
Identifying Native Applications with High Assurance

ABSTRACT
The work described in this paper investigates the problem
of identifying and deterring stealthy malicious processes on
a host. We point out the lack of strong application iden-
tification in main stream operating systems. We solve the
application identification problem by proposing a novel iden-
tification model in which user-level applications are required
to present identification proofs at run time to be authenti-
cated by the kernel using an embedded secret key. The se-
cret key of an application is registered with a trusted kernel
using a key registrar and is used to uniquely authenticate
and authorize the application. We present a protocol for
secure authentication of applications. Additionally, we de-
velop a system call monitoring architecture that uses our
model to verify the identity of applications when making
critical system calls. Our system call monitoring can be
integrated with existing policy specification frameworks to
enforce application-level access rights. We implement and
evaluate a prototype of our monitoring architecture in Linux
as device drivers with nearly no modification of the ker-
nel. The results from our extensive performance evaluation
shows that our prototype incurs low overhead, indicating the
feasibility of our model.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls
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Security
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Security of personal computers mainly depends on the re-
liability of the running processes and the way that the op-
erating system kernel controls and manages the execution.
Operating system kernels enforce minimal restrictions on the
applications permitted to execute, resulting in the ability of
malicious programs to abuse system resources. For example,
a spyware process can freely make use of networking system
calls to transmit malicious traffic. Thus, once a malicious
process is created on a victim machine, it can successfully
use kernel services to reach its goals. To effectively prevent
infection by malicious processes, the kernel must be able
to strongly identify the applications, distinguish the benign
process from the malicious ones, and prevent the misuse of
kernel services.

In this work, we address the problem of sandboxing ma-
licious processes under the assumption of a trusted kernel.
We point out the lack of proper identification of the running
processes that is needed to detect and prevent the execution
of undesired processes at runtime. In mainstream operating
system kernels (such as the Linux kernel), applications are
identified based on executable file names, the installation
path or the process identification (pid). However, none of
these identification methods strongly bind a running process
to the corresponding executable code as they are subject to
forge and change. Existing security solutions based on the
Linux Security Modules such as AppArmor [12] use the ap-
plication’s installation path as an identification based on
which access rights are enforced. The installation path is
a weak identification, as the malware may try to relocate a
legitimate application and assume its path.

Existing work in the area of protecting the system from
malicious activities spans a wide range of approaches in-
cluding policy-based access control, system call inspection,
isolation using virtual machine monitors (VMM), and ap-
plication sandboxing. Fine-grained policy-based access con-
trols using system call monitoring have been proposed by
the Security Enhanced Linux (SELinux) [22]. System call
monitoring techniques using virtual machine monitors have
also been studied [11]. In addition, application sandboxing
provides a mechanism to run untrusted code in a protected
environment [10].

Despite providing useful security solutions, existing ap-
proaches do not explicitly address the problem of applica-
tion identification. In [38], the authors present an extension
to the Singularity operating system to define applications
as first-class entities. The extension provides a language for
the specification of application-level access rights. However,
the proposed method combines the identity of the applica-
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tion (using application name) with the user’s access rights
and does not provide an explicit application identification
mechanism that can prove its origins.

In this paper, we present a novel identification model
in which applications are identified and authenticated with
high assurance. A privileged legitimate application is asso-
ciated with a strong identity used to authenticate itself to
the kernel at runtime. Using our identification model, we
achieve the following:

• Application identification. Applications with reg-
istered identities, are able to authenticate themselves
to the trusted kernel in order to provide proofs of iden-
tity. The kernel can prove the identity of legitimate
applications, relying on the uniqueness of application
identities and a secure authentication protocol. Un-
desired applications are unable to authenticate them-
selves to the kernel due to the lack of known identities.
Consequently, these applications are sandboxed and
restricted from performing sensitive operations such
as the use of the kernel’s networking subsystem.

• Application monitoring. Our identification model
enables the design and implementation of a sophisti-
cated system call monitoring architecture that is used
to enforce application-level access rights as well as
sandboxing undesired applications.

Contributions. We present the idea of using unique se-
cret keys to identify application processes at runtime. To use
this strong identity, we design a secure authentication pro-
tocol for an application to authenticate itself to the kernel.
Moreover, we develop a system call monitoring architecture
that monitors system calls made by the running processes
and verifies the corresponding application identities prior to
deciding on the access rights. The system call monitoring in-
stantiates our novel application identification model to iden-
tify application processes. The implementation prototype
consists of two Linux kernel modules to securely authenti-
cate applications and to verify their identities at the time
of using system calls. Our implementation requires min-
imal modifications to commodity applications with nearly
no modification to the kernel. Our evaluation results indi-
cate the feasibility of our system call monitoring approach
without a significant performance penalty.

Outline. We present the design of Authenticated Appli-
cation framework, discuss secure authentication and autho-
rization of applications, and provide an in-depth discussion
of achieved security properties and guarantees in Section 2.
Section 3 discusses our implementation. In Section 4 we
describe our experimental results including measuring the
overhead caused by the system call monitoring, scalability
tests, and verifying the ability of our system call monitoring
architecture in limiting the activities of spyware. In Section
5 we discuss the related work. We conclude in Section 6 and
discuss our future work.

2. THE AUTHENTICATED APPLICATION
FRAMEWORK

Stealthy malware running as a stand-alone process, once
installed, can freely execute benefiting from the privileges
provided to the user account running the process. Tradi-
tional operating system kernels are not designed to detect

malicious behavior, or identify malicious processes at run-
time. An existing technique to guard against malicious pro-
cesses is through the use of behavioral analysis. This ap-
proach suffers from advanced (and newly discovered) attacks
that are capable of bypassing the detection scope [30]. An
orthogonal strategy to protect against malicious processes is
to be able to identify malicious processes without relying on
the behavior of these processes.

Our security goal is to design an application identification
model with the following properties:

1. Unforgeable identities. Uniquely identifies the ap-
plications by generating secure credentials for the run-
ning processes.

2. Application isolation. Isolates detected undesired
applications by strictly limiting their activities at run-
time.

3. Application-level access rights. Enables effective
application-level access right enforcement using gener-
ated process credentials.

We achieve our goals by using our proposed identification
model discussed in the rest of this section.

2.1 Design Overview
We design the authenticated application (A2) framework,

which is capable of providing secure application identifica-
tion at runtime. In A2, each legitimate application is sup-
plied with a secret key that is only accessible by the applica-
tion code and the kernel. At the time of creating a process,
the application’s secret key is used by the process to au-
thenticate itself to the kernel. Once the process is securely
authenticated, the kernel can assure its identity relying on
the strong properties [6] of the cryptographic hash functions
1. The proved identity of the process is later used in our
system call monitoring architecture to decide on application-
level access rights.

In our identification model, applications are recognized as
individual principals. Keyed applications are the most privi-
leged applications while keyless applications (that are unable
to identify themselves) are restricted and considered poten-
tially malicious. This identification mechanism provides a
secure sandbox for the potentially malicious processes and
isolates them from authenticated processes. It is necessary
to allow the creation of any process regardless of its iden-
tity. This is to enable any application to authenticate itself
at runtime in order to provide proof of identity. In addition,
this strategy results in uncovering stealthy malware as soon
as it interacts with the kernel by monitoring a set of critical
system calls such as the open system call.

Our identification model is based on the assumption that
the kernel’s code and memory are trusted. User-level pro-
cesses, unless authenticated, are possibly malicious. Using
A2, we preserve the security of kernel by restricting the ac-
tivities of unauthorized processes.

The A2 framework consists of three main components:
Trusted Key Registrar, Authenticator and Service Access
Monitor (SAM) depicted in Figure 1. We implement the

1Given a secure cryptographic hash function, it is easy to
compute the hash of any message. It is infeasible to (i)
generate the original message given its hash, (ii) to find a
common hash for two different messages, and (iii) to modify
a message without modifying its hash.
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Figure 1: The access to selected system calls is monitored by A2. Pi denotes an application process.

Authenticator and SAM as Linux kernel modules without
modifying the kernel (see Section 3). We describe the func-
tions of our components in the following.

Trusted Key Registrar is the component responsible
for installing a key for the application and registering the ap-
plication with the kernel. The application interacts with the
trusted key registrar in a trusted system state to receive a
secret key. The trusted key registrar stores the same key and
register it for the corresponding application within a secure
storage to be used for the authentication of the processes at
runtime.

Authenticator is responsible for authenticating a pro-
cess when it first loads. The Authenticator needs to ensure
the identity of the process and prevent malware from spoof-
ing a legitimate process. The Authenticator implements our
token generation protocol to authenticate applications.

Tokens are statements that are certified by the Authenti-
cator, to identify a process when interacting with the kernel.
A token is valid until its process is terminated. The tokens
are maintained by the Authenticator and can be accessed
and verified by the Service Access Monitor.

Service Access Monitor (SAM) is responsible for ver-
ifying the tokens at runtime and enforce application-level ac-
cess rights. Since the tokens are maintained by the Authen-
ticator, SAM realizes its task by coordinating with the Au-
thenticator through a shared data structure. SAM enforces
application-level access rights based on a user-specified ap-
plication policy.

2.2 Secure Authentication of Applications
In order to identify the application associated with a run-

ning process, the process must be able to prove its identity
to the trusted kernel. This proof of identity needs to be
based on the secret key that is embedded in the application’s
code and is known to the kernel. Thus, it is necessary for
a newly created process to securely authenticate itself using
the application’s secret key. Our authentication mechanism
is based on three generic steps. First, the kernel needs to
send a random nonce to the application process. The pro-
cess hashes the nonce with the secret key and returns the
nonce back to the kernel. The kernel regenerates the hash
of the string and compares the result with the hash claimed
by the application.

Implementing the authentication protocol in kernel is not

trivial. A technical challenge is how to support the secure
communication between an application and the kernel in
an efficient way. The first design choice is for the kernel
can directly access the application’s key and verify its iden-
tity provided that the key is stored in a predefined location.
However, this method does not provide the security level
that is needed in order to establish a strong identification.
The location of the key can be either defined in memory
or the file system. Defining the key in the memory imposes
additional risk to stealing the key as well as causing complex-
ity of maintaining the key location. The alternative design
would be separating the key in a restricted key storage to be
used by the kernel at the authentication time. This design
choice is not adequate since it is not possible to securely
bind a running process to the correct key file at runtime.
Therefore, we design an authentication protocol that can be
executed on a secure socket between the process and the
kernel. This method can be realized using a memory-based
socket known as the /proc file system [17]. The advantage
of using the /proc file system is that it is easily accessible
by kernel device drivers and is under the complete control
of the kernel. More details on the implementation can be
found in Section 3.

2.2.1 Token Generation Protocol
Our authentication protocol is used to generate identity

tokens for legitimate applications. The identity tokens are
later used to identify the applications when interacting with
the kernel through the system calls. The identity tokens are
needed since the authentication and verification of identity
are separated in A2. That is, the authentication is only per-
formed at the time of creating a new process for the purpose
of identifying the application. On the other hand, the ver-
ification of identity is needed when the process is accessing
restricted system resources. This separation improves the
system call monitoring overhead (see Section 4). Thus, it
is important to have identity tokens stored for the running
processes to be used whenever an authorization is needed.
We design a token generation protocol (TGP) that is used
to authenticate individual processes based on the keys of the
corresponding applications.



We first define a registered application, an identity token
and the Authenticator as follows:

Definition 1. A registered application is a piece of exe-
cutable code that has been issued a secret key by the kernel
in a trusted system state.

Definition 2. An identity token is a tuple (app, pid)

where app is the name of a registered application and pid is
the kernel process ID of the process created by app.

Properties of the identity tokens are as follows:

• Generated when the process starts through the token
generation protocol.

• Unique for each process and valid until the its termi-
nation.

• Can be generated only by the Authenticator (defined
below).

• Readable only by the Secure Access Monitor.

Definition 3. The Authenticator is a kernel service that
implements the token generation protocol and is responsible
for creating and maintaining identity tokens for registered
applications.

The steps of the token generation protocol are as follows:

1. Process p sends a request to the Authenticator A for
an identity token. The process must specify the appli-
cation name that needs to be authenticated.

2. Upon receiving the request:

2.1 A verifies if the requesting application has a regis-
tered key. Otherwise, malicious(p) (p is reported
as a malicious process and the protocol is termi-
nated).

2.2 A checks whether p has already established a to-
ken. If so, malicious(p).

2.3 A limits the authentication requests in order to
prohibit the applications to flood the kernel in-
tentionally or due to an unintended software bug.
Thus, A checks if count(p) < limit(p). If the limit
check was failed, malicious(p). Each application
has a specified limit of simultaneous requests. This
is set as part of A’s policy.

2.4 A generates a random nonce n and sends it to p.
g. Additionally, A sets a timer t for the string
to expire if there was no response from p. The
time frame to expire t needs to be very short as
this authentication is performed without network-
ing inaccuracies. We only need the timer for the
case that the process crashed or was killed and did
not continue the authentication.

3. p produces the message authentication code (MAC)
using a secure hashing function h = hmac(n, p.pid, k)
where p.pid is the process ID of p and k is its secret
key. h is sent to A.

4. If t has expired, A discards the authentication. If p is
still executing, it will be terminated to prevent a race
condition.

5. A verifies h by re-computing the MAC h′ =
hmac(n, p.pid, k). If h = h′, then a token tk =
(pid, p.app) (where p.app is the name of the applica-
tion) is generated. tk is valid until the termination of
p. Otherwise, malicious(p).

6. tk is stored in a shared data structure tokenlist that is
only readable by the verification module in the trusted
kernel.

The protocol can be executed on a transparent socket be-
tween the Authenticator and the application. This does not
decrease the security level as the protocol uses HMAC to
hide the key and is not vulnerable to man-in-the-middle (and
replay) attacks. Moreover, we restrict the number of authen-
tication (or key agreement) requests from an application to
prevent denial-of-service attacks.

2.2.2 Tokens Storage
The tokenlist is a data structure that is maintained by

the Authenticator. Authenticator can only allow read ac-
cess to tokenlist to be used by a verification module inside
the kernel. In systems with heavily use of various types of
software (especially multi-process software), tokenlist may
grow relatively large. It is not efficient to store the tokenlist
in a sequential list. That is because, the tokenlist will be
frequently searched for tokens at the time of system call
monitoring by the verification module. Therefore, it is ben-
eficial to make use of binary search trees, which on average
reduce the time of searching to O(logn). Binary search trees
take longer time for the insert operation compared to a nor-
mal sequential list (O(logn) as opposed to O(1)). However,
our insert operation is not as critical as the search since the
insert is less frequent than the search. Linux kernel provides
a special kind of tree API, denoted as red-black trees, that
can be used for the purpose of maintaining the tokenlist
[5]. Red-black trees are used for the organization of virtual
memory but are available to other linux kernel functions or
modules. These trees provide a search as efficient as that of
the binary search trees.

2.2.3 Key Management
Prior to performing any authentication, it is necessary

for the kernel to generate and register the secret keys for
legitimate applications. In this section, we present the key
registration and revocation steps.

Key registration. The secret key must be registered
by the kernel at the installation time and must be stored in
the application’s code. To protect the key from being stolen
by static analysis of the executable code, A2 restricts read
access to executable codes by any application. Further, the
installed key is only associated with one installation instance
and is not valid once the application is re-installed.

To register the key, we design a trusted key registrar (here-
after referred to as the registrar) that is used to register ap-
plications’ keys in the kernel and the application. The reg-
istrar exchanges the key information with the application in
a secure system state. The steps taken by the registrar are
as follows:

1. The application is started for the first time and re-
quests a key from the registrar.

2. The registrar verifies if the application was previously
issued a key and if the application is designated legit-



imate either by the user or after an application certi-
fication process.

3. If verification passed, the registrar generates k and
sends it back to the application. Otherwise, the ap-
plication is removed and reported as malicious.

4. The application accepts k and stores it in its exe-
cutable code.

The original identity of the application is determined as
part of a binary certification process. The purpose of this
certification is to verify the legitimacy of the application.
To allow the installation of the application, the registrar
decision is based on the user’s permission as well the result of
the certification process. If either give a negative answer, the
registrar would not issue a key for the application. Existing
binary analysis and certification solutions such as BitBlaze
[34] can be utilized for this purpose.

Key revocation. In the event that the system adminis-
trator decides an application should no longer be registered
as a keyed application, the registrar can be used to revoke
the key from the kernel. In order to make sure that the key
is completely unusable, we flag the key as revoked in the key
storage to indicate that an application with this key cannot
be registered.

Key protection. To protect the secret key from being
revealed to other applications, A2 restricts read access to
identified application binaries. Further, a file system en-
cryption can be used to encrypt the binary code of an ap-
plication using a master key known to the kernel. This can
be done by implementing a kernel module, which will be re-
sponsible for encryption and decryption of the application
binaries without the need to modify the kernel. We leave
this issue for our future work.

2.3 Secure Authorization of Applications
Our token generation protocol is used to securely authen-

ticate running processes and generate identity tokens. These
identity tokens are used by the Secure Access Monitor to val-
idate application access rights at runtime and authorize the
use of system calls accordingly. SAM’s main functionality is
to:

1. Monitor designated system calls.

2. Verify the identity of the process making the system
call.

3. Enforce application-level access rights according to
policy file.

4. Log malicious activities.

The Secure Access Monitor can be integrated and with a
policy specification language to benefit from existing schol-
arly work in this area [2, 27, 37, 38]. A policy file must
specify application categories, system call names, and op-
tionally permitted system call usage frequencies. A sample
policy file is depicted in Table 1. SAM uses the binary deci-
sion for allowing or disallowing the use of a system call. In
this file, permitted frequency is omitted indicating that the
corresponding system call usage frequency is unlimited.

The categories of applications are determined and speci-
fied as part of the application specification process when an
application is being registered. We restrict the behavior of

application categories by limiting the way they make use of
system calls. For example, in the sample policy file in Table
1, we forbid all categories of applications from completing
an open system call on executable binary files. This is a
necessary policy, which we enforce to maintain the privacy
of the secret keys.

A more detailed discussion on the integration of SAM with
a suitable policy specification language and the challenges
associated with enforcing a rich policy in the kernel environ-
ment, is left for our future work.

2.4 Security Analysis
In this section we present the properties of the A2 frame-

work. We discuss in detail the security guarantees that are
achieved using our identification model.

Strong application identities. Our presented applica-
tion identification model is strong since it uses cryptographic
keys that are kept secret and protected by the A2 framework.
The secret key of an application is unforgeable as it is com-
putationally hard for a malware to find the key. Moreover,
the token generation protocol enables transparent and secure
communication between applications and the kernels relying
on the properties of the cryptographic hash functions.

Application isolation and access rights. In the A2
framework, we fully sandbox undesired processes. This
sandboxing relies on the fact that malicious applications fail
to authenticate to the kernel and thus are prevented from us-
ing most critical system calls. Moreover, such processes are
exposed to the kernel when trying to interact with it with-
out the presence of a valid token. This makes A2 a powerful
tool to find malware that was dropped by other applications
by various means such as through drive-by-download. Al-
though a legitimate application such as a web browser may
allow malware to be downloaded, A2 prevents the down-
loaded malicious code to reach its ultimate goal.

Effective application-level access right enforcement is an-
other advantage of A2. When access rights are simply en-
forced based on application names, installation paths or
solely according to the user’s access rights, it is difficult to se-
curely control the activities of various processes. The strong
binding between a process and its executable code (i.e. the
application) enables the kernel to treat applications as prin-
cipals and enforce appropriate access rights. In this case,
when a simple text editor application does not need to use
the networking system calls, A2 prevents it from doing so.
Such policies help in deciding desired and undesired behav-
ior of an applications to prevent intentional or unintentional
misbehavior.

Scope of A2. A2 is capable of identifying interpreted
programs running as stand-alone processes. For instance,
a Java executable runs as a separate process named Java.
In this case, the program can have a unique key and be
registered in the installation time. Each program can au-
thenticate itself independently using our framework. As a
result, A2 can have the extra benefit of distinguishing Java
programs running under the same process name. Other in-
terpreted languages such as Adobe Action Script and Word
document macros are out of the scope of our model.

Programs that are executed as part of other programs (for
example using execve) are also identifiable using A2. In our
model, a process does not inherit its access rights from its
parent process or the application that was responsible for
ordering the execution. For example, programs often run



App category / System call open (exec) open (non-exec) socket execve fork ipc kill
Web browser 0 1 1 1 1 1 1
Social networking 0 1 1 1 1 0 0
Text editor 0 1 0 0 1 0 0
Miscellaneous 0 1 0 0 1 1 0
Unidentified 0 1 0 0 0 0 0

Table 1: A sample policy file. SAM uses 1 or 0 to allow or disallow the use of a system call respectively.

using a shell terminal. It is the responsibility of the process
to perform the authentication and identify itself.

Extensible applications such as Internet browsers fre-
quently run other code such as JavaScript programs. In
a browser, extensions and add-ons may not have the same
trust level or access rights of the browser. The goal of A2
is to fundamentally distinguish a legitimate browser from a
malicious one, which is well achieved. Thus, detection of
malicious code running in a browser is out of the scope of
A2.

3. IMPLEMENTATION
We realize a prototype of the A2 framework in the Linux

Operating System (Debian 2.6.32). We have implemented
SAM and the Authenticator as Linux kernel modules. These
two modules can be loaded using root privileges as needed.
SAM depends on the Authenticator in order to verify the
tokens. In the following we describe the implementation of
our prototype.

3.1 Implementation of Authenticator
The Authenticator module relies heavily on the Linux ker-

nel Cryptographic API [9]. The API supports various hash-
ing algorithms and provides a number of ways to perform
encryption and decryption. It works directly on memory
pages and uses a special data structure called scatterlist

to hold the required data.
We have a complete implementation of the TGP using the

Cryptographic API. To implement TGP, we use the HMAC
[4] algorithm to hash the data with the secret key k serving
as a secure signature of the application to be presented to
the kernel.

The Authenticator communicates with the user space us-
ing the /proc file system, which is a memory-based file sys-
tem controlled by the kernel. A protocol file is created by
the Authenticator in the /proc file system and is made ac-
cessible to all running processes.

We define two functions for reading and writing op-
erations to the protocol file in /proc file system. The
read_protocol_file function is executed when the user
reads the file. For writing to the challenge file, we define the
function write_protocol_file. In this function, our mod-
ule reads the data that is written by the user. The Authen-
ticator only responds to one request, which is the generation
of a token by a running process. The request verifications
described in Section 2.2 is performed before the protocol can
proceed.

Our implementation of the Authenticator is able to accept
multiple requests from multiple processes using the same
/proc protocol file. For each process, only one request is
served at a time. We define an applist data structure that
stores the secret keys of all authorized applications. When

the Authenticator receives a request, it verifies the availabil-
ity of a key for the requesting application by searching the
applist. If a key was found, the Authenticator continues
the rest of the verification process and then sends a random
nonce back to the process. At this time we set a flag that
an authentication process for the requesting application is
ongoing. When the hash of the nonce arrives, the Authenti-
cator verifies that hash and in case the hash was correct, a
token for the currently communicating application is gener-
ated and is kept in the tokenlist.

3.2 Implementation of SAM
SAM and the Authenticator communicate via a shared

data structure in the memory that holds the valid tokens.
This data structure is only visible to SAM and the Authen-
ticator. Each time SAM needs to verify a process’ identity,
it needs to search through a list of currently valid tokens
that are maintained by the Authenticator. We currently,
implement the list of tokens as a sequential list. However,
in our future implementations we are providing two options
for storing the tokens. One is through the use of a red-black
tree is discussed in Section 2.2.2 and the other is by storing
the token in the Process Control Block (PCB). The latter
design would eliminate the search overhead but requires a
modification to the kernel. We are implementing both op-
tions to increase the flexibility of using A2.

SAM uses kprobe to hook into existing system calls and
redirect the access to the SAM code. The kprobe is a built-
in API in Linux kernel that allows kernel modules to mon-
itor kernel functions by placing probes in desired functions.
When a probe is triggered, kprobe causes an interrupt and
transfers the control to SAM. Although the probes intro-
duce extra overhead, the produced overhead does not cause
considerable latencies to application’s functionality, limited
by an upper-bound of 3 times more overhead (see Section
4).

SAM can be designated to monitor any function in the
kernel. In our experiments, we run SAM with at least 5
monitored functions. When the module is loaded, it re-
quests the installation of probes for each monitored func-
tion. A universal handler receives the control when a probe
is triggered. We verify the system call being monitored by
checking the eax register and start searching for a token for
the process. We allow or deny access to the monitored sys-
tem call depending on the token and the access control table
described in Section 2.3. Our current policies are simple for
the purpose of performing runtime overhead experiments.
As described earlier, we are discovering the integration of
advanced policy specification languages to allow sophisti-
cated policies into the A2 framework.



4. EXPERIMENTAL EVALUATION
The strong security guarantees provided by our A2 frame-

work incur computational and management overhead in the
operating system. In order to assess the efficiency of our
framework, we answer the following questions in our exper-
iments:

• What is the system call overhead caused by A2 as a
result of verifying application’s identity at the time of
making system calls?

• How does A2 impact the overall system performance?

• What are the most frequently used system calls in a
normal load?

• How does A2 perform, when the system is overloaded
with a large number of tokens?

In our evaluation, we design a micro-benchmark to assess the
system call overhead. In order to assess the overall system
performance penalty due to A2, we use the lmbench micro-
benchmark [24]. For our analysis we used a VirtualBox vir-
tual machine (VM) with ubuntu 10.04 (32-bit) installed on
it. We allowed the VM to use up to 1 GB of memory. At
the time of our analysis a normal load of user programs were
launched. In addition to answering the questions mentioned
earlier, we experiment with two open-source keyloggers and
our key stealer malware to test A2’s functionality against
undesired software.

4.1 System Call Monitoring Overhead
To measure the overhead caused by SAM on handling the

system calls we designed a set of programs to make extensive
use of a collection of system calls. We let SAM to monitor
a collection of seven system calls containing frequently used
system calls such as read and less frequently used system
calls such as getpid.

Each of our benchmarking programs are given a system
call and a number of iteration. We set each program to make
calls to the specified system calls for 150,000 iterations. The
programs do not perform any other tasks. We measure the
time spent in kernel for the system calls made by each pro-
gram in three experimental settings. First, we measure the
system without running any of our kernel modules. Next,
we run A2 modules, without performing any verifications
by SAM (i.e. searching the tokenlist). In the final experi-
ment, SAM verifies the tokenlist with a total of 300 stored
tokens. The results of our experiments are shown in Figure
2. On average, the system call overhead is 3 times more
than the baseline latency.

Based on our experimental results, the major latency is
caused by the installed probes in the kernel functions. That
is because, the average extra latency caused by the verifi-
cation of the tokenlist (that already contains a total of
300 tokens) is 29.03%. It is expected that by modifying the
kernel and manual installation of the hooks into the kernel
function, we can achieve a considerable reduction of the over-
head. However, the advantage of using our current kernel
modules is the simplicity and protability of the solution.

In addition, we recorded the number of system calls in-
voked by running processes to our selected subset of critical
system calls in a short 10-minute period. Based on our re-
sults, open and socketcall (the interface to all networking
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Figure 2: System call overhead measured in three
experiments: No A2 modules running, A2 without
any verification, and A2 running and performing
verification on a tokenlist of 300 tokens.

system services such as sendmsg) have received most sys-
tem call requests. Our results also suggest that open and
socketcall are used by most applications running in our
experiment. A total of 30 applications were measure that
attempted to access the system calls. In this experiment,
78% of calls to socketcall were made by a cloud-based file
system software and 12% of the calls belonged to the web
browser for a total of 90%.

We measured the overall system performance downgrade
due to A2, in another set of three experiments. For these
experiments, we used the lmbench micro-benchmark [24].
This benchmark provides performance analysis for various
system functions such as networking and file system. We
include the results for signal handler, pipe communications,
UNIX socket transactions, process creation and termination
using fork and exit, and process creation using execve. As
shown in Figure 3, the extra latencies caused by A2 mod-
ules are not significant. On average, there is an increase of
26.76% in processing time and the maximum latency is for
UNIX socket transactions for an overhead of 54.65%.
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Figure 3: The latency caused by A2 modules for
UNIX socket transactions and process creations.

4.2 Scalability Evaluation
Figure 4(a) shows an experiment to measure the scala-



bility of A2 modules. We examined the average overhead
associated with verifying the tokenlist with various
numbers of tokens in the list. With under 1000 tokens
generated, the latency caused is a fraction of a second (50
microseconds), which is a negligible overhead. Our token
lifetime is equal to the lifetime of the process it belongs to.
Given this lifetime model, having 1,000 tokens means 1,000
different processes authenticated in the current session.
We do not expect a normal load would have more than
1,000 processes running simultaneously. However, even
with having 20,000 tokens the latency reaches up to 350
microseconds.

Figure 4(b) shows an experiment for measuring the total
overhead caused in a 5-minute-long trace for searching for
a token based on a global monitoring frequency f . With
f = 50, an inspection is performed for every 50 calls to
sys_socketcall. The corresponding average overhead asso-
ciated with our access verification is quite small and efficient,
which is under 5 seconds over a five-minute period. Higher
monitoring frequencies incur higher latency. A higher mon-
itoring frequency provides a stronger secure guarantee for
the overall system. (If f = 1, SAM monitors every single
system call request for monitored system calls.) Therefore,
the malware behavior can be detected immediately from the
first call made. In contrast if f > 1, SAM skips f number of
system calls before it verifies the tokenlist to increase the
performance. In case of restricting access to highly critical
system calls, the malware may be able to manage to fall into
the interval after the last tokenlist verification and before
the next verification. f must be as low as possible, espe-
cially for those system calls that are least frequent such as
sys_kill. The f value may be slightly increased for highly
frequent system calls like sys_open. On the other hand,
even with a f = 1 for less frequent system calls, the system
has a negligible system performance downgrade.

4.3 Spyware Detection.
We use two open source Linux keyloggers to test SAM’s

monitoring: Logkeys Linux keylogger (Logkeys) 2 and LKL
Linux KeyLogger (LKL) 3. The keyloggers may be dropped
through drive-by-download exploits or dropped by other
malware. We started these keyloggers while SAM was run-
ning to intercept the critical system calls. In this exper-
iment, SAM was in alert mode allowing the execution of
the program and generating alerts when necessary. Both
keyloggers were immediately detected by SAM and alerts
were reported. Logkeys caused SAM to generate alerts
for sys_unlink and sys_kill as they were monitored by
SAM. The alerts generated for LKL were due to the use of
sys_socketcall.

This experiment further verfiies that SAM is able to detect
any malware that needs to run as a user process and initiate
a system call that SAM is set to monitor at the time the mal-
ware runs. We can detect those types of malware that try to
modify binary codes to change the behavior of the program
or to steal the key. For instance, we wrote a sample malware
that tried to steal the key from our customized program by
reading its binary code and inspecting the strings. Since we
hard-coded the key in the program without encryption, the
sample malware easily extracted the key. However, SAM

2http://code.google.com/p/logkeys
3http://sourceforge.net/projects/lkl
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Figure 4: (a) Verification time associated with one
request in milliseconds increases with the size of to-
ken list. (b) Total verification time in seconds in a
5-minute-long trace.

detected the sample malware while it was in the process of
finding the key.

4.4 Summary of Experiments
Our results show efficient system call performance with-

out a significant penalty due to our monitoring architecture.
While performing the experiments inside a virtual machine
with limited resources, we did not notice the imposed laten-
cies as end users. Moreover, the token generation protocol
does not impose further performance penalties as it is not
part of the monitoring process. This protocol is only ex-
ecuted once at the time of creation of a process and the
generated identification token can be subsequently used in
the system call monitoring process.

5. RELATED WORK
The work that is the closest to ours in spirit is the au-

thenticated system call work by Rajagopalan et al. [31,
32]. The authors propose the use of message authentica-
tion code (MAC) in monitoring system calls, and present
an automated method of rewriting the application binary to
include the MAC in the arguments of a system call. The
kernel has a secret key (which is not known to the appli-
cation) to recompute and verify MAC. The presented work
is limited to providing identities (the MAC) to individual
function calls to system calls in an application. Thus, it
does not provide an identity to the application itself.

Policy-based security models are the subject of a num-
ber of research projects including policy specification lan-
guages [19, 28, 21]. Jaeger et al. did pioneering work in



operating-system security and security kernel architecture
for OS-level control of program behaviors, including regulat-
ing downloaded executable content [14] and general-purpose
policy enforcement through intercepting inter-process com-
munication in OS [13]. SELinux is another policy-based
mandatory access control system [22]. It enforces access
control via monitoring system calls and enforcing a set of
policy rules. The complexity of managing the policies is
well documented [26]. SELinux differs with our proposed
model in that it relies on standard Linux user identities to
decide on the access rights. We instead, provide a provable
application-level identification mechanism that is indepen-
dent of a particular Linux user. Grsecurity [1] is a policy
specification platform similar to SELinux with a simplified
specification language that suffers from the same identifica-
tion problem.

System call monitoring is an ongoing research direction
in the area of protection against malware [11]. Some of the
research has focused on the use of virtual machine monitors
(VMM) to monitor system calls [3, 20, 16, 29]. Using system
call mining has been explored in [7, 25, 36].

Application sandbox is a mechanism to allow execution of
untrusted code on protected hosts. Recent sandbox propos-
als include Vx32 [10], UserFS [18], and BLADE [23]. Ap-
plication sandboxing is a promising approach that can be
combined with our application identity model to produce a
comprehensive protection solution.

There is a variety of other approaches for protecting sys-
tem resources against unauthorized applications. These ap-
proaches include signature-based malware detection (proved
to be ineffective against zero day attacks) [8], integrity pre-
serving based on information flow such as PRIMA [15],
and Trusted Platform Module [33, 35]. These approaches
provide valuable security solutions. However, our security
model differs in providing provable identity to native appli-
cations.

6. CONCLUSIONS AND FUTURE WORK
We presented a novel application identification model that

provides strong and unforgeable application identities and
binds process to their corresponding applications at runtime.
Our identification model is combined with a new system call
monitoring architecture that verifies process identities. This
model resolves the problem of detecting the identity and
the origins of running processes inside a kernel. In the A2
framework, malicious processes are completely sandboxed
to prevent them from attacking other processes or achieving
any attack goals.

Our identification model is simple to implement and is
highly portable. We introduced the idea of an authentication
protocol between a user application and the kernel. The
advantage of taking this approach is eliminating the need
for kernel modification and re-build. On the application
side, such a protocol is simple to implement and requires
minimal modification to the application. We developed a
client application that implements the TGP, which contains
a total of 196 lines of code dedicated to the protocol.

Our evaluation results indicate the feasibility of using
cryptography for the purpose of identifying running pro-
cesses. We achieve this result by separating the authenti-
cation from the monitoring. Therefore, there is virtually no
performance penalty due to the use of cryptographic func-
tions.

In current implementation of A2, we use simple policies for
our the secure access monitor. In future, we plan to provide
an interface for the secure access monitor to integrate with
existing policy specification languages and frameworks. In
addition, we are investigating the challenges with regard to
interpreting and effectively enforcing specified policies.
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