288 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    Tiny Machine Learning Environment: Enabling Intelligence on Constrained Devices

    Get PDF
    Running machine learning algorithms (ML) on constrained devices at the extreme edge of the network is problematic due to the computational overhead of ML algorithms, available resources on the embedded platform, and application budget (i.e., real-time requirements, power constraints, etc.). This required the development of specific solutions and development tools for what is now referred to as TinyML. In this dissertation, we focus on improving the deployment and performance of TinyML applications, taking into consideration the aforementioned challenges, especially memory requirements. This dissertation contributed to the construction of the Edge Learning Machine environment (ELM), a platform-independent open-source framework that provides three main TinyML services, namely shallow ML, self-supervised ML, and binary deep learning on constrained devices. In this context, this work includes the following steps, which are reflected in the thesis structure. First, we present the performance analysis of state-of-the-art shallow ML algorithms including dense neural networks, implemented on mainstream microcontrollers. The comprehensive analysis in terms of algorithms, hardware platforms, datasets, preprocessing techniques, and configurations shows similar performance results compared to a desktop machine and highlights the impact of these factors on overall performance. Second, despite the assumption that TinyML only permits models inference provided by the scarcity of resources, we have gone a step further and enabled self-supervised on-device training on microcontrollers and tiny IoT devices by developing the Autonomous Edge Pipeline (AEP) system. AEP achieves comparable accuracy compared to the typical TinyML paradigm, i.e., models trained on resource-abundant devices and then deployed on microcontrollers. Next, we present the development of a memory allocation strategy for convolutional neural networks (CNNs) layers, that optimizes memory requirements. This approach reduces the memory footprint without affecting accuracy nor latency. Moreover, e-skin systems share the main requirements of the TinyML fields: enabling intelligence with low memory, low power consumption, and low latency. Therefore, we designed an efficient Tiny CNN architecture for e-skin applications. The architecture leverages the memory allocation strategy presented earlier and provides better performance than existing solutions. A major contribution of the thesis is given by CBin-NN, a library of functions for implementing extremely efficient binary neural networks on constrained devices. The library outperforms state of the art NN deployment solutions by drastically reducing memory footprint and inference latency. All the solutions proposed in this thesis have been implemented on representative devices and tested in relevant applications, of which results are reported and discussed. The ELM framework is open source, and this work is clearly becoming a useful, versatile toolkit for the IoT and TinyML research and development community

    Optimisation for Optical Data Centre Switching and Networking with Artificial Intelligence

    Get PDF
    Cloud and cluster computing platforms have become standard across almost every domain of business, and their scale quickly approaches O(106)\mathbf{O}(10^6) servers in a single warehouse. However, the tier-based opto-electronically packet switched network infrastructure that is standard across these systems gives way to several scalability bottlenecks including resource fragmentation and high energy requirements. Experimental results show that optical circuit switched networks pose a promising alternative that could avoid these. However, optimality challenges are encountered at realistic commercial scales. Where exhaustive optimisation techniques are not applicable for problems at the scale of Cloud-scale computer networks, and expert-designed heuristics are performance-limited and typically biased in their design, artificial intelligence can discover more scalable and better performing optimisation strategies. This thesis demonstrates these benefits through experimental and theoretical work spanning all of component, system and commercial optimisation problems which stand in the way of practical Cloud-scale computer network systems. Firstly, optical components are optimised to gate in ≈500ps\approx 500 ps and are demonstrated in a proof-of-concept switching architecture for optical data centres with better wavelength and component scalability than previous demonstrations. Secondly, network-aware resource allocation schemes for optically composable data centres are learnt end-to-end with deep reinforcement learning and graph neural networks, where 3×3\times less networking resources are required to achieve the same resource efficiency compared to conventional methods. Finally, a deep reinforcement learning based method for optimising PID-control parameters is presented which generates tailored parameters for unseen devices in O(10−3)s\mathbf{O}(10^{-3}) s. This method is demonstrated on a market leading optical switching product based on piezoelectric actuation, where switching speed is improved >20%>20\% with no compromise to optical loss and the manufacturing yield of actuators is improved. This method was licensed to and integrated within the manufacturing pipeline of this company. As such, crucial public and private infrastructure utilising these products will benefit from this work

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    Optimization for Deep Learning Systems Applied to Computer Vision

    Get PDF
    149 p.Since the DL revolution and especially over the last years (2010-2022), DNNs have become an essentialpart of the CV field, and they are present in all its sub-fields (video-surveillance, industrialmanufacturing, autonomous driving, ...) and in almost every new state-of-the-art application that isdeveloped. However, DNNs are very complex and the architecture needs to be carefully selected andadapted in order to maximize its efficiency. In many cases, networks are not specifically designed for theconsidered use case, they are simply recycled from other applications and slightly adapted, without takinginto account the particularities of the use case or the interaction with the rest of the system components,which usually results in a performance drop.This research work aims at providing knowledge and tools for the optimization of systems based on DeepLearning applied to different real use cases within the field of Computer Vision, in order to maximizetheir effectiveness and efficiency
    • …
    corecore