36,641 research outputs found

    CamFlow: Managed Data-sharing for Cloud Services

    Full text link
    A model of cloud services is emerging whereby a few trusted providers manage the underlying hardware and communications whereas many companies build on this infrastructure to offer higher level, cloud-hosted PaaS services and/or SaaS applications. From the start, strong isolation between cloud tenants was seen to be of paramount importance, provided first by virtual machines (VM) and later by containers, which share the operating system (OS) kernel. Increasingly it is the case that applications also require facilities to effect isolation and protection of data managed by those applications. They also require flexible data sharing with other applications, often across the traditional cloud-isolation boundaries; for example, when government provides many related services for its citizens on a common platform. Similar considerations apply to the end-users of applications. But in particular, the incorporation of cloud services within `Internet of Things' architectures is driving the requirements for both protection and cross-application data sharing. These concerns relate to the management of data. Traditional access control is application and principal/role specific, applied at policy enforcement points, after which there is no subsequent control over where data flows; a crucial issue once data has left its owner's control by cloud-hosted applications and within cloud-services. Information Flow Control (IFC), in addition, offers system-wide, end-to-end, flow control based on the properties of the data. We discuss the potential of cloud-deployed IFC for enforcing owners' dataflow policy with regard to protection and sharing, as well as safeguarding against malicious or buggy software. In addition, the audit log associated with IFC provides transparency, giving configurable system-wide visibility over data flows. [...]Comment: 14 pages, 8 figure

    CyberGuarder: a virtualization security assurance architecture for green cloud computing

    Get PDF
    Cloud Computing, Green Computing, Virtualization, Virtual Security Appliance, Security Isolation

    Identifying Native Applications with High Assurance

    Get PDF
    The work described in this paper investigates the problem of identifying and deterring stealthy malicious processes on a host. We point out the lack of strong application iden- tication in main stream operating systems. We solve the application identication problem by proposing a novel iden- tication model in which user-level applications are required to present identication proofs at run time to be authenti- cated by the kernel using an embedded secret key. The se- cret key of an application is registered with a trusted kernel using a key registrar and is used to uniquely authenticate and authorize the application. We present a protocol for secure authentication of applications. Additionally, we de- velop a system call monitoring architecture that uses our model to verify the identity of applications when making critical system calls. Our system call monitoring can be integrated with existing policy specication frameworks to enforce application-level access rights. We implement and evaluate a prototype of our monitoring architecture in Linux as device drivers with nearly no modication of the ker- nel. The results from our extensive performance evaluation shows that our prototype incurs low overhead, indicating the feasibility of our model

    Authentication and authorisation in entrusted unions

    Get PDF
    This paper reports on the status of a project whose aim is to implement and demonstrate in a real-life environment an integrated eAuthentication and eAuthorisation framework to enable trusted collaborations and delivery of services across different organisational/governmental jurisdictions. This aim will be achieved by designing a framework with assurance of claims, trust indicators, policy enforcement mechanisms and processing under encryption to address the security and confidentiality requirements of large distributed infrastructures. The framework supports collaborative secure distributed storage, secure data processing and management in both the cloud and offline scenarios and is intended to be deployed and tested in two pilot studies in two different domains, viz, Bio-security incident management and Ambient Assisted Living (eHealth). Interim results in terms of security requirements, privacy preserving authentication, and authorisation are reported

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    ConXsense - Automated Context Classification for Context-Aware Access Control

    Full text link
    We present ConXsense, the first framework for context-aware access control on mobile devices based on context classification. Previous context-aware access control systems often require users to laboriously specify detailed policies or they rely on pre-defined policies not adequately reflecting the true preferences of users. We present the design and implementation of a context-aware framework that uses a probabilistic approach to overcome these deficiencies. The framework utilizes context sensing and machine learning to automatically classify contexts according to their security and privacy-related properties. We apply the framework to two important smartphone-related use cases: protection against device misuse using a dynamic device lock and protection against sensory malware. We ground our analysis on a sociological survey examining the perceptions and concerns of users related to contextual smartphone security and analyze the effectiveness of our approach with real-world context data. We also demonstrate the integration of our framework with the FlaskDroid architecture for fine-grained access control enforcement on the Android platform.Comment: Recipient of the Best Paper Awar
    • …
    corecore