116 research outputs found

    A Parallel Fast-Track Service Restoration Strategy Relying on Sectionalized Interdependent Power-Gas Distribution Systems

    Get PDF
    In the distribution networks, catastrophic events especially those caused by natural disasters can result in extensive damage that ordinarily needs a wide range of components to be repaired for keeping the lights on. Since the recovery of system is not technically feasible before making compulsory repairs, the predictive scheduling of available repair crews and black start resources not only minimizes the customer downtime but also speeds up the restoration process. To do so, this paper proposes a novel three-stage buildup restoration planning strategy to combine and coordinate repair crew dispatch problem for the interdependent power and natural gas systems with the primary objective of resiliency enhancement. In the proposed model, the system is sectionalized into autonomous subsystems (i.e., microgrid) with multiple energy resources, and then concurrently restored in parallel considering cold load pick-up conditions. Besides, topology refurbishment and intentional microgrid islanding along with energy storages are applied as remedial actions to further improve the resilience of interdependent systems while unpredicted uncertainties are addressed through stochastic/IGDT method. The theoretical and practical implications of the proposed framework push the research frontier of distribution restoration schemes, while its flexibility and generality support application to various extreme weather incidents.©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Future-Focused Control Barrier Functions for Autonomous Vehicle Control

    Full text link
    In this paper, we introduce a class of future-focused control barrier functions (ff-CBF) aimed at improving traditionally myopic CBF based control design and study their efficacy in the context of an unsignaled four-way intersection crossing problem for collections of both communicating and non-communicating autonomous vehicles. Our novel ff-CBF encodes that vehicles take control actions that avoid collisions predicted under a zero-acceleration policy over an arbitrarily long future time interval. In this sense the ff-CBF defines a virtual barrier, a loosening of which we propose in the form of a relaxed future-focused CBF (rff-CBF) that allows a relaxation of the virtual ff-CBF barrier far from the physical barrier between vehicles. We study the performance of ff-CBF and rff-CBF based controllers on communicating vehicles via a series of simulated trials of the intersection scenario, and in particular highlight how the rff-CBF based controller empirically outperforms a benchmark controller from the literature by improving intersection throughput while preserving safety and feasibility. Finally, we demonstrate our proposed ff-CBF control law on an intersection scenario in the laboratory environment with a collection of 5 non-communicating AION ground rovers.Comment: 8 pages, 7 figures, 2 tables, submitted to 2023 American Control Conference, under revie

    A survey of spatial crowdsourcing

    Get PDF

    A Survey on Physics Informed Reinforcement Learning: Review and Open Problems

    Full text link
    The inclusion of physical information in machine learning frameworks has revolutionized many application areas. This involves enhancing the learning process by incorporating physical constraints and adhering to physical laws. In this work we explore their utility for reinforcement learning applications. We present a thorough review of the literature on incorporating physics information, as known as physics priors, in reinforcement learning approaches, commonly referred to as physics-informed reinforcement learning (PIRL). We introduce a novel taxonomy with the reinforcement learning pipeline as the backbone to classify existing works, compare and contrast them, and derive crucial insights. Existing works are analyzed with regard to the representation/ form of the governing physics modeled for integration, their specific contribution to the typical reinforcement learning architecture, and their connection to the underlying reinforcement learning pipeline stages. We also identify core learning architectures and physics incorporation biases (i.e., observational, inductive and learning) of existing PIRL approaches and use them to further categorize the works for better understanding and adaptation. By providing a comprehensive perspective on the implementation of the physics-informed capability, the taxonomy presents a cohesive approach to PIRL. It identifies the areas where this approach has been applied, as well as the gaps and opportunities that exist. Additionally, the taxonomy sheds light on unresolved issues and challenges, which can guide future research. This nascent field holds great potential for enhancing reinforcement learning algorithms by increasing their physical plausibility, precision, data efficiency, and applicability in real-world scenarios

    Planning Algorithms for Multi-Robot Active Perception

    Get PDF
    A fundamental task of robotic systems is to use on-board sensors and perception algorithms to understand high-level semantic properties of an environment. These semantic properties may include a map of the environment, the presence of objects, or the parameters of a dynamic field. Observations are highly viewpoint dependent and, thus, the performance of perception algorithms can be improved by planning the motion of the robots to obtain high-value observations. This motivates the problem of active perception, where the goal is to plan the motion of robots to improve perception performance. This fundamental problem is central to many robotics applications, including environmental monitoring, planetary exploration, and precision agriculture. The core contribution of this thesis is a suite of planning algorithms for multi-robot active perception. These algorithms are designed to improve system-level performance on many fronts: online and anytime planning, addressing uncertainty, optimising over a long time horizon, decentralised coordination, robustness to unreliable communication, predicting plans of other agents, and exploiting characteristics of perception models. We first propose the decentralised Monte Carlo tree search algorithm as a generally-applicable, decentralised algorithm for multi-robot planning. We then present a self-organising map algorithm designed to find paths that maximally observe points of interest. Finally, we consider the problem of mission monitoring, where a team of robots monitor the progress of a robotic mission. A spatiotemporal optimal stopping algorithm is proposed and a generalisation for decentralised monitoring. Experimental results are presented for a range of scenarios, such as marine operations and object recognition. Our analytical and empirical results demonstrate theoretically-interesting and practically-relevant properties that support the use of the approaches in practice

    A comprehensive survey on cooperative intersection management for heterogeneous connected vehicles

    Get PDF
    Nowadays, with the advancement of technology, world is trending toward high mobility and dynamics. In this context, intersection management (IM) as one of the most crucial elements of the transportation sector demands high attention. Today, road entities including infrastructures, vulnerable road users (VRUs) such as motorcycles, moped, scooters, pedestrians, bicycles, and other types of vehicles such as trucks, buses, cars, emergency vehicles, and railway vehicles like trains or trams are able to communicate cooperatively using vehicle-to-everything (V2X) communications and provide traffic safety, efficiency, infotainment and ecological improvements. In this paper, we take into account different types of intersections in terms of signalized, semi-autonomous (hybrid) and autonomous intersections and conduct a comprehensive survey on various intersection management methods for heterogeneous connected vehicles (CVs). We consider heterogeneous classes of vehicles such as road and rail vehicles as well as VRUs including bicycles, scooters and motorcycles. All kinds of intersection goals, modeling, coordination architectures, scheduling policies are thoroughly discussed. Signalized and semi-autonomous intersections are assessed with respect to these parameters. We especially focus on autonomous intersection management (AIM) and categorize this section based on four major goals involving safety, efficiency, infotainment and environment. Each intersection goal provides an in-depth investigation on the corresponding literature from the aforementioned perspectives. Moreover, robustness and resiliency of IM are explored from diverse points of view encompassing sensors, information management and sharing, planning universal scheme, heterogeneous collaboration, vehicle classification, quality measurement, external factors, intersection types, localization faults, communication anomalies and channel optimization, synchronization, vehicle dynamics and model mismatch, model uncertainties, recovery, security and privacy

    Big Data in MultiAgent Systems: Market Design Solutions

    Get PDF
    El objetivo principal de esta Tesis es presentar un conjunto de novedosos y diferentes métodos en los que los sistemas multiagente pueden jugar un papel clave en predicciones y modelos económicos en un amplio conjunto de contextos. La hipótesis principal es que los sistemas multiagente permiten la creación de modelos macroeconómicos con microfundamentos reales que son capaces de representar la economía en los diferentes niveles de acuerdo con diferentes propósitos y necesidades. La investigación se estructura en seis capítulos. El Capítulo 1 es una introducción teórica al resto de los capítulos que presentan aplicaciones empíricas. En él se compara los sistemas multiagente con dos alternativas: los modelos de equilibrio general computable y la econometría espacial. El resto de los capítulos son intencionadamente diferentes en sus objetivos y sus contenidos. Estas cinco aplicaciones incorporan diferentes tipos de agentes: incluyen individuos (2, 5, 6), familias (2, 5), empresas (3, 5, 6), establecimientos (5), instituciones financieras (6) y usuarios (4). En el ámbito espacial, la desagregación espacial es deliberadamente diferente en cada aplicación: El capítulo 4 no incluye el espacio, El capítulo 6 es una aplicación para la zona euro en su conjunto y en el capítulo 3 se toma España en su conjunto. Los capítulos 2 y 5 exploran las dos de las principales posibilidades para la incorporación del espacio en los sistemas multiagente: el capítulo 2 incluye las regiones NUTS 3 de la Unión Europea y en el capítulo 5 se geolocalizan los agentes. En el capítulo 2 se desarrolla un sistema multiagente que incluye a todos los individuos de la Unión Europea. Con este sistema podemos predecir la población a escala regional para toda la Unión Europea y cómo distintos niveles de crecimiento económico repercuten asimismo sobre el empleo. En el capítulo 3 se presenta un modelo de simulación con los principales puntos de vista de la teoría de negocios para estudiar el crecimiento empresarial y la demografía empresarial en un modelo evolutivo estocástico. El modelo que se presenta también muestra cómo las empresas se adaptan a los cambios en las características deseadas del producto y el efecto de la crisis sobre estas dinámicas. El capítulo 4 discute el papel clave de los incentivos en la seguridad de los sistemas de información. Trabajos anteriores realizan este estudio utilizando un enfoque de teoría de juegos, pero el capítulo muestra que un modelo basado en agentes es capaz de incluir la heterogeneidad y las interrelaciones entre los individuos, y no se centra en el equilibrio alcanzado sino en la dinámica antes de su aparición. El objetivo del capítulo 5 es el estudio de los efectos de la Ley para la Revitalización Comercial (Ley de Dinamización Comercial) que fue aprobada en la Comunidad de Madrid durante el año 2012. Por último, el objetivo del capítulo 6 es explicar los determinantes de la inflación y pronosticar la tasa de inflación en la zona euro en los próximos cinco años. Se predice una inflación para la zona euro creciente hasta 2018 con un límite cercano al 2,5% en tasa interanual siempre que no se produzcan perturbaciones externas relevantes
    corecore