152,722 research outputs found

    Consolidation of an EV Project Based Learning program integrated within a complete Bachelor Engineering Degree

    Get PDF
    Proyecto docente para el aprendizaje de competencias fundamentales de la ingeniería a través del aprendizaje basado en un proyecto multianual y multidisciplinar coordinado sobre las asignaturas troncales de este tipo de grados. Los resultados obtenidos son del tipo docente, funcionales y científicos que han permitido fabricar varios modelos de vehículos eléctricos ligeros con los que se ha acudido a competiciones internacionales.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The role of the reactor size for an investment in the nuclear sector: an evaluation of not-financial parameters

    Get PDF
    The literature presents many studies about the economics of new Nuclear Power Plants (NPPs). Such studies are based on Discounted Cash Flow (DCF) methods encompassing the accounts related to Construction, Operation & Maintenance, Fuel and Decommissioning. However the investment evaluation of a nuclear reactor should also include not-financial factors such as siting and grid constraints, impact on the national industrial system, etc. The Integrated model for the Competitiveness Assessment of SMRs (INCAS), developed by Politecnico di Milano cooperating with the IAEA, is designed to analyze the choice of the better Nuclear Power Plant size as a multidimensional problem. In particular the INCAS’s module “External Factors” evaluates the impact of the factors that are not considered in the traditional DCF methods. This paper presents a list of these factors, providing, for each one, the rationale and the quantification procedure; then each factor is quantified for the Italian case. The IRIS reactor has been chosen as SMR representative. The approach and the framework of the model can be applied to worldwide countries while the specific results apply to most of the European countries. The results show that SMRs have better performances than LRs with respect to the external factors, in general and in the Italian scenario in particular

    Adaptation of the Electric Machines Learning Process to the European Higher, Education Area

    Get PDF
    In this paper the basic lines of a complete teaching methodology that has been developed to adaptthe electric machines learning process to the European Higher Education Area (EHEA) arepresented. New teaching materials that are specific to Electric Machines have been created(textbooks, self-learning e-books, guidelines for achieving teamwork research, etc.). Working ingroups has been promoted, as well as problem solving and self-learning exercises, all of which areevaluated in a way that encourages students' participation. Finally, the students' learning process inthe lab has been improved by the development both of a new methodology to follow in the lab andnew workbenches with industrial machines that are easier to use and also enable the labexperiments to be automated. Finally, the first results obtained as a result of applying the proposedmethodology are presented

    Greenhouse Gas Emissions Inventory 1990-2003 Full Report

    Get PDF

    Active learning based laboratory towards engineering education 4.0

    Get PDF
    Universities have a relevant and essential key role to ensure knowledge and development of competencies in the current fourth industrial revolution called Industry 4.0. The Industry 4.0 promotes a set of digital technologies to allow the convergence between the information technology and the operation technology towards smarter factories. Under such new framework, multiple initiatives are being carried out worldwide as response of such evolution, particularly, from the engineering education point of view. In this regard, this paper introduces the initiative that is being carried out at the Technical University of Catalonia, Spain, called Industry 4.0 Technologies Laboratory, I4Tech Lab. The I4Tech laboratory represents a technological environment for the academic, research and industrial promotion of related technologies. First, in this work, some of the main aspects considered in the definition of the so called engineering education 4.0 are discussed. Next, the proposed laboratory architecture, objectives as well as considered technologies are explained. Finally, the basis of the proposed academic method supported by an active learning approach is presented.Postprint (published version

    Understanding Occupational and Skill Demand in New Jersey's Utilities Industry

    Get PDF
    The utilities industry provides essential electricity, gas, water and sewer, and local telephone services to residents and businesses throughout New Jersey. This report summarizes the skill, knowledge, and educational requirements of key occupations in gas, electric, water and sewer, and telephone services. It also identifies strategies for meeting the workforce challenges facing the industry

    Advances in Repurposing and Recycling of Post-Vehicle-Application Lithium-Ion Batteries

    Get PDF
    Increased electrification of vehicles has increased the use of lithium-ion batteries for energy storage, and raised the issue of what to do with post-vehicle-application batteries. Three possibilities have been identified: 1) remanufacturing for intended reuse in vehicles; 2) repurposing for non-vehicle, stationary storage applications; and 3) recycling, extracting the precious metals, chemicals and other byproducts. Advances in repurposing and recycling are presented, along with a mathematical model that forecasts the manufacturing capacity needed for remanufacturing, repurposing, and recycling. Results obtained by simulating the model show that up to a 25% reduction in the need for new batteries can be achieved through remanufacturing, that the sum of repurposing and remanufacturing capacity is approximately constant across various scenarios encouraging the sharing of resources, and that the need for recycling capacity will be significant by 2030. A repurposing demonstration shows the use of post-vehicle-application batteries to support a semi-portable recycling platform. Energy is collected from solar panels, and dispensed to electrical devices as required. Recycling may be complicated: lithium-ion batteries produced by different manufacturers contain different active materials, particularly for the cathodes. In all cases, however, the collecting foils used in the anodes are copper, and in the cathodes are aluminum. A common recycling process using relatively low acid concentrations, low temperatures, and short time periods was developed and demonstrated
    corecore