear systems. A geometric approach

    Get PDF
    This work addresses the controlability of a class of multi-agent linear systems that they are interconnected via communication channels. Multiagent systems have attracted much attention because they have great appli- cability in multiple areas, such as power grids, bioin- formatics, sensor networks, vehicles, robotics and neu- roscience, for example. Consequently, they have been widely studied by scientists in different fields specially in the field of control theory. Recently has taken interest to analyze the control properties as consensus control- lability of multi-agent dynamical systems motivated by the fact that the architecture of communication network in engineering multi-agent systems is usually adjustable. In this paper, the control condition is analyzed under ge- ometrical point of view. in the case of multiagent linear systems that can be described by k agents with dynamics Âżxi = Aixi + Biui, i = 1, . . . , k.Peer ReviewedPostprint (published version

    A model-driven approach for constructing ambient assisted-living multi-agent systems customized for Parkinson patients

    Get PDF
    The Parkinson disease affects some people, especially in the last years of their lives. Ambient assisted living systems can support them, especially in the middle stages of the disease. However, these systems usually need to be customized for each Parkinson patient. In this context, the current work follows the model-driven engineering principles to achieve this customized development. It represents each patient with a model. This is transformed into an agent-based model, from which a skeleton of programming code is generated. A case study illustrates this approach. Moreover, 24 engineers expert in model-driven engineering, multi-agent systems and/or health experienced the current approach alongside the three most similar works, by implementing actual systems. Some of these systems were tested by Parkinson patients. The results showed that (1) the current approach reduced the development time, (2) the developed system satisfied a higher percentage of the requirements established for certain Parkinson patients, (3) the usability increased, (4) the performance of the systems improved taking response time into account, and (5) the developers considered that the underlying metamodel is more appropriate for the current goal
    • 

    corecore