
Imperial College London

Department of Electrical and Electronic Engineering

Algorithms and architectures for

MCMC acceleration in FPGAs

Grigorios Mingas

Supervised by Christos-Savvas Bouganis

Submitted in part fulfilment of the requirements for the degree of

Doctor of Philosophy in Electrical and Electronic Engineering of Imperial College London

and the Diploma of Imperial College London, February 2016

Abstract

Markov Chain Monte Carlo (MCMC) is a family of stochastic algorithms which are used to draw

random samples from arbitrary probability distributions. This task is necessary to solve a variety of

problems in Bayesian modelling, e.g. prediction and model comparison, making MCMC a fundamen-

tal tool in modern statistics. Nevertheless, due to the increasing complexity of Bayesian models, the

explosion in the amount of data they need to handle and the computational intensity of many MCMC

algorithms, performing MCMC-based inference is often impractical in real applications. This thesis

tackles this computational problem by proposing Field Programmable Gate Array (FPGA) architec-

tures for accelerating MCMC and by designing novel MCMC algorithms and optimization method-

ologies which are tailored for FPGA implementation. The contributions of this work include: 1) An

FPGA architecture for the Population-based MCMC algorithm, along with two modified versions of

the algorithm which use custom arithmetic precision in large parts of the implementation without in-

troducing error in the output. Mapping the two modified versions to an FPGA allows for more parallel

modules to be instantiated in the same chip area. 2) An FPGA architecture for the Particle MCMC al-

gorithm, along with a novel algorithm which combines Particle MCMC and Population-based MCMC

to tackle multi-modal distributions. A proposed FPGA architecture for the new algorithm achieves

higher datapath utilization than the Particle MCMC architecture. 3) A generic method to optimize the

arithmetic precision of any MCMC algorithm that is implemented on FPGAs. The method selects the

minimum precision among a given set of precisions, while guaranteeing a user-defined bound on the

output error. By applying the above techniques to large-scale Bayesian problems, it is shown that sig-

nificant speedups (one or two orders of magnitude) are possible compared to state-of-the-art MCMC

algorithms implemented on CPUs and GPUs, opening the way for handling complex statistical analy-

ses in the era of ubiquitous, ever-increasing data.

i

ii

Acknowledgements

First of all, I must thank my supervisor Christos, without whom this thesis would not be what it is.

He gave me absolute freedom in choosing my thesis topic, encouraged me to become independent,

taught me to aim for high quality research and was always available to discuss and to provide valuable

insights. He also gave me the opportunity (and funds) to travel around the world. All these experiences

have not only moulded me as a researcher but also contributed to my evolution as a person.

I am also indebted to Leonardo Bottolo, who showed me how the statistical community sees my

research and what I should do to improve it. Also, for providing the initial motivation for one of the

chapters of this thesis and for coordinating several exciting collaborations. All the people in CAS,

who helped me overcome many obstacles and provided distractions from work. Andrea Suardi, Nikos

Kantas, Pierre Jacob, Iain Murray, Ajay Jasra, Anthony Lee, Arnaud Doucet and Petros Dellaportas

who provided feedback and advice in various stages, especially in the first months of my PhD where

things were still vague.

I also have to thank my various sources of escape from the small world of academia. My parents

Vaggelis and Tasoula who put enormous efforts into bringing me up and supported me in every deci-

sion I ever made. Their encouragement to learn and to develop my mind and their unconditional love

have shaped me. My sister Eleni, who has tolerated me for so long, gave me advice and was there for

a chat when I got home late. She has contributed more than anyone to my way of thinking and has

helped me realise so many things I would never have thought by myself.

Finally, many dear friends made sure I never lacked good company and gave meaning to my existence.

I have to thank Markos, without whom my quality of life in London would have been markedly infe-

rior. Akis, Eralia, Stratos and Chrissa for making my days more interesting and unpredictable and for

being true friends. Finally, Katerina for everything. I omit many others, both in the UK and in Greece,

but they already know how much I am indebted to them.

iii

Declaration

I herewith certify that the work presented in this thesis is my own work. All material in this thesis

which is not my own work has been properly acknowledged.

Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Creative Commons

Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or trans-

mit the thesis on the condition that they attribute it, that they do not use it for commercial purposes

and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must

make clear to others the licence terms of this work.

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Motivation . 1

1.2 Aims and outline of this study . 2

1.3 Statement of Originality . 5

1.4 Publications . 6

2 Background and related work 8

2.1 Introduction to Bayesian modelling and inference 9

2.2 Background on Markov Chain Monte Carlo . 13

2.2.1 MCMC principles . 15

2.2.2 Convergence and mixing . 16

2.3 MCMC algorithms . 17

2.3.1 The Metropolis and Metropolis-Hastings algorithms 18

2.3.2 Multi-modal posteriors and Population-based MCMC 19

2.3.3 State Space Models and Particle MCMC . 23

v

vi CONTENTS

2.3.4 Other methods . 32

2.4 The need for faster inference . 34

2.4.1 Existing approaches and trends in MCMC methodology 37

2.4.2 The approach of this thesis . 38

2.5 Hardware acceleration technologies . 38

2.5.1 Central Processing Units . 39

2.5.2 Multi-core CPUs . 41

2.5.3 Graphics Processing Units . 43

2.5.4 Field Programmable Gate Arrays . 44

2.5.5 Other platforms . 47

2.6 Arithmetic precision . 48

2.6.1 Floating point arithmetic . 48

2.6.2 Custom precision floating point in CPUs, GPUs and FPGAs 49

2.6.3 Custom precision in MCMC . 50

2.7 Related work . 54

2.7.1 MCMC parallelization and hardware acceleration 54

2.7.2 Choice of number of particles and use of tempering in Particle MCMC . . . 64

2.7.3 Custom precision in MCMC and in other Monte Carlo algorithms 65

2.7.4 Other related work . 67

2.8 Summary . 67

3 Algorithms and architectures for Population-based MCMC 69

3.1 Introduction . 69

CONTENTS vii

3.2 Parallel Tempering . 71

3.3 Accelerating PT . 73

3.3.1 Baseline accelerators . 74

3.3.2 Custom precision methods for PT . 81

3.3.3 Custom precision accelerators . 87

3.4 Case study: Bayesian inference on mixture models 91

3.5 Implementation . 92

3.5.1 IP implementation and FPGA system integration 92

3.5.2 Platforms and devices . 93

3.5.3 Runs in hardware and software . 94

3.6 Investigation and results . 96

3.6.1 Performance metrics . 96

3.6.2 FPGA resource utilization . 99

3.6.3 Performance evaluation . 99

3.6.4 Precision optimization for FPGAs and kernel optimization for GPUs 109

3.6.5 FPGA memory considerations . 113

3.7 Discussion . 115

4 Algorithms and architectures for Particle MCMC 118

4.1 Introduction . 118

4.2 State-space models and Particle MCMC . 120

4.3 ppMCMC: A new population-based pMCMC method 121

4.4 FPGA architectures for pMCMC and ppMCMC . 127

viii CONTENTS

4.4.1 Parallelism in the algorithms . 127

4.4.2 pMCMC architecture . 129

4.4.3 ppMCMC architecture . 135

4.4.4 Performance models . 139

4.5 Case Study . 144

4.6 Implementation . 148

4.6.1 IP implementation and FPGA system integration 148

4.6.2 Random number generators . 150

4.7 Investigation and results . 150

4.7.1 Platforms and devices . 151

4.7.2 Resource utilization . 151

4.7.3 pMCMC: Hardware comparison (uni-modal posterior) 152

4.7.4 ppMCMC vs. pMCMC: Algorithm comparison and trade-offs (multi-modal

posterior) . 161

4.7.5 ppMCMC vs. pMCMC: Hardware comparison and trade-offs (multi-modal

posterior) . 162

4.8 Conclusions . 165

5 Arithmetic precision optimization for generic MCMC 169

5.1 Introduction . 169

5.2 MCMC estimates and the effect of custom precision 172

5.2.1 MCMC in infinite and double precision . 172

5.2.2 Parts of MCMC - precision domains . 173

5.2.3 MCMC estimate when using custom precision probability densities 175

CONTENTS ix

5.3 Proposed bias estimator . 176

5.3.1 Bias estimator . 176

5.3.2 Variance: Proposed bias estimator vs. Straightforward bias estimator vs. Cus-

tom precision output estimator . 179

5.4 Optimization method . 181

5.4.1 User input . 182

5.4.2 Steps 1 and 2: Pre-runs (mixed-precision bitstream) 184

5.4.3 Step 3: Selection (software) . 186

5.4.4 Step 4: Final runs (optimized-precision bitstream) 186

5.4.5 Assumptions . 186

5.5 Case studies: Models and MCMC method . 188

5.5.1 Mixture model . 188

5.5.2 Neural network model . 189

5.5.3 MCMC algorithm . 190

5.6 Implementation . 190

5.6.1 IP implementation and FPGA system integration 190

5.6.2 Transferring data between the host and the FPGA 191

5.7 Investigation and results . 192

5.7.1 Resource utilization . 192

5.7.2 Performance evaluation - trade-off between speed and bias 193

5.7.3 Comparison to an unbiased precision optimization approach 199

5.8 Discussion . 201

6 Conclusion 203

6.1 Overview of MCMC acceleration research . 203

6.2 Summary and discussion of thesis achievements . 205

6.3 Future work . 212

6.3.1 Targeting other MCMC methods . 212

6.3.2 Extension to distributed and heterogeneous platforms 214

6.3.3 Tools to improve accessibility of hardware for MCMC 214

6.3.4 Off-line precision optimization . 216

Bibliography 217

x

List of Tables

2.1 Combinations of precision configurations in the two precision domains of MCMC

and the effects on: 1) convergence to the target distribution, 2) area savings/sampling

throughput in an FPGA implementation. DP stands for double precision floating point,

CP stands for custom precision floating point. 52

3.1 PT algorithm parameters . 73

3.2 Baseline architecture memories. P is the number of sub-density pipelines, M, n and s

are defined in Table 3.1 . 76

3.3 Case study parameters . 92

3.4 Detailed list of platforms and devices . 95

3.5 This table shows the PT parameter combinations for which actual FPGA bitsreams

were generated and FPGA runs were performed, separately for each PT algorithm

(baseline, WPT, MPPT). Also, it shows the combinations for which software runs

were performed instead of FPGA runs. Software runs were implemented in C++ code,

using the MPFR library for custom precision calculations. 96

3.6 Resource utilization of the various processing blocks. The numbers in parentheses

next to each probability evaluation block pipeline are the numbers of mantissa and ex-

ponent bits of the precision configuration respectively. DP stands for double precision

(53 mantissa and 11 exponent bits). 100

xi

3.7 Power efficiency of the proposed algorithms and platforms for various (M,n) combi-

nations. The efficiency improvement compared to the E5-2660 v2 CPU is shown in

parenthesis (separately for Baseline and MPPT). The best platform per algorithm and

per parameter combination is shown in bold. 111

4.1 Constant and variable parameters in the algorithms and architectures of this chapter . 131

4.2 Memories of the pMCMC/ppMCMC architectures 132

4.3 Resource utilization of the pMCMC/ppMCMC IPs and the respective FPGA systems.

Architecture parameters were set to B = 2, drng = 30, Pmax = 8192, Tmax = 8192 (for

both samplers), Mmax = 5 (for ppMCMC). The numbers in the parentheses show what

percentage of the available Z-7045 resources is needed for the given block. 152

5.1 Variables and constants in this chapter. 180

5.2 User parameters in the optimization method . 184

5.3 Optimization results for various estimates and user parameters from the Mixture Model

(MM) and the Neural Network (NN) case studies. In all cases: Prmin = 0.95, Term% =

0.05 and S = {(24,11),(20,11),(16,11),(14,11),(12,11),(10,11)}. 196

xii

List of Figures

2.1 Prior, likelihood and normalized posterior for one-dimensional Bayesian model. . . . 11

2.2 MCMC algorithm drawing samples from a bivariate Gaussian with mean (5,5). A few

burn-in samples are needed for convergence. Most samples are concentrated around

the mean and fewer samples are found in the tails of the distribution. 13

2.3 The successive states (samples) of the Markov chain in MCMC. The transition kernel

is also shown. 15

2.4 Example of a multi-modal target distribution. The distribution is a mixture of four

bivariate Gaussian components with means (2,5), (4,8) (4.5, 5.5) and (1,7). Basic

MCMC samplers tend to get “stuck” in one mode and need a lot of time to jump

between modes (because it is rare to propose and accept a sample that leads to another

mode when using simple proposals). 20

2.5 Parallel Tempering updates (GU) and exchanges (GE) with four tempered chains.

Each chain samples from the density shown on the left side of the figure. 22

2.6 Hidden states, observations and latent parameters of state-space model. 25

2.7 High-level abstraction of a typical CPU. The instruction fetches read instructions from

main memory, the instruction decoder sends the necessary control signals to imple-

ment the instruction and the ALU executes the instruction using inputs from the reg-

isters as operands and writing the results back to the registers or the main memory. . 40

xiii

xiv LIST OF FIGURES

2.8 Comparison of multi-core CPU and GPU architectures. SP stands for Stream Pro-

cessor, the main processing unit of the GPU (following Nvidia’s terminology). It is

clear that the GPU devotes a much larger percentage of total chip are on compute units

instead of control and cache. 42

2.9 Simplified FPGA architecture. 46

2.10 Shape of pc(θ) when changing the precision configuration c. DP stands for double

precision. Exponent bits are constant (=11). 53

3.1 Baseline FPGA architecture . 75

3.2 Chain streaming through the Sample Proposal, Probability Evaluation and Update

pipelines. Occupied stages are grey, unoccupied white. Numbers represent the chains

that occupy each stage. There are four pipelines in the Probability Evaluation block

(P = 4). The data size is n = 16. A probability value is generated every four cycles

(
⌈

n
P

⌉

= 4). The Sample proposal and Update pipelines are under-utilized. 76

3.3 The GPU update kernel. Here, each block within the kernel handles two chains and

four threads run in parallel inside each block, i.e. two threads per chain. The number

of data is n = 8, which means that four data (i.e. four sub-densities or four tasks) are

assigned to each thread. The threads which operate on the same chain pass through a

reduction stage in order to give the total density of the chain. The shared memory of

each block stores all the data. In a case where the shared memory is not large enough

to store all data, the data are moved and processed in chunks. 82

3.4 FPGA architecture for WPT: The Custom precision PT block is the same as the system

in Figure 3.1 but uses custom precision for probability evaluation. DP stands for

double precision, CP stands for custom precision 88

3.5 FPGA architecture for MPPT: The double precision (DP) Probability Evaluation block

has one pipeline and the custom precision (CP) Probability Evaluation block has mul-

tiple pipelines. 90

LIST OF FIGURES xv

3.6 Scaling of Speedupe f f with number of chains M. Baseline and custom precision ac-

celerators are included. n= 128 were used. V7 measurements are based on projections

and GTX285 measurements are based on GPU-Sim simulations. 103

3.7 Scaling of Speedupe f f with number of data n. Baseline and custom precision ac-

celerators are presented. M = 32 chains are used. V7 measurements are based on

projections and GTX285 measurements are based on GPU-Sim simulations. 105

3.8 Scaling of Speedupe f f when changing the size of the multi-core CPU (number of

CPU cores). The exact CPU models used are listed in Table 3.4. Speedups are over

the reference CPU version with no compiler optimizations. The Speedupe f f of the

second reference CPU implementation (which uses compiler optimizations) is also

shown. 108

3.9 Scaling of Speedupe f f when scaling the size of the GPU (number of SPs). All devices

are based on the Fermi architecture (see Table 3.4). 109

3.10 Scaling of Speedupe f f of the Virtex 7 FPGA series when varying the device size

(number of DSP blocks). The points correspond to the devices shown in Table 3.4. . 110

3.11 WPT on FPGA: The effect of precision on the factors of (3.20). (M,n) = (128,128).

The FPGA device used is the LX240T. The optimal number of mantissa bits is 14. All

values in the vertical axis are ratios (either ratios of ESS values or ratios of speedups). 112

3.12 MPPT on FPGA: The effect of precision on the factors of (3.20). (M,n) = (128,128).

The FPGA device used is the LX240T. The optimal number of mantissa bits is 14. All

values in the vertical axis are ratios (either ratios of ESS values or ratios of speedups) 113

3.13 GPU kernel optimization: Cycles of global update kernel when the number of blocks

and the number of tasks (data) per thread change. The parameter combination used is

(M,n) = (8192,128). The GPU device used is the GTX285. Cycles are minimized

when using 512 blocks and 32 tasks per thread. 114

4.1 FPGA architecture for pMCMC. Blocks with red dotted lines operate in fixed point

arithmetic (see [1]). 130

xvi LIST OF FIGURES

4.2 FPGA architecture for ppMCMC. Blocks with red dotted lines operate in fixed point

arithmetic (see [1]). 136

4.3 Coarse-grain pipelining in ppMCMC architecture for a specific SSM model and spe-

cific parameter configuration (P, T , M). The Resampling stage in this example has

latency Latre = 350, which is the largest latency among the three PF stages. Thus a

new chain can be fed to the PF datapath every Latre = 350 clock cycles. Here, three

chains (j = 3, j = 4, j = 5) are inside the datapath, all of them at the same time step

t = 2. Chain j = 4 will enter the Resampling stage one cycle after chain j = 3 exits

the Resampling stage. 138

4.4 FPGA/host system prototype. 149

4.5 Raw speedup of GPU [2] and FPGA vs. multi-core CPU [2] implementation of pM-

CMC. The number of SSM states/time steps is set to T = 1000. Measured runtimes

include time to transfer data between the devices and the hosts. 155

4.6 Raw speedup of GPU [2] and FPGA vs. multi-core CPU [2] implementation of pM-

CMC. The number of SSM states/time steps is set to T = 16000. Measured runtimes

include time to transfer data between the devices and the hosts. 156

4.7 Total clock cycles consumed by each stage of the pMCMC architecture as the number

of particles (P) changes. The remaining parameters are set to T = 1000, B = 2, N =

10000, Tmax = 16384, Pmax = 16384. 157

4.8 Total clock cycles consumed by each stage of the pMCMC architecture as the degree

of parallelism (B) changes. The remaining parameters are set to T = 1000, P = 16384,

N = 10000, Tmax = 16384, Pmax = 16384. Five FPGA devices are shown in the top

horizontal axis in order to demonstrate what degree of parallelism is possible with

each device’s available resources (assuming full resource utilization). An actual im-

plementation was done only for Zynq Z-7045. The other four devices were placed in

the graph based on projections. 158

LIST OF FIGURES xvii

4.9 ESS achieved by pMCMC sampler for various P when sampling from the uni-modal

SSM posterior. The other parameters are set to T = 1000 and N = 10000. The fluc-

tuations in the graph are due to the fact that the ESS value is approximated and thus

variance is present. 159

4.10 ES/sec achieved by the multi-core CPU, GPU and FPGA pMCMC samplers for var-

ious P when sampling from the uni-modal SSM posterior. The other parameters are

set to T = 1000 and N = 10000. 160

4.11 ESS and ES /sec of pMCMC and ppMCMC in sequential Matlab implementations

when the number of chains (M) and the number of particles (P) change. The multi-

modal, multi-tissue SSM of section 4.5 is used as the target distribution. The SSM time

steps are fixed to T = 200. N = 10000 samples are generated for each combination

and the ESS and runtime are measured in order to compute ES /sec. 163

4.12 Raw speedup of FPGA ppMCMC sampler compared to sequential Matlab implemen-

tation of ppMCMC and raw speedup of FPGA pMCMC sampler compared to sequen-

tial Matlab implementation of pMCMC. the number of chains (M) and the number of

particles (P) change. The multi-modal, multi-tissue SSM of section 4.5 is used as the

target distribution. The SSM time steps are fixed to T = 200. 165

4.13 ES /sec of FPGA ppMCMC, FPGA pMCMC, GPU pMCMC and CPU pMCMC sam-

plers when sampling from the multi-modal, multi-tissue SSM of section 4.5. The

number of chains (M) and the number of particles (P) change. The SSM time steps

are fixed to T = 200 and N = 10000. 166

5.1 The same Normal target density (Mean = 0, Variance = 1) for different precision con-

figurations. 174

5.2 Double and custom precision domains in an FPGA implementation of MCMC (Com-

bination D/C in Table 2.1). The double precision domain corresponds to the generic

MCMC operations. The custom precision domain corresponds to the Probability Eval-

uation block. 175

xviii LIST OF FIGURES

5.3 Double- and custom-precision (c = (6,11)) sampling for the same output estimate Ĩ.

The error bars are equal to two times the standard deviation of the estimate (±2 ∗σĨ

for double and ±2∗σĨc
) for custom precision. The true value of the estimated integral

is I = 4 . 177

5.4 Histograms of f (θ) and fbc
(θ) for the mean estimator under pc(θ) with c = (13,11),

where pc(θ) is a Gaussian mixture distribution (Section 5.5). The variance of f (θ) is

significantly larger. 181

5.5 Ratios
σ2

b̃c

σ2
Ĩc

(variance of proposed bias estimator over variance of custom precision out-

put estimator) and
σ2

str

σ2
Ĩc

(variance of “straightforward” bias estimator over variance of

custom precision output estimator) for various mantissa bit configurations (exponents

bits=11). pc(θ) is a Gaussian mixture distribution (Section 5.5) and f (θ) is the mean

estimator. N = 106 samples are used for all estimators. The proposed estimator’s vari-

ance (σ2
b̃c

) is orders of magnitude smaller than that of the output estimator (σ2
Ĩc

) for

most precisions. The straightforward estimator’s variance (σ2
str) is always larger than

σ2
Ĩc

. 182

5.6 Optimization method flow: Steps 1,2 (mixed-precision FPGA bitstream), 3 (host PC

software) and 4 (optimized-precision FPGA bitstream) are shown. During Step 1, the

double-precision module is used to draw MCMC samples. During Step 2, it evalu-

ates the probabilities of all generated samples, which are used for weight evaluations.

Grey-coloured blocks (Step 1) are unused. The top part of the figure shows the infor-

mation passed by each step to the next. 183

5.7 Resource utilization of a single probability evaluation pipeline (many of which can

exist in a probability evaluation block). The pipeline implements the MM posterior us-

ing precisions with various mantissa sizes (exponent bits are always 11). The generic

MCMC block’s resources (which always operate in double precision and are not part

of the precision optimization) are also shown. 192

5.8 Step 2: Bias estimates for 3 out of the six 6 candidate precisions. The MM case study is

targeted and the output estimate is the 2nd moment of µ1. Error bars represent ±2σb̃c
.

The vertical line shows when the pre-runs need to stop to avoid large overheads to the

final run (the line is set based on the output of Step 1). 194

5.9 Step 3: Probability that the bias is within tolerance for five out of the six candidate

precisions (Precision c = (24,11) is omitted). The output estimate is the 2nd moment

of µ1 (MM case study). Parameters are set to SDT = 0.02, Tbias = 0.5, Prmin = 0.95,

Term% = 0.05. The optimized precision is c = (16,11). 195

5.10 Trade-off between tolerable bias and speedup (vs. double precision FPGA sampler).

Bias tolerance is represented by the two parameters SDT and Tbias. The output estimate

is the mean of µ1 (MM case study). The other user parameters are set to Prmin = 0.95,

Term% = 0.05 and S = {(24,11),(20,11),(16,11),(14,11),(12,11),(10,11)}. . . . 198

5.11 Speedup of the method proposed in this chapter against ported unbiased method of

Chow et al. [3] for various values of Tbias. The target standard deviation is SDT =

0.007. The output estimate is the mean of µ1 (MM case study). The other user parame-

ters are set to Prmin = 0.95, Term% = 0.05 and S= {(24,11),(20,11),(16,11),(14,11),(12,11),(10,11)}.

The chosen (optimized) precisions of the method proposed in this chapter are shown

above each point in the graph. The low precision of the ported unbiased method is

always c = (16,11) (optimized using the process described in [3]). The runtimes of

both methods include the time spent for pre-runs, as well as the time spent for the final

runs. 202

xix

xx

Chapter 1

Introduction

1.1 Motivation

Generating random samples according to a given probability distribution (i.e. sampling from a dis-

tribution) is a common task in a wide range of scientific fields. Depending on the application, the

random samples can be used to estimate integrals, infer model parameters, make predictions based on

previous observations, compare competing models or perform stochastic optimization (although this

list is far from complete).

There are various techniques to sample from a probability distribution [4]. Many of them are limited

to particular classes of distributions and/or cannot address large dimensions. For example, several

well-known methods exist to sample from standard distributions such the Normal and Uniform dis-

tributions [5]. More general techniques like Importance Sampling and Rejection Sampling can theo-

retically sample from any given distribution but in practice they can be successfully applied only to

non-complex distributions with few dimensions [4, 6].

In contrast, Markov Chain Monte Carlo (MCMC) is a class of stochastic methods which are designed

to draw samples from any probability distribution, regardless of dimension or complexity. Complexity

here refers to features of the distribution such as multi-modality and correlations [7, 8, 9]. MCMC

has become the mainstream tool to sample from posterior distributions in Bayesian modelling during

the last 25 years. This is because the structure of Bayesian models and the large amounts of data they

handle lead to complex, high-dimensional posterior distributions. MCMC’s flexibility and efficiency

make it capable of sampling from these posteriors. In fact, MCMC has allowed the application of

1

2 Chapter 1. Introduction

Bayesian modelling to many new domains and the analysis of massive data sets [9, 10, 11, 12], prac-

tically revolutionizing Bayesian statistics and statistical computing in general. The development of

new MCMC methods is still a very active research topic today and MCMC’s position as the standard

method to perform Bayesian inference is likely to be maintained in the future.

Despite their success, MCMC samplers are often not as fast as modern Bayesian applications re-

quire. Runtimes can easily reach weeks or months [9, 13]. The two main reasons for this are: 1) The

widespread use of large-scale data sets. For example, models used in genetics require the processing

of large sets of genetic predictors [10] or even whole genomes [14]. 2) The use of advanced MCMC

methods with significant computational overheads. For example, Population-based MCMC (popM-

CMC) and Particle MCMC (pMCMC) (which are examined in this thesis) are two algorithms which

allow the tackling of extremely complex posterior distributions but their computational intensity limits

their applicability in many real situations. Today, these two trends (the ubiquitousness of “big data”

in many sectors of industry and research, as well as the increasing adoption of non-standard, compu-

tationally intensive MCMC methodology) are fuelling a large increase in the computational workload

of Bayesian inference, which is likely to continue in the future. Practically, this means that MCMC

practitioners are often forced to accept less precise results, use simpler models or exclude data from

the analysis in order to reduce runtimes.

1.2 Aims and outline of this study

In order to allow statisticians to keep drawing meaningful conclusions from the exploding amount of

data that is generated today, this thesis claims that it is insufficient to rely solely on better models or

smarter, more efficient MCMC methods (the two main research directions pursued by that the statistics

community until recently). It is equally important to leverage the power of modern, massively parallel

hardware accelerators. What is more, an effort has to be made to combine statistical and engineering

expertise when performing hardware-accelerated MCMC inference. There are many potential gains in

MCMC performance when: 1) MCMC algorithm design takes the underlying hardware platform into

consideration and 2) The mapping of MCMC to hardware is supported by a full understanding of the

features of the algorithm and how these can be exploited in the employed hardware platform.

Due to the increasing computational demands on MCMC, various studies on the use multi-core Cen-

tral Processing Units (CPUs), CPU clusters and Graphics Processing Units (GPUs) for accelerating

1.2. Aims and outline of this study 3

MCMC have been published in the last five years, e.g. [15, 16, 17, 18, 19]. However, the largest

part of previous literature is limited to blindly mapping the aforementioned methods into the targeted

platform, without any concern for adapting the algorithm to make it more suitable for the platform.

Moreover, the use of Field-Programmable Gate Arrays (FPGAs), a unique and powerful family of

digital circuits, as MCMC accelerators has been largely unexplored. FPGAs are armed with a number

of characteristics that match well with the needs of MCMC sampling, e.g. massive parallelism and

pipelining capabilities, fully customizable architecture, custom arithmetic precision, fast inter-circuit

communication. Although some existing studies have shown the potential of FPGAs to make MCMC

sampling feasible in problems where it was previously impractical [19, 18], these works have focused

on the exploitation of model-specific parallelism, i.e. taking advantage of the form of the posterior

density to improve performance. There is a lack of results on algorithm-specific mappings, i.e. taking

advantage of the characteristics of specific MCMC algorithms to create tailored FPGA architectures.

Also, no previous work has investigated how certain characteristics of the underlying platform (e.g.

custom precision) can be exploited regardless of the form of the posterior density.

This thesis aims to fill the above gaps by proposing ways in which MCMC algorithm design and FPGA

architecture design can be done jointly, with the purpose of exploiting the various special features of

FPGAs to increase MCMC sampling efficiency in complex problems. The main chapters of the thesis

propose MCMC algorithms and FPGA architectures that offer significant performance improvements

over existing solutions. Moreover, special attention is given on how to increase performance by re-

ducing arithmetic precision in the FPGA. Reduced precision translates to arithmetic operators that

consume less area in the FPGA fabric. This allows more parallel operators to be instantiated in the

same device, thus increasing performance. The thesis also investigates the consequences of such a

strategy on sampling accuracy. The performance metrics employed for comparison with state-of-

the-art samplers are the sampling throughput (how many samples can be produced per second), the

scalability of each architecture (how sampling throughput scales with the size of the problem) and the

power consumption of each system. The results presented in the thesis indicate that it is possible to

achieve speedups of one to two orders of magnitude against state-of-the-art algorithms and hardware

accelerators using the proposed algorithmic techniques and FPGA implementations. The contribu-

tions contained in this thesis open the way for the handling of extremely complex Bayesian models

and for performing previously intractable “big data” analyses in a variety of research fields.

Chapter 2 contains all the background information needed to follow the remaining chapters. Bayesian

4 Chapter 1. Introduction

inference and the basic principles of MCMC are explained and the most common MCMC algorithms

are described, with particular attention on the algorithms that this thesis targets. Moreover, the reasons

behind MCMC’s computational intensity are clarified and an overview of the most popular computing

platforms (which are candidates for acting as MCMC accelerators) is given. A separate section is

devoted to arithmetic precision and the ways in which it can be customized in MCMC. Finally, a

literature review is provided.

Chapter 3 investigates ways in which popMCMC samplers, a class of MCMC methods designed to

sample from multi-modal distributions, can be accelerated using FPGAs. A tailored FPGA architec-

ture is proposed and compared to CPU and GPU accelerators. Most importantly, the chapter explores

ways in which custom precision can be used to improve performance in popMCMC. Two modifi-

cations to the basic popMCMC algorithm are introduced which allow for precision reduction in the

largest part of the FPGA system without any adverse effect on sampling quality. Precision reduction

enables more parallelism on the FPGA (since arithmetic operators consume less FPGA area) and thus

higher sampling throughput. The two custom precision techniques are also mapped on the CPU and

GPU platforms. The proposed implementations are evaluated using a mixture model inference case

study.

Chapter 4 focuses on another computationally intensive MCMC variant, pMCMC, whose runtime is

dominated by the Particle Filter run which is necessary in each MCMC step. The chapter proposes

a custom FPGA architecture which exploits parallelism and pipelining to increase pMCMC perfor-

mance. Moreover, a novel MCMC algorithm, denoted Population-based Particle MCMC (ppMCMC),

is proposed; ppMCMC is designed to address multi-modal posteriors which are a challenge for reg-

ular pMCMC samplers. The new algorithm is accompanied by a tailored FPGA architecture which

takes advantage of the multiple chains of ppMCMC in order to increase the utilization of the PF data-

path. The algorithm and architectures are compared to state-of-the-art solutions on CPUs and GPUs.

Evaluation is performed using a large-scale State-Space Model inference problem taken from genetics.

Chapter 5 pursues the goal of accelerating MCMC via a different path. Instead of focusing on a

particular MCMC algorithm, it proposes a generic FPGA-based methodology to optimize the preci-

sion used in the most computationally intensive part of MCMC, the target density evaluation. The

methodology is based on performing short MCMC pre-runs on a set of candidate precisions (using a

first FPGA bitstream). These pre-runs are used to estimate the bias that each precision introduces in

the output, using an efficient bias estimator proposed in this chapter. A probabilistic criterion is then

1.3. Statement of Originality 5

used to choose the minimum precision which satisfies a user-defined bias tolerance. A second FPGA

bitstream which operates in the chosen (optimized) precision is then loaded on the FPGA and used to

get the final estimate. The methodology is compared to a double-precision FPGA sampler, as well as

a competing methodology which does not introduce bias. The case studies used are a mixture model

and a neural network inference problem.

Finally, Chapter 6 summarizes the work presented in this thesis and gives an overview of the current

state of MCMC acceleration research. Potential avenues for future research based upon the findings

of this thesis are also proposed.

1.3 Statement of Originality

This thesis contains a number of original contributions to the field. The following list summarizes

them (a more detailed discussion of contributions is given in the introductory section of each chapter):

• An FPGA architecture for popMCMC is proposed, which maps the various parts of the al-

gorithm to hardware, taking advantage of its inherent parallelism. This architecture delivers

significant speedups over CPUs and GPUs.

• An investigation is performed on how custom precision arithmetic can be reduced in popMCMC

without affecting sampling accuracy. Based on this investigation, two custom precision-based

modification to the popMCMC algorithms are introduced, which permit the reduction of the

employed precision for most popMCMC computations without introducing error in the output

result. The first approach corrects sampling errors caused by reduced precision, while the second

approach avoids them altogether. Justification of the correctness of the two approaches (i.e.

proof that they sample from the distribution without introducing bias) is also included.

• Two novel architectures which map the two custom-precision popMCMC algorithms to an

FPGA are proposed. These architectures exploit the area saving that an FPGA implementa-

tion enjoys when reduced precisions are used, thus achieving higher computational efficiency

than the baseline popMCMC architecture. A precision optimization process which maximizes

the gains from using custom precision is also described. A multi-core CPU and a GPU imple-

mentation of the two custom precision methods are presented.

6 Chapter 1. Introduction

• A novel FPGA architecture for accelerating the pMCMC sampler is proposed, which maps the

various parts of the algorithm to hardware, parallelizing all Particle Filter operations to increase

computational efficiency. The architecture is shown to be faster than CPU and GPU pMCMC

samplers.

• The inefficiency of pMCMC when it samples from multi-modal distributions is tackled by intro-

ducing a novel MCMC algorithm, denoted ppMCMC, which is a combination of pMCMC and

popMCMC. ppMCMC uses multiple MCMC chains (instead of the one chain used in pMCMC)

and achieves higher sampling efficiency for multi-modal distributions compared to pMCMC. A

design space exploration which chooses the optimal combination of ppMCMC’s parameters is

also included.

• An FPGA architecture tailored for ppMCMC is presented, which exploits the structure of the

algorithm to maximize computational efficiency. The architecture pipelines the multiple chains

of ppMCMC in order to increase datapath utilization in the Particle Filter module of the FPGA

system. A separate design space exploration is performed for the FPGA-mapped version of

ppMCMC.

• A novel precision optimization methodology applicable to any FPGA-mapped MCMC algo-

rithm is devised. This methodology estimates the output error introduced by various candidate

precisions and chooses an optimized precision which probabilistically satisfies a user-defined er-

ror tolerance. This is the first approach in the literature towards generic precision optimization,

i.e. irrespective of the employed MCMC algorithm or the target probability density.

1.4 Publications

The following articles have been published during the course of this thesis:

• G. Mingas and C.-S. Bouganis. “Parallel tempering MCMC acceleration using reconfigurable

hardware”. Reconfigurable Computing: Architectures, Tools and Applications (ARC), Springer

Berlin Heidelberg, 227-238, 2012.

• G. Mingas and C.-S. Bouganis. “A custom precision based architecture for accelerating parallel

tempering MCMC on FPGAs without introducing sampling error”. IEEE 20th Annual Interna-

tional Symposium on Field-Programmable Custom Computing Machines (FCCM), 2012.

1.4. Publications 7

• G. Mingas, F. Rahman and C.-S. Bouganis. “On Optimizing the Arithmetic Precision of MCMC

Algorithms”. IEEE 21st Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM), 2013.

• G. Mingas and C.-S. Bouganis. “Population-based MCMC on multi-core CPUs, GPUs and

FPGAs”. IEEE Transactions on Computers, 2015 (to appear - pre-print available online)

• G. Mingas and C.-S. Bouganis. “Accelerating MCMC for large-scale Bayesian inference us-

ing FPGAs”. IEEE/RSJ IROS Workshop on Unconventional computing for Bayesian inference

(UCBI), 2015

Chapter 2

Background and related work

Since this thesis lies at the boundary between Markov Chain Monte Carlo algorithms and hardware

architecture design, this chapter gives the necessary background on each of these topics. It begins

with a short introduction to the basic concepts of Bayesian modelling and inference (Section 2.1).

Bayesian inference is by far the most important class of MCMC applications and throughout this

thesis, examples from this class are used to evaluate the performance of the proposed algorithms

and architectures. Section 2.2 provides an introduction to the basic ideas behind MCMC as well as

some theoretical background. Section 2.3 contains detailed descriptions of popular MCMC methods,

focusing mostly on the ones targeted in this thesis. Section 2.4 highlights the reasons why faster

MCMC is a necessity given the complexity of modern applications and lists some of the most recent

developments in MCMC methodology which attempt to address the issue of long runtimes. Section 2.5

comprises a comprehensive introduction and comparison of the various computing platforms which

can be employed to accelerate MCMC. Moreover, a separate section (Section 2.6) is devoted to custom

arithmetic precision and what it means in an MCMC setting, since several of the novelties of this thesis

are based on tuning the precision of FPGA implementations.

Following the above background information, Section 2.7 gives an extensive review of the current

literature and highlights the issues that remain unresolved until today. It examines previous work on

parallelizing and accelerating MCMC using various hardware platforms, methods based on customiz-

ing the precision of stochastic algorithms, as well as other techniques which cannot be classified in the

above categories. The section also contains comparisons between current literature and the contribu-

tions included in this thesis, in order to clarify the gaps that the present work attempts to cover.

8

2.1. Introduction to Bayesian modelling and inference 9

2.1 Introduction to Bayesian modelling and inference

Modelling is one of the most fundamental tools used by scientists in order to understand natural phe-

nomena, make predictions, perform classification and test hypotheses. Modelling is also a necessary

tool for machines to exhibit intelligence, since intelligence consists in being able to learn from past

observations (e.g. through classification) and make predictions for the future [20].

All models attempt to provide a simplified representation of reality, i.e. a representation of observable

and non-observable quantities as well as the relationships between them. Bayesian modelling is no

different; the core idea behind it to use the mathematics of probability theory to represent all forms of

uncertainty in the model and the relationships between them. In a nutshell, the Bayesian framework

treats all variables (known and unknown) as random variables and attempts to infer the probability

distributions of the unknown variables given the observed data.

In more detail, let D = {D1, ...,DnD
}= {{D11, ...,D1nd

}, ...,{DnD1, ...,DnDnd
}} ∈ IRnD×nd be the set of

observed data. Here, for reasons of simplicity, the data are represented as a set of data vectors. Each

data vector has dimension nd and the whole data set consists of nD data vectors. The data vector index

could express time, space, etc but this is not necessarily applicable to all problems. The aim is to

explain these data, i.e. infer a model which could have “predicted” them (or “anticipated” them). This

model can be then used to make new predictions in the future, etc. Bayesian modelling requires the

specification of two probability distributions:

• The probability distribution of the model, whose density is p(Y | θ), where θ ∈ IRnθ are the

unknown parameters of the model and Y ∈ IRnD×nd is some set of observations. Note that

although θ can be a vector, the bold font is not used to maintain consistency with the literature.

The above density gives information on which sets of observations are likely and which are not,

assuming that the model is known (i.e. θ is known). In other words, it is a function that predicts

likely observations when the model is known. This density is also called the likelihood function

(or likelihood of the parameters) in Bayesian modelling. It summarizes the information that

can be inferred about the model based only on some set of observed data.

• The prior probability distribution on the unknown parameters θ , which has density p(θ). This

density represents the information about the model that exists before any data are collected. This

information could be provided by an expert or it could come from previous models which have

10 Chapter 2. Background and related work

been calibrated based on older observations. The prior sets a range for the unknown parameters

and also gives information which values of the parameters are more likely before any data are

observed.

The above two distributions (likelihood and prior) can be combined using the law of Bayes [21] to

give the posterior probability distribution of the unknown parameters θ , given the data Y:

p(θ | Y) = p(Y|θ)p(θ)
p(Y) = p(Y|θ)p(θ)

∫

p(Y|θ ′)p(θ ′)dθ ′
(2.1)

where the denominator p(Y) =
∫

p(Y | θ ′)p(θ ′)dθ ′ is called the marginal or integrated likelihood

in the literature and it is typically hard or impossible to compute. Nevertheless, computing it is not

necessary when using MCMC, as will be explained in the following sections. It has to be noted that

integral limits (which are −∞ and +∞ when the integral is over probability densities) are omitted in

the remaining of this thesis, as is the common practice in MCMC literature.

Figure 2.1 shows a simple one-dimensional example where a Gaussian likelihood and a Gaussian

prior are combined to give the posterior of the parameter θ . The prior is wide, representing the initial

uncertainty about the value of the unknown θ . The likelihood is more narrow, signifying that the data

provide strong evidence that the true value of θ is close to 5. The posterior is affected by both the

prior and the likelihood but it is much closer to the likelihood, since the data’s influence is stronger.

This is a common pattern in Bayesian modelling; large amounts of data and concentration of the data

move the posterior closer to the likelihood function and away from the prior (see [21] for more details

on this mechanism).

After setting Y = D in the above equation (i.e. using the available data), it is possible to use the poste-

rior to perform a series of inference tasks, e.g. infer the unknown model parameters from the observed

data, make predictions about future data and compare competing models based on the available data.

All of these tasks can be expressed as the evaluation of an integral of the following form:

Ep(θ |D)[f (θ)] =
∫

f (θ)p(θ | D)dθ (2.2)

where f (θ) is a function which depends on the task of interest. The above integral is thus the expec-

tation of f (θ) under the posterior distribution.

For example, in order to infer the mean of θ given the data D, it is enough to set f (θ) = θ . The integral

2.1. Introduction to Bayesian modelling and inference 11

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

θ

Prior

Likelihood

Posterior (normalized)

Figure 2.1: Prior, likelihood and normalized posterior for one-dimensional Bayesian model.

(2.2) then takes the form
∫

θ p(θ |D)dθ , i.e. the expectation of θ under the posterior. In a similar way,

it is possible to infer the various moments of θ , its tails, etc. Similarly, by setting f (θ) = p(Y | θ),

where again Y is some set of possible observations, it is possible to predict future observations. In this

case the integral (2.2) takes the form
∫

p(Y | θ)p(θ |D)dθ = p(Y |D), which gives the probability of

observing the data Y in the future, given that D has already been observed.

This simple (yet powerful) framework has been applied to a vast range of scientific areas: Machine

learning [22, 11, 18, 20], statistical physics [19, 6], economics [23], ecology [12], geostatistics [24],

medical imaging [9], genetics [13], phylogenetics [25], computational biology [26, 27] and stochastic

optimization [15, 10], among others.

An example application: A simple example is described here to clearly illustrate how the Bayesian

framework is applied in practice. Let D = {D1, ...,D1000} be the measured weights of 1000 children

in London right after childbirth. Comparing with the notation presented previously in this section, it

is clear that nD = 1000 and nd = 1. Assume that the goal is to infer a model which can predict the

likely weight of the next child born in London, taking into account the above data. Assume also that

12 Chapter 2. Background and related work

the weight of a child born in London is distributed according to a Normal distribution with unknown

mean µ (measured in kilogramms) and known variance σ2 = 0.3. In practice, the variance is not

known but this is ignored here for simplicity. Also, other models could be used instead of a Normal

model, e.g. the Student-t distribution.

In this case, the unknown parameter of the Bayesian model is θ = µ (the mean weight of children

born in London) and the likelihood of θ given the known data set D is:

p(D | θ) = ∏
1000
i=1 N(Di | θ ,0.3) (2.3)

where N(Di | θ ,σ2) is the density of the Normal distribution with mean θ and variance σ2 = 0.3

evaluated at point Di, i ∈ {1, ...,1000}. Moreover, let the prior on the parameter θ be Normal with

mean 3.4 and variance 0.3:

p(θ) = N(θ | 3.4,0.3) (2.4)

The above prior could come from previous UK-wide studies on the weight of children at childbirth.

The parameters of the prior are called hyperparameters in Bayesian literature.

The resulting posterior of θ is the following:

p(θ | D) = p(D|θ)p(θ)
p(D) = ∏

1000
i=1 N(Di|θ ,0.3)N(θ |3.4,0.3)

∫

∏
1000
i=1 N(Di|θ ′,0.3)N(θ ′|3.4,0.3)dθ ′

(2.5)

Using the above posterior, it is possible to predict the weight Y of the next child to be born in London:

p(Y | D) =
∫

p(Y | θ)p(θ | D)dθ =
∫

N(Y | θ ,1)p(θ | D)dθ (2.6)

Note that prediction in Baysian inference is not done based on a simple value of the unknown param-

eter, but rather on the whole posterior probability distribution of the unknown parameter. Apart from

prediction, other tasks (e.g. model comparison, finding moments of the posterior) can be performed

in a similar way.

The only remaining problem is how to compute the above integrals, which is far from straightforward.

In real applications, both the unknown parameters and the data can have much larger dimensions than

in this example, making it impossible or impractical to evaluate the integrals analytically or using

numerical methods [6]. The following section explains how MCMC tackles this problem.

2.2. Background on Markov Chain Monte Carlo 13

0 2 4 6 8 10

2

4

6

8

10

x
1

x
2

initial
sample

Figure 2.2: MCMC algorithm drawing samples from a bivariate Gaussian with mean (5,5). A few

burn-in samples are needed for convergence. Most samples are concentrated around the mean and

fewer samples are found in the tails of the distribution.

2.2 Background on Markov Chain Monte Carlo

Integrals that take the form (2.2) can be evaluated analytically only for simple problems. Also, numer-

ical integration works only for small dimensions of θ and D [6, 20]. For most real problems, which

have larger dimensions, these algorithms become intractable because they scale exponentially with the

dimension. In these cases, stochastic methods, such as MCMC [4, 9, 6], perfect/exact sampling [28]

and particle-based methods (i.e. Sequential Monte Carlo) [29, 6], are typically used. MCMC is by far

the most popular among these algorithms and this thesis focuses on it (although one of the MCMC

methods that this thesis targets is a combination of MCMC and particle-based methods - see Chapter

4).

MCMC is a method designed to generate random samples from any given probability distribution.

Figure 2.2 shows the samples generated by an MCMC algorithm which targets a bivariate Normal

distribution. The sampler moves around the support of the distribution spending most of the time in

areas of high probability. Most samples are generated in areas of high probability and fewer samples

in areas of low probability.

14 Chapter 2. Background and related work

MCMC was originally designed for use in Physics simulations and not for Bayesian inference prob-

lems [30]. Nevertheless, almost three decades ago [31] it was rediscovered as a method suitable for

estimating the integral (2.2); MCMC can generate samples distributed according to the posterior (2.1)

(which is called the target distribution of MCMC in this setting). Given these samples, the following

approximation can be evaluated:

Ẽp(θ |D)[f (θ)] =
1
N

N

∑
i=1

f (θ (i)) (2.7)

where θ (i), i ∈ {1, ...,N} are samples taken from p(θ | D). The variance of this estimator reduces

linearly with N and the estimate converges to the true value of the integral (2.2) asymptotically (i.e.

for N → ∞). Therefore, there is a trade-off between runtime (N) and the accuracy of the estimate

(which is expressed by its variance). Practitioners are typically interested in reducing variance to a

level that is adequate for their purposes.

In the remaining of this thesis, instead of the equations (2.2) and (2.7), the following two equations

are used respectively:

Ep(θ)[f (θ)] =
∫

f (θ)p(θ)dθ (2.8)

Ẽp(θ)[f (θ)] =
1
N

N

∑
i=1

f (θ (i)) (2.9)

where the conditioning on the data D has been dropped for simplicity and thus the posterior is now

denoted p(θ). Conditioning on the data will be used only in specific cases (Section 2.3.3). Whenever

p(θ) refers to the prior, this will be explicitly mentioned.

Using random samples to estimate integrals in the way described above is known as Monte Carlo

integration. MCMC is not the only stochastic sampling method that can be used in this context. If the

distribution inside the integral has some simple form (e.g. Normal), there are many other methods to

generate samples from it [5]. Also, other Monte Carlo methods such as Quasi Monte Carlo [32] can

be used for Monte Carlo integration, instead of MCMC.

MCMC’s biggest advantage compared to other Monte Carlo methods is its ability to sample from any

target distribution (even if it is complex and multi-dimensional) as long as its density can be evaluated

up to a normalizing constant (although some newer methods [33] do not even require this). The

way the normalizing constant evaluation is avoided is explained later in this chapter. Apart from the

flexibility that MCMC offers to practitioners, it is also a good match for Bayesian inference problems,

2.2. Background on Markov Chain Monte Carlo 15

theta K(theta | theta)(2) (1) theta K(theta | theta)(3) (2) theta K(theta | theta)
(N) (N-1) theta. . . .(1) (2) (3) (N)

Figure 2.3: The successive states (samples) of the Markov chain in MCMC. The transition kernel is

also shown.

since the posterior (2.1) can typically be evaluated only up to a normalizing constant; the marginal

likelihood in the denominator of the posterior is intractable in most cases, as mentioned above.

As a result of the above feature, the numerous variants of MCMC have become the mainstream tools

to perform Bayesian inference during the last two decades. In fact, MCMC’s flexibility and efficiency

have enabled the application of the Bayesian framework to many new domains and the analysis of

massive data sets, practically revolutionizing Bayesian statistics (reference can be found in the previ-

ous section).

2.2.1 MCMC principles

MCMC generates samples from the posterior by constructing a Markov chain [4]. Each state of the

chain is equivalent to a random sample (θ (i) for state i). The basic idea behind all MCMC algorithms

is the following: At each step i ∈ {1, ...,N} of the algorithm, the next state of the chain (θ (i+1)) is

generated using a kernel K(θ (i+1)|θ (i)). The kernel function depends only on the previous state of the

chain (θ (i)). All Markov chains have the property that each state depends only on the previous one.

The kernel is called the transition kernel of the chain. Figure 2.3 shows how the transition kernel is

applied between successive states.

Subject to regulatory conditions [34], the distribution K(.|θ (1)) will gradually converge to a stationary

distribution g(θ) which does not depend on i or the initial sample. This means that after an initial

burn-in period, during which samples are not distributed according to the stationary distribution, the

chain starts generating samples from g(θ) (as shown in the example of Figure 2.2).

In order for the stationary distribution to be equal to the target distribution (g(θ) = p(θ |D)), a suitable

transition kernel, i.e. a suitable way to draw a new sample given the current one, has to be used. In

this context, “suitable” means that the design of these kernels has to adhere to a series of theoretical

limitations (see [34]). Transition kernel design is supported by a vast literature on Markov chains and

their use for MCMC [4, 34, 31, 6]. Typically, a transition kernel proposes a candidate sample using a

simpler distribution and then accepts or rejects the sample based on some criterion (which requires the

16 Chapter 2. Background and related work

evaluation of the target density, i.e. posterior). Nevertheless, this is not the case in all MCMC variants.

After a large enough number of samples has been generated in order to adequately approximate the

integral (2.8), the algorithm stops and the estimate (2.9) is evaluated. It is worth noting that, in contrast

to other Monte Carlo methods like Quasi Monte Carlo which generate independent samples, MCMC

generates dependent (i.e. correlated) samples from the given distribution. This happens due to the

Markov property of the chain. Practically, the use of dependent samples means that the estimate (2.9)

when using N MCMC samples has larger variance than the same estimate when using N independent

samples. The difference in variance can be quantified using the Effective Sample Size (see Section

2.2.2).

2.2.2 Convergence and mixing

As mentioned above, the Markov chain in MCMC converges to the stationary distribution (posterior)

gradually. This means that the initial samples are typically not distributed according to the correct

posterior (they are “irrelevant”) due to bad initialization (the initial sample is chosen at random or

based on some simple distribution, e.g. the prior). The sampler thus needs some time to converge.

The number of “erroneous” samples needed before convergence occurs depend on the initial sample,

the shape and dimension of the posterior, the MCMC algorithms and how this algorithm has been

tuned. The “erroneous” samples, which are called burn-in samples, need to be discarded in order for

the final samples to be distributed according to the desired posterior. Nevertheless, there is no rule to

determine the length of the burn-in sequence. The decision is often made based on observation of the

samples to understand when the sampler has converged. It is also usual practice to perform multiple

independent MCMC runs, compare the resulting samples and set the burn-in length so that the samples

of all runs “look alike”. Several criteria have been proposed to decide when the independent runs “look

alike” and thus the sample has converged, e.g. the Gelman-Rubin criterion [35]. Nevertheless, these

criteria do not actually guarantee that convergence has occurred; it is possible that all independent runs

look like they have converged for a long time but if the runs continue they eventually move to other

areas which were unknown before.

After the sampler has converged, the newly generated samples explore the support of the distribution.

It is crucial that this exploration happens fast in order to get a satisfactorily accurate estimate of the

integral (i.e. an estimate with satisfactorily small variance) without running the sampler for too long.

2.3. MCMC algorithms 17

Fast exploration means that the sampler moves quickly around the support of the posterior and covers

all areas without getting stuck in one particular part of the support (e.g. one mode). The speed of

exploration is called mixing speed in MCMC literature [9, 34]. Mixing is related to the dependencies

(correlations) between MCMC samples. If the MCMC kernel is designed so that subsequent samples

are not highly correlated, mixing is fast. In contrast, if subsequent samples are highly correlated, the

algorithm mixes slowly. The main aim of all MCMC algorithms is to maximize mixing speed, so as

to achieve accurate output estimates with few samples.

The Effective Sample Size (or ESS or Effective Sample Size due to autocorrelation) [9] is the most

common metric of mixing speed in MCMC literature. ESS gives an estimate of how many independent

(or “effective”) samples the dependent MCMC samples are equivalent to, i.e. it quantifies the samples’

“exploration value”. Moreover, the ratio of N over ESS can be interpreted as the factor by which the

variance of the output estimate (2.9) under MCMC is larger than the variance of the same estimate

under a theoretical algorithm which generates independent samples. This interpretation will be used

in Chapters 3 and 4 of this thesis. ESS can be estimated using the MCMC samples’ autocorrelations

[36, 9]:

ESS = N

1+2∑
N
k=1 ρ(k)

(2.10)

where ρ(k) is the autocorrelation at lag k. The summation in (2.10) is typically truncated when ρ(k)

drops below 0.1 [36, 8] to reduce the variance of the ESS estimator.

2.3 MCMC algorithms

The first MCMC algorithm is the Metropolis method, which was introduced in the seminal paper

of Metropolis et al. in 1953 [30]. Nevertheless, the realization that Markov chains can be used in

the context of Bayesian statistics only came with the papers of Geman and Geman in 1984 [31] and

especially Gelfand and Smith in 1990 [37].

Since then, and especially during the last 20 years, the increasing use of MCMC in Bayesian statistics

has fuelled a vast amount of research on new MCMC algorithms. The design of an MCMC method

essentially consists in proposing a transition kernel to generate a state of the chain given the previous

state. Different kernels are suitable for different kinds of distributions, e.g. some kernels are designed

to address multi-modal distribution, while some others are particularly efficient in tackling strong

18 Chapter 2. Background and related work

correlations between the dimensions of the state space. The ultimate goal of all kernels is to achieve

fast convergence and mixing for the kinds of problems they are designed for. For an extensive history

of the evolution of MCMC algorithms see [38], [17] and [9]. Sections 2.3.1-2.3.4 present some popular

kernels and give particular focus on the kernels that this thesis targets in later chapters.

2.3.1 The Metropolis and Metropolis-Hastings algorithms

The Metropolis algorithm (shown in Code 1) is very simple. Each iteration of the loop in line 2

comprises the following steps:

1. Propose a sample θ ∗ using a symmetric proposal distribution, which is denoted q(· | ·) (line 3). A

symmetric distribution is one whose density satisfies the following condition: q(a | b) = q(b | a).

The proposal distribution must be easy to sample from. It is usual practice to use a Normal

distribution with mean equal to the previous sample θ (i−1) and some fixed variance, since many

algorithms exist to efficiently generate Normal samples [5].

2. Evaluate the probability of the proposed sample according to the target density and then eval-

uate the acceptance ratio a (line 4). In Bayesian inference, the target density is the posterior

p(θ) = p(θ | D). Note that the normalizing constant in the posterior (see equation 2.1) is can-

celled out when computing the ratio a. Only the likelihood and prior need to be evaluated.

This is why Metropolis and all other MCMC methods need the posterior to be known only up

to a normalizing constant, as mentioned earlier, a fact that makes them suitable for Bayesian

inference.

3. Generate a uniform random number u in the range [0,1] and compare it with a in order to decide

whether the proposed sample will be accepted or rejected (lines 5-9). If the sample is rejected,

copy the previous sample θ (i−1) to the next iteration.

The algorithm needs an initial sample θ (1) as input. This is usually chosen at random (e.g. from a

uniform distribution) or sampled from the prior distribution or found using some initialization process

(typically using a simpler model). The output of the algorithm is the sequence of MCMC samples

θ (1:N).

The requirement for the proposal distribution to be symmetric is crucial for the correctness of the

Metropolis algorithm. In 1970, Hastings overcame this limitation by proposing the Metropolis-

2.3. MCMC algorithms 19

Algorithm 1 Metropolis MCMC

1: procedure METROPOLIS(N, θ (1)) - Inputs: N (number of MCMC samples), θ (1) (initial MCMC

sample)

2: for i = 2, ...,N do

3: θ ∗ ∼ q(θ ∗ | θ (i−1))

4: Evaluate acceptance ratio a← p(θ ∗)
p(θ (i−1))

5: Generate uniform random number u∼U [0,1)
6: if a≥ u then

7: Accept proposed sample: θ (i)← θ ∗

8: else

9: Reject proposed sample and replicate previous sample: θ (i)← θ (i−1)

10: return θ (1:N) (N MCMC samples)

Algorithm 2 Metropolis-Hastings MCMC

1: procedure M-H(N, θ (1)) - Inputs: N (number of MCMC samples), θ (1) (initial MCMC sample)

2: for i = 2, ...,N do

3: θ ∗ ∼ q(θ ∗ | θ (i−1))

4: Evaluate acceptance ratio a← p(θ ∗) q(θ (i−1)|θ ∗)
p(θ (i−1)) q(θ ∗|θ (i−1))

5: Generate uniform random number u∼U [0,1)
6: if a≥ u then

7: Accept proposed sample: θ (i)← θ ∗

8: else

9: Reject proposed sample and replicate previous sample: θ (i)← θ (i−1)

10: return θ (1:N) (N MCMC samples)

Hastings (M-H) method [39] (Algorithm 2). In M-H, the proposal can be non-symmetric and the

acceptance ratio is changed to accommodate this (line 4).

Metropolis and M-H are the most fundamental algorithms in MCMC literature (along with Gibbs sam-

pling which will be discussed in Section 2.3.4). Most subsequent MCMC variants are improvements

on these core algorithms.

2.3.2 Multi-modal posteriors and Population-based MCMC

As mentioned above, the target distribution of MCMC (here, the posterior) can have any form. One

particular form of posterior which is difficult to sample from using basic MCMC methods (like M-H) is

a multi-modal posterior distribution. These distributions have multiple modes in different parts of their

support. An example is shown in Figure 2.4. When targeting these distributions, elementary kernels

like M-H tend to get “stuck” in one of the modes [7, 24], resulting in slow convergence and mixing.

This problem is particularly intense when the sampled space has a lot of dimensions and the number

of modes is large. Multi-modal distributions appear in many Bayesian inference application, e.g.

20 Chapter 2. Background and related work

0

2

4

6

8

10 0
2

4
6

8
10

0

0.1

0.2

x
2

x
1

Figure 2.4: Example of a multi-modal target distribution. The distribution is a mixture of four bivariate

Gaussian components with means (2,5), (4,8) (4.5, 5.5) and (1,7). Basic MCMC samplers tend to get

“stuck” in one mode and need a lot of time to jump between modes (because it is rare to propose and

accept a sample that leads to another mode when using simple proposals).

machine learning using Restricted Boltzmann Machines or mixture models [22, 40, 7], computational

genetics [13, 25] and biological simulations [27].

Chapter 3 focuses on a family of MCMC methods designed to tackle the issue of multi-modality;

population-based MCMC (popMCMC). popMCMC constructs a Markov chain in the joint space of

the original sampled variable θ and a series of auxiliary variables, using a joint transition kernel. This

can also be expressed as having a population of Markov chains, each one sampling from one variable,

instead of the single chain used by M-H. Each chain samples from a slightly different distribution.

Certain types of interactions are introduced between the chains, which help to improve the algorithm’s

convergence and mixing properties [7]. Here, a description of the most popular Population-based

method, called Parallel Tempering (PT) is given. PT was first proposed by Geyer in 1991 [41]. This

method will be re-examined in Chapter 3 from a hardware implementation perspective.

Algorithm 3 shows the pseudocode of PT. The chain population consists of M chains and chain j

2.3. MCMC algorithms 21

Algorithm 3 Parallel Tempering

1: procedure PT(N, M, Temp1:M, θ
(1)
1:M, σ2

1:M) - Inputs: N (number of MCMC samples), M (number

of chains), Temp1:M (temperatures for all chains), θ
(1)
1:M (initial MCMC samples for all chains),

σ2
1:M (variances of proposal densities for all chains)

2: for i = 2, ...,N do

3: for j = 1, ...,M do // Global update

4: θ ∗ ∼ q(θ ∗ | θ (i−1)
j) = N(θ ∗ | θ (i−1)

j ,σ2
j)

5: Evaluate acceptance ratio a← p j(θ
∗)

p j(θ
(i−1)
j)

6: Generate uniform random number u∼U [0,1)
7: if a≥ u then

8: Accept proposed sample: θ
(i)
j ← θ ∗j

9: else

10: Reject proposed sample and replicate previous sample: θ
(i)
j ← θ

(i−1)
j

11: Choose even chain pairs ((1,2),(3,4), ...) or odd chain pairs ((2,3),(4,5), ...) (in turn)

12: for all chosen chain pairs (q,r) do // Global exchange

13: Evaluate exchange acceptance ratio e(θ
(i)
q ,θ

(i)
r)← min

(

1,
pq(θ

(i)
r)pr(θ

(i)
q)

pq(θ
(i)
q)pr(θ

(i)
r)

)

14: Generate uniform random number u∼U [0,1)

15: if e(θ
(i)
q ,θ

(i)
r)≥ u then

16: Exchange the samples θ
(i)
q and θ

(i)
r

17: else

18: Do not exchange any samples

19: return θ
(1:N)
1 (N MCMC samples from the first chain)

(j ∈ {1, ...,M}) samples from a distribution with density p j(θ):

p j(θ) = p(θ)1/Temp j , j ∈ {1, ...,M} (2.11)

where Temp j (with 1 = Temp1 < Temp2 < ... < TempM) is the temperature of chain j. The density

p1(θ) is the target density p(θ)= p(θ |D) (since Temp1 = 1). The remaining densities are “tempered”

versions of p(θ). Temperatures increase with higher j, which results in gradually smoother densities,

i.e. closer to uniform. Practically, this means that “hot” chains move quickly in the state space (they

jump more easily between the now smoothed modes), while “cold” chains move slowly but sample

from distributions closer to the target p(θ).

The algorithm performs N iterations (loop in line 2 of Algorithm 3) in order to draw N samples

from the target distribution p1(θ) = p(θ). Samples from the tempered (auxiliary) distributions are

also generated (N samples for each distribution) but they are discarded in the end. Every iteration

comprises a Global update (line 3-10) and a Global exchange (line 11-18).

During the Global update of iteration i, the current samples of all chains (θ
(i)
1 , ...,θ

(i)
M) are updated

22 Chapter 2. Background and related work

)(
2
thetap

)(
4
thetap

)(
3
thetap

)(
1
thetap

GU GE GU GE GU GE GU

Figure 2.5: Parallel Tempering updates (GU) and exchanges (GE) with four tempered chains. Each

chain samples from the density shown on the left side of the figure.

using separate kernels (loop in line 3). Here, and in the remaining of the thesis, it is assumed that

Metropolis kernels with Normal proposals are used inside the Global update step of PT, since it is

the most common way to implement PT. The variances of the proposals (σ2
1:M) are input parameters.

Each kernel samples from the distribution of the corresponding chain (see (2.11)). The proposal and

accept/reject steps of the kernel are shown in lines 4 and 5-10. The latter requires computing the

probability of the proposed sample using the target density of the chain (p j(θ
∗) for chain j).

During Global exchanges, PT attempts interactions between chain pairs; sample exchanges are pro-

posed between all odd pairs of neighboring chains, i.e. (1,2), ...,(M− 1,M) or all even pairs of

neighboring chains, i.e. (2,3), ...,(M− 2,M− 1) (in a rotating order - line 11). These exchanges

push samples from the “hot” chains (large index numbers) to the “colder” ones (small index numbers)

and eventually to the first (coldest) chain, helping it escape from isolated modes and thus enhancing

mixing.

Figure 2.5 shows a graphical illustration of the Global Updates and Global Exchanges in PT. In real

scenarios, tens or hundreds of chains are used. The choice of the number of chains and their tempera-

tures is important for this enhancement to be significant [27, 7] but it is outside the scope of this thesis.

Only the samples θ
(1:N)
1 from chain 1 are kept and used to get the estimate (2.9) (substituting θ (i) for

θ
(i)
1). Some initial samples must be removed as burn-in, as in all MCMC algorithms.

2.3. MCMC algorithms 23

2.3.3 State Space Models and Particle MCMC

Most MCMC methods, including the popMCMC sampler of the previous section, are based on the

assumption that the target probability density p(θ) (i.e. the posterior in Bayesian applications) can be

evaluated pointwise up to multiplicative constant. This is necessary to evaluate the acceptance ratio

in each MCMC step. Nevertheless, there are several situations where it is not possible to evaluate the

probability density. These include inference for State Space Models (SSMs) [33], stochastic kinetic

models [42], undirected graphical models [43] and all other Bayesian model classes where the poste-

rior does not admit a closed form expression. These cases are often called analytically intractable in

the MCMC literature.

A natural workaround is to devise some estimator of the target probability density and use it inside the

MCMC sampler to enable inference. Nevertheless, the effect of this estimator on sampling accuracy is

not straightforward to assess. A major breakthrough in the field came from an idea first introduced by

Beaumont [44] and later extended and validated by Andrieu and Roberts [45]; it can be shown that if

the estimator of the target density is unbiased, the MCMC sampler will converge to the correct target

distribution (even though the density cannot be evaluated), i.e. there will be no bias in the estimation

of (2.9). Based on this remarkable property, it is possible to construct various unbiased estimators

for well-known likelihoods/priors with no closed form expression [46] (like the ones mentioned in

the previous paragraph) and use them inside MCMC. MCMC methods based on this technique are

collectively called pseudo-marginal MCMC methods.

By far the most important and widely applied pseudo-marginal method is Particle MCMC (pMCMC),

proposed Andrieu et al. [33]. It is designed for inference on SSMs with unknown parameters, a task

known to lead to analytically intractable likelihoods. pMCMC uses a Particle Filter (PF) to generate

and unbiased estimate of the likelihood, which is a natural choice for SSMs. It is thus a combination

of the two most popular methods in Bayesian inference (MCMC and PF). pMCMC has created many

new application areas for MCMC-based inference on SSMs, including ecology [12], communication

networks [47], marine biogeochemistry [48] and economics [23].

This section contains the necessary background information on SSMs, PFs and pMCMC. Chapter 4

will re-examine pMCMC from a hardware implementation point of view.

24 Chapter 2. Background and related work

State-space models

State-space models (also known as Hidden Markov models) are used in situations where there is some

unobservable (hidden) sequence of states and this sequence generates observable data (observations)

through some function. The hidden state sequence evolves with time or with some other variable

(e.g. space) though some other function. The goal is to estimate the state sequence based on the

observations and (in some cases) estimate unknown parameters within the functions of the model.

In order to make this more formal, consider Xt ∈ IRnX where t ∈ {1, ...,T} and nX ∈ N to be the state

vector at time t, so that X1:T is the whole state sequence. Moreover, let Yk ∈ IRnY where t ∈ {1, ...,T}

and nY ∈ N be the observation vector at time t. Notice that the symbol Y is used to represent the data,

instead of the D that was used in previous sections. This is done to keep notation consistent with most

of the literature.

Treating both X1:T and Y1:T as random variables, a state-space model is defined by the following three

equations:

X1 ∼ p(X1) (2.12)

Xt ∼ p(Xt | Xt−1,θ), t > 1 (2.13)

Yt ∼ p(Yt | Xt ,θ), t > 0 (2.14)

Here, p(X1) is the initial probability density of the first state, p(Xt |Xt−1,θ) is the probability density

of moving to the current state given the previous state (transition density) and p(Yt | Xt ,θ) is the

probability density of observing the current observation given the current state (observation density).

Notice that the transition and observation densities can also depend on a set of unknown random

parameters, θ ∈ IRnθ (although this is not necessary). The vector θ can be separated into parameters

related to the transition density θtr ∈ IRntr and parameters related to the observation density θobs ∈

IRnobs , so that θ = {θtr,θobs}. Finally, each transition density at time t might depend on a vector of

known values Zt ∈ IRnZ . These are ignored here to simplify notation (they are later used inside the

proposed FPGA architecture for pMCMC in Chapter 4). Figure 2.6 depicts the structure of the SSM.

The typical assumptions in SSMs (which are easy to see in the above formulation) are that: 1) Xt is

Markovian, i.e. its probability density depends only on Xt−1 and not on other previous states. 2) The

probability density of Yt depends only on Xt and not on previous states or observations. The SSM

framework is widely applicable in many areas of science and engineering such as finance, communi-

2.3. MCMC algorithms 25

X1 X2 X3 XT

Y1 Y2 Y3 YT

theta

Figure 2.6: Hidden states, observations and latent parameters of state-space model.

cations, genetics and machine learning.

Example of an SSM: A concrete example, which can help understand the framework, is target track-

ing. e.g. tracking of a robot that moves in a 2-dimensional space using a set of sensors located in

known positions. In such a typical tracking scenario, the state Xt =

[

x1
t

x2
t

]

represents the horizontal (x1
t)

and vertical (x2
t) position of the robot at time t. The position changes according to the random walk

equation Xt = Xt−1 +ut , where ut is a Normal random vector ut ∼ N(ut | 0,θtr) and N(ut | 0,θtr) is

the bivariate normal density with mean 0 and covariance matrix θtr at point ut . The density transition

density then takes the following form:

p(Xt | Xt−1,θtr) = N(Xt | Xt−1,θtr) (2.15)

Equation (2.15) means that the robot is assumed to do a random walk. At time t = 1 the initial density

of the state is a standard normal:

p(X1) = N(X1 | 0,I) (2.16)

In order to track the robot, assume there are measurements available from three sensors. The position

of the i-th sensor is Si =

[

s1
i

s2
i

]

, where s1
i and s2

i are the horizontal and vertical positions respectively.

The measurements (observations) are the Euclidean distances between the robot and the sensors at

time t, plus some measurement noise. For sensor i, the observations are: Yi,t = ‖Xt − Si‖+ut =

(x1
t − s1

i)
2
+(x2

t − s2
i)

2
+N(0,θobs), where θobs is the covariance matrix of the observation noise. The

relationship between the observations captured by sensor i and the position of the robot at time t is

26 Chapter 2. Background and related work

summarized by the observation density:

p(Yi,t | Xt ,θobs) = N(Yi,t | ‖Xt −Si‖,θobs) (2.17)

The full observation density (which includes all sensors) at time t is p(Yt | Xt ,θobs) = ∏
3
i=1 p(Yi,t |

Xt ,θobs). Notice that in equations (2.15) and (2.17), the unknown parameter θ has been separated into

its two components θtr and θobs for clarity.

State estimation in SSMs - The Particle Filter

When using an SSM like the one above, the goal is either to estimate the hidden state sequence X1:T

given the observations Y1:T or to estimate the unknown parameter vector θ given the observations

Y1:T or both. For example, in the robot tracking problem, the main aim is to estimate the sequence of

positions of the robot (state X1:T) using the sensor measurements but one might also want to estimate

the covariance of the measurement noise and the covariance of the robot’s random walk (which to-

gether form the unknown parameter θ). The pMCMC algorithm (on which this section focuses) aims

at estimating both the hidden states and the unknown parameters jointly. Nevertheless, for reasons of

clarity, this part of the section will examine the simpler problem of estimating only the state sequence

when the parameter set θ is known. In the next part of the section, this will be used to tackle the joint

estimation problem.

The problem will be formulated as a Bayesian inference task. The goal is to sample from the Bayesian

posterior distribution of the unknown states, given the data and the fixed parameter θ . The posterior

is:

pθ (X1:T | Y1:T) ∝ pθ (X1:T) pθ (Y1:T | X1:T) = p(X1)

(

∏
T
t=2 pθ (Xt | Xt−1)

) (

∏
T
t=1 pθ (Yt | Xt)

)

(2.18)

where θ has been moved to the subscript of the densities which are affected by its value. The posterior

consists of the prior pθ (X1:T) and the likelihood pθ (Y1:T | X1:T). The right-most part of equation

(2.18) is easily derived from the densities (2.12)-(2.14).

In order to perform Bayesian inference in this context (using MCMC, IS or some other sampling

technique), it is necessary to evaluate the posterior multiple times (e.g. in every MCMC step). Never-

theless, this posterior does not admit a closed form. Fortunately, several alternative methods have been

2.3. MCMC algorithms 27

developed in the Bayesian filtering literature to get the exact posterior or sample from it [29]: 1) When

the state Xt can take only a finite set of values (finite state-space SSMs), the posterior can be evalu-

ated exactly in each point because the integrals involved are converted to finite sums. 2) When the

transition and observation densities are linear and Gaussian (linear Gaussian SSMs), the posterior is a

Gaussian distribution and its mean and variance can be computed using Kalman filtering techniques

[49]. 3) In all the remaining non-linear, non-Gaussian SSM cases, the posterior cannot be evaluated

exactly but samples can be drawn from it using Particle Filtering (also known as Sequential Monte

Carlo) techniques, instead of MCMC or IS. This section focuses on cases where the posterior cannot

be evaluated exactly, since these represent the large majority of SSM applications, including the ones

that motivate the work in Chapter 4.

PFs are a group of algorithms which are used for state estimation in SSMs. PFs use a set of samples

(particles) to estimate either the latest state at time t (Xt) or the whole state sequence up to time t (X1:t).

PF has many variants, which are suitable for different situations. Doucet and Johansen [29], Kantas et

al. [50] and Cappe et al. [51] contain good overviews of the various methods and applications. Here,

the bootstrap PF [52] will be used to estimate the whole state sequence (since the posterior over the

whole sequence is required). The bootstrap PF was chosen because it is the most popular PF variant,

it can be applied to most problems and it is easy to implement.

The bootstrap PF algorithm is the following:

In Algorithm 4, the input arguments are the number of particles of the PF (P), the number of states (T),

the fixed parameter vector (θ) and the observations (Y1:T). The output is T sets of P particles each

(X1:P
1:T = {X1:P

1 , ...,X1:P
T }) and an unbiased estimate (L) of the likelihood of θ given the observations

Y1:T , marginalised over X1:T , i.e. L≃ pθ (Y1:T).

The main idea behind Algorithm 4 is that it uses a set of P particles to estimate each state. In every

iteration it propagates the particles to the next state, etc. The particle set X1:P
t is an estimate to the

posterior density of state t, given the observations up to time t, i.e. p(Xt | Y1:t). In other words, the

particles are samples distributed according to this posterior. The ensemble of all particle sets X1:P
1:T is an

estimate to the posterior density of the whole state sequence, given all observations, i.e. p(X1:T |Y1:T).

Algorithm 4 first samples P times from the initial density p(X1) in order to create an initial set of

particles at time step t = 1 (lines 3-4). The k-th particle is denoted X̃k
1. Then it calculates the weight

W k
1 of each particle X̃k

1 using the observation function (which works here as a likelihood) at lines 5-

28 Chapter 2. Background and related work

Algorithm 4 Bootstrap Particle Filter

1: procedure BOOTSTRAPPF(P, T , θ , Y1:T) - Inputs: P (number of particles), T (number of SSM

states), θ (parameter values for transition and observation densities), Y1:T (observations)

2: Initial state (t = 1):

3: for k = 1, ...,P do

4: Sample particle from initial density X̃k
1 ∼ p(X1)

5: for k = 1, ...,P do

6: Calculate initial weight W k
1 ← pθ (Y1 | X̃k

1)

7: Remaining states:

8: for t = 2, ...,T do

9: for k = 1, ...,P do

10: Sample ancestor index ak from {1, ...,P} with probabilities proportional to

11: {W 1
t−1, ...,W

P
t−1} and set resampled particle Xk

t−1← X̃ak

t−1

12: for k = 1, ...,P do

13: Sample particle from transition density X̃k
t ∼ pθ (Xt | Xk

t−1)

14: for k = 1, ...,P do

15: Calculate weight W k
t ← pθ (Yt | X̃k

t)

16: Likelihood estimate:

17: L←∏
T
t=1

(

1
P ∑

P
k=1W k

t

)

18: return (L, X1:P
1:T = {X1:P

1 , ...,X1:P
T }) (likelihood estimate and P particles for every SSM state)

6. The weight quantifies the quality of the particle as an estimate of X1 based on information from

observation Yt . After the initial P particles and their weights are known, the algorithm moves to the

loop in lines 7-15. For every time step t, three steps are performed: 1) Resampling, 2) Sampling, 3)

Weight.

In the resampling step (lines 9-11), for each particle k, an index ak from 1 to P is sampled with

probabilities proportional to {W 1
t−1, ...,W

P
t−1} (this is equivalent to sampling from a multinomial distri-

bution). The particle with index ak from the previous time step (X̃ak

t−1) is then assigned to the variable

Xk
t−1. When all P iterations finish, the set X1:P

t−1 is the set of resampled particles. The resampled

particles are the ones which are propagated to the next time step. Resampling practically means that

particles with large weights tend to be copied more often and therefore survive into the next gener-

ation, while particles with small weights tend to disappear. This process is critical for the stability

of the method. Without resampling, the variance of the t-th state estimate (given by the particles at

time t) increases exponentially with t; with resampling, the method can reach much bigger t without

introducing large variances (see Doucet and Johansen [29] for more comments on why resampling

is important). Notice that the set of particles is distinct from the set of resampled particles, thus the

difference in notation (X̃1:P
t for the former, X1:P

t for the latter). It is worth noting that the resampling

approach shown here (which is called Multinomial resampling) is only one of the existing resampling

2.3. MCMC algorithms 29

algorithms. Many other algorithms have been proposed, which are more efficient or more suitable for

parallel implementation [53, 54].

After the resampling step has finished the algorithm performs the sampling and weight steps in lines

12-13 and 14-15 respectively. The sampling step is similar to the sampling during particles initialisa-

tion, only now the transition density is used to propagate the resampled particles of time step t−1 and

form a new set of particles at time step t. The weight step is the same as during initialisation.

After all T time steps have finished, the algorithm computes an estimate of the likelihood of the fixed

parameters θ , where the states have been marginalised out, i.e. an estimate of pθ (Y1:T). This is

done by finding the mean of the weights of each step and multiplying the means from all steps (line

17). This estimate is unbiased [29]. The likelihood is a by-product of the whole process, which is

not necessary for state estimation but, in combination with the state estimate X1:P
1:T , will prove crucial

when the PF will be used within an MCMC sampler (see next section).

Finally, the algorithm returns the likelihood estimate and the full history of (resampled) particles; T

sets of P particles each. In fact, the full history of non-resampled particles X̃1:P
1:T coupled with their

respective weights W 1:P
1:T can also be used to estimate the state sequence in exactly the same way as

Importance Sampling estimates densities [29]. Nevertheless, the resampled particles do not have to be

accompanied by weights (their weights are all equal), therefore they are easier to store and transfer.

Joint estimation of states and parameters - The Particle MCMC sampler

Although the basic bootstrap PF can handle state estimation, it is often the case that the parameter

set θ is unknown. For example, the measurement noise in the robot tracking problem is typically

unknown, since it depends on various factors, e.g. sensor technology. In this case, the PF presented

above cannot be used.

To define the problem in Bayesian terms, the posterior of equation (2.18) has to be supplemented with

an extra parameter (θ):

p(X1:T ,θ | Y1:T) ∝ p(θ) p(X1:T | θ) p(Y1:T | X1:T ,θ)

= p(θ) p(X1)

(

∏
T
t=2 p(Xt | Xt−1,θ)

) (

∏
T
t=1 p(Yt | Xt ,θ)

) (2.19)

Here, p(θ) is the prior density of the unknown parameter set θ . Notice that θ is no longer shown as a

30 Chapter 2. Background and related work

subscript in the related densities (like in equation (2.18)), since it is not fixed. Also, note that in this

section p(θ) does not represent the posterior target distribution, as in previous sections. The posterior

of pMCMC is the joint posterior of states and parameters (p(X1:T ,θ | Y1:T)). Also, the conditioning

on the data (Y1:T) is not omitted.

pMCMC [33] (a combination of MCMC and the PF presented above) is the most common approach

to sample from this joint posterior (for other approaches see Murray [2]). As already described earlier,

all MCMC algorithms need to evaluate the acceptance ratio of a proposed sample in every iteration,

which requires the evaluation of a ratio of posteriors. This evaluation is impossible in most SSM

situations (as emphasized previously).

Nevertheless, using a PF as described above, it is possible to attain unbiased samples from p(X1:T |

Y1:T ,θ) and an unbiased estimate of p(Y1:T | θ) (equivalent to L ≃ pθ (Y1:T), a by-product of Algo-

rithm 4). Andrieu and Roberts [45] and Andrieu et al. [33] showed how to use these PF outputs to

construct an MCMC algorithm which samples correctly from the posterior (2.19). The two core ideas

of this algorithm are the following:

1) Proposal density: It is possible to cancel out the state variable X1:T in (2.19) from the MCMC

acceptance ratio by using a suitable MCMC proposal density. In every MCMC step, this proposal

uses a simple Metropolis-Hastings (M-H) kernel to propose a new θ sample, called θ ∗. Given θ ∗, it

then proposes a new X1:T sample, called X∗1:T from the distribution p(X∗1:T |Y1:T ,θ
∗) (θ ∗ is fixed). In

other words, the proposal density is:

q((X∗1:T ,θ
∗) | (X1:T ,θ)) = q(θ ∗ | θ) p(X∗1:T | Y1:T ,θ

∗) (2.20)

The purpose of this approach is that the particular proposal leads to the following MCMC acceptance

ratio, where the variable X∗1:T is integrated out:

a =
p(X∗1:T ,θ

∗|Y1:T) q((X1:T ,θ)|(X∗1:T ,θ
∗))

p(X1:T ,θ |Y1:T) q((X∗1:T ,θ
∗)|(X1:T ,θ))

∝
p(θ ∗|Y1:T) p(X∗1:T |Y1:T ,θ

∗) q(θ |θ ∗) p(X1:T |Y1:T ,θ)
p(θ |Y1:T) p(X1:T |Y1:T ,θ) q(θ ∗|θ) p(X∗1:T |Y1:T ,θ ∗)

= p(θ ∗|Y1:T) q(θ |θ ∗)
p(θ |Y1:T) q(θ ∗|θ) ∝

p(θ ∗) p(Y1:T |θ ∗) q(θ |θ ∗)
p(θ) p(Y1:T |θ) q(θ ∗|θ)

(2.21)

By integrating out the variable X1:T in a, there is no longer need to evaluate the term p(X1:T |Y1:T ,θ).

Note that the decomposition of the posterior in the first line of the above equation is different from

the decomposition shown in equation (2.19). In order to implement the proposed MCMC proposal,

Andrieu and Roberts [45] recommended using a PF. As shown in the previous section, a PF can indeed

2.3. MCMC algorithms 31

generate P samples from p(X1:T | Y1:T ,θ) (or p(X∗1:T | Y1:T ,θ
∗) in this case), so it is enough to keep

one of them as a proposed sample.

2) Use of unbiased likelihood estimate: Although the term p(X1:T | Y1:T ,θ) is no longer needed

to find the acceptance ratio, the exact evaluation of the ratio is still impossible, since p(Y1:T | θ) is

not known in closed form. The critical contribution in [45] (based on prior work done in [44]) was a

proof that it is not necessary to evaluate the likelihood p(Y1:T | θ) exactly to sample from the posterior

(2.19). It is, rather, enough to get an unbiased estimate of p(Y1:T | θ). Regardless of the variance of

the estimate, the sampler will converge to the correct posterior (though smaller variances accelerate

MCMC mixing). Therefore, the following acceptance ratio can be used:

ã = p(θ ∗) p̃(Y1:T |θ ∗) q(θ |θ ∗)
p(θ) p̃(Y1:T |θ) q(θ ∗|θ) (2.22)

where p̃(Y1:T | θ) is the unbiased estimate of the likelihood produced by the PF (L in Algorithm 4).

The algorithm that uses the above acceptance ratio to sample from SSM posteriors is called pMCMC

and was described in [33] (using the term Particle Marginal Metropolis-Hastings sampler). It is shown

below:

Algorithm 5 takes the same inputs as Algorithm 4, plus the number of MCMC iterations (N) and an

initial θ sample (θ init). The main loop of the algorithm (lines 9-20) is very similar to a simple M-H

sampler. For each iteration, it uses the proposal distribution q(θ ∗ | θ) to propose a new θ ∗ based on

the previous one (line 10). It then calls Algorithm 4 (line 11) to achieve two things:

1. Get a set of P samples from p(X∗1:T | Y1:T ,θ
∗). One of these samples is selected randomly in

line 12 and functions as the proposed state sequence sample X∗1:T .

2. Get an unbiased estimate of the likelihood of θ ∗ (p̃(Y1:T | θ ∗)).

In lines 13-20, the algorithm computes the acceptance ratio ã (equation (2.22)) and uses it to accept or

reject the proposed sample (θ ∗, X∗1:T) as in a typical MCMC algorithm. Lines 3-7 serve to initialise

the algorithm using θ init and they contain a call to Algorithm 4, exactly like in the main loop. pMCMC

returns the full history of samples Sample[1 : N] and the full history of posteriors Posterior[1 : N] (the

latter is not necessary). It is usual to discard an initial chunk of the N samples as burn-in, in order to

make sure the sampler has converged to the target distribution.

32 Chapter 2. Background and related work

Algorithm 5 Particle MCMC

1: procedure PMCMC(P, T , Y1:T , N, θ init) - Inputs: P (number of particles), T (number of SSM

states), Y1:T (observations), N (number of MCMC samples), θ init (initial MCMC sample)

2: First iteration (i = 1):

3:

(

p̃(Y1:T | θ init), X1:P
1:T

)

← BootstrapPF(P,T ,θ init ,Y1:T) // get likelihood and state samples

4: Randomly select an index p from {1, ...,P} and set Xinit
1:T = X

p
1:T

5: Sample[1] = (θ init , X init
1:T) // save initial sample

6: Posterior[1] = p(θ init) p̃(Y1:T | θ init) // compute and save posterior

7: θ = θ init // temporary variable

8: Remaining iterations:

9: for i = 2, ...,N do

10: θ ∗ ∼ q(θ ∗ | θ) // propose new θ

11:

(

p̃(Y1:T | θ ∗), X1:P
1:T

)

← BootstrapPF(P,T ,θ ∗,Y1:T) // get likelihood and state samples

12: Randomly select an index p from {1, ...,P} and set X∗1:T = X
p
1:T

13: Accept proposed sample (θ ∗, X∗1:T) with probability min(1, ã)
14: if accepted then

15: Sample[i] = (θ ∗, X∗1:T) // save proposed sample

16: Posterior[i] = p(θ ∗) p̃(Y1:T | θ ∗) // compute and save posterior

17: θ = θ ∗ // temporary variable

18: else

19: Sample[i] = Sample[i−1] // replicate previous sample

20: Posterior[i] = Posterior[i−1] // replicate previous posterior

21: return (Sample[1 : N], Posterior[1 : N]) (N sets of MCMC samples and posterior values)

The main tuning parameter of the pMCMC algorithm is the number of particles of the PF (P). The

larger the number of particles, the more time-consuming each pMCMC iteration becomes. At the

same time, more particles mean that the likelihood estimate p̃(θ | Y1:T) becomes more accurate, i.e.

the variance of the estimate is smaller. This, in turn, leads to faster pMCMC mixing, since pMCMC

moves closer to an exact MCMC algorithm. Therefore, there is a tradeoff between the runtime of the

PF and the mixing of pMCMC when changing the number of particles.

2.3.4 Other methods

A large number of other MCMC algorithms are currently being used by practitioners, depending on the

characteristics of the target distributions from which they need to sample. Describing these algorithms

in detail is outside the scope of this chapter. The reader is referred to [9, 4, 17, 6] for detailed reviews

of older and more recent research on MCMC methodology.

Here, a list of the most influential MCMC algorithms is given, along with brief descriptions:

1. Gibbs sampling: The Gibbs sampling algorithm [31] decomposes the nθ -multidimensional vari-

2.3. MCMC algorithms 33

able θ into its nθ components and updates them one by one. The proposal distribution of the

i-th component qi(· | ·) is the full conditional distribution of the i-th component conditional on

all the remaining components [34]. Because this conditional distribution is the “ideal” choice

of proposal distribution (i.e. it is the actual target distribution for the respective component), all

proposed samples are accepted. Gibbs sampling has enjoyed massive popularity for Bayesian

hierarchical models (e.g. Bayesian networks) [21, 34]. The reason is that in these models the

posterior is naturally expressed in terms of the full conditional distributions of each component.

Also, sampling from the full conditional distributions is easy since they are typically standard

distributions like Normal or Gamma.

2. Slice Sampling: Slice sampling [55] is based on the idea that sampling from a target p(θ) is

equivalent to sampling uniformly from the area under the graph of p(θ). To achieve this uniform

sampling, slice sampling augments the target distribution by an auxiliary variable u, which,

conditional on θ , is uniformly distributed on the interval [0, p(θ)]. Sampling is performed

from the joint distribution of θ and u in a Gibbs sampling fashion. Several techniques have

been proposed to optimize the efficiency of this procedure [55]. Unfortunately, when p(θ) is

multivariate, sampling uniformly from the region under its graph requires the construction of

a nθ -dimensional hypercube. This is a task that scales exponentially with the dimension of

the problem [8], making the use of the method expensive for high dimensions. However, slice

sampling is popular because it can improve mixing when there are strong correlations between

components of the sampling variable [55, 8].

3. Multiple proposals: These methods propose multiple candidate samples in each iteration of

MCMC in order to increase the possibility that a “good” proposed sample will be found. They

achieve better mixing and increase acceptance rates. Multiple-Try Metropolis [56] is an early

example of this family of algorithms. Other ideas based on the same principles have been

introduced since its publication [17].

4. Hamiltonian Monte Carlo: These algorithms use the gradient of the target density to propose

better moves. They were first introduced by Duane et al. [57] and later improved by Giro-

lami and Calderhead [58]. Today they are extremely popular because they can handle strong

correlations, as well as high dimensionality in the target distribution.

5. Reversible-Jump MCMC: This algorithm [59] is applicable when the dimensionality of the sam-

pling variable is unknown - for example, in model determination [59]. It has enjoyed some

34 Chapter 2. Background and related work

success for inference in mixture models [60] as well as in other domains [9] but it is hard to

implement and debug.

6. Adaptive MCMC: These methods adapt their proposal distribution during runtime according to

the form of the target distribution in order to optimize sampling efficiency (i.e. mixing) [61].

Care needs to be taken when designing an adaptive kernel in order to guarantee that the sampler

will converge to the stationary distribution.

2.4 The need for faster inference

The large volume of research on MCMC during the last two decades has produced a variety of methods

which can significantly improve convergence and mixing in many real scenarios. popMCMC and pM-

CMC are good examples of advanced MCMC algorithms which have expanded MCMC’s applicability

significantly. Despite the successes of these methods, MCMC sampling is still not as fast as modern

large-scale applications require. Numerous examples exist for which running MCMC is impractical

or impossible on desktop CPUs [10, 13, 26, 11, 19, 18, 16, 2, 62, 48, 25, 63, 64, 65, 66, 8, 67, 9].

For many of these problems runtimes can reach months, or years even when using advanced MCMC

methods like the ones described above. This limits the applicability of MCMC, since a practitioner

typically wants results in hours or days (although this depends on the application).

The reasons for this high computational burden can be classified into generic (applying to any MCMC

method) and method-specific (related to a particular MCMC method). The generic reasons are the

following:

1. The massive size and dimensionality of data and the continuously increasing complexity of

Bayesian models in many applications. Both of these factors make the evaluation of the poste-

rior density p(θ) (necessary in each MCMC step) computationally expensive. Moreover, both

factors are related to the increasing need to analyse and draw conclusions from “big data”, a

trend which has dominated many fields of Bayesian statistics during the last few years. For ex-

ample, topic models commonly use large text databases for inference [11], genomic data have

dimensions in the order 107 [13, 10, 14] and climate models process such large volumes of

data that even model emulation (using Gaussian processes) is challenging in many scenarios

[68, 69, 70]. Other motivation examples can be found in statistical physics [19] and phylo-

2.4. The need for faster inference 35

genetics [25]. Since the “big data” trend is bound to continue and spread in more fields in

both industry and academia, the handling of the computational burden of evaluating p(θ) is the

primary concern for MCMC acceleration.

2. The problems of slow convergence and slow mixing. Despite the many advances in MCMC

methodology, these are still major issues for all MCMC samplers, caused by multi-modality,

correlations and multi-dimensionality in the posterior. The main caveat of MCMC is that there

is never a guarantee that the sampler has converged (even using convergence metrics), so prac-

titioners tend to perform long MCMC runs (large N) to increase their certainty that no area has

remained unexplored. This problem is especially acute in large dimensions of the state space.

It also results in large runtimes to get a satisfactory variance in (2.9). The better the MCMC

algorithm mixes, the more likely it is that the state space will be fully explored and that the

variance will be satisfactory within a practical time frame (e.g. days or weeks).

3. The fact that multiple independent MCMC runs are performed in most real settings to increase

the certainty about convergence (e.g. by employing the Gelman-Rubin criterion [35]) and ap-

proximate the variance of (2.9). This can increase the total runtime by an order of magnitude.

Moreover, MCMC practitioners often want to test many candidate models and also “tune” their

MCMC algorithms in order to maximize efficiency (i.e. mixing speed). Even more runs are

necessary for these purposes.

4. The real-time constraints in some applications of MCMC. Although most research on MCMC

has focused on its use for static inference, real-time inference (where data are received con-

stantly and MCMC needs to re-run every time) has also been examined for some applications,

e.g. Simultaneous Localization and Mapping [71]. In these scenarios, real-time constraints in

MCMC execution time have to be met, which is a strong motivation to accelerate the algorithm.

Moreover, power consumption is a major concern in these applications, since the algorithm typ-

ically needs to run on mobile platforms (e.g. mobile robots). In these cases, apart from raw

acceleration, the performance/Watt ratio that can be achieved is crucial.

Apart from these generic factors, there are computational overheads related to specific MCMC meth-

ods that lead to large runtimes:

1. In the case of popMCMC (and PT), the main overhead is related to the use a population of

Markov chains. Typically, dozens or hundreds of chains are run [27, 7, 13], instead of the

36 Chapter 2. Background and related work

single chain used by basic MCMC and only the samples from the first chain are kept. This

means that the number of necessary posterior density evaluations per generated MCMC sample

is multiplied by a factor equal to the number of chains. Chapter 3 proposes ways to treat this

problem using parallel MCMC implementations.

2. In the case of pMCMC, there are two particularities that lead to forbiddingly large runtimes and

hinder its adoption for SSM inference:

• The need to run a PF to estimate the likelihood in every pMCMC step. This has complexity

O(T ·P) (where T is the number of hidden SSM states and P is the number of particles of

the PF). When the number of states and the number of observations per state in the SSM

become large (e.g. millions, which is the case in many applications), running the PF can

become expensive computationally [72, 73, 74]. Moreover, many thousands of MCMC

iterations are usually needed, as mentioned above. Therefore, for complex SSMs [48, 2],

performing inference with pMCMC can become impractical. The work in Chapter 4 was

initially motivated by such a complex problem; SSMs in genetics, where the number of

SSM states, which correspond to DNA bases, can reach millions.

• The issue of multi-modality in the target distribution. This has been largely unaddressed in

the pMCMC literature. Nevertheless, there are modelling scenarios where multi-modality

can appear, e.g. when the transition density of the SSM is a mixture of different densities

(see Section 4.5 and [14]). In these cases, pMCMC mixes slowly due to the same reasons

described earlier for basic MCMC samplers which are applied to multi-modal distribution.

Slow mixing means that a lot of samples need to be generated to achieve a satisfactory

variance in (2.9).

Other MCMC variants also have features which increase computational intensity but these are omitted

here. Some information about the overheads of other methods and how they have been tackled in

previous literature can be found in Section 2.7.

As a result of the above factors which negatively affect runtime, practitioners are forced to: 1) Generate

only few MCMC samples (which increases the variance of the output estimate), 2) Use simpler models,

3) Exclude some data from the analysis, 4) Use approximate inference methods instead of MCMC.

All the above solutions compromise the accuracy of the analysis.

2.4. The need for faster inference 37

2.4.1 Existing approaches and trends in MCMC methodology

During the last five to ten years, the issue of making MCMC more efficient by tackling the above

limitations has attracted increased attention. Most of the work in MCMC literature has focused on

improving methodology (by proposing or modifying algorithms) or on using alternative methods for

inference. Recent approaches can be categorized as follows:

1. Algorithms based on data partitioning: A number of techniques have been proposed to split

large data sets into sub-groups, run a separate MCMC for each sub-group and then combine

the resulting estimates in some way. Early methods in this category [64, 75] introduced bias in

the combined output estimate. More recent methods [76, 77, 78] have overcome this problem

by using kernel density estimators or by evaluating the geometric median of sub-posteriors.

Nevertheless, all of these methods are based on the assumption that data are independent and

identically distributed (i.i.d.) which is not true in all modelling scenarios.

2. Algorithms based on data sub-sampling: This category is also oriented towards big data infer-

ence and assumes that the data are i.i.d. The idea behind these methods is to select a random

sub-set of the data in every MCMC iterations and compute the posterior density conditioned on

the sub-set instead of the full data set [62, 79, 80]. The Firefly Monte Carlo [62] method has

attracted the most attention because it guarantees sampling from the correct target distribution,

in contrast to other methods which introduce bias.

3. Approximate algorithms: There is a large variety of non-MCMC methods which can be used for

the same Bayesian inference tasks as MCMC but provide biased results, i.e. they sample from an

approximate posterior. These methods are typically faster than MCMC. Among these methods,

it is worth mentioning Approximate Bayesian Computation (ABC) [81], which is based on

proposing candidate θ values (θ ∗), simulating data from the likelihood given the candidate

(D̂∼ p(D̂ | θ ∗), which is not to be confused with evaluating the likelihood) and then comparing

D̂ with the real data D using some summary statistic in order to accept or reject the candidate

θ ∗. ABC avoids the computational burden of computing the likelihood (and the posterior)

but selecting a summary statistic that leads to tolerable acceptance rates is challenging [82].

Other notable approximate methods include Integrated Nested Laplace Approximation (INLA)

[83], which is a popular substitute of pMCMC for SSMs and Variational Bayes [84] which is

particularly popular in machine learning applications.

38 Chapter 2. Background and related work

2.4.2 The approach of this thesis

In order to handle the increasing computational burden of modern MCMC applications and allow

statisticians to keep analysing and drawing conclusions from massive datasets, it is insufficient to rely

solely on more efficient MCMC methods or on smarter models; despite the above developments, there

are still many problems that are out of reach for MCMC samplers due to forbiddingly long runtimes.

This thesis builds upon the following conviction: In combination with methodological improvements,

it is equally important to leverage the power of modern hardware accelerators, such as multi-core

CPUs, GPUs and FPGAs. All these platforms offer massive amounts of parallel resources, which can

be exploited when working with MCMC methods and Bayesian models amenable to parallelization,

leading to speedups of orders of magnitude compared to sequential code running on conventional

CPUs.

Even more crucially, understanding the properties of the underlying hardware platform and exploit-

ing them is necessary not only during the implementation stage but also during the design stage of

an MCMC algorithm. This thesis advocates a holistic design approach, where algorithm design is

done jointly with the design of the hardware accelerator. Using this approach, existing MCMC algo-

rithms can be modified or new MCMC algorithms can be proposed based on knowledge about which

algorithmic and computational structures map favourably to existing parallel architectures. In addi-

tion, hardware design can be tailored to existing algorithms (e.g. PT or pMCMC), while the special

features of the targeted hardware (e.g. custom precision) can be exploited in a better way when the

characteristics of the algorithm are fully understood.

This thesis is a step towards the adoption of this holistic design philosophy; it focuses on how to

design FPGA architectures tailored for MCMC sampling but also addresses MCMC algorithm design

with a view on how these algorithms map to hardware. Although this thesis is devoted to FPGAs

(with the exception of some parts of Chapter 3), comparisons between FPGA and state-of-the-art

implementations on other platforms are also included.

2.5 Hardware acceleration technologies

This section provides an introduction to the characteristics of the main computing platforms available

today, along with comments on their strengths when used for acceleration of computationally intensive

2.5. Hardware acceleration technologies 39

tasks such as MCMC. Starting from the most basic platform, the general-purpose microprocessor (i.e.

Central Processing Unit - CPU), this section then moves to its parallel extension (multi-core CPUs),

the massively parallel alternative of Graphics Processing Units (GPUs) and the very unique case of

Field Programmable Gate Arrays (FPGAs).

2.5.1 Central Processing Units

The modern conception of a CPU as a stored-program computer was first described by John Von

Neumann [85]. The fundamental ideas about how a CPU operates have remained largely unchanged,

although various CPU architectures have been proposed since then.

Figure 2.7 provides a high-level abstraction of the architectural parts of a typical CPU. It consists of:

1. An arithmetic logic unit (ALU), which performs arithmetic and logic operations. These oper-

ations are encoded as instructions. Most CPU architectures have fixed instruction sets and all

high-level code has to be translated and decomposed into these instructions.

2. A set of registers from which the ALU reads its inputs and writes its outputs.

3. A control unit that fetches instructions from the program memory, decodes them and then feeds

them to the ALU for execution. This process involves the activation of various control signals

and interactions between the necessary parts of the ALU, registers and other components.

The CPU also communicated with the main (off-chip) memory through a memory interface module.

Modern CPUs work are based on the same principles but they are much more sophisticated in terms of

how they process instructions and access memory. They are equipped with complex hardware compo-

nents to optimize the execution of sequential code, e.g. they use techniques such as Instruction Level

Parallelism and Out-of-Order Execution to reduce the execution time of successive sequential instruc-

tions and speculative execution and branch prediction to improve concurrency and tackle branching

statements more efficiently.

Apart from the above techniques, CPU architectures have made extensive use of multiple layers of

cache memories in order to reduce memory latency (which is large when accessing off-chip memory).

The idea behind on-chip cache hierarchies is that a fast cache with small size is placed close to the

ALU in order to achieve low latency, a slower cache with larger size is placed at a large distance from

40 Chapter 2. Background and related work

Instruction
decoder

Registers

Instruction
fetcher

Memory
interface

ALU

Figure 2.7: High-level abstraction of a typical CPU. The instruction fetches read instructions from

main memory, the instruction decoder sends the necessary control signals to implement the instruction

and the ALU executes the instruction using inputs from the registers as operands and writing the results

back to the registers or the main memory.

the ALU, etc. While CPU registers can typically be accessed in one clock cycle, access times for

caches range up to 10 or more cycles and access time for off-chip memory in in the range of 100-200

clock cycles. The above cache model is critical for performance in modern CPUs. A large part of the

transistors in a CPU is used for implementing large caches, as well as increasing their performance by

using complex techniques that exploit the spatial and temporal locality of memory accesses.

The sequential programming model and its decline

Since the first commercially available CPUs were released by Intel in 1970 and especially after 1974

(the year that Intel 8080 was made available), the CPU market has grown at an impressive rate and

CPUs can now be found in almost every digital device in the planet. The success of CPUs is due to

their flexibility and their constant - until recently - increase in performance. Flexibility refers to their

ability to run any sequential software code by decomposing the code into simple generic instructions

which are executable by the CPU (using a compiler). This has led to a massive code base which can

be easily run in newer CPU generations. The increase of CPU performance is related to the huge

innovations in integrated circuit technology over the last decades. This is frequently connected to

2.5. Hardware acceleration technologies 41

Gordon Moore’s prediction back in 1965, which has since been known as Moore’s law: “The amount

of transistors in a given amount of silicon will approximately double every 18 to 24 months” [86].

All these extra transistors have traditionally been used to enhance the various hardware modules and

cache memories inside the CPU in order to increase performance, e.g. through improvement in the

ALU pipeline, hyper-threading, using speculative execution, increasing the size and capabilities of

caches, etc. Moreover, the simultaneous increase in transistors’ switching speed has constantly pushed

clock frequencies up. These two elements meant that programmers did not have to care about the

capabilities of the underlying hardware; increasing frequencies allowed the same sequential program

to run faster on newer CPUs. Therefore, developers only needed to wait for one or two extra years

for the next CPU model to be released in order to cover the increased computational demands of

applications.

This “free lunch” ended in 2004 because integrated circuit technology hit a “power wall” [87, 88].

It is no longer possible to increase clock frequencies while keeping the power envelope of the CPU

at safe levels. This is due to limitations in transistor technology, i.e. the fact that power leaks in

transistors increase at unsustainable levels as feature size drops. When feature sizes reach 90mm, the

leaks become significant and it is no longer straightforward to dissipate the generated heat from the

chip. At that point, the industry had to stop relying on increasing frequencies and instead find other

ways to improve performance.

2.5.2 Multi-core CPUs

Despite the “power wall”, Moore’s law is still in effect. This means that the number of transistors

per chip still increases but these extra transistors can no longer be used to scale clock frequency.

Consequently, the focus has shifted towards parallelism in order to serve the increasing computational

needs of programmers. The natural extension of the general, sequential CPUs - multi-core CPUs -

has become the mainstream computing platform during the last ten years. Multi-core CPUs integrate

two or more CPUs in the same chip, with individual and/or shared caches. Shared caches lead to

even more complex and expensive control modules inside the chip. As shown in Figure 2.8 (which

is a high-level abstraction), multi-core CPUs consume a lot of area for control hardware and cache

memory. This means that relatively fewer resources are devoted to processing units (e.g. ALU).

Therefore, the peak performance of a multi-core CPU (e.g. as measured by FLOPS - Floating point

42 Chapter 2. Background and related work

Control logic

Cache memory

CPU CPU

CPU CPU

Multi-core CPU GPU

SP SP SP SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP SP SP SP

Figure 2.8: Comparison of multi-core CPU and GPU architectures. SP stands for Stream Processor,

the main processing unit of the GPU (following Nvidia’s terminology). It is clear that the GPU devotes

a much larger percentage of total chip are on compute units instead of control and cache.

operations per second) is typically lower than other platforms where more chip area is devoted to

compute units (see next section).

Although multi-core CPUs support legacy software that was written for sequential CPUs, they cannot

fully exploit their parallel hardware capabilities without some help from the programmer. This means

that programmers need to adopt the new, parallel programming model in order to keep increasing the

performance of their applications. Also, for many applications, a multi-core CPU does not provide

enough parallelism to satisfy performance requirements as will become clear in the following chapter.

The CPU cores inside a multi-core are large, powerful units with a lot of optimization targeted on

sequential execution but they are few in number compared to massively parallel devices such as GPUs.

Often it is not even possible to achieve acceleration factors equal to the amount of cores, especially if

the algorithm requires frequent inter-core communication.

Despite these facts, multi-core are still much easier to use and program than competing platforms.

Also, the large code base and the various optimized libraries which are available for CPUs are un-

paralleled by other platforms. Finally, multi-core CPUs remain competitive when the implemented

algorithm demonstrates limited parallelism and/or has a lot of branching statements. All these factors

make them extremely popular.

2.5. Hardware acceleration technologies 43

2.5.3 Graphics Processing Units

GPUs are chips whose architecture was originally devised and evolved to address the computational

needs of modern video games, i.e. the specific kinds of computations that are necessary in this appli-

cation field. Nevertheless, their massive computing power (which is a result of the large investment in

the field) eventually led GPUs to become serious competitors in the general high performance com-

puting field. Their adoption in various application domains during the last decade has been both wide

and successful.

Like multi-core CPUs, GPUs are also based on placing multiple processing cores in the same chip.

Nevertheless, the amount and characteristics of these cores are remarkably different compared to

multi-core CPUs. GPU cores are less powerful; they do not use all the advanced sequential code

optimization techniques found in CPUs and, most importantly, they do not employ complex cache

memory structures. This allows them to devote more chip area to increase raw processing power,

leading to higher peak performances than CPUs.

The right half of Figure 2.8 shows a typical Nvidia GPU architecture. Following Nvidia’s terminology,

the processing cores are grouped into Stream Multiprocessors (SMs). Each SM is one row in the figure.

Each SM comprises a number of Stream Processors (SPs), shown as green blocks in the figure, which

are the main computational units, as well a relatively small amount of cache memory and control logic.

It is clear from Figure 2.8 that the SPs occupy most of the chip.

Modern GPUs have hundreds or thousands of SPs. However, this does not translate to massive

speedups for any implemented algorithm. A GPU can reach its peak performance only when: 1) The

algorithm’s code is dominated by data-parallel computations, i.e. the same computation is performed

on different sets of data, also known as Single-Instruction-Multiple-Data (SIMD). 2) The algorithm is

compute-intensive, i.e. the ratio of computations over memory access operations is high. This ensures

that the memory bandwidth is adequate to feed all the GPU SPs and keep them utilized. Moreover,

there are other limitations to the types of algorithms that suit the GPU. For example, if or while

statements can result in some of the parallel GPU threads running for longer than others. Due to the

limited (compared to CPUs) amount of circuitry to handle these branching operations, this forces all

threads to wait for the slowest to finish before continuing execution, causing inefficiency.

A GPU is programmed using languages based on parallel programming principles. Arguably the most

popular is Nvidia’s CUDA, which is an extension to C and allows the programmer to write functions

44 Chapter 2. Background and related work

(called kernels) which are executed in the GPU. These kernels can be embedded in pre-existing C code

and invoke an (ideally) large number of parallel threads, which are independent routines that run in

parallel. CUDA threads are grouped into blocks. Threads within a block are assigned to the same SM

in the GPU and can efficiently share data through the use of the SM’s on-chip shared memory. Each

thread also has access to a few local on-chip registers which are extremely fast to read to and write

from. Communication between blocks has to happen through the GPU’s global off-chip memory and

is thus slower. Finally, a fourth type of memory, the constant off-chip memory is read-only during a

kernel execution but it is faster than global memory due to caching.

A CUDA implementation needs to be optimized carefully in order to maximize performance. The

amount of work per block and per thread and the communication between threads must map well

to the GPU architecture. This optimization process is far from trivial for non-experts, making GPU

programming more difficult than writing parallel code for multi-core CPUs.

2.5.4 Field Programmable Gate Arrays

FPGAs fundamentally differ from the previous three platforms. While CPUs, multi-cores and GPUs

have fixed hardware architectures which are defined before the chip is manufactured, FPGAs consist

of a re-programmable “fabric” upon which any custom hardware architecture can be mapped [89]. As

Figure 2.9 shows, the FPGA fabric consist of an array of programmable logic blocks and a hierarchy of

reconfigurable interconnects which allow the blocks to be wired together. Each block can implement

a simple boolean function. By connecting the blocks together any digital circuit can be implemented.

Moreover, modern FPGA are equipped with various heterogeneous elements which are hard-wired

(they cannot change their functionality). These include multipliers, memories, I/O blocks and CPUs.

Also, FPGAs released in 2014 (e.g. Altera’s Generation 10 FPGAs [90]) have introduced hard-wired

floating point cores to this list.

The re-programming of the fabric can be done as many times as desired and even during runtime

and/or partially. This flexibility allows the designer to tailor the hardware to the specific character-

istics of the application. The number and granularity of parallel processing elements, the kinds of

arithmetic operators which constitute these elements, the size and architecture of cache memories and

the arithmetic precision of computations are only some of the properties which can be customized.

For example, while a GPU architecture has a pre-defined amount of on-chip memory per SM, an

2.5. Hardware acceleration technologies 45

FPGA can allocate a custom amount of on-chip memory to each “processing element” or even allow

all elements to access all the memory, making the exchange of data more efficient (although the latter

strategy can incur significant area and performance overheads due to extensive use of FPGA intercon-

nect). Generally, for algorithms that do not adhere to the model described in the GPU section (SIMD,

embarrassingly parallel), FPGAs can give better performance by exploiting non-obvious and/or lim-

ited parallelism, maximizing pipelining efficiency and adapting the memory architecture to the access

pattern of the algorithm. Finally, FPGAs are able to combine the advantages of the CPU and custom

hardware worlds. Apart from the hard-wired CPUs embedded in some FPGAs, all FPGAs can also

use part of their fabric to implement one or more extra CPUs, which usually handle the sequential and

non-critical part of the implemented algorithm, while the custom fabric is responsible for the parallel,

computationally intensive part (hardware-software co-design).

Regarding the performance of the memory system, FPGAs enjoy higher on-chip memory bandwidth

than GPUs [91] due to the large number of built-in registers and Block RAMs which are accessible

in only one clock cycle. In contrast, FPGA typically achieve lower off-chip memory bandwidths than

GPUs [91] (although this varies a lot depending on the FPGA board). Therefore, if processed data

can be kept inside the FPGA or if a smart caching/reuse scheme can be implemented (see for example

Rafique et al. [92]), this benefits the FPGA.

FPGAs can be programmed using Hardware Description Languages (e.g. VHDL, Verilog). Writing

code for an FPGA is different and generally more difficult than writing software code. It resembles

the description of a function block diagram, where each block computes a simple (e.g. addition) or

more complex (e.g. Gaussian distribution) function. The blocks are connected with wires to give the

final result. Many identical blocks can be instantiated in order to parallelize computations. A control

block is typically included in the design in order to synchronize the operation of the remaining blocks.

Also, memory blocks and blocks that take care of the communication with off-chip memory or the

memory of the host PC have to be instantiated. All the above parts are completely customizable but

pre-existing libraries of such components are available to simplify development. High-level languages

(e.g. C, OpenCL) can also be used to program FPGAs and this is currently a very active research area

[93]. The main disadvantages of FPGA are the following: 1) They are hard to program, especially

when the programmer has no hardware design experience, 2) They are more expensive than GPUs and

not widely available in desktop PCs, 3) The compilation times (synthesis, placement and routing) can

reach hours for large chips.

46 Chapter 2. Background and related work

FPGA

Logic

block

Interconnection Memory block Dedicated multipliers

Figure 2.9: Simplified FPGA architecture.

Suitability of FPGAs for MCMC acceleration

This thesis focuses on the use of FPGA as platforms for accelerating MCMC algorithms. The choice

to focus on FPGAs, instead of GPUs or CPUs, was based on the fact that the flexibility and unique

features of the FPGA offer great promise for performance gains when mapping MCMC.

In more detail, the re-programmability of the chip means that different architectures, optimized for

different MCMC algorithms can be designed and then loaded on the chip on demand. The architectures

can take advantage of all the special feature of the targeted method in order to improve performance

and they do not require a SIMD model of computation as GPUs do. The architectures for popMCMC

and pMCMC in Chapters 3 and 4 respectively are good examples of architectures tailored for a specific

method. Moreover, with FPGAs, it is possible to build custom processing elements to compute the

likelihood and prior of a given model. These elements only have the arithmetic operators necessary to

compute the given functions and are thus more efficient than the general-purpose elements of fixed-

architecture devices. This is particularly useful considering that the variety of likelihood functions

in Bayesian modelling is large, ranging from easily parallelizable Gaussian evaluations to complex

2.5. Hardware acceleration technologies 47

linear algebra operations [10] or specialized algorithms [25]. Also, the fast on-chip memory access

of FPGAs is an advantage when frequent communication between parallel processes is required (e.g.

exchange step in popMCMC, resampling step in pMCMC).

Another particularly interesting attribute of FPGAs which is relevant to MCMC is their ability to use

custom arithmetic precision (instead of the standard double-precision and single-precision floating

point arithmetic used in CPUs and GPUs). Lowering precision saves chip area and thus more com-

putations can be done in parallel. However, lower precision also means that more error is introduced

in the output of the system. More details about custom precision can be found in Section 2.6.2. The

motivation for using custom precision in MCMC comes from the following intuition: The output of

stochastic algorithms (such as MCMC) is always given with some variance due to the randomness

of these methods (in contrast to deterministic algorithms). This variance can be an advantage when

lowering precision, since it can “hide” precision-related errors, if these errors are significantly lower

than the variance. This can potentially allow for more savings in FPGA chip area than a deterministic

method would allow. Previous work by Chow et al. [3] has already shown that the use of custom

arithmetic precision in Monte Carlo algorithms can result in significant speedups without sacrificing

accuracy.

Furthermore, FPGAs are extremely efficient at generating uniform or gaussian random numbers.

Thomas et al. [5] and Thomas [94] have shown that FPGAs can outperform GPUs when generating

random numbers on chip and that certain architectural features of the FPGA are particularly suitable

for mapping well-known random number generators. Given the importance of fast random number

generation in MCMC, this can prove a significant advantage. Finally, an important property of FPGAs

is their low power consumption compared to CPUs and GPUs. Savings of an order of magnitude in

energy efficiency are typical [95]. This can be a crucial advantage for High Performance Computing

(HPC) or embedded applications of MCMC.

2.5.5 Other platforms

Many other computing platforms, either generic or designed for specific applications, exist today. It

is worth mentioning Digital Signal Processors (DSPs), which are CPUs specialized for digital fil-

tering and other signal processing applications. Their architectures and instruction sets are tailored

for efficiently performing the kinds of computations necessary in these fields, most notably multiply-

48 Chapter 2. Background and related work

accumulate operations. They are also traditionally built to perform computations in fixed-point arith-

metic precision, a feature that could be exploited by the custom precision methods presented in this

thesis (although this is not explored here). Another category of non-standard CPUs is the family

of Very long Instruction Word (VLIW) processors. These devices allow multiple instructions to be

executed simultaneously and this can be determined at compile time. Finally, several FPGA, GPU

and CPU vendors have released heterogeneous (mixed-architecture) devices that include CPUs, GPUs

and/or FPGAs in the same chip. These include ARM Mali, AMD Fusion, Intel Ivy Bridge and Xilinx

Zynq among others. These platforms are suitable for applications which comprise diverse processing

tasks, each suitable for mapping on a different architecture, for example a mix of sequential tasks

(which run fast on a CPU), matrix operations (which can be implemented efficiently on a GPU) and

custom precision computations (which are more suitable for FPGAs). Bayesian inference applications

often belong to this category.

2.6 Arithmetic precision

2.6.1 Floating point arithmetic

Arithmetic (or numerical) precision refers to the number of bits used to represent numbers in a com-

puter, as well as the way these bits encode the number. The number and arrangement of bits define

which numbers can be represented, making different precision schemes suitable for different applica-

tions. In general, the larger the number bits (i.e. the word-length), the more accurate the computations

become.

The most common arithmetic format in general-purpose computing is the floating point format. This

format will be used in all algorithms and hardware implementations of this thesis. In floating point,

numbers are represented using a sign bit, the mantissa a (which consists of m bits that represent a

number in the range [0,1)) and the exponent b (which consists of e bits that represent a signed integer):

x =±2be...b2b1×0.am...a2a1 (2.23)

The term precision configuration will be used in this thesis to describe the number of mantissa and

exponent bits of the employed floating point format. This can be represented by c = (m,e).

2.6. Arithmetic precision 49

The use of a separate exponent allows floating point numbers to represent a large range of values (in

contrast to the fixed-point format where no exponent is used). This is very useful when there is no

information about the dynamic range of variables in a program. Floating point is used as the default

format in these cases. Nevertheless, the result of using this format is that representable numbers are

not uniformly spaced. The difference between consecutive representable numbers increases when the

value of the exponent grows. Practically, this means that floating point is more “accurate” for small

numbers and less “accurate” for large numbers.

Of course, as with all arithmetic formats, the accuracy of computations changes with different preci-

sion configurations. When the number of mantissa and exponent bits drop, the error in all calculations

(e.g. additions, multiplications) increases. The accumulation of these errors as the numbers pass

through the datapath can lead to significant bias in the output.

2.6.2 Custom precision floating point in CPUs, GPUs and FPGAs

CPUs, GPUs and most other fixed-architecture platforms support only pre-defined floating point con-

figurations. These are the single-precision configuration, i.e. c = (24,8) and the double-precision

configuration, i.e. c = (53,11). CPU and GPU architectures have fixed compute units to handle these

two formats. Nvidia has announced that its forthcoming Pascal GPU architecture (scheduled for re-

lease in 2016) will inherently support a new format, half-precision floating point (c = (11,5)) [96].

The latest version of CUDA already supports half-precision for storing variables and operating on

them but the actual computations are still done on single-precision compute units on the GPU device

[96]. Half-precision is not employed in the GPU implementations of this thesis. Other floating point

formats can only be simulated but with significant cost in terms of performance.

Nevertheless, some applications do not actually require single- or double-precision (or even half-

precision) to produce accurate results. Lower precisions are enough in many cases. Moreover, if there

is a way to check the dynamic ranges of all variables in an algorithm, it is possible to use even a

fixed-point precision format that is guarantees coverage of these dynamic ranges.

FPGAs are able to exploit this because, in contrast to fixed architectures, they do not have built-in units

that work in a pre-defined precision. In an FPGA system, a designer can instantiate arithmetic opera-

tors (e.g. adders, multipliers) which operate in any custom precision configuration. Most importantly,

the FPGA area required to implement these operators drops with lower precisions [97, 98] (while for

50 Chapter 2. Background and related work

CPUs and GPUs, computations in low precisions are simulated and thus take more time). This means

that more operators can be instantiated in the same FPGA fabric, leading to more parallelism and thus

higher performance. FPGAs are thus the ideal platform to experiment with custom precision if there

are reasons to believe that the targeted algorithm is robust to precision reduction (i.e. the error in the

output of the algorithm is relatively insensitive to precision and thus significant precision reductions

can be tolerated). The above approach (i.e. using precision reduction to boost parallelism is employed

in Chapter 3 and 5 of this thesis). It has to be noted that reducing precision also results in a reduction

of the latency of operators in FPGAs. This effect is not investigated in this thesis, since: 1) Throughput

(and not latency) is the critical factor for performance in all the FPGA architectures of this thesis, 2)

Latency reduction when lowering precision is limited for most of the floating point operators used in

this thesis.

For more information on the trade-offs between precision and FPGA area, see Table 3.6 of Chapter 3

and Figure 5.7 of Chapter 5, as well as Detrey and de Dinechin [98]. For more details on the trade-offs

between precision and sampling accuracy in MCMC see the next section (Section 2.6.3), as well as

the evaluation results of Chapter 5. It has to be noted that fixed-point precision is not considered in

this thesis.

2.6.3 Custom precision in MCMC

As mentioned earlier in this chapter, the typical problem that MCMC aims to solve is the estimation

of the integral (2.8). MCMC draws samples θ (i), i ∈ {1, ...,N} from p(θ) (i.e. the target distribution)

and uses them to evaluate the output estimate (2.9), which is an unbiased estimator of (2.8).

Equations (2.8) and (2.9) are theoretical; they assume that all computations inside MCMC are per-

formed in infinite precision. This means that MCMC samples are distributed according to the true

distribution p(θ) and the output estimate (2.9) converges to the true value (2.8) for N → ∞. Nev-

ertheless, in practical MCMC implementations on digital devices, infinite precision is impossible to

achieve. As a result, almost all work in MCMC literature uses either double or single precision float-

ing point, since these are the two format that are inherently supported by CPUs. Both formats are

considered adequate for most existing problems (although there is no guarantee that they are indeed

adequate). In this thesis, double precision is used as equivalent to infinite precision in Chapters 3

and 5. In these chapters, precision optimizations take place and double precision was chosen as the

2.6. Arithmetic precision 51

reference (infinite) precision because it is the highest precision supported by CPU and GPU architec-

tures. On the other hand, Chapter 4 uses single precision for all implementations, since no precision

optimization takes place in this case.

All MCMC algorithms consist of two main parts: 1) The evaluation of the probability density of

each proposed sample p(θ ∗). This part is specific to the targeted problem (i.e. the likelihood and

prior). 2) The generic operations, which mainly include proposing samples and accepting/rejecting

them according to their probability density value. This part is generic, i.e. it is the same regardless

of the targeted problem, as long as the MCMC method does not change. Examples of what these two

parts look like have been given earlier in this chapter when describing various MCMC methods and

Bayesian models.

The probability evaluations (first part) take up the bulk of the computation time, especially when com-

plex models and large-scale data are employed. In an FPGA implementation this means that most of

the FPGA area will be devoted to probability evaluation modules. The generic MCMC operations are

less computationally demanding. Therefore, when interested in achieving high sampling throughput

for large-scale problems (which is the goal of this thesis), the crucial task is the minimization of the

cost of implementing p(θ). Part of this thesis (Chapters 3 and 5) focuses on how to achieve this goal

by reducing floating point precision in FPGAs. As mentioned above, lower precision leads to area

savings in the FPGA fabric, which in turn allows for more parallel modules to be instantiated.

Treating the two parts of MCMC as separate precision domains (all in floating point precision), it is

possible to acquire four different precision combinations, shown in Table 2.1. Double precision is used

in the place of infinite precision in this section (and in all parts of the thesis that deal with precision

optimization). Combination D/D (double precision / double precision) is the mainstream approach

followed in MCMC literature; it theoretically guarantees convergence to the “true” probability distri-

bution but it is not efficient computationally, since it requires double precision arithmetic to be used in

all parts of the implementation (meaning no area savings in the FPGA).

Combination D/C (double precision / custom precision) performs all generic operations in double

precision, thus guaranteeing convergence to some probability distribution. Due to the use of custom

precision for probability density evaluations, this stationary distribution is not the “true” distribution

(p(θ)) but an approximation of it (denoted pc(θ), where c = (mantissa bits, exponent bits) is the

precision configuration used). Also, Combination D/C leads to high area savings in the FPGA due

52 Chapter 2. Background and related work

Table 2.1: Combinations of precision configurations in the two precision domains of MCMC and the

effects on: 1) convergence to the target distribution, 2) area savings/sampling throughput in an FPGA

implementation. DP stands for double precision floating point, CP stands for custom precision floating

point.

Probability density domain in

DP

Probability density domain in

CP

Generic domain in DP Combination D/D: “Correct”

kernel (all theoretical properties

of MCMC maintained) - targets

“true” target distribution p(θ).
No area savings, no increase in

sampling throughput.

Combination D/C: “Correct”

kernel (all theoretical proper-

ties of MCMC maintained) -

targets approximate but known

target distribution pc(θ). Large

area savings, large increase in

sampling throughput.

Generic domain in CP Combination C/D: “Perturbed”

kernel (no guarantee of where/if

it converges) applied to the cor-

rect target distribution p(θ). It

actually samples from an un-

known distribution. Small area

savings - small increase in sam-

pling throughput.

Combination C/C: “Perturbed”

kernel (no guarantee of where/if

it converges) applied to the ap-

proximate distribution pc(θ). It

actually samples from an un-

known distribution. Large area

savings - large increase in sam-

pling throughput.

to the use of low precision for probability density evaluations (which is the most computationally

intensive part and typically takes most of the FPGA area). This approach is thus the most promising

of the four approaches in the table.

Figure 2.10 shows the shape of pc(θ) (in this case a standard Gaussian density) for various precisions

c. Only the number of mantissa bits changes. The effect of reducing the mantissa bits is that the

approximation to the “perfect” density becomes coarser. The support of the distribution remains the

same, since the number of exponent bits is not reduced.

Combinations C/D (custom precision / double precision) and C/C (custom precision / custom preci-

sion) are less interesting. Neither of them guarantee convergence to any target distribution because

custom precision is used for generic operations. It is possible that unexpected behaviour will occur

when following one of these approaches (i.e. either the sampler does not converge or it converges

to an unknown distribution). In addition, Combination C/D does not provide significant area savings

(and thus speedup) in the FPGA due to the use of double precision for probability evaluations. Area

savings from implementing the generic operations in reduced precision are limited.

Following Combination D/C (which will be employed in Chapter 5 and partly in Chapter 3), the

2.6. Arithmetic precision 53

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

θ

p
c
(θ

)

c=(53,11)

c=(6,11)

c=(4,11)

c=(2,11)

Figure 2.10: Shape of pc(θ) when changing the precision configuration c. DP stands for double

precision. Exponent bits are constant (=11).

approximated integral is no longer given by Equation (2.8). It is now the following:

Ic = Epc
[f (x)] =

∫

f (θ)pc(θ)dθ (2.24)

The value of the custom precision output estimate is:

Ĩc = Ẽpc
[f (x)] = 1

N

N

∑
i=1

f (θ (i))≈ Ic (2.25)

where θ (i), i ∈ {1, ...,N} are samples drawn from pc(θ).

Therefore, combining (2.8) and (2.24), it is clear that the following bias is introduced in the output

estimate due to the use of custom precision:

bc = I− Ic =
∫

f (θ)p(θ)dθ − ∫ f (θ)pc(θ)dθ (2.26)

54 Chapter 2. Background and related work

In Chapter 3, it will be shown that in the case of popMCMC, it is possible to use custom precision

densities (like the ones in Figure 2.10) and at the same time correct or avoid the bias (2.26) in the

output estimate. Chapter 5 will propose a way to optimize the precision configuration c given a user-

defined threshold for the bias (2.26).

2.7 Related work

This section contains an extensive review of existing literature in fields closely related to the present

thesis. These fields are MCMC acceleration using parallel hardware (covering several approaches but

focusing particularly on popMCMC, pMCMC and PF implementations), tuning of the number of par-

ticles in MCMC, custom precision techniques and optimization methods for Monte Carlo algorithms,

as well as other research which cannot be classified in one of the above categories. Each section is

supplemented with comments on how the work on this thesis compares to the reviewed literature.

2.7.1 MCMC parallelization and hardware acceleration

Overview of approaches

The main challenge when accelerating MCMC on any parallel platform is its inherently sequential

nature; the generation of each sample of the Markov chain requires the previous sample to be available.

Therefore, the algorithm cannot be trivially parallelized. Several approaches (comprising algorithmic

modifications or hardware implementation techniques or both) have been proposed to bypass this

problem:

1. Execution of many independent Markov chains which sample from the same distribution, in

order to generate more samples in the same amount of time on a parallel platform. This is a

straightforward way to parallelize sampling but it was deemed wasteful even in the early days

of MCMC parallelization [99, 100]. An MCMC chain often needs a long time to converge. This

means that running many chains with the same convergence time in parallel can be a waste of

resources; all of the chains need to converge and therefore burn-in samples need to be thrown

away from each chain. No gain in convergence speed is achieved using this strategy and, even

worse, it is possible that no chain will converge. Even when the chains have converged, slow

2.7. Related work 55

mixing might mean that each of the chains remains stuck in one part of the space for a long

time. In other words, this approach does not tackle any of the inherent issues that make MCMC

inefficient. Therefore it would be preferable to use the parallel resources available to improve

the mixing speed or the sampling throughput of one chain instead of running multiple chains in

parallel. Rosenthal [101] and Wilkinson [102] presented results from using the straightforward

approach in multi-core CPU systems and demonstrated that the variance of the estimates was

reduced compared to a single chain that ran for the same amount of time (for problems where

convergence and mixing are rapid).

2. Use of MCMC methods which exhibit natural parallelism. There are several such methods in

the MCMC literature: Algorithms that run multiple chains which sample from different distribu-

tions in parallel (e.g. population-based MCMC [7]), algorithms that propose multiple samples

in parallel (e.g. Multiple-Try Metropolis [56]), algorithms that use a parallelizable particle fil-

ter for density estimation (e.g. pMCMC [33]) and algorithms that exhibit some other form of

parallelism, e.g. matrix computations [57, 55]). This parallelism can be exploited when im-

plementing these methods on parallel hardware platforms. The speedups that can be achieved

depend on the employed MCMC method and the structure of its parallel computations. The

subsequent parts of this section will review parallel accelerators for popMCMC and pMCMC

in detail. Here, a list of parallel implementations of other methods is given: Gopal and Casella

[103] proposed the use of regenerative simulation to introduce parallelism in MCMC, a strategy

applicable to any MCMC variant. The reported speedups with an R implementation running

on multiple CPU cores were almost proportionate to the number of processors but no details

were given on the hardware used. Tibbits et al. [8] mapped multivariate Slice sampling on a

GPU and achieved a speedup of 5-6x compared to a CPU. The main focus of this work was the

acceleration of the construction of the hypercube (necessary to generate the uniform numbers

mentioned in Section 2.3.4), which is the most computationally expensive task in multivariate

Slice sampling. Beam et al. [104] used a GPU to accelerate Hamiltonian Monte Carlo; the

computations necessary to evaluate the gradient and the posterior density were transformed in

order to be expressed in terms of simple matrix computations. These were then sent to the GPU,

achieving 100-fold speedups over a CPU implementation for large problems. The decompo-

sition is specific to the model used (multivariate regression) but it can be generalized to other

models.

56 Chapter 2. Background and related work

3. Use of speculative execution (i.e. pre-fetching) techniques to perform many MCMC steps in

parallel and keep the parallel resources of the device utilized. For each step of the chain, this

strategy computes (in parallel) the paths that the chain would follow in case the proposed sample

is accepted or rejected. This is done recursively, creating a tree of possible paths. This way, the

algorithm does not have to wait until an acceptance step is finished to continue processing. Byrd

et al. [105] used such a speculative strategy to accelerate MCMC on a multi-core CPU with

reported speedups of up to 2.5x with four cores. Strid [106] and Angelino et al. [107] proposed

similar pre-fetching methodologies and demonstrated how they scale with the number of CPU

cores. The results indicate that speedups of up to 10x are possible with 32 or 64 cores in CPU

cluster environments (containing Intel Xeon processors) and that speedup gains are diminishing

as the number of cores grows.

4. Parallelization of the computations inside every step of MCMC (primarily the evaluation of

the probability density of each proposed sample). The techniques used in this case depend

on the form of the density and how amenable it is to hardware acceleration. A GPU-based

example of this approach can be found in Suchard et al. [66], where large-scale mixture model

density computations were parallelized, offering speedups of one order of magnitude compared

to multi-threaded code run on a desktop CPU. In Asadi et al. [18], a multi-FPGA architecture for

MCMC inference in Bayesian networks was described. The achieved acceleration was based on

massive parallelization of the intra-chain acceptance step calculations. Part of these calculations

were pre-executed and reused repeatedly. Also, a small number of parallel chains were used to

enhance mixing but no details were given on how much this strategy helps. Moreover, limited

details were given on the software reference implementation and the level of optimization that

has been applied to it. The reported speedups (four orders of magnitude) are extremely high

and are not justified, indicating that the comparison between software and hardware is not fair.

Bayesian network inference using PT was also accelerated in Lebedev et al. [65] as a benchmark

for the many-core architectural template proposed in the same paper. Zierke and Bakos [25] and

Alachiotis et al. [63] used FPGAs to accelerate phylogenetic inference, taking advantage of the

specific form that the likelihood takes in this problem and the specialized algorithms to evaluate

it; the achieved performance gains against server-class CPUs were up to 10x. As the above

results indicate, speedups in this category of parallel implementations largely depend on the

type of target density and how amenable it is to parallelization.

2.7. Related work 57

5. Separation of the data set into independent sub-groups and execution of a separate MCMC sam-

pler for each sub-group. This approach has already been mentioned earlier as one of the newest

developments in MCMC methodology (Section 2.4.1). Limited related work exists in the par-

allel hardware-based MCMC literature. In the multi-core CPU field, Whiley and Wilson [64]

first proposed strategies to distribute computations for spatial gaussian process inference (al-

though some of them can be applied to other models) and evaluated them on an 8-core Beowulf

cluster, achieving a 5x speedup over sequential code. This approach introduces some error in

the results because the partitioning of the data does not take into account the dependence be-

tween neighbouring partitions. More recent works [76, 77] proposed unbiased data partitioning

strategies for MCMC but no runtime results from actual implementations were given. However,

it is expected that these techniques can achieve speedups almost proportional to the number of

cores, assuming i.i.d. data and small burn-in periods for each sampler. The reason for this is that

communication between parallel MCMC samplers is required only after sampling terminates.

Some works have also used data partitioning techniques tailored for specific applications: Mans-

inghka et al. [108] used FPGAs to accelerate inference in Markov Random Fields by splitting

the problem into independent sub-groups of data and running a Gibbs sampler for each sub-

group in parallel. Belletti et al. [19] used an FPGA-based supercomputer to perform expensive

physics simulations (e.g. Ising models, Potts models), again taking advantage of the indepen-

dence between parts of the model. In the latter work, a lot of application-specific characteristics

were exploited in combination with the FPGA implementations (integer computations, table

lookups). The approach of data partitioning in combination with parallel hardware is suitable

for the era of large-scale data but the most promising techniques [76, 77] are still limited to

exploiting i.i.d. data parallelism.

Parts of this thesis belong to the second category described above. In particular, Chapters 3 and 4

propose FPGA architectures for popMCMC and pMCMC respectively. A part of Chapter 3 belongs to

the fourth category, since the probability density computations are also parallelized. Chapter 5 cannot

be classified in any of the above categories since it applies parallelization only indirectly (through

reducing the precision of computations).

While works in categories 2 and 4 have employed CPUs, clusters and GPUs for MCMC acceleration,

FPGA use has been limited (in category 4) or non-existent (in category 2). Nevertheless, some of

the most popular MCMC methods with inherent parallelism (category 2) are good candidates for

58 Chapter 2. Background and related work

FPGA implementation. In fact, through the use of tailored architectures and custom precision, FPGA

accelerators can outperform CPUs and GPUs when doing MCMC sampling, as will be shown in the

main chapters of this thesis.

Acceleration of population-based MCMC

A number of works on accelerating popMCMC using parallel hardware have been published in the last

five years. In Li et al. [15], a CPU cluster was used to accelerate PT and a method was proposed to limit

the communication overhead between processors in the cluster during Global exchange operations

(see Section 2.3.2). The runtime of the implementation remained almost constant when increasing

the number of parallel processes (each run on a separate processor). This is better than the scaling

of centralized PT code, whose runtime increased at a much faster rate in the same scenario. In Earl

and Deem [109], a scheme to allocate chains to parallel CPU cores was proposed with the aim of

minimizing the CPU idle time. Chapter 3 shows how both these overheads can be avoided in FPGA

implementations that use use local FPGA BRAMs to store samples.

The first work to tackle PT acceleration on a GPU was published by Lee et al. [16]. GPU implemen-

tations of popMCMC were presented and the achieved acceleration ranged from one to two orders of

magnitude against sequential (non-optimized) CPU implementations. Lee et al. [16] took advantage

of the multiple tempered chains in PT, assigning one chain to each GPU thread. The independence of

chains during Global update operations allowed easy parallelization on a GPU, leading to the afore-

mentioned high speedups. These speedups grew with the number of chains, since the GPU gradually

exploited a larger percentage of its parallel resources when more chains were used. This work will be

used as a reference in Chapter 3 because it provides clear results of how the performance of the imple-

mentation scales with the number of the PT chains. Chapter 3 (Section 3.3.1) builds upon this work,

proposing an improved GPU accelerator for the same algorithm (which takes advantage of intra-chain

parallelism), as well as an optimized multi-core CPU implementation. Moreover, mixed-precision

versions of the CPU and GPU accelerators are introduced. These implementations are compared to

the respective FPGA accelerators. Moreover, the results of Chapter 3 show how the performance of

these accelerators scales with the size of the data, an analysis which is absent from [16]. Gross et al.

[26] also addressed PT acceleration on GPUs and applied the algorithm to polymer simulation. The

maximum speedup of an Nvidia GTX480 over an Intel Xeon processor was 130x and was achieved

with the maximum number of chains (240); this result confirms the findings of Lee et al. [16]. Another

2.7. Related work 59

GPU-based accelerator was proposed in Zhu et al. [67], targeting a different popMCMC algorithm

(DEMCMC). A speedup of up to 100x compared to software was achieved.

The only previous works that have employed multiple chains in FPGA implementations are Belletti

et al. [19] and Asadi et al. [18]; both used small numbers of parallel chains (e.g. four chains) to

accelerate mixing in a PT-like fashion but the focus of these works was on exploiting the form of the

target density. The mapping of the parallel chain computations was done in a straightforward manner,

without the tailored architectures and custom-precision schemes of Chapter 3.

Although it is clear from the above results that GPUs are a good match for popMCMC (due to the

embarrassingly parallel nature of the algorithm), Chapter 3 of this thesis shows that FPGAs can out-

perform GPUs by exploiting custom precision on top of the algorithm’s parallelism. Two custom

precision PT algorithms are proposed which manage to use low precision in the largest part of the

FPGA implementation without affecting sampling accuracy. These algorithms are also applied in a

multi-core CPU and GPU setting (where the only choice for the low precision configuration is single

precision floating point), where performance gains are smaller than in the FPGA case. This thesis is

also the first work that jointly examines how each platform’s performance scales with the number of

chains and the size of the data. Previous works investigate only one or none of the above. In addition,

this thesis presents, for the first time in MCMC literature, a power efficiency assessment of PT in

various platforms.

Acceleration of Particle Filters

There is extensive literature on PF acceleration using parallel hardware platforms with some previous

work also introducing algorithmic or application-specific modifications to the basic PF algorithm to

improve performance. The main focus of most previous work is the resampling step (see Section

2.3.3), since it is the only step of the PF which is not trivially parallelizable (it requires a collective

operation involving all particles, e.g. a sum or a cumulative sum). Resampling becomes the dominant

computation when the particle population increases [72].

The main interest of this thesis is the acceleration of MCMC algorithms, therefore no direct compar-

isons with the methods of this section are done in the following chapters. Nevertheless, the use of

PFs in pMCMC (which is examined in Chapter 4) makes it necessary to provide an overview of PF

acceleration research.

60 Chapter 2. Background and related work

The majority of FPGA accelerators for PFs are used in applications with real-time constraints, e.g.

target tracking or computer vision. Moreover, these accelerators are limited in terms of the number of

particles they can use (typically, hundreds or a few thousands). The first research efforts to accelerate

PFs using FPGAs were published in 2004 and 2005. Bolic [110] and Athalye et al. [111] introduced

hardware architectures for PFs, implemented them on FPGAs and applied them to tracking problems.

Bolic [110] also developed several techniques to reduce the memory requirements of the PF, while

Athalye et al. [111] proposed a new resampling algorithm (Residual Systematic Resampling - RSR),

whose FPGA implementation is more efficient (in terms of clock cycles needed to perform resampling)

compared to the classic Systematic Resampling (SR) algorithm. A 60% speedup over a DSP processor

was reported for a small tracking problem but no other performance comparisons to software were

shown. A slightly modified version of RSR, described by Liu et al. [1], is used in Chapter 3 for

the resampling step of the FPGA pMCMC accelerator. In 2005, Bolic et al. [112] were the first to

propose a distributed PF algorithm, i.e. an algorithm which splits the particles into chunks and assigns

the processing of each chunk to a separate sub-PF. Distributed resampling is particularly suitable to

many-core computing platforms and clusters but it can negatively affect the accuracy of resampling

because sub-PFs do not have access to all the particles. Bolic et al. [112] proposed two methods to

avoid or minimize resampling errors in distributed PFs and implemented them on FPGAs.

Some other significant contributions in the field of PF acceleration using FPGAs have focused on

proposing automated frameworks for implementing PFs on these devices while maximizing perfor-

mance and minimizing energy consumption. Saha et al. [113] in 2008 and Happe et al. [114] in

2009 proposed two parameterised frameworks for the implementation of PFs on FPGAs. Saha et al.

[113] mapped the whole PF on the FPGA fabric. The results presented showed very small speedups

compared to software and did not extend to more than few hundreds of particles. Happe et al. [114]

applied a hardware/software co-design approach; a real-time operating system ran on the embedded

FPGA CPU and allocated processing tasks to software and hardware threads. An arbitrary number of

threads can be chosen by the user separately for each PF stage (sample, weight, resample). A design

space exploration was described to optimize performance. Moreover, the authors proposed two run-

time reconfiguration schemes to change the hardware/software partitioning at runtime for applications

that require it (because of changing real-time constraints). Reported speedups (with resampling done

exclusively by software threads) ranged up to 4x against a CPU. A more recent work [115] (in 2014)

also proposed a high-level framework for PF implementation on FPGAs, providing a much simpler

interface to the user and support for multiple FPGAs. The framework was also equipped with an auto-

2.7. Related work 61

mated design space optimization tool. The reported speedups over optimized, parallel CPU and GPU

code were up to 10x and up to 4x respectively. Nevertheless, the fact that resampling is performed in

software is likely to make the speedup vs the GPU drop significantly for larger particle numbers. While

all these FPGA implementations kept the number of particles fixed at runtime, Chau et al. [116] (in

2012) developed an FPGA PF which could adapt the size of the particle population dynamically and

targeted at applications with real-time and energy constraints. Particles with small weights were re-

moved in each PF iteration (minimizing runtime), until some predefined lower threshold was reached,

at which time resampling occurred and the initial particle number was reset. A method to allocate

particles to processing elements in order to minimize energy consumption was also introduced. The

processing elements were implemented as soft-core processors. Energy savings of 35%-75% were

reported with small particle populations. Finally, several application-specific works on FPGA-based

acceleration of PFs have been published [117, 118, 119].

In the GPU field, a significant amount of PF accelerators have been proposed, focusing mostly on how

to accelerate the resampling operation. Hendeby et al. [72] and Lee et al. [16] (both in 2010) were

among the earliest works on PF acceleration. Hendeby et al. [72] implemented a PF and compared

it to a CPU on a tracking problem. They used stratified resampling and employed a parallel prefix

sum algorithm to compute the necessary cumulative sum. Nevertheless, the small GPU register size

limited resampling performance, while the use of CPU-based random number generation proved a

bottleneck; the GPU only slightly outperformed the CPU for large numbers of particles (up to one

million) and was slower for small particle populations. Lee et al. [16] presented a straightforward PF

implementation using multinomial resampling. Resampling was again the bottleneck computation.

Speedups of 8x-37x compared to sequential CPU code were reported for a stochastic volatility model

(with up to 128K particles). In 2013, Hwang and Sung [120] proposed a technique to overcome one of

the reasons that resampling is inefficient on GPUs, namely the workload imbalance between threads

during particle replication. Their method was shown to be 2x-10x faster than a conventional GPU

implementation.

Various GPU implementations have resorted to the use of distributed resampling techniques to avoid

the need for expensive resampling on the full particle set [121, 122, 123, 124]. In 2010, Chao et al.

[121] proposed the use of distributed resampling in combination with the Finite-Redraw-Importance-

Maximizing (FRIM) technique in the sampling step, which repeats sampling if the particle’s weight

is too small. This technique can reduce the number of particles required to achieve a certain level of

62 Chapter 2. Background and related work

estimation accuracy. With the use of a low-end GPU, they reported speedups of up to 5.7x compared to

a straightforward, non-distributed, non-FRIM GPU implementation (with few thousands of particles).

The distributed implementations of Chitchian et al. [122] in 2013 and Par and Tosun [124] in 2011

achieved speedups up to 100x and 75x respectively compared to sequential software, demonstrating

the effectiveness of distributed techniques for massive particle numbers (the former was applied to a

robotic control application with 2 million particles, while the latter was applied to a localization and

mapping problem with 128K particles). Other modified versions of the basic PF on GPUs can be

found in Cabido et al. [125] and Gelencser-Hovath et al. [126], while application-specific PFs can be

found in Brown and Capson [73] and Lozano and Otsuka [127].

In 2013, a multi-core CPU implementation of a PF was described in Chitchian et al. [122], where

a parallelized, distributed PF was run on a 16-core Intel Xeon CPU and was shown to be up to 6.5x

faster than sequential CPU code. A similar setting with a 6-core CPU is found in Par and Tosun [124],

with speedups of up to 4.7x. The performance of several distributed resampling algorithms when run

on multi-core CPUs was evaluated in Rosen et al. [128] in 2010, where one of the algorithms of Bolic

et al. [112] was shown to achieve almost linear speedup with respect to the number of cores due to the

limited communication between sub-PFs.

In general, the speedups achieved when accelerating PFs using parallel platforms are smaller than

the speedups achieved when accelerating popMCMC methods (typically by one order of magnitude).

This is due to the resampling step in PFs, which is not straightforward to parallelize. In contrast,

popMCMC chains are easily parallelizable. Distributed resampling can serve to close this gap but the

methods to control and guarantee the quality of resampling must be employed.

Acceleration of Particle MCMC

Previous work on accelerating the pMCMC algorithm is limited. The first ever GPU implementation

was introduced by Henriksen et al. [129] in 2012. The pMCMC algorithm used was the one presented

in Section 2.3.3. The sample and weight steps of the PF were mapped to multiple threads, while a

standard systematic resampling algorithm was implemented using the parallel prefix-sum technique

of Hendeby et al. [72]. The sampler was applied to two relatively simple SSMs with 5-6 unknown

parameters and only 100 states. Also the number of particles in experiments did not exceed 512.

The authors demonstrated that the sampler converges to the correct posterior using a total variation

2.7. Related work 63

distance metric and found the optimal number of particles that maximized MCMC convergence speed.

Nevertheless, there were no details about the GPU device used, the absolute runtimes and the speedups

compared to software. Therefore the efficiency of the implementation cannot be evaluated. Moreover,

the limited number of states and particles is not representative of real, large-scale problems where

hardware acceleration is needed.

A more recent work by Murray [2] (in 2015) proposed a high-level, automated tool for SSM inference

on multi-core CPUs and GPUs, denoted Library for Bayesian Inference (LibBi). LibBi provides a

domain-specific modelling language, in which the user can describe an SSM with known or unknown

parameters. LibBi can be configured to run state estimation on the SSM (using a PF or a Kalman

Filter) or perform inference (using pMCMC or SMC2, a related method). Many parameters can be

selected by the user (e.g. number of particles, frequency of resampling, compiler optimizations).

Also, there are five resampling algorithms to chose from when the PF is in use (these algorithms were

presented in more detail in [54]). LibBi makes use of a C++ backend and several parallel computing

languages and tools like MPI, OpenMP, SSE, CUDA to improve performance. Nevertheless, the

language used to define the SSM is not fully flexible in terms of the transition and observation densities

that can be defined; some popular densities are not supported and certain types of computations are

impossible to define. However, the tool is openly available and can be modified. The evaluation results

presented in [2] were limited: Using a Lorenz ’96 SSM model with 40 states and 8192 particles, the

CPU-only accelerator (which used OpenMP and SSE), achieved a 5x speedup over sequential CPU

code. The combined CPU and GPU version (which also used CUDA) provided an extra 4x speedup.

An evaluation of the tool for larger SSMs with more particles and a comparison with the pMCMC

accelerator proposed here can be found in Chapter 4.

In general, due to the fact that pMCMC has been invented only recently, most of the techniques used

to accelerate PFs (described in the previous Section) have not yet been applied to pMCMC (which

uses a PF in each iteration). Moreover, the speedups reported by [2] are an order of magnitude smaller

than the speedups achieved by parallel implementations of popMCMC.

The work presented in Chapter 3 is the first to use FPGAs to accelerate pMCMC. It is also the first to

use a modified version of Residual Systematic Resampling (introduced by Lie et al. [1]) in a PF and

the first to scale the number of SSM states and the particle population of pMCMC to many thousands.

A comparison of the pMCMC accelerators of Murray [2] with the FPGA-based samplers of Chapter

4 can be found in Section 4.7.

64 Chapter 2. Background and related work

2.7.2 Choice of number of particles and use of tempering in Particle MCMC

As mentioned in Section 2.3.3, the main tuning parameter of the pMCMC algorithm is the number

of particles of the PF. The larger the number of particles, the more time-consuming each pMCMC

iterations becomes. At the same time, more particles mean that the likelihood estimate p̃(θ |Y1:T) be-

comes more accurate, i.e. the variance of the estimate is smaller. This, in turn, leads to faster pMCMC

mixing, since pMCMC moves closer to an exact MCMC algorithm. Therefore, there is a tradeoff

between the runtime of the PF and the mixing of pMCMC when changing the number of particles.

Recent literature [130, 131, 132] has proposed ways to optimize the number of particles based on this

tradeoff. They have explored the links between the likelihood estimate variance, the proposal distri-

bution variance, the mixing of pMCMC and the total runtime. Depending on the assumptions made

and the mixing metrics used, they recommend that the number of particles and the proposal variance

should be chosen so that the variance of the likelihood estimate is somewhere between 1.0 and 3.2,

with a corresponding pMCMC acceptance rate of 7%-15%. These numbers lead to maximization of

the mixing per second metric in pMCMC. The evaluation results in the above papers showed that when

using more or fewer particles than the optimal number, mixing per second drops. These recommenda-

tions are based on analytical proofs. It has to be noted that the assumptions made in order to construct

these proofs do not necessarily hold in all problems.

In spite of the practical value of these results in some scenarios, there are two issues that remain

unaddressed: 1) All work mentioned above assumes that the runtime of the PF grows linearly with the

number of particles. Nevertheless, this is not true in all cases (i.e. for all numbers of particles - P)

when the PF is implemented on parallel platforms. 2) The use of multiple chains to improve pMCMC

mixing has not been examined, although pMCMC mixes slowly for multi-modal posteriors, even with

massive amounts of particles. Adding chains to the algorithm will add one more parameter to consider

during the tuning process; instead of the optimal number of particles, the optimal combination of

particles and chains has to be found.

Chapter 4 tackles these two issues by introducing a multi-chain pMCMC sampler based on the prin-

ciples of popMCMC methods. The new algorithm is denoted ppMCMC and improves efficiency for

multi-modal posteriors by using tempered chains (see Section 2.3.2). The algorithm is accompanied

by a tailored FPGA architecture which aims at increasing the utilization of the PF datapath by pipelin-

ing chain computations. Moreover, a simulation-based design space exploration to jointly optimize

2.7. Related work 65

the number of chains and the number of particles is included. Also, this exploration is based on the

throughput that a parallelized FPGA PF offers. This is in contrast to previous works [130, 132, 131]),

where only P was optimized and the PF’s runtime was assumed to grow proportionately to P (which

is the case in sequential PF implementations).

It has to be noted that an earlier work [133], has also used a tempering technique to improve the

efficiency of a Sequential Monte Carlo algorithm for joint inference on states and parameters in SSMs.

The tempering was applied to the successive SSM observation densities, with temperatures increasing

with the state index. This served to gradually transform the particle set to an approximation of the

desired posterior, through a number of intermediate approximations (an idea very similar to the SMC2

algorithm [134]). The tempering strategy used in Chapter 4 is clearly distinct from the work in [133],

since it applies tempering to the final PF likelihood estimate and uses a set of PFs within an MCMC

algorithm (and more specifically one PF for each of the parallel MCMC chains).

Finally, Chapter 4 contains the first application of pMCMC and FPGAs to a DNA methylation analysis

problem [14]. So far, pMCMC was considered intractable for such problems and approximate methods

were used [83].

2.7.3 Custom precision in MCMC and in other Monte Carlo algorithms

The only work that has attempted to investigate the effects that custom precision has on the theoreti-

cal properties of MCMC (without touching the issue of precision optimization for improving perfor-

mance) is the work of Breyer et al. [135] in 2001. It was shown that even when using high precision,

round-off can cause non-convergence and arbitrarily large perturbations in the stationary distribution

of the Markov chain in certain innocuous-looking examples. However, the authors proved that, under

certain conditions that usually apply, MCMC still converges to the right distribution when the round-

off error is bounded. The findings of this work have limited practical use for deciding whether an

employed precision is adequate or not, an issue that is investigated in Chapters 3 and 5 of this the-

sis. Moreover, results from the Markov chain perturbation literature [136] in 2005 can potentially be

related to the issue of customizing precision. These results connect changes to the transition kernel

of the chain to alterations in the state probabilities of its stationary distribution (measured using the

total variation distance metric). Nevertheless, these results are practically applicable only to discrete

state-spaces and the metrics used to measure the “error” in the stationary distribution do not have a

66 Chapter 2. Background and related work

natural or easily interpretable meaning.

Apart from the above works which are based on probability theory and have limited practical appli-

cability, no other study has tackled the issue of arithmetic precision in MCMC. Most importantly, no

research exists on how to optimize precision with the aim of improving performance. This thesis is

the first to do so, proposing custom precision techniques suitable for a particular MCMC method (see

Chapter 3), as well as a generic precision optimization methodology applicable to any MCMC method

(see Chapter 5). The former techniques approache the problem from the perspective of limiting preci-

sion is parts of the system that do not affect sampling quality, therefore leading to unbiased sampling.

The latter approach reduces precision aggressively for all density computations and aims to find the

minimum precision that satisfies a user-defined bias tolerance. It therefore leads to biased results.

For Monte Carlo methods other than MCMC, Chow et al. [3] in 2012 and Xiang and Bouganis [137]

in 2011 have proposed precision optimization techniques based on performing FPGA runs in different

precisions. Chow et al. [3] introduced a precision optimization methodology based on running a low

precision and a mixed precision run. The second run was used to estimate and correct the bias of the

first run. A workload balancing strategy between the host (which ran the high precision parts) and

the FPGA (which ran the custom precision parts) was also described. In contrast, the work presented

in Chapter 5 does not remove the bias from the result but guarantees (with some probability) that the

bias will be within a user-defined tolerance. This allows for more aggressive accuracy/performance

trade-offs. Moreover, Chow et al. [3] focused on simple (non-MCMC) Monte Carlo methods, where

the generation of random numbers from p(θ) is relatively straightforward and the computational bur-

den is due to the evaluation of f (θ) in (2.8). This means that the evaluation of f (θ) is the part of the

system that is implemented in low precision, leading to bias in the output. On the contrary, Chapter 5

investigates MCMC, where the generation of random numbers from p(θ) is the bottleneck computa-

tion and f (θ) is typically easy to evaluate. Therefore, in this case the evaluation of p(θ) is the part

of the system that is implemented in reduced precision and thus the source of the bias. This differ-

ence is critical, since it leads to a different form of bias estimator. In Xiang and Bouganis [137], an

adaptive approach based on the Kolmogorov-Smirnoff metric was introduced to optimize precision.

The Cumulative Distribution Functions (CDFs) from a high and a low precision run were compared

using the metric and the precision of the low precision run was adapted so that a threshold was not

violated. Placing such a threshold is empirical and does not constrain the output error, in contrast to

the approach presented in Chapter 5 which guarantees an error threshold with some probability.

2.8. Summary 67

2.7.4 Other related work

A number of other works are related to the research presented in this thesis. In [138], a modified

version of the PT algorithm, similar to the MPPT algorithm of Chapter 3, was proposed; a Gaussian

process approximation to the true distribution was used for some of the auxiliary chains of PT without

altering the target distribution in the first chain. MPPT also uses approximations for the auxiliary

chains but these approximations are reduced precision-based approximations. Moreover, Chapter 3

contains an extensive investigation on how to select the level of crudeness of the approximation (i.e.

the precision) in order to maximize performance. Also, results on how performance scales with prob-

lem size and a theoretical proof of the correctness (i.e. unbiasedness) of the method are included.

None of the above are provided in [138].

The work of Gramacy et al. [139] is related to the second custom precision method of Chapter 3,

i.e. WPT. Gramacy et al. [139] showed how samples coming from the auxiliary chains of PT (which

are distributed according to tempered versions of the target distribution) can be used to improve the

variance of the output estimate. This was done by assigning weights to the auxiliary samples and

employing an Importance Sampling approach to contribute to the final estimate. This idea can be

useful when one wants to “correct” erroneous samples coming from any altered distribution; the WPT

algorithm utilizes the Importance Sampling idea by assigning weights to the samples of the first chain.

By doing this, it manages to correct sampling errors caused by using reduced precision in the FPGA

implementation.

2.8 Summary

This chapter provided an introduction to the main concepts that are necessary to comprehend the rest

of the thesis, highlighted the importance of accelerating MCMC to tackle large-scale problems, gave

a brief introduction to current hardware platforms and presented a review of previous related work.

The literature review revealed that, although a significant amount of work on MCMC acceleration has

been published during the last five years, this work has been limited in several ways: Research that uses

FPGA only tackles the acceleration of the Bayesian likelihood computation (for a specific Bayesian

model) and not the acceleration of the MCMC algorithm. Also, the special features of FPGAs (e.g.

custom precision) have not been exploited. Even research that employs CPUs and GPUs to accelerate

68 Chapter 2. Background and related work

MCMC is typically limited to direct mappings of algorithms to hardware. The idea of adapting the

MCMC algorithm to make it more suitable for the underlying platform is unexplored.

The following chapters of this thesis focus on extending the existing MCMC acceleration research

in various ways, so that the above limitations are tackled. In particular, they look at how FPGA

technology can be exploited to accelerate classes of MCMC methods for which only CPU and GPU

implementations currently exist. Novel algorithms, which are more suitable for FPGA mapping, are

also proposed. Finally, the following chapters explore various ways in which custom precision can be

used to accelerate MCMC.

Chapter 3

Algorithms and architectures for

Population-based MCMC

3.1 Introduction

A common form of complexity in Bayesian posterior distributions is multi-modality, i.e. the exis-

tence of two or more separate modes in the probability density. Multi-modal distributions appear in

many Bayesian inference application, e.g. machine learning using Restricted Boltzmann Machines

or mixture models [22, 40, 7], computational genetics [13, 25] and biological simulations [27]. They

cause baseline MCMC samplers (e.g. Metropolis sampler [30]) to get stuck in one of the modes of the

distribution for a long time, thus making them inefficient.

Population-based MCMC (popMCMC) [7] is a class of methods specifically designed to address

multi-modality in the target distribution. Parallel Tempering (PT) [41] is the most popular of these

methods (see Section 2.3.2 and [41]). This chapter proposes ways to tackle the computational chal-

lenges of PT, e.g. the processing burden of running multiple MCMC chains instead of the one chain

used by basic MCMC methods. The chapter focuses on combining hardware acceleration (using FP-

GAs but also CPUs and GPUs) with novel algorithmic modifications based on the use of custom

arithmetic precision. Both the characteristics of the FPGA architecture and the structure of PT are ex-

ploited to accelerate inference. The main questions that this chapter seeks to answer are the following:

• “How can PT be parallelized in multi-core CPU, GPU and FPGA implementations and what are

69

70 Chapter 3. Algorithms and architectures for Population-based MCMC

the gains?”

• “Is there a way to reduce the arithmetic precision in large parts of the algorithm without affecting

sampling accuracy?”

• “What extra speedup does such a strategy deliver in each platform?”

The results of this chapter demonstrate that significant speedups are possible when parallelizing PT

and that smart modifications to the algorithm permit the reduction of precision in the majority of

PT computations without any cost in sampling accuracy. This reduction translates to significant area

savings and throughput improvement in FPGA designs.

Chapter outline

Section 3.2 repeats basic background information on the PT algorithm for easier reference (PT has

already been presented in Chapter 2). It also describes the available forms of parallelism in the algo-

rithm. The remaining sections contain the main contributions of the chapter, which are the following:

1. An optimized FPGA accelerator for PT, which employs double precision and delivers a speedup

of up to 174x over sequential code running on a single-core CPU. Highly optimized imple-

mentations of PT on a multi-core CPU and a GPU are also proposed, delivering up to 16.1x

and 165x speedup compared to sequential code respectively. Each implementation takes ad-

vantage of specific features of the respective hardware platform in order to maximize sampling

throughput (Section 3.3.1).

2. Two novel, custom precision methods (i.e. algorithmic modifications) for PT, which allow the

use of reduced precision in parts of the algorithm and thus lead to reduced runtimes (Section

3.3.2). Both methods guarantee that the use of reduced precision does not affect sampling qual-

ity, i.e. does not introduce error in the Monte Carlo estimate of Equation (2.8). Instead, by

reducing precision, the mixing of the PT algorithm is affected, allowing for a trade-off between

raw speedup and mixing. The first method uses a weighting scheme to correct errors (Weighted

PT - WPT). The second method uses custom precision in parts of the algorithm which do not

affect output accuracy (Mixed-Precision PT - MPPT). A theoretical proof that MPPT maintains

the detailed balance condition (which is necessary to guarantee convergence to the correct tar-

get distribution) is presented. WPT is guaranteed to converge to the correct target distribution

3.2. Parallel Tempering 71

because it is essentially an Importance Sampling (IS) method. All necessary conditions for IS

to sample from the correct distribution apply in the WPT case by design.

3. Two tailored architectures which map the two custom precision methods to an FPGA, taking

advantage of reduced precision to improve performance (Section 3.3.3). These accelerators

offer further speedups of up to 6.5x over the baseline (double precision) FPGA accelerator. The

two custom precision methods are also mapped to a CPU and a GPU, delivering speedups of up

to 1.4x and 3.2x respectively over the double precision samplers.

4. A precision optimization process for WPT and MPPT on FPGAs, which is able to find the

precision configuration which maximizes effective sampling throughput, defined later in the

text (Section 3.6.4). The optimization process takes advantage of the trade-off between speedup

and mixing to deliver maximum effective performance.

The performance of the various accelerators is evaluated using a case study representative of the types

of problems that PT is applied to: Bayesian inference on a mixture model [40, 16]. This case study

leads to a multi-modal posterior. An investigation of the way the performance of the accelerators

scales with the size of the chain population, the size of the data set and the size of the hardware device

is also presented. Finally, results on the power efficiency of each accelerator are included (Section

3.6.3).

3.2 Parallel Tempering

The PT pseudocode, which was initially presented in Chapter 2 (Algorithm 3), is shown in Algorithm

6. A detailed description of the algorithm can be found in Section 2.3.2. In this chapter, the tem-

perature of chain j ∈ {1, ...,M} (M is the size of the chain population) is set to Temp j = (M
M+1− j

)
2
,

following the recommendation of Lee et al. [16]. This setting is suitable for the target distribution

which is presented in Section 3.4 and used as a case study in this chapter. For other case studies, a

different tempering setting might lead to more efficient sampling (i.e. higher mixing rate) but this

investigation is outside the scope of this chapter. The parameters of the PT algorithm, along with the

values they take in the evaluation section are listed in Table 3.1. It has to be noted that the symbol p(θ)

is used throughout the chapter to describe the target distribution. This is equivalent to the posterior

72 Chapter 3. Algorithms and architectures for Population-based MCMC

Algorithm 6 Parallel Tempering

1: procedure PT(N, M, Temp1:M, θ
(1)
1:M, σ2

1:M) - Inputs: N (number of MCMC samples), M (number

of chains), Temp1:M (temperatures for all chains), θ
(1)
1:M (initial MCMC samples for all chains),

σ2
1:M (variances of proposal densities for all chains)

2: for i = 2, ...,N do

3: for j = 1, ...,M do // Global update

4: θ ∗ ∼ q(θ ∗ | θ (i−1)
j) = N(θ ∗ | θ (i−1)

j ,σ2
j)

5: Evaluate acceptance ratio a← p j(θ
∗)

p j(θ
(i−1)
j)

6: Generate uniform random number u∼U [0,1)
7: if a≥ u then

8: Accept proposed sample: θ
(i)
j ← θ ∗j

9: else

10: Reject proposed sample and replicate previous sample: θ
(i)
j ← θ

(i−1)
j

11: Choose even chain pairs ((1,2),(3,4), ...) or odd chain pairs ((2,3),(4,5), ...) (in turn)

12: for all chosen chain pairs (q,r) do // Global exchange

13: Evaluate exchange acceptance ratio e(θ
(i)
q ,θ

(i)
r)← min

(

1,
pq(θ

(i)
r)pr(θ

(i)
q)

pq(θ
(i)
q)pr(θ

(i)
r)

)

14: Generate uniform random number u∼U [0,1)

15: if e(θ
(i)
q ,θ

(i)
r)≥ u then

16: Exchange the samples θ
(i)
q and θ

(i)
r

17: else

18: Do not exchange any samples

19: return θ
(1:N)
1 (N MCMC samples from the first chain)

p(θ | D) in Baysian inference problems, as described in Chapter 2 (also see the posteriors in Section

3.4).

Parallelism in the algorithm

There are two forms of parallelism in PT:

1. Inter-chain parallelism during Global updates (loop in line 3 of Algorithm 6): All chains can be

updated in parallel since they do not interact during this stage. More specifically, the computa-

tionally intensive evaluations of the probability densities of proposed samples (p j(θ
∗) in line 5)

can be done in parallel for all chains. Global exchanges can also be parallelized since pairs of

chains communicate but each exchange is independent. Unfortunately, using more than 100-200

chains does not offer any improvement in mixing [16, 27] and thus using many thousands of

chains is not desirable, despite the massive amount of parallelism that this can offer. Therefore

it is crucial for a PT accelerator to achieve high performance even for moderate numbers of

chains.

2. Intra-chain parallelism during the computation of the probability density of a proposed sample

3.3. Accelerating PT 73

Table 3.1: PT algorithm parameters

Symbol Description Range (in Section 3.6)

M Number of PT chains [8,32768]

Temp1:M PT temperature set (M
M+1− j

)
2

for chain j

N Number of generated MCMC samples (from each

chain)

100000

B Number of burn-in samples 5000

θ
(1)
1:M Initial MCMC samples for each chain Generated uniformly in

the space [0,10]

σ2
1:M Proposal distribution variances for each chain

s Dimension of MCMC samples (i.e. parameter θ) 4

(line 5 in Algorithm 6). This parallelism is density-dependent. Due to the large diversity of

models and corresponding densities, it is impossible to investigate the effect of parallelising this

part in the general case. Nevertheless, it is common in Bayesian problems to use independent

and identically distributed (i.i.d.) data. This leads to a density which is equal to the product of

the sub-densities of all the data (or the sum if log-densities are used). This chapter only considers

this form of density parallelism (an example of which is presented in Section 3.4), because:

1) It is representative of many applications (e.g. [66, 18, 16]), 2) Several MCMC algorithms

are designed to address this specific form of likelihood [62], 3) The kinds of computations

involved in most i.i.d. problems (including the case study of Section 3.4), such as reductions,

are very common even in non-i.i.d. problems. The above three points demonstrate that the

results presented in this chapter on performance and performance scaling can be generalized to

many other models and algorithms.

3.3 Accelerating PT

This section contains the main contributions of the chapter: Ways in which PT can be accelerated

using 1) parallel hardware and 2) custom precision methods (i.e. algorithmic modifications). The PT

code (Algorithm 6) was first implemented in C++ using double precision arithmetic, without exploit-

ing parallelism and without applying any compiler optimizations. This sequential implementation is

used as reference. An identical sequential implementation but with all compiler optimization activated

is also presented in the results section for reasons of completeness. Section 3.3.1 describes in detail

the baseline FPGA accelerator (which uses double precision), as well as two highly optimized imple-

mentations of PT on a multi-core CPU and a GPU. Particular focus is given on the FPGA architecture.

74 Chapter 3. Algorithms and architectures for Population-based MCMC

Section 3.3.2 proposes two custom precision methods to improve PT’s efficiency. Section 3.3.3 maps

these methods first to the FPGA (which is the most suitable device due to its fully customizable pre-

cision) and then to the CPU and GPU (where the only choice of reduced precision is single floating

point precision). In each platform, both forms of parallelism mentioned in Section 3.2 are exploited.

3.3.1 Baseline accelerators

FPGA

Here, a baseline hardware architecture for PT in double floating point precision is proposed. Figure 3.1

shows the block diagram of the architecture. There are four computational blocks (Sample Proposal,

Probability Evaluation, Accept/Reject and Exchange) and three memories (Sample, Probability and

Data). There is also one Gaussian and two uniform random number generators and four FIFO registers.

Most control signals are omitted for clarity.

The architecture is based on extensively pipelining all computational blocks. Pipelining is possible

because PT chains perform the same computations on different data during Global updates and ex-

changes. The system can be thought of as a long pipeline which works iteratively, performing the

same steps for each Global update/exchange.

One MCMC iteration (outer loop in line 2 of Algorithm 6) includes the following (for iteration num-

ber i): The current samples of all parallel chains (θ
(i−1)
j for all j ∈ {1, ...,M}) are read from Sample

memory and forwarded to the Sample Proposal block. The Sample Proposal block proposes candidate

samples θ ∗ by adding Gaussian random numbers to the current samples. If the sample’s dimension

is larger than one, the block proposes values for all dimensions in parallel (aided by parallel Gaus-

sian RNGs). The candidates are then moved to the Probability Evaluation block (shown in Figure

3.2), which computes the candidate probabilities p j(θ
∗). This is done by calculating n probability

sub-densities (n is the number of data), finding their logarithms and summing them to get the total

log-density. For big n, the Probability Evaluation block becomes the bottleneck of the system. To

reduce this bottleneck, multiple parallel pipelines can be instantiated inside this block. The number

of pipelines is limited only by the FPGA chip size. Moreover, since each sub-density requires that a

datum be read from the Data memory, the Data memory is designed to provide data to all pipelines in

parallel at the same cycle (each memory address stores multiple data). The sizes of all system memo-

ries are shown in Table 3.2. An adder tree performs the reduction. The Accept/Reject block receives

3.3. Accelerating PT 75

S
a

m
p

le

P
ro

p
o

s
a

l

G
a

u
s

s
ia

n

R
N

G

P
ro

b
a

b
il

it
y

E
v

a
lu

a
ti

o
n

A
c

c
e

p
t/

R
e

je
c

t

U
n

if
o

rm

R
N

G

E
x

c
h

a
n

g
e

P
ro

b
a

b
il

it
y

m
e

m
o

ry

S
a

m
p

le

m
e

m
o

ry

D
a

ta

m
e

m
o

ry

U
n

if
o

rm

R
N

G

th
e
ta

th

e
ta

p
(

)

p
(t

h
e
ta

)

p
(t

h
e
ta

)

p
(t

h
e
ta

)

a
c
c
e
p
t/
re

je
c
t
s
ig

n
a
l

F
IF

O
s

F
IF

O
s

M
u
lt
ip

le
x
e
r

M
u
lt
ip

le
x
e
r

D

th
e
ta

p
(t

h
e
ta

)

In
te

rf
a

c
e

to
 h

o
s

t

P
C

F
P

G
A

(i
)

*

(i
)

*(i
)

(i
+

1
)

(i
+

1
)

th
e
ta

*

th
e
ta

*

th
e
ta

(i
)

F
ig

u
re

3
.1

:
B

as
el

in
e

F
P

G
A

ar
ch

it
ec

tu
re

76 Chapter 3. Algorithms and architectures for Population-based MCMC

101010 10 9 9 9 9 8

Probability Evaluation (bottleneck)

101010 10 9 9 9 9 8

101010 10 9 9 9 9 8

accept/

reject for

chain 6

accept/

reject for

chain 5101010 10 9 9 9 9 8

+

+

+

11

proposed
sample

for chain

11

Sample proposal

D(13:16)

address 4 data

12

5

Accept/Reject

6

datum

datum

datum

datum

proposed
sample

proposed

sample

proposed
sample

proposed
sample

proposed

sample

Data memory

Adder tree

theta*

D(9:12)

D(5:8)

D(1:4)

proposed
sample

for chain

12

theta*

Figure 3.2: Chain streaming through the Sample Proposal, Probability Evaluation and Update

pipelines. Occupied stages are grey, unoccupied white. Numbers represent the chains that occupy

each stage. There are four pipelines in the Probability Evaluation block (P = 4). The data size is

n = 16. A probability value is generated every four cycles (
⌈

n
P

⌉

= 4). The Sample proposal and

Update pipelines are under-utilized.

Table 3.2: Baseline architecture memories. P is the number of sub-density pipelines, M, n and s are

defined in Table 3.1
Memory Description Depth

(entries)

Width

(bits)

Sample memory Stores current samples of all PT chains M 64s

Probability memory Stores probabilities of current samples of all

chains

M 64

Data memory Stores the data set used for inference
⌈

n
P

⌉

64P

the candidate probabilities p j(θ
∗) and reads the previous probabilities of each chain (p j(θ

(i−1)
j)) from

Probability memory. It also computes the temperature Temp j = (M
M+1− j

)
2
. All these values (along

with a uniform random number) are used to find the Metropolis ratio and accept or reject each candi-

date sample.

The above steps comprise the update operation. The updated samples also pass through the Exchange

block before they are written back to Sample memory. Unlike CPU and GPU implementations (which

are presented in the following sections), the Global update (update of all chains) does not need to finish

before starting the Global exchange. As soon as a chain is updated, it is forwarded to the Exchange

block while the next chains are processed by the Update block.

Each exchange is performed between a pair of chains. Therefore, the block has to wait for two chains

to be updated and then attempt the exchange. Because exchanges are performed between neighbouring

chains only (see lines 11-12 in Algorithm 6), pairs of potentially exchanged samples conveniently

reach the block successively (since chains are updated in order). The temperatures and the updated

sample probabilities are used to accept or reject the exchange. FIFOs are used to store these values

3.3. Accelerating PT 77

when they first become available (earlier in the pipeline), removing the need to write them to the

memories after updates and read them back for exchanges (which is necessary in CPU and GPU

implementations [15, 16]).

Finally, the new samples and probabilities are written back to memories. When all chains have tra-

versed the pipeline, the Global update and exchange are complete and the next MCMC iteration starts.

At every iteration, the current samples and probabilities of the first chain are read from the Sample

memory and sent to a BRAM-based buffer, which is able to transmit the data to the host PC in real

time (using double buffering). Details on the implementation of the buffer are given in Section 3.5.

Performance model

This section gives exact formulas for the latency and throughput of the various blocks in the PT

architecture. The latency of the Sample Proposal block (for generating a candidate sample for one

chain) is:

Latsp = Latadd (3.1)

where Latadd is the latency of a double floating point adder (needed to add a Gaussian random number

to the previous sample of the chain). All dimensions of the proposed sample are generated in parallel.

The latency of the Probability Evaluation block (to compute the probability density of one chain) is:

Latpe =Csubdensity +
⌈

n
P

⌉

(3.2)

where Csubdensity is the latency of a single sub-density evaluation pipeline (depends on the target distri-

bution) and the term
⌈

n
P

⌉

is the latency for passing all the n data through the P parallel pipelines. Each

pipeline can receive one data input per cycle (has a throughput of 1 data per cycle). It is assumed that

n > P, which is the case for all non-trivial data sets.

The latency of the Accept/Reject block (for accepting or rejecting a candidate for one chain) is given

by the following equations:

Latar = Latmult +Latsub +Latcomp (3.3)

where Latmult is the latency of a double floating point multiplier needed to multiply the proposed and

previous log-densities with the temperature of the chain. Two multipliers are needed and they work in

parallel. The results are the numerator and denominator of the acceptance ratio in line 6 of Algorithm

78 Chapter 3. Algorithms and architectures for Population-based MCMC

6 (using log-values). Latsub is the latency of a double floating point subtracter (needed to subtract the

numerator and denominator in order to compute the acceptance ratio) and Latcomp is the latency of a

double floating point comparator (needed to compare the ratio with the logarithm of a uniform random

number).

The latency of the Exchange block (for accepting or rejecting a candidate for one chain) is given by

the following equations:

Latex = Latmult +Latadd +Latsub +Latcomp (3.4)

Four parallel multipliers are needed to find the four terms in the exchange ratio of line 13 in Algorithm

6 (using log-values). Two parallel adders compute the numerator and denominator of the exchange

ratio and a subtracter is needed to compute the value of the ratio. The comparator compares the value

with the logarithm of a uniform random number.

The above four blocks constitute the system pipeline. By making use of chain pipelining, as described

in the previous paragraphs, it is possible to feed one new chain to the pipeline every
⌈

n
P

⌉

clock cycles

(since this is the number of cycles for which the Probability Evaluation block is busy processing each

chain). The total latency of the baseline architecture’s pipeline (the number of cycles necessary to

process one Global Update and one Global exchange, i.e. one PT iteration in the loop of line 2 in

Algorithm 6) is the following:

Latiter pt = Latsp +Csubdensity +M ·
⌈

n
P

⌉

+Latup +Latex (3.5)

where the term M ·
⌈

n
P

⌉

is the number of cycles needed to pass all chains through the system pipeline.

The latencies of the update and exchange blocks are counted only once because they overlap with

the Probability Evaluations (which take significantly more cycles for realistic scenarios where n is

large). Figure 3.2 demonstrates this point more clearly; it shows the utilization of the Sample Proposal,

Accept/Reject and Probability Evaluation pipelines by PT chains when n = 16, P = 4 and
⌈

n
P

⌉

= 4. A

sample reaches the block every four cycles. At the same time, n = 16 data are sent to the block (one

quadruple per cycle). The Data memory is designed to “match” the consumption rate of the block, as

discussed previously.

The latency of the whole PT algorithm is the following:

3.3. Accelerating PT 79

Latpt = N ·Latiter pt (3.6)

and the total time of the system is:

Timetotal pt =
Latpt

f req
+Timeinput pt (3.7)

where f req is the clock frequency of the PT IP in Hz and Timeinput pt is the time needed to send input

arguments from the host PC to the FPGA. No time is spent for outputting the MCMC samples, since

this happens simultaneously with processing (using a double buffering memory architecture).

The throughput of the baseline architecture (MCMC iterations it processes per second, where an

MCMC iteration comprises a Global update and a Global exchange), excluding Timeinput pt , is:

T Ppt =
f req

Latiter pt

(MCMC iterations / sec) (3.8)

This throughput is equal to the throughput of the Probability Evaluation block. It is clear that the

critical factor for the performance of the system is
⌈

n
P

⌉

, the cycles the block needs in order to process

each chain. By fitting more parallel sub-density pipelines in the FPGA fabric, P can be increased,

resulting in higher throughput.

Multi-core CPU

An optimized implementation of PT was implemented on a multi-core CPU in order to achieve a fair

performance comparison. In order to exploit PT’s parallelism, pragmas and Intel Cilk keywords [140]

were embedded in the sequential C++ code. Also, Intel Compiler optimizations [141] (including the

-O3 flag and the optimizations related to the CPU architecture) were applied. More specifically: 1)

The Global update loop was transformed into a cilk for loop and the granularity of the parallelization

was optimized by ordering the compiler to group loop iterations into groups of a certain number of

iterations each (using the granularity pragma). Depending on the number and type of CPU cores and

the amount of work per iteration, a specific granularity maximizes performance. 2) The reduction op-

eration (necessary to sum the sub-densities and evaluate the total probability density) were parallelized

using the simd reduction pragma. A parameter is also used here to specify the granularity of paral-

80 Chapter 3. Algorithms and architectures for Population-based MCMC

lelization [140]. 3) Sub-density evaluations were vectorized by converting the respective functions to

Cilk elemental (vectorized) functions, using the attribute ((vector)) keyword.

GPU

An optimized GPU implementation was also created based on the state-of-the-art CUDA code of Lee

et al. [16]. In Lee et al. [16] the main computational work of the implementation is split into two

kernels, the global update and the global exchange kernels. There are also kernels for random number

generation and initialization. All of the remaining work is done on the CPU. The global update kernel

updates all chains once. It exploits chain parallelism, assigning the work of every PT chain to a

separate thread. This results in an implementation which does not exploit all available parallelism; it

ignores intra-chain parallelism. The exchange kernel performs exchanges between neighboring chains

and these are also parallelized.

Here, a PT implementation which uses an enhanced global update kernel is presented. All the remain-

ing components of the implementation of Lee et al. [16] remain the same (for more details on these

components see [16]). The changes to the global update kernel aim at increasing thread utilization and

maximizing performance. They are listed below:

1) Intra-chain computations are parallelized by assigning the calculation of the sub-densities (or groups

of them) of each chain to separate threads, in contrast to Lee et al. [16] where all sub-densities of a

chain were assigned to the same thread. This makes the comparison to other platforms fair.

2) The global update kernel processes M chains, each of which contains n sub-density evaluations.

These Mn tasks can be allocated to CUDA blocks and threads in many combinations. The number

of blocks ranges from 1 to M; within each block, 1 to n tasks are allocated to each thread. Combi-

nations which allocate the work of a chain into separate blocks are not examined because this would

require communication between different blocks during chain updates (which is expensive since the

Global GPU memory needs to be used instead of the Shared memory). For each (M,n) setting, the

combination of blocks and tasks per thread which maximizes the kernel’s throughput is chosen. For

example, when few PT chains are used, there is not enough parallelism in the inter-chain level. It

is then beneficial to assign each sub-density (task) of each chain to a separate thread to introduce as

much intra-chain parallelism as possible. On the other hand, when the number of chains reaches a

few thousands, it is preferable to assign more one sub-density task to each thread, because 1) there is

3.3. Accelerating PT 81

now enough inter-chain parallelism to saturate the device, 2) inter-chain parallelism does not require

a reduction, unlike intra-chain parallelism. The above optimization is described in detail in Section

3.6.4 and leads to increased GPU utilization compared to Lee et al. [16] (also considering that much

larger data sets are used compared to [16]).

3) Reduction operations inside the density computation of each chain are unrolled using the technique

proposed in [142]. After the independent sub-densities are computed by the threads, they need to

be summed to get the likelihood. This requires communication between threads through the shared

memory. Although this reduction can be easily done using a reduction tree, this forces half of the

threads to be inactive in the first tree stage, 75% of the threads to be inactive in the second stage,

etc. In the proposed implementation, the technique proposed in [142], which completely unrolls the

reduction calculations and minimizes thread imbalance is applied.

4) The implementation of Lee et al. [16] stores all the data in the GPU’s constant memory (typically

limited to a few dozens of KBs). This is possible because the data sizes used are small (100 data point,

4 bytes each). Here, data are stored in global GPU memory, which is a realistic strategy given the data

sizes in real applications. During execution, data are moved, in chunks, to the shared memory of all

blocks. All the chains of a block can use the data to compute part of the log-density before the next

chunk is read, increasing the compute-to-memory ratio of the kernel by a factor equal to the number

of chains per block (ranging from 2 to 32).

3.3.2 Custom precision methods for PT

Custom arithmetic precision in MCMC

The baseline accelerators of the previous section use double precision throughout the system. Double

and (to a lesser extent) single precision are the configurations used in the overwhelming majority

of MCMC implementations in the literature, since these precisions are considered enough for real

problems. Double precision was chosen as the baseline precision in this chapter because it is the

highest (closest to infinite) precision that is supported by CPU and GPU architectures.

In this section, reduced precision is used in certain parts of PT to lower the area utilization of arithmetic

operators in FPGAs (and thus implement more parallel operators or modules). The same technique

can be used in CPUs and GPUs to achieve lower runtimes but the lowest floating point precision that

82 Chapter 3. Algorithms and architectures for Population-based MCMC

Update kernel

Block 2

Block 1

4 3 2 1

8 7 6 5

4 3 2 1

8 7 6 5

4 3 2 1

8 7 6 5

4 3 2 1

8 7 6 5

Thread 1

Thread 2

Thread 3

Thread 4

Thread 1

Thread 2

Thread 3

Thread 4

Reduction

Reduction

Reduction

Reduction

Shared mem
(block 1)

4

3

2

1

5

6

7

8

Shared mem
(block 2)

4

3

2

1

5

6

7

8

Chain 1 density

Chain 2 density

Chain 3 density

Chain 4 density

Figure 3.3: The GPU update kernel. Here, each block within the kernel handles two chains and four

threads run in parallel inside each block, i.e. two threads per chain. The number of data is n= 8, which

means that four data (i.e. four sub-densities or four tasks) are assigned to each thread. The threads

which operate on the same chain pass through a reduction stage in order to give the total density of

the chain. The shared memory of each block stores all the data. In a case where the shared memory is

not large enough to store all data, the data are moved and processed in chunks.

these platforms support inherently is single precision, which means the expected runtime gains are

smaller. Other precisions in CPUs and GPUs can only be simulated which is much slower than using

one of the supported configurations. It is worth noting that this is about to change, since future Nvidia

GPUs will inherently support half precision (16-bit) floating point [96]. Although reduced precision

results in larger arithmetic errors in calculations, it is shown here that these errors can be avoided

or corrected in a PT setting. Precision is customized by changing the number of mantissa bits only.

Precision configurations are described by the pair (mantissa bits, exponent bits).

In both custom-precision methods presented here, reduced precision is used only when evaluating the

probability density. All other parts of PT work in double precision. This is equivalent to Combination

D/C in Table 2.1 of Chapter 2. The reason for this is twofold: 1) Altering the precision of all MCMC

steps can result in unexpected behaviour (non-convergence or convergence to an unknown distribution)

3.3. Accelerating PT 83

[135]. In contrast, by using custom precision only when computing p(θ), the properties of MCMC

are preserved, i.e. MCMC converges to an altered but known distribution (a custom-precision approx-

imation of p(θ)). Here, it is shown that even this approximation can be avoided using the proposed

custom precision schemes. More comments on the use of custom precision in MCMC can be found

in Chapter 2. 2) The second reason for using custom precision only for probability evaluations is that

this computation takes the large majority of runtime (or hardware resources) for all accelerators. The

latter point is confirmed by the resource utilization results in Section 3.6.2.

Weighted PT method

When the probability evaluation is implemented in custom precision, PT samples from an approxi-

mation of p(θ). The approximate density is denoted p̃(θ). Examples of such approximate densities

have already been given in Figure 2.10 of Chapter 2 (custom precision densities in that figure were

denoted pc(θ)). When samples from p̃(θ) are used to estimate (2.8), the estimate will be biased, as

was explained in Chapter 2.

To avoid this bias, a novel method, called Weighted PT (WPT), is proposed. The main idea of WPT

is to use custom precision in the density evaluation of all chains and assign importance weights to the

samples generated by the first chain to correct the first chain’s bias (or rather the bias in the output

estimate (2.9)). This transforms the algorithm into an Importance Sampling (IS) method [6].

More specifically, the density of chain j in baseline PT is p j(θ) = p(θ)1/Temp j . In contrast, the density

of chain j in WPT is:

p̃ j(θ) = p̃(θ)1/Temp j (3.9)

For each chain, WPT computes p(θ) in custom precision (i.e. it computes p̃(θ)) and then applies

the temperature Temp j in double precision. All other PT operations are also performed in double

precision. Weights are assigned to the samples of the first chain based on the fact that the desired

target density in this chain is p1(θ) (= p(θ)), while samples are actually taken from p̃1(θ) (=p̃(θ)),

the custom-precision version of p1(θ) (no tempering is applied to the first chain since T1 = 1). Thus

p̃1(θ) functions as the importance sampling distribution in IS; each sample x
(i)
1 from the first chain at

time i, where i ∈ {1, ...,N}, is assigned the weight:

84 Chapter 3. Algorithms and architectures for Population-based MCMC

wi =
p1(θ

(i)
1)

p̃1(θ
(i)
1)

(3.10)

The integral (2.8) is then estimated by the IS sum:

Ẽp−IS[f (θ)] =
1
N

N

∑
i=1

wi f (θ
(i)
1) (3.11)

instead of the sum in equation (2.9). The PT steps remain the same as in Algorithm 6, with the only

differences being the use of p̃(θ) instead of p(θ) everywhere and the computation of the weights.

Generally, the density p̃1(θ) is a close approximation to p1(θ) and therefore it can be considered

a good (efficient) importance sampling distribution according to the empirical rules of IS [6]. This

efficiency drops only for very low precisions (see Section 3.6). IS also requires that the importance

sampling distribution has a wider support than the target distribution [6]. To guarantee this, the com-

putation of p̃1(θ) is saturated, i.e. zero values are transformed to the minimum value representable

by the employed precision configuration. This guarantees that the support of p̃1(θ) is wider than that

of p1(θ). Once meeting this requirement, the samples and weights generated by WPT can be used to

estimate (2.8) with zero bias compared to the double precision (baseline) sampler.

The use of weights in population-based MCMC has been previously proposed by Gramacy et al. [139]

as a way to use the auxiliary chains’ samples to improve the variance of (2.8). Here, the weights are

used for a different purpose (to correct precision-related bias) and only for the first chain.

Mixed-precision PT method

PT has the distinctive property of running many Markov chains but keeping samples from the first

chain only. Therefore, only the first chain’s target distribution affects the output estimate of Equation

(2.9). Auxiliary chains only contribute to the acceleration of the first chain’s mixing and not to the

output estimate. This means that they can sample from any distribution with the only possible effect

being a change in the mixing speed.

The second custom precision method proposed in this chapter is called Mixed-Precision PT (MPPT)

and it exploits the above fact to increase PT’s performance. It uses double precision only when up-

dating the first PT chain, which means that the first chain samples from the “correct” distribution

p1(θ) = p(θ). The auxiliary chains (indexes j ∈ {2, ...,m}) sample from tempered versions of the

3.3. Accelerating PT 85

custom precision approximation p̃(θ):

p̃ j(θ) = p̃(θ)1/Temp j (3.12)

These densities are the same as the ones used for WPT (equation (3.9)). In order to guarantee the

correctness of the first chain’s target distribution, the way the algorithm exchanges samples is also

modified. Exchanges between chains q > 1 and r > 1 at MCMC iteration i are accepted with proba-

bility:

e(θ
(i)
q ,θ

(i)
r) = min

(

1,
p̃q(θ

(i)
r) p̃r(θ

(i)
q)

p̃q(θ
(i)
q) p̃r(θ

(i)
r)

)

(3.13)

Exchanges that include the first (coldest) chain and chain r (here, r is always 2) are accepted with

probability:

e(θ
(i)
1 ,θ

(i)
r) = min

(

1,
p1(θ

(i)
r)p̃r(θ

(i)
1)

p1(θ
(i)
1) p̃r(θ

(i)
r)

)

(3.14)

Notice the use of both double and custom precision densities in Equation (3.14). The above equations

replace the one in line 13 of Algorithm 6. By altering the exchange operations which include the

first chain, the detailed balance condition [6] is guaranteed to hold for all exchange moves. This is

necessary to guarantee that the distribution of the first chain remains the same as in double precision

samplers. Thus MPPT induces no loss in sampling accuracy. A proof that detailed balance holds in

MPPT is presented in the following section.

In Fielding et al. [138], Gaussian process approximations of the distributions of some PT chains were

used, while retaining the target distribution of the first chain. Similarly, MPPT uses an approximation

of the distributions of auxiliary chains but the approximation is a custom precision-based approxima-

tion rather than a probabilistic approximation. Moreover, in contrast to the present chapter, Fielding

et al. [138] do not investigate the effect of the approximation on mixing.

The price for not using double precision for auxiliary chains is that mixing can be negatively affected.

This is intuitively expected, since sample exchanges between the first and second chains are sometimes

less likely to succeed (this negative effect is demonstrated in the trade-off between precision and

mixing in Section 3.6.4). Nevertheless, there is no reason why custom precision approximations

for auxiliary chains could not prove more efficient than their double precision counterparts in some

scenarios.

86 Chapter 3. Algorithms and architectures for Population-based MCMC

Detailed balance proof for MPPT

In this section, a proof that the detailed balance condition is maintained by the MPPT algorithm is

presented. For detailed balance to hold, the following must hold for all update and exchange moves:

p f ull(θ f ull)×K(θ ′ f ull ← θ f ull) =

p f ull(θ
′
f ull)×K(θ f ull ← θ ′ f ull)

(3.15)

where p f ull = p1

M

∏
j=2

p̃ j is the target distribution of the whole chain population, θ f ull = θ1:M is the state

of the whole chain population, θ ′ f ull is a different state and K(· ← ·) is the transition kernel of PT,

which gives the probability to move from any state to any other state during an update or exchange.

Note that working with the joint states and target distributions of PT is equivalent to working with

each state and target distribution separately (which was done in the previous sections and in Chapter

2).

Updates: When updating the chains, a standard Metropolis move is used for each chain. Because they

are Metropolis moves, they maintain detailed balance for each chain and therefore for the ensemble

p f ull . This is true both for double and for custom precision.

Exchanges: When exchanging samples between any pair of chains in the range j = 2 to j = M

(auxiliary chains), the exchange move of line 13 in Algorithm 6 is used. This is the standard exchange

move of PT but using the custom precision densities p̃ j instead of the double precision densities p j.

This move maintains detailed balance for p f ull (proved in the same way as in double precision PT,

replacing p j with p̃ j).

The challenge in proving that detailed balance holds for MPPT lies in showing that it holds for ex-

changes between the first and the second chains because both the double and custom precision densi-

ties are used in the exchange ratio. In more detail, Equation (3.14) is used. In this case, the transition

kernel K is equivalent to the probability of proposing the exchange (given the present state), i.e. ex-

changing samples θ1 and θ2, multiplied by the exchange acceptance probability of Equation (3.14).

The symbol Q(· ← ·) is used to refer to the proposal probability. For clarity, the full form of the ac-

ceptance ratio is used (which includes the densities of all chains and Q), in contrast to the simplified

form of Equation (3.14). Starting from the left-hand side of (3.15), the proof that the exchange move

between chains 1 and 2 maintains detailed balance is the following:

3.3. Accelerating PT 87

p f ull(θ f ull)×K
(

θ ′ f ull ← θ f ull

)

= p1(θ1) p̃2(θ2)
M

∏
j=3

p̃ j(θ j)×K
(

[θ2,θ1,θ3:M]← [θ1,θ2,θ3:M]
)

= p1(θ1) p̃2(θ2)
M

∏
j=3

p̃ j(θ j)×Q
(

[θ2,θ1,θ3:M]← [θ1,θ2,θ3:M]
)

×min

(

1,
p1(θ2)p̃2(θ1)

M

∏
j=3

p̃ j(θ j)×Q([θ1,θ2,θ3:M]←[θ2,θ1,θ3:M])

p1(θ1) p̃2(θ2)
M

∏
j=3

p̃ j(θ j)×Q([θ2,θ1,θ3:M]←[θ1,θ2,θ3:M])

)

= min

(

p1(θ1) p̃2(θ2)
M

∏
j=3

p̃ j(θ j)×Q
(

[θ2,θ1,θ3:M]← [θ1,θ2,θ3:M]
)

,

p1(θ2) p̃2(θ1)
M

∏
j=3

p̃ j(θ j)×Q
(

[θ1,θ2,θ3:M]← [θ2,θ1,θ3:M]
)

)

= p1(θ2) p̃2(θ1)
M

∏
j=3

p̃ j(θ j)×Q
(

[θ1,θ2,θ3:M]← [θ2,θ1,θ3:M]
)

× min

p1(θ1) p̃2(θ2)
M

∏
j=3

p̃ j(θ j)×Q([θ2,θ1,θ3:M]←[θ1,θ2,θ3:M])

p1(θ2)p̃2(θ1)
M

∏
j=3

p̃ j(θ j)×Q([θ1,θ2,θ3:M]←[θ2,θ1,θ3:M])
,1

= p1(θ2)p̃2(θ1)
M

∏
j=3

p̃ j(θ j)×K([θ1,θ2,θ3:M]← [θ2,θ1,θ3:M])

= p f ull(θ
′
f ull)×K(θ f ull ← θ ′ f ull)

Therefore, the detailed balance condition is maintained for exchange moves between chains 1 and

2, which means that it is maintained for MPPT.

3.3.3 Custom precision accelerators

FPGA

WPT architecture: The FPGA architecture for WPT is shown in Figure 3.4, comprising:

1. A custom precision PT system (which is the system of Figure 3.1 with the Probability Evaluation

block operating in custom precision).

2. A block which computes the probabilities of all samples of the first chain in double precision

(p1(x
(i)
1) for all i).

3. A Weight Evaluation block, which uses the probabilities in custom and double precision to find

the weights of Equation (3.10).

The double precision Probability Evaluation block processes samples from the first chain only. The

custom precision Probability Evaluation block (inside Custom precision PT) processes samples from

88 Chapter 3. Algorithms and architectures for Population-based MCMC

p(theta)

Probability

Evaluation (DP)

Custom precision

PT
FIFO

FIFO

Weight

Evaluation

p(theta)

(DP) w(theta)

theta

Interface

to host

PC

FPGA

D
(i)

(i)

(i)

(i)

~

theta
(i)

Probability

Evaluation
(CP)

Figure 3.4: FPGA architecture for WPT: The Custom precision PT block is the same as the system in

Figure 3.1 but uses custom precision for probability evaluation. DP stands for double precision, CP

stands for custom precision

all M chains. This means that the two blocks need to read data from the Data memory at different

rates. A dual port Data memory with one port assigned to each block is used to address this issue.

The custom precision PT block works in parallel to the other blocks in Figure 3.4. When a sample

is generated by the PT block, it is passed to the other modules while the PT block works on the

next sample. The weights are written to the same buffers as the MCMC samples. The latencies of

the various blocks inside the Custom precision PT block are given by the same equations that were

presented for the baseline architecture in Section 3.3.1. The weight evaluation modules are not in the

critical path of the system (they work in parallel, acting on the output of PT). Therefore, the total time

of the WPT architecture is given by Equation (3.7) (the latency of the sub-density evaluator Csubdensity

changes due to the use of custom precision operators but does not affect performance significantly).

The accelerator’s performance depends on the number of custom precision pipelines in the Probability

Evaluation block (inside Custom precision PT), which is again denoted P. Compared to the baseline

architecture, the use of reduced precision leads to a net gain in P (and subsequently in throughput),

despite WPT’s resource overhead due to the extra blocks of Figure 3.4 (the overhead is quantified in

Section 3.6.2). Of course, the use of IS to get the final estimate affects the mixing of WPT negatively

compared to the double precision sampler. The total combined effect of P and mixing in performance

is explored in Section 3.6.4.

MPPT architecture: Figure 3.5 illustrates the FPGA architecture for MPPT. There are two Probabil-

ity Evaluation blocks. The double precision block is responsible for:

3.3. Accelerating PT 89

1. Computing p1(θ
(i)
1) for all first chain updates.

2. Computing p1(θ
(i)
r) (where r = 2) in (3.14) for all exchanges between chains 1 and 2.

The custom precision block is responsible for:

1. Computing p j(θ
(i)
j) for j ∈ {2, ...,M} (auxiliary chains).

2. Computing p̃r(θ1) (where r = 2) in (3.14) for exchanges between chains 1 and 2.

Figure 3.5 provides a simplified view of the pipelines inside the two blocks. An extra Sample Proposal

block is needed to feed the double precision block (the candidate samples for this block are generated

earlier for synchronization). A dual port Data memory is used as in WPT. As in WPT, latency and

runtime are not affected by the presence of the double precision block and they are given by the same

equations. Performance increases with smaller precisions because a larger P can be used (as in WPT).

Although mixing tends to decrease with lower precisions (at least for the case studies of this chapter),

the MPPT accelerator achieves a net gain in performance compared to the baseline accelerator (more

details in Section 3.6).

Multi-core CPU

In addition to the above FPGA implementations of WPT and MPPT, the two custom precision methods

of Section 3.3.2 were also mapped to a multi-core CPU. CPUs have inherent support only for single

and double precision floating point arithmetic, so the only choice for the precision of the weight

computation in WPT and the auxiliary chains in MPPT is single precision. This precision can reduce

runtime as will be shown in Section 3.6.

GPU

The custom precision methods can also be used in a GPU setting. This requires the use of extra

kernels compared to the baseline implementation of Section 3.3.1. Only single precision can be used

as reduced precision, as in the CPU case.

For WPT, the global update kernel runs exclusively in single precision and, after it terminates, a second

kernel is invoked to evaluate the density of the first chain in double precision. The weight is computed

90 Chapter 3. Algorithms and architectures for Population-based MCMC

S
a
m

p
le

P
ro

p
o

s
a
l

G
a
u

s
s
ia

n

R
N

G

P
ro

b
a
b

ility

E
v
a
lu

a
tio

n
 (C

P
)

A
c
c
e
p

t/

R
e
je

c
t

U
n

ifo
rm

R
N

G

E
x
c
h

a
n

g
e

P
ro

b
a
b

ility

m
e
m

o
ry

S
a
m

p
le

m
e
m

o
ry

D
a
ta

m
e
m

o
ry

U

n
ifo

rm

R
N

G

th
e

ta

th
e

ta

th
e

ta

p
(th

e
ta

)

a
c
c
e
p
t/re

je
c
t s

ig
n
a
l

F
IF

O
s

F
IF

O
s

M
u
ltip

le
x
e
r

M
u
ltip

le
x
e
r

D

th
e
ta

p
(th

e
ta

)/

In
te

rfa
c
e

to
 h

o
s
t

P
C

F
P

G
A

S
a
m

p
le

P
ro

p
o

s
a
l

G
a
u

s
s
ia

n

R
N

G

P
ro

b
a
b

ility

E
v
a
lu

a
tio

n
 (D

P
)

P
o
rt 1

 (s
lo

w
 re

a
d
 ra

te
)

P
o
rt 2

 (fa
s
t re

a
d
 ra

te
)

F
IF

O

D

D
P

 to
 C

P

c
o

n
v
e
rte

r

th
e
ta

th

e
ta

th
e
ta

th

e
ta

C
P

 to
 D

P

c
o

n
v
e
rte

r

(i)
*

(i)
*

*

*
*

(i)

(i+
1
)

(i+
1
)

+

+
 +

p

(th
e

ta
)
*

~

p
(th

e
ta

)/
*

p
(th

e
ta

)
*

~

p
(th

e
ta

)/
(i)

p
(th

e
ta

)
(i)

~

p
(th

e
ta

)
(i+

1
)

~

p
(th

e
ta

) /
(i)

p
(th

e
ta

)
(i)

~

1

1

1

1

1

F
ig

u
re

3
.5

:
F

P
G

A
arch

itectu
re

fo
r

M
P

P
T

:
T

h
e

d
o
u
b
le

p
recisio

n
(D

P
)

P
ro

b
ab

ility
E

v
alu

atio
n

b
lo

ck
h
as

o
n
e

p
ip

elin
e

an
d

th
e

cu
sto

m
p
recisio

n
(C

P
)

P
ro

b
ab

ility

E
v
alu

atio
n

b
lo

ck
h
as

m
u
ltip

le
p
ip

elin
es.

3.4. Case study: Bayesian inference on mixture models 91

in software. For MPPT, the global update comprises two kernel invocations, which correspond to the

custom and double precision pipelines of the FPGA architecture. The first kernel (single precision)

computes:

1. 1) p j(θ
(i)
j) for all auxiliary chain updates (j ∈ {2, ...,M}).

2. 2) p̃r(θ1) (where r = 2) in (3.14) for the exchange between chains 1 and 2.

The second kernel (double precision) computes:

1. p1(θ
(i)
1) for the first chain update.

2. p1(θ
(i)
r) (where r = 2) in (3.14) for all the exchange between chains 1 and 2.

The second kernel only processes two density evaluations and therefore underutilizes the GPU. This

leads to inefficiency for small numbers of PT chains (see Section 3.6.3). In both methods, the global

exchange kernel runs in double precision.

3.4 Case study: Bayesian inference on mixture models

Mixture models are a powerful family of probabilistic models used in numerous fields [40]. Multi-

modal target distributions often appear when performing inference on these models. Hence, they are

representative of the problems on which PT is applied. A Gaussian mixture model taken from [16]

is used here. This model obeys the i.i.d. principle described in the previous section and thus leads to

a density which is a product (or sum) of sub-densities. By increasing the number of i.i.d. data (and

thus the number of sub-densities), the data-related computational load (i.e. the available parallelism

in intra-chain computations) can be scaled (see Section 3.6.3).

A set of i.i.d. data D1:n, where Dl ∈ ℜ for l ∈ {1, ...,n}, is given. According to mixture model

principles, each observation is distributed according to:

p(Dl|µ1:k,σ1:k,a1:k−1) =
k

∑
i=1

aiNPDF(Dl|µi,σi) (3.16)

Here, NPDF denotes the density of a univariate Gaussian distribution, k is the number of mixture

components and µ1:k, σ1:k and a1:k−1 are the parameters of the model (means, variances and weights

92 Chapter 3. Algorithms and architectures for Population-based MCMC

Table 3.3: Case study parameters

Symbol Description Range (in Section 3.6)

k Number of mixture model components 4

n Number of data [128,32768]
d Dimension of data 1

of components respectively). The parameters are fixed to k = 4, σi = σ = 0.55 and ai = a = 1/k for

i∈ {1, ...,k}. The parameter µ1:4 is the unknown parameter which is sampled by MCMC, i.e. θ = µ1:4

(same as in [16]). The prior distribution on µ1:4 is a four-dimensional uniform. In order to perform

inference, a data set D1:n is simulated using µ1:4 = (−3,0,3,6). The goal is then to infer µ1:4 using

PT.

Due to the i.i.d. assumption, the likelihood is a product of sub-densities:

p(D1:n|µ1:4) =
n

∏
j=1

p(D j|µ1:4,σ1:4,a1:3) (3.17)

If p(µ1:4) is a uniform prior, the posterior density of µ1:4 (which is the target density of PT and admits

4! = 24 modes [7, 16]) is given by:

p(µ1:4|D1:n) ∝ p(D1:n|µ1:4)p(µ1:4) (3.18)

The normalizing constant of the posterior is not needed in MCMC, as already explained in Chapter 2.

The main parameters of PT and the parameters of the mixture model target distribution are shown in

Table 3.3.

3.5 Implementation

3.5.1 IP implementation and FPGA system integration

All FPGA samplers were implemented in VHDL. The RIFFA framework (version 1.0) [143] was used

for prototyping. RIFFA wraps the PT IP and uses a PCI-express connection to transfer data between

the FPGA and the host PC. All the I/O modules on the hardware side and the software drivers on the

host side are handled by the framework. A small piece of C code was written for the host side in order

to initialize the FPGA, start the run and receive the outputs. Moreover, a double buffering architecture

was designed on top of RIFFA in order to be able to send output data (MCMC samples and weights)

3.5. Implementation 93

to the host PC at the same time they are generated by the IP. The measured FPGA-to-host throughput

of the double buffering PCI-express memory architecture is 120 MB/sec. This throughput is enough

for all experiments presented in this chapter (i.e. it is enough for I/O not to be the bottleneck of the

system). This number is close to the reported RIFFA throughput in [143]. It can be significantly

improved by using more PCI-express lanes. All FPGA samplers were synthesized, placed and routed

using Xilinx XPS 13.1. The clock frequency was set to f req = 210 MHz for all designs.

The sequence of operations for a complete run of the PT sampler are the following: The C appli-

cation in the host allows the user to select the parameters of the PT sampler (e.g. the constants

N,B,Temp1:M,θ
(1)
1:M and σ2

1:M. The number of chains (M) must be fixed before synthesis. RIFFA

driver functions are used to send the initialization data directly to the FPGA IP and to order the IP

to start (no CPU operates on the FPGA). The IP performs the PT run and writes the output MCMC

samples (and the weights for WPT) to the double buffer. The double buffers work simultaneously with

the IP, sending data back to the host PC, where the RIFFA driver receives them and stores them in a

text file.

3.5.2 Platforms and devices

The performance of the proposed PT samplers is evaluated using a number of devices from each plat-

form (Table 3.4 contains details). The devices represent recent and older generation of each platform.

The two GPU generations roughly correspond to the two FPGA generations in terms of release dates.

For the multi-core CPU, Intel Xeon devices were used with numbers of cores ranging from 4 to 20.

Some of the devices consist of a pair of chips placed on separate sockets. All processors were installed

on Imperial College’s High Performance Computing cluster. All runs were performed using 16 GBs

of RAM and the code was compiled using Intel’s C++ compiler (ICC version 2015.1) and applying the

-O3 optimization flag and flags designed to optimize for the targeted CPU architecture. Every effort

was made to select the combinations of optimizations (including Cilk optimizations) that maximize

performance in each scenario.

For the GPU platform, measurements are presented from one device of the Nvidia GeForce 200 series

(Tesla architecture) and five devices of the Nvidia GeForce 400 series (Fermi architecture). Actual

runs were performed only for the C2050 model (hosted by an Intel Core 2 Q9550 CPU with 8 GBs

of RAM, running Linux). The remaining measurements came from the GPGPU-Sim simulator [144]

94 Chapter 3. Algorithms and architectures for Population-based MCMC

(version 3.2.2). This simulator can construct a model of any GPU device by configuring various

parameters in a text file. It then predicts the time required to run a CUDA kernel on the device

accurately. 97-98% accuracy is reported for Tesla and Fermi architectures, which is enough for the

purposes of this chapter. CUDA version 1.3 (for Tesla) and version 2.0 (for Fermi) were used. The

Nvidia compiler (NVCC) [145] was used for compiling the GPU kernels and the Intel C++ compiler

(ICC version 2015.1) was used for compiling the part of the code that runs on the CPU (the same

optimization flags mentioned for the CPU sampler were applied here).

For the FPGA platform, results are presented for one device of the Xilinx Virtex 6 series and six

devices of the Xilinx Virtex 7 series. Actual runs were performed only for the Virtex 6 LX240T

model (placed on an ML605 board and hosted by an Intel Core i7-2600 CPU with 4 GBs of RAM,

running Linux). Performance estimates for the other devices come from combining post-place and

route resource utilization, device resources and equation (3.7) (either for baseline, WPT or MPPT).

Two sequential reference implementations were used. The first was a sequential implementation in

C++, which ran on an Intel Core i7-2600 device with one core activated and with all compiler and

Cilk optimizations deactivated. This is an attempt to capture the approach of MCMC practitioners

who are not familiar with any form of code optimization or parallelization. The second reference

implementation was an identical sequential implementation in C++, which also ran on an Intel Core

i7-2600 with one core activated but with all Intel compiler optimizations activated (Cilk optimization

were deactivated).

In order to produce power and energy consumption results, the Xilinx Power Estimator [146] was used

for the FPGA samplers (assuming full device utilization) and the nominal thermal design power of the

CPU and GPU devices was used.

3.5.3 Runs in hardware and software

As mentioned above the three FPGA samplers (baseline, WPT and MPPT) were compiled and run

only on the LX240T device. Nevertheless, bitstreams were not generated for all parameter and preci-

sion combinations (i.e. number of chains M, number of mantissa bits) 1. The parameter and precision

combinations for which a bitstream was generated are shown in Table 3.5, separately for each algo-

rithm. The baseline sampler was compiled for M = 8 and M = 32. The WPT sampler was compiled for

1recall that M and precision are set at compile time

3.5. Implementation 95

Table 3.4: Detailed list of platforms and devices

Platform Family/Device Release

date

Fabrication

process

Multi-core CPU
Intel Xeon

E5-2620 (4 cores), 2 x X5650 (2 x 6 cores),

2 x E5-2660 v2 (2 x 10 cores)

2010-13 32nm

GPU

GeForce 200

GTX285 2009 55nm

GeForce 400

GT420, GT440, GTS450, GTX460SE, GTX465,

C2050

2010-11 40nm

FPGA

Virtex 6

2009 40nmLX240T

Virtex 7

2011 28nmVX330T, VX415T, VX485T, VX550T, VX690T,

VX1140T

M = 8 combined with all custom precision configurations ((4,11), (6,11), (8,11), (10,11), (14,11),

(20,11), (24,11), (40,11) and (53,11)). The MPPT sampler was compiled for M = 8 combined with

custom precision configuration (24,11) only. Thus the runtimes and mixing results for the above

combinations come from real runs on the LX240T FPGA, while the resource utilization results for

these combinations are post place and route results. Runs for the remaining combinations of M and

precision were performed in software using a C++ implementation (no bitstream was compiled). In

order to “emulate” the custom precision calculations, the MPFR library [147] was used. This library

allows all arithmetic operators to be performed in any custom precision inside C++ code. The resource

utilization of the above combinations (which ran in software) was calculated using the post place and

route results of the compiled designs in combination with post place and route resource utilization

of the Probability Evaluation blocks in different precisions, i.e. Probability Evaluation blocks were

compiled in all precisions but did not run in hardware for all precisions. FPGA runtimes were esti-

mated based on the latency and runtime equations of Section 3.3.1 (where P was defined based on the

resource utilization of the generic parts and the custom precision Probability Evaluation blocks).

96 Chapter 3. Algorithms and architectures for Population-based MCMC

Table 3.5: This table shows the PT parameter combinations for which actual FPGA bitsreams were

generated and FPGA runs were performed, separately for each PT algorithm (baseline, WPT, MPPT).

Also, it shows the combinations for which software runs were performed instead of FPGA runs. Soft-

ware runs were implemented in C++ code, using the MPFR library for custom precision calculations.

Algorithm Implementation Parameter combinations

Baseline On FPGA (M = 8), (M = 32)

Baseline In software (+MPFR) (M = 128), (M = 512), (M =
2048), (M = 8192), (M =
32768)

WPT On FPGA (M = 8,m = 4,e = 11), (M =
8,m = 6,e = 11), (M = 8,m =
8,e = 11), (M = 8,m = 10,e =
11), (M = 8,m = 14,e =
11), (M = 8,m = 20,e = 11),
(M = 8,m = 24,e = 11), (M =
8,m= 40,e= 11), (M = 8,m=
53,e = 11)

WPT In software (+MPFR) All other combinations

MPPT On FPGA (M = 8,m = 24,e = 11)

MPPT In software (+MPFR) All other combinations

3.6 Investigation and results

3.6.1 Performance metrics

The performance criterion used to compare PT accelerators is the mixing (exploration) per second of

runtime that the accelerator can achieve, given a fixed selection of PT tuning parameters (number of

chains M, temperatures Temp1:M) and a particular target distribution (implying a fixed data set size

n). Comparisons are made only between identically tuned implementations in different platforms. Of

course, various numbers of chains are used to examine performance scaling but each comparison is

done after fixing the number of chains (e.g. a GPU with 128 chains is only compared with identically

tuned CPU and FPGA implementations with 128 chains, not with samplers that use 32 chains). The

issue of selecting the optimal number of chains, tempering scheme, etc in PT has been addressed

extensively in previous literature [148, 61, 27, 16].

The mixing per second metric is affected by two factors:

1. How many MCMC samples can be generated per second, i.e. the raw throughput of the sampler

(given by Equation (3.8), where each sample is equivalent to an MCMC iteration).

2. How fast the MCMC samples explore the distribution, i.e. how much “exploration” is achieved

3.6. Investigation and results 97

with a given amount of samples. This factor is related to the way the algorithm proposes and

accepts/rejects new samples.

Here, since the PT algorithm and all its tuning parameters are fixed when comparisons are performed,

the second factor depends only on precision (precision affects exploration as explained in Section

3.3.2).

For double precision (baseline) accelerators, only the first factor (how many samples can be gener-

ated per second) affects performance. It is enough to find the Raw Speedup (Speedupraw) of each

accelerator against the first reference sequential CPU sampler (without Intel compiler optimizations)

to make comparisons (speedup refers to samples/sec). The second reference sequential CPU sam-

pler (with Intel compiler optimizations) will also be shown in the performance evaluation figures for

completeness.

Nevertheless, for custom precision accelerators, the second factor has to be taken into account too.

Specifically, the performance of WPT is affected by:

1. Different first chain mixing speed compared to the baseline sampler (due to custom precision),

i.e. the difference in mixing when sampling from p̃1 instead of p1.

2. The importance sampling mechanism; the more the importance distribution p̃1 deviates from the

IS target distribution p1, the more the importance weights take extreme values. This makes the

IS estimator in (3.11) less efficient [149, 6]. A few large weights might end up containing most

of the useful “information” and more samples need to be drawn to achieve the same variance as

when sampling from the IS target directly.

The sampling efficiency of MPPT is affected by the use of custom precision for the auxiliary chains

(p̃2:M), which changes the mixing speed of the first chain (compared to the baseline sampler). Due to

these reasons, one MCMC sample from WPT or MPPT has a different “exploration value” compared

to one sample from baseline samplers.

To capture the second factor (exploration speed) in comparisons, two metrics are used:

1. The Effective Sample Size due to MCMC autocorrelation (ESSmcmc) [9], a typical metric of mix-

ing speed in MCMC. This metric was described in Chapter 2 and was denoted ESS but ESSmcmc

98 Chapter 3. Algorithms and architectures for Population-based MCMC

is used here to distinguish it from ESSis (which is described below). As already mentioned,

ESSmcmc gives an estimate of how many independent (or “effective”) samples the dependent

MCMC samples are equivalent to. It is computed based on equation (2.10). In both WPT and

MPPT, ESSmcmc quantifies the effect that custom precision (in chains 1 to M for WPT and 2 to

M for MPPT) has on the mixing of the first chain.

2. The Effective Sample Size due to importance sampling (ESSis) [6], which gives an estimate of

how many independent samples from the IS target distribution the samples from the IS impor-

tance distribution are equivalent to (when used to find (3.11)). This is a standard metric in IS

literature and it can be estimated using the weights of the samples as follows [149]:

ESSis =
(∑i=N

i=1 wi)
2

∑
i=N
i=1 w2

i

(3.19)

More information on ESSis can be found in [149] and [6]. In WPT, ESSis quantifies the loss in

efficiency due to the use of IS weights.

Combining these metrics with Raw speedup, a performance criterion suitable for all compared sam-

plers, the Effective Speedup, is proposed:

Speedupe f f = Speedupraw× ESS
(CP)
mcmc

ESS
(DP)
mcmc

× ESS
(CP)
is

ESS
(DP)
is

(3.20)

The ratio ESS
(CP)
mcmc

ESS
(DP)
mcmc

represents the loss/gain in the mixing efficiency of the chain 1 when going from

double (DP) to custom (CP) precision, i.e. the relative ESSmcmc. The ratio
ESS

(CP)
is

ESS
(DP)
is

represents the

loss/gain in efficiency due to IS when going from DP to CP, i.e. the relative ESSis. For the baseline

samplers ESS
(CP)
mcmc

ESS
(DP)
mcmc

= 1 and
ESS

(CP)
is

ESS
(DP)
is

= 1 (since no custom precision is used). Therefore, Speedupe f f =

Speedupraw. For WPT, ESS
(CP)
mcmc

ESS
(DP)
mcmc

6= 1 and
ESS

(CP)
is

ESS
(DP)
is

6= 1. In this case the (total) effective sample size is

the product of the effective sample sizes due to MCMC and due to IS. This has been suggested by

Gramacy et al. [139] as a suitable approximation to total effective sample size when IS is used on top

of MCMC. For MPPT, ESS
(CP)
mcmc

ESS
(DP)
mcmc

6= 1 and
ESS

(CP)
is

ESS
(DP)
is

= 1.

Speedupe f f measures the performance gain (in effective samples/sec) of an implementation compared

to the reference doubble precision implementation (for identical tuning parameters and target distri-

bution). For WPT and MPPT, Speedupe f f changes with precision. In the FPGA case, precision can

be optimized to maximize Speedupe f f (see Section 3.6.4). In the CPU and GPU case only the single

3.6. Investigation and results 99

precision configuration can be used so the optimization choice is between single and double precision

(Speedupe f f is different for these two choices).

3.6.2 FPGA resource utilization

For FPGA architectures, Speedupraw (and Speedupe f f) depends on the number of pipelines in the

Probability Evaluation block (P), since larger P leads to higher throughput in (3.8). All FPGA im-

plementations presented here use the maximum number of pipelines that can fit in the targeted device

(given the device’s Look-up Tables (LUTs), Flip Flop registers (FFs) and Digital Signal Processing

(DSPs) blocks). In all cases, DSP blocks are the limiting resource, i.e. the one that limits the number

of pipelines.

Table 3.6 shows the post place and route resource utilization of the various blocks of the FPGA archi-

tectures when mapped to a Virtex-6 LX240T device. The total resources of LX240T are also shown.

The overheads of MPPT and WPT comprise one double precision probability evaluation pipeline and

the extra modules described in Section 3.3.3. MPPT needs slightly more resources than WPT due

to the extra Sample Proposal block. The table also shows the resources needed for a single pipeline

in different precisions. Fewer resources allow a larger P to be used. The optimization in Section

3.6.4 (Figures 3.11 and 3.12) shows how the area saving due to reduced precision translate into higher

Speedupraw.

3.6.3 Performance evaluation

In this section, the number of chains and the size of the data are set to various different values and

Speedupe f f is measured to compare accelerators (CPU, GPU and FPGA). The distribution of Section

3.4 is targeted. All runs are performed with N = 105, i.e. until 105 MCMC samples are generated.

A comparison is also made with the sampler of Lee et al. [16], where each thread is assigned one

PT chain without exploiting intra-chain parallelism. The way Speedupe f f scales with the number of

chains, the amount of data and the size of the device is also investigated. Although the investigation

of performance scaling with data size is specific to the i.i.d. data assumption, this does not restrict the

applicability of the proposed inter-chain parallelization techniques and custom precision methods.

The precision optimization described in Section 3.6.4 has been applied to all custom precision FPGA

implementations of this section. Also, each GPU sampler uses kernels with the optimal combination of

100 Chapter 3. Algorithms and architectures for Population-based MCMC

Table 3.6: Resource utilization of the various processing blocks. The numbers in parentheses next

to each probability evaluation block pipeline are the numbers of mantissa and exponent bits of the

precision configuration respectively. DP stands for double precision (53 mantissa and 11 exponent

bits).

Block name LUTs (% of

LX240T)

FFs (% of

LX240T)

DSPs (% of

LX240T)

Sample proposal 6688 (4.4%) 5286 (1.7%) 48 (6.2%)

Accept/reject 9123 (6.0%) 7422 (2.4%) 43 (5.5%)

Exchange 6277 (4.1%) 5123 (1.6%) 62 (8.0%)

Other functions, control and I/O (includ-

ing RIFFA)

16965 (11.2%) 12592 (4.1%) 0 (0.0%)

WPT overhead 26329 (17.4%) 29012 (9.6%) 221 (28.7%)

MPPT overhead 29549 (19.6%) 33087 (10.9%) 230 (29.9%)

Probability evaluation - 1 pipeline (DP) 25581 (16.9%) 28408 (9.4%) 218 (28.3%)

Probability evaluation - 1 pipeline (24,11) 8267 (5.4%) 8146 (2.7%) 58 (7.5%)

Probability evaluation - 1 pipeline (20,11) 7598 (5.0%) 7697 (2.5%) 43 (5.5%)

Probability evaluation - 1 pipeline (16,11) 7098 (4.7%) 7355 (2.4%) 38 (4.9%)

Probability evaluation - 1 pipeline (12,11) 5748 (3.8%) 6051 (2.0%) 37 (4.8%)

Probability evaluation - 1 pipeline (8,11) 4732 (3.1%) 5219 (1.7%) 37 (4.8%)

Virtex-6 LX240T total resources 150720

(100.0%)

301440

(100.0%)

768

(100.0%)

CUDA blocks and data per thread (given M and n), as will be demonstrated in Section 3.6.4. Finally,

CPU implementations use the optimal granularities for chain and reduction parallelization. These

optimizations are all hardware-related (i.e. changes in the architecture/implementation). Algorithm-

related parameters (i.e. M and Temp1:M) are not optimized as mentioned earlier.

Scaling the number of chains: In Figure 3.6, the amount of data is set to n = 128 and the number of

chains (M) varies. The actual runtimes of the sequential reference implementation in C++ range from 6

seconds for M = 8 to 6.7 hours for M = 32768. These runtimes are typically multiplied by the number

of independent runs that a practitioner performs, which can range from 10 to many hundreds. Also,

the number of samples can be increased depending on the required variance in the output estimate

(here it is set to N = 105). These factors can lead to long runtimes.

The Speedupe f f achieved by each accelerator compared to the sequential reference implementation

(without compiler optimizations) is shown in Figure 3.6. Moreover, the Speedupe f f of the second ref-

erence CPU implementation, i.e. a sequential CPU implementation with Intel compiler optimizations,

is shown in order to make comparisons with this reference implementation easy. For the CPU, only

the measurements for the 20-core accelerator (on the E5-2660 v2 chip) are shown. For the GPU, only

the measurements for GTX285 and C2050 (which is the largest GPU device used here) are shown.

For the FPGA, measurements for LX240T and VX1140T (which is the largest FPGA used here) are

3.6. Investigation and results 101

shown.

The baseline PT on a multi-core CPU achieves a peak speedup of 13.8x. This is not reached with fewer

than 2048 chains. The WPT and MPPT CPU samplers reach a speedup of 18.4x. This improvement is

due to the use of single precision for the majority of density evaluations. This shows that it is possible

to significantly improve the performance of sequential code by using Intel Compiler optimizations and

making changes to the code to guide the compiler on how to parallelize computations.

In order to clarify what part of the presented CPU speedups is due to Intel compiler optimizations

and what part is due to the use of the Cilk library, the above Speedupe f f numbers can be divided by

the Speedupe f f of the second reference implementation (with compiler optimizations), i.e. the purple

starred line in the figure. From observing the figure, it is clear that the compiler optimizations offer an

extra 1.38x speedup (with some small variation) over the first reference implementation (which uses

no compiler optimizations) for all the range of chain numbers. The constant speedup is expected, since

there is no exploitation of parallelism in either of the reference implementations. As a result of the

above number, it can be concluded that most of the speedup achieved by the parallel CPU samplers is

due to the Cilk pragmas: The baseline PT is up to 10.0x faster than the compiler-optimized reference

implementation and the WPT and MPPT are up to 13.3x faster than the compiler-optimized reference

implementation.

The baseline PT on the two GPUs achieves significantly higher peak Speedupe f f . To reach peak

performance (165x for C2050, 78x for GTX285), M = 32768 chains are used. For M close to a few

hundreds, speedups are in the range 15x-50x. This slow scaling is due to lack of enough parallelism

to fully utilize the GPU until a large amount of chains are used. These speedups are up to 4.4x higher

than those of the state-of-the-art implementation of Lee et al. [16]. Lee et al. [16] reach the peak

performance of the implementation of this chapter only for M = 32768. This is expected, since Lee

et al. [16] only exploit inter-chain parallelism and thus it requires a massive number of chains to fully

exploit the processing power of the GPU.

WPT and MPPT samplers achieve similar Speedupe f f in the GPU. They outperform baseline imple-

mentations by up to 3.2x (GTX285) and 2.4x (C2050). For fewer than 512 chains, baseline samplers

are faster than WPT and MPPT by up to 1.3x. This is explained as follows: Two update kernels (in

double and single precision) are called in WPT and MPPT (Section 3.3.3) to complete each Global up-

date (one double precision kernel which processes one chain/weights and one single precision kernel

102 Chapter 3. Algorithms and architectures for Population-based MCMC

which processes everything else). Because of GPU under-utilization for small problems, the kernels’

runtime is stable or increases slightly when the processed chains range between 1 and 200 (i.e. the

GPU has free resources to spare). As a result of the almost constant runtime, when e.g. MPPT calls the

double precision kernel to process the first chain, the runtime of the kernel is almost the same as the

runtime that would be needed by the baseline sampler (which works in double precision) to process 32

or even 128 chains. On top of that, MPPT involves the cost of calling a second (single precision) ker-

nel for the auxiliary chains. Therefore, using MPPT in the GPU results in lower performance than the

baseline GPU sampler until a large enough number of chains is used at the second (single precision)

kernel; at that point the benefits from processing the auxiliary chains in single precision outweigh the

cost of running two kernels (i.e. the single precision kernel dominates the runtime and therefore MPPT

becomes faster than the baseline sampler). The same behaviour is observed in WPT, where instead of

the first chain, the double precision kernel processes the weight evaluations.

All the above speedups should be divided by the respective speedups of the second reference CPU

implementation (approximately 1.38 for all points in the graph) in order to calculate the speedups of

the GPU samplers against the second reference CPU implementation (which makes use of compiler

optimizations).

On the FPGA platform, the baseline architecture on the LX240T is 26x faster than the reference (for

all M) and the VX1140T is 44x-165x faster than the reference (depending on M). WPT increases these

speedups to 65x-128x and 66x-854x respectively and MPPT to 98x-138x and 76x-997x respectively.

The boost in performance when using WPT/MPPT is due to increased P (the number of parallel sub-

density blocks), which in turn is a results of using reduced precision. Peak performance is reached

with only 8-32 chains for the baseline and 32-128 chains for the custom precision architectures. The

speedups of all custom precision samplers in all platforms come without no compromise in sampling

quality. All the above speedups should be divided by (approximately) 1.38 in order to calculate the

speedups of the FPGA samplers against the second reference CPU implementation (which makes use

of compiler optimizations).

Comparing across platforms, it is clear that the big Virtex 7 FPGA with the baseline sampler is 24x-36x

and 0.9x-28x faster than the big baseline CPU (20 cores) and big baseline GPU (C2050) implemen-

tations respectively. These speedups increase to 57x-92x and 2.2x-76x when WPT or MPPT are used

for all platforms. The increased speedups of the FPGA for WPT/MPPT show that the two custom pre-

cision methods are more suitable for mapping on the FPGA because they can exploit the fully custom

3.6. Investigation and results 103

8
3

2
1

2
8

5
1

2
2

0
4

8
8

1
9

2
3

2
7

6
8

1

1
0

1
0

0

1
,0

0
0

N
u
m

b
e
r

o
f
c
h
a
in

s

Effective speedup vs. sequential SW
(without compiler optimizations)

V
6

 b
a

s
e

lin
e

V
6

 W
P

T

V
6

 M
P

P
T

V
7

 b
a

s
e

lin
e

V
7

 W
P

T

V
7

 M
P

P
T

G
T

X
2

8
5

 b
a

s
e

lin
e

G
T

X
2

8
5

 W
P

T

G
T

X
2

8
5

 M
P

P
T

G
T

X
4

8
0

 b
a

s
e

lin
e

G
T

X
4

8
0

 W
P

T

G
T

X
4

8
0

 M
P

P
T

E
5

−
2

6
6

0
 v

2
 b

a
s
e

lin
e

E
5

−
2

6
6

0
 v

2
 W

P
T

E
5

−
2

6
6

0
 v

2
 M

P
P

T

[1
6

]
(d

o
u

b
le

 p
re

c
is

io
n

)

E
5

−
2

6
6

0
 v

2
 (

s
e

q
u

e
n

ti
a

l,
w

it
h

 c
o

m
p

ile
r

o
p

ti
m

iz
a

ti
o

n
s
)

F
ig

u
re

3
.6

:
S

ca
li

n
g

o
f

S
p
ee

d
u

p
e

f
f

w
it

h
n
u
m

b
er

o
f

ch
ai

n
s

M
.

B
as

el
in

e
an

d
cu

st
o
m

p
re

ci
si

o
n

ac
ce

le
ra

to
rs

ar
e

in
cl

u
d
ed

.
n
=

1
2
8

w
er

e
u
se

d
.

V
7

m
ea

su
re

m
en

ts
ar

e

b
as

ed
o
n

p
ro

je
ct

io
n
s

an
d

G
T

X
2
8
5

m
ea

su
re

m
en

ts
ar

e
b
as

ed
o
n

G
P

U
-S

im
si

m
u
la

ti
o
n
s.

104 Chapter 3. Algorithms and architectures for Population-based MCMC

precision of the platform, while CPUs and GPUs can only use single or double precision. Similarly,

the small Virtex 6 FPGA is slower than the small GTX285 GPU for M > 128 when the baseline sam-

pler is used but only for M > 2048 when the WPT/MPPT methods are used. Nevertheless, GTX285’s

peak performance is higher than LX240T’s by 1.8x-3.1x (depending on the method).

All FPGA architectures reach their peak performance much earlier (for smaller M) than GPUs, since

their flexibility allows them to utilize resources efficiently and exploit modest amounts of parallelism.

For M < 512, the Virtex 6 FPGA is faster than both GPUs when using MPPT/WPT. For M < 128, even

the baseline Virtex 6 is faster than all GPU samplers. In PT literature, the values of M typically range

from less than 10 to a few dozens (and rarely 100-200). Thousands of chains do not improve mixing

(e.g. see [16] and [27]). This makes the advantage of FPGAs at small M significant. Note also that for

M < 32 CPU samplers are up to 1.8x faster than GPU samplers due to limited amounts of parallelism.

Finally, MPPT outperforms WPT by up to 10% in FPGAs. This is due to the fact that WPT’s efficiency

is affected by both ESSmcmc and ESSis in (3.20), the latter contributing to performance deterioration.

MPPT is only affected by ESSmcmc.

Scaling the number of data: Figure 3.7 shows Speedupe f f when the number of chains is set to a

realistic M = 32 and the number of data (n) varies. The actual runtimes of the sequential reference

implementation in C++ range from 24 seconds for n = 128 to 1.6 hours for n = 32768. Again these

runtimes can increase considerably in real analyses due to multiple independent runs and larger N. The

second reference implementation (sequential CPU with Intel Compiler optimizations) is also shown,

as in the previous figure.

Next to each point corresponding to WPT and MPPT on FPGAs, the selected custom precision is

shown (found based on the precision optimization of Section 3.6.4). The choice of precision only

affects Speedupe f f and not sampling quality.

The peak Speedupe f f of the baseline CPU is 16.1x, which is slightly higher than in Figure 3.6. The

speedups of the WPT and MPPT methods on the CPU are only marginally higher than the baseline

sampler. The performance of the compiler-optimizaed reference CPU implementation (which is se-

quential) is again 1.38x higher than the performance of the first reference CPU implementation (this

difference can be entirely attributed to the compiler).

Speedupe f f for the baseline GTX285 and C2050 ranges from 5x to 99x. These are lower than Fig-

ure 3.6 for large M. The reason is that the GPU is able to exploit parallelism in the inter-chain level

3.6. Investigation and results 105

1
2

8
5

1
2

2
0

4
8

8
1

9
2

3
2

7
6

8

1

1
0

1
0

0

1
,0

0
0

N
u
m

b
e
r

o
f
d
a
ta

Effective speedup vs. sequential SW
(without compiler optimizations)

V
6

 b
a

s
e

lin
e

V
6

 W
P

T

V
6

 M
P

P
T

V
7

 b
a

s
e

lin
e

V
7

 W
P

T

V
7

 M
P

P
T

G
T

X
2

8
5

 b
a

s
e

lin
e

G
T

X
2

8
5

 W
P

T

G
T

X
2

8
5

 M
P

P
T

G
T

X
4

8
0

 b
a

s
e

lin
e

G
T

X
4

8
0

 W
P

T

G
T

X
4

8
0

 M
P

P
T

E
5

−
2

6
6

0
 v

2
 b

a
s
e

lin
e

E
5

−
2

6
6

0
 v

2
 W

P
T

E
5

−
2

6
6

0
 v

2
 M

P
P

T

E
5

−
2

6
6

0
 v

2
 (

s
e

q
u

e
n

ti
a

l,
w

it
h

 c
o

m
p

ile
r

o
p

ti
m

iz
a

ti
o

n
s
)

(1
6
,1

1
)

(1
6
,1

1
)

(1
6
,1

1
)

(1
6
,1

1
)

(1
4
,1

1
)

(1
4
,1

1
)

(1
4
,1

1
)

(1
6
,1

1
)

(1
4
,1

1
)

(1
4
,1

1
)

(1
4
,1

1
)

(1
6
,1

1
)

(1
6
,1

1
)

(1
6
,1

1
)

(1
6
,1

1
)

(1
6
,1

1
)

(2
4
,1

1
)

(2
4
,1

1
)

(2
4
,1

1
)

(2
4
,1

1
)

F
ig

u
re

3
.7

:
S

ca
li

n
g

o
f

S
p
ee

d
u

p
e

f
f

w
it

h
n
u
m

b
er

o
f

d
at

a
n
.

B
as

el
in

e
an

d
cu

st
o
m

p
re

ci
si

o
n

ac
ce

le
ra

to
rs

ar
e

p
re

se
n
te

d
.

M
=

3
2

ch
ai

n
s

ar
e

u
se

d
.

V
7

m
ea

su
re

m
en

ts

ar
e

b
as

ed
o
n

p
ro

je
ct

io
n
s

an
d

G
T

X
2
8
5

m
ea

su
re

m
en

ts
ar

e
b
as

ed
o
n

G
P

U
-S

im
si

m
u
la

ti
o
n
s.

106 Chapter 3. Algorithms and architectures for Population-based MCMC

more efficiently than parallelism in the intra-chain level. The culprit is the reduction operation in

the likelihood computation. While the parallel chains are independent and can simply be assigned to

separate threads which do not need to interact during Global updates, the sub-densities within each

chain need to be summed after they are calculated, compelling threads to communicate. Even when

using unrolled reduction, the GPU is under-utilized during this operation. The WPT and MPPT meth-

ods on the GPUs offer an extra speedup of up to 2.2x over the baseline sampler but they are slightly

slower for n = 128 (in the C2050 case). FPGA samplers reach peak performances similar to Figure

3.6 (174x-1143x for VX1140T and 25x-160x for LX240T), showing that the FPGA exploits intra- and

inter-chain parallelism equally well. The main reason is the efficient implementation of reductions; the

adder tree which receives the values coming out of the sub-density pipelines is designed to match the

number of the pipelines and does not waste resources. This is an instance of the advantages of custom

architectures over fixed architectures. All the Speedupe f f values mentioned above should be divided

by (approximately) 1.38 to find the speedups against the second reference CPU implementation (which

uses compiler optimizations).

The figure also reveals the scaling disadvantage of the two custom precision methods on FPGAs.

When n increases, more sub-densities are summed during density evaluation, leading to more arith-

metic error and rougher density approximations. This negatively affects the mixing/efficiency of

WPT/MPPT. In other words, the point at which the mixing/efficiency breaks in Figures 3.11 and 3.12

of Section 3.6.4 is shifted to the right, i.e. to higher precisions (more details on the respective section).

Therefore, higher precisions need to be used in the custom precision part to avoid a large penalty

in mixing/efficiency. This reduces Speedupe f f , since pipelines cost more FPGA resources when us-

ing larger precisions and thus fewer pipelines are instantiated. For example, MPPT on VX1140T for

n = 32768 needs 24 mantissa bits to achieve optimal Speedupe f f = 633x. This is smaller compared

to the Speedupe f f = 1143x achieved for n = 512 (requiring 14 mantissa bits). This problem does not

appear in CPUs and GPUs, since only single precision is used. Due to the above issue, WPT/MPPT

on GTX280 outperforms WPT/MPPT on LX240T for n ≥ 8192. WPT/MPPT on VX1140T is still

faster than WPT/MPPT on GTX480 by 3.7x-54x.

Scaling the size of the device: Figures 3.8, 3.9 and 3.10 show how Speedupe f f scales when the size

of the device (CPU, GPU and FPGA respectively) increases. This is where the full list of devices

contained in Table 3.4 is employed. The parameters M and n are fixed to M = 32 and n = 32768. For

multi-core CPUs, device size refers to the number of CPU cores, for GPUs it refers to the number

3.6. Investigation and results 107

of Streaming Processors and for FPGAs it refers to the number of DSP blocks, which is the limiting

resource as mentioned above. The runtimes for the different devices were measured as described

in Section 3.5.2: FPGA runtimes were either taken from real runs (for LX240T) or from estimates

based on the resources of each device, the resource requirements of the samplers and the throughput

equations of each sampler (all other FPGA devices). GPU runtimes were either taken from real runs

(C2050) or using the GPGPU-Sim simulator [144] (all other devices). CPU runtimes were taken from

real runs (all devices).

In Figure 3.8, the performance of the baseline sampler (implemented on various Xeon processors)

increases by almost 3.5x when going from 1 core to 4 cores, by 7.4x when going to 12 cores and by

13x when going to 20 cores. The WPT and MPPT samplers on 4, 12 and 20 cores were measured 3.6x,

4.8x and 8.7x faster respectively over the single core version. It is worth noting that the largest part of

the total runtime on a single core is taken by the Global update due to the large data size (n = 32768)

in this experiment. Therefore, according to Amdahl’s low, the theoretical maximum speedups over the

single core sampler are close to the number of cores of the CPU. The fact that the actual speedups are

lower than the number of cores, shows that the Intel compiler parallelization does not fully exploit all

the parallel CPU resources.

Moreover, Figure 3.8 shows the Speedupe f f of the second reference CPU implementation (i.e. a

sequential C++ implementation with all compiler optimizations activated but without any Cilk prag-

mas in the code). As in previous comparisons, the speedup that the compiler optimizations offer is

approximately 1.38x over the first reference CPU implementation (which does not use compiler opti-

mizations), regardless of the number of cores in the CPU. This is expected, since the implementation

is fully sequential. As previously, the speedups of the various parallel CPU samplers over the second

reference implementation can be found by dividing with the respective values of the green line in the

figure (which are approximately equal to 1.38 for all points in the figure).

In Figure 3.9, the performance of the baseline GPU sampler on various devices from the GT400 series

increases almost at the same rate as the number of SPs (and even at a higher rate in some cases

due to the different SP and memory clock frequencies of the devices, as well as other architectural

differences). Finally, Figure 3.10 shows that the performance of the FPGA also increases at almost

the same rate as the number of DSP blocks when targeting various devices from the Virtex 7 series.

As a conclusion, it is clear that the performance of all samplers increases approximately linearly with

108 Chapter 3. Algorithms and architectures for Population-based MCMC

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

Number of CPU cores

E
ff
e
c
ti
v
e
 s

p
e
e
d
u
p
 v

s
.
s
e
q
u
e
n
ti
a
l
C

P
U

(w
it
h
o
u
t
c
o
m

p
ile

r
o
p
ti
m

iz
a
ti
o
n
s
)

Baseline

WPT

MPPT

Reference sequential CPU implementation
(with compiler optimizations)

Figure 3.8: Scaling of Speedupe f f when changing the size of the multi-core CPU (number of CPU

cores). The exact CPU models used are listed in Table 3.4. Speedups are over the reference CPU

version with no compiler optimizations. The Speedupe f f of the second reference CPU implementation

(which uses compiler optimizations) is also shown.

the size of the device for all platforms, which is expected since the workload is compute-bound and

not memory-bound.

Power efficiency: Apart from Speedupe f f , which refers only to sampling speed, power efficiency

is also important for many applications, especially when MCMC is used in High Performance Com-

puting platforms or embedded applications (where power consumption is key). The nominal thermal

design power of each device was used. For the CPUs and GPUs, this was taken from each device’s

specifications. For the FPGAs, the Xilinx Power Estimator [146] was used to generate an estimate of

the nominal power consumption. It was assumed that all FPGA resources are utilized. Although this

is not the case in the proposed designs, this approach was adopted to make the comparison to the other

platforms fair.

Table 3.7 compares accelerators in two (M,n) settings, using two metrics: Effective samples per

Joule (i.e. ES/J or Performance per Watt) and Effective Samples per Joule·sec (ES/(J·sec)). FPGA

accelerators can generate up to 106x and 200x more Effective samples per Joule than CPUs and

GPUs respectively for small M and n (in these cases CPU and GPU resources remain largely under-

3.6. Investigation and results 109

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

Number of SPs

E
ff
e
c
ti
v
e
 s

p
e
e
d
u
p
 v

s
.
s
e
q
u
e
n
ti
a
l
C

P
U

(w
it
h
o
u
t
c
o
m

p
ile

r
o
p
ti
m

iz
a
ti
o
n
s
)

Baseline

WPT

MPPT

GTS450 GTX460 C2050GTX465GT440GT420

Figure 3.9: Scaling of Speedupe f f when scaling the size of the GPU (number of SPs). All devices are

based on the Fermi architecture (see Table 3.4).

utilized). The GPU improves its ES/J metric for larger M and n but is still 2.5x-10.4x less efficient

than the FPGA. The FPGA’s ES/(J·sec) is up to 5629x and 15636x higher than the CPU’s and GPU’s

respectively for small M and n and up to 5159x and 38x for large M and n. The above numbers reveal

that the FPGA is able to extract significantly more performance per unit of energy.

3.6.4 Precision optimization for FPGAs and kernel optimization for GPUs

Precision optimization for FPGAs: The Speedupe f f of custom precision FPGA samplers can be

maximized by optimizing their precision configuration, i.e. the number of mantissa bits. This opti-

mization has to be done for each combination of (M,n) and FPGA device. It comprises pre-runs in all

candidate precisions. From these pre-runs, samples and/or weights are collected and used to evaluate

the ESS ratios in 3.20 and then get Speedupe f f . Here, the optimization process is demonstrated for

one parameter combination (M,n) = (128,128) when targeting the LX240T FPGA.

For WPT, Figure 3.11 shows how the three terms in the right-hand side of (3.20) (Speedupraw, ESS
(CP)
mcmc

ESS
(DP)
mcmc

and
ESS

(CP)
is

ESS
(DP)
is

) change with precision. Results come from 30 independent runs of 105 samples each. The

mixing-related ESS
(CP)
mcmc

ESS
(DP)
mcmc

remains close to one as the number of mantissa bits decreases because p1(θ)

and p̃1(θ) are very similar. Fluctuation in the graph is due to the variance of the ESSmcmc estimator.

For 6 mantissa bits the ratio starts growing, which means that WPT mixes faster than the baseline

110 Chapter 3. Algorithms and architectures for Population-based MCMC

1000 1500 2000 2500 3000 3500 4000
0

100

200

300

400

500

600

Number of DSP blocks

E
ff
e
c
ti
v
e
 s

p
e
e
d
u
p
 v

s
.
s
e
q
u
e
n
ti
a
l
C

P
U

Baseline

WPT

MPPT

VX330T VX415T VX485T VX550T VX690T

Figure 3.10: Scaling of Speedupe f f of the Virtex 7 FPGA series when varying the device size (number

of DSP blocks). The points correspond to the devices shown in Table 3.4.

sampler. This is because p̃1(θ) becomes a coarsely quantized or even flattened version of p1(θ), since

the precision is not high enough to distinguish between different probability density values. This leads

to an easy-to-sample target and faster mixing.

The IS-related
ESS

(CP)
is

ESS
(DP)
is

is also very close to one for most precisions, signifying that no loss of efficiency

is caused by the IS scheme. For 10 or fewer mantissa bits, the ratio decreases. This is because parts of

the support of p1(θ) take much lower probability density values under p̃1(θ) or vice versa, especially

in the distribution’s tails. This results in large weights being generated, making IS inefficient [6, 149].

The increase of the IS-related ratio from 6 to 4 mantissa bits is due to the variance of the estimator.

Speedupraw increases by up to 5.3x (compared to double precision - right-most point in Figure 3.11)

when precision drops. This is due to the reduced FPGA area cost per pipeline, which means that a

larger P can be a used. A larger P translates to increased throughput in (3.8).

Multiplying the three above terms gives Speedupe f f , also shown in Figure 3.11. The maximum

Speedupe f f =128x is achieved for configuration (14,11), which is the optimal precision. It is clear

that the net effect on Speedupe f f by customizing precision is positive for most precision configura-

3.6. Investigation and results 111

Table 3.7: Power efficiency of the proposed algorithms and platforms for various (M,n) combinations.

The efficiency improvement compared to the E5-2660 v2 CPU is shown in parenthesis (separately for

Baseline and MPPT). The best platform per algorithm and per parameter combination is shown in

bold.

Accelerator (device) ES/J ES/(J · sec)

(M
,n

)=
(8

,1
2
8
)

Baseline (E5-2660 v2) 1.5 (1x) 4.5 ·10−1 (1x)

Baseline (C2050) 9.7 ·10−1 (0.64x) 2.4 ·10−1 (0.53)

Baseline (VX1140T) 7.1 ·101 (47x) 4.9 ·102 (1121x)

MPPT (E5-2660 v2) 1.5 (1x) 4.6 ·10−1 (1x)

MPPT (C2050) 8.0 ·10−1 (0.53x) 1.7 ·10−1 (0.36x)

MPPT (VX1140T) 1.5 ·102 (106x) 2.5 ·103 (5629x)

(M
,n

)=
(3

2
7
6
8
,1

2
8
) Baseline (E5-2660 v2) 2.8 ·10−3 (1x) 1.6 ·10−6 (1x)

Baseline (C2050) 2.5 ·10−2 (8.9x) 1.7 ·10−4 (106x)

Baseline (VX1140T) 6.7 ·10−2 (23x) 4.5 ·10−4 (281x)

MPPT (E5-2660 v2) 3.7 ·10−3 (1x) 2.7 ·10−6 (1x)

MPPT (C2050) 6.1 ·10−2 (16x) 9.9 ·10−4 (386x)

MPPT (VX1140T) 3.6 ·10−1 (99x) 1.3 ·10−2 (5159x)

(M
,n

)=
(3

2
,3

2
7
6
8
) Baseline (E5-2660 v2) 1.3 ·10−2 (1x) 3.7 ·10−5 (1x)

Baseline (C2050) 6.3 ·10−2 (4.8x) 1.1 ·10−3 (29x)

Baseline (VX1140T) 2.8 ·10−1 (22x) 8.2 ·10−3 (222x)

MPPT (E5-2660 v2) 1.4 ·10−2 (1x) 4.2 ·10−5 (1x)

MPPT (C2050) 1.0 ·10−1 (7.1x) 2.9 ·10−3 (71x)

MPPT (VX1140T) 10.4 ·10−1 (74x) 1.1 ·10−1 (2701x)

tions.

Precision optimization for MPPT is similar but without the IS-related effect. The auxiliary chains’

precision affects the mixing of the first chain, i.e. the term ESS
(CP)
mcmc

ESS
(DP)
mcmc

in (3.20). Figure 3.12 shows

that ESS
(CP)
mcmc

ESS
(DP)
mcmc

(its mean value from 30 independent runs) varies but remains close to one as precision

drops until 8 mantissa bits are reached. This stability is due to the fact that exchange moves between

chains 1↔2 (which help chain 1 escape from local modes) can succeed even if the density of chain

2 is calculated in low precision. Although samples of the second (and all auxiliary) chains are not

“correctly” distributed around the mode centres, all modes still exist and chains traverse from mode to

mode due to tempering. This suffices to occasionally supply chain 1 with samples that help it escape

from a mode. This behaviour is confirmed by the percentage of successful exchange moves, which

remains constant as precision drops. When very low precisions are used, shifts in the modes’ positions

are observed, leading ESS
(CP)
mcmc

ESS
(DP)
mcmc

to collapse. Figure 3.12 also shows Speedupraw and Speedupe f f . The

maximum Speedupe f f =138x is achieved by configuration (14,11).

112 Chapter 3. Algorithms and architectures for Population-based MCMC

4 6 8 10 14 20 24 40 53
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Mantissa bits

E
S

S
/S

p
e

e
d

u
p

 r
a

ti
o

 (
v
s
.

s
e

q
.

D
P

 S
W

)

Raw speedup

ESS ratio (MCMC−related)

ESS ratio (IS−related)

Effective speedup vs. sequential SW

Double
precision

Figure 3.11: WPT on FPGA: The effect of precision on the factors of (3.20). (M,n) = (128,128).
The FPGA device used is the LX240T. The optimal number of mantissa bits is 14. All values in the

vertical axis are ratios (either ratios of ESS values or ratios of speedups).

The above optimization shows that both architectures benefit from using custom precision. In the

examined case, the optimized Speedupe f f of both WPT and MPPT is 4.5x larger than the Speedupe f f

of the baseline FPGA sampler with no cost in sampling quality. These gains decline when using larger

data sets (larger n) as already mentioned in Section 3.6.3, because the drop in ESS ratios happens

at larger precisions than the ones shown in the two figures above (where n = 128). This forces the

optimization to select a larger custom precision, limiting Speedupraw and thus Speedupe f f . Moreover,

a drawback of the optimization process described here is that the optimization has to be done separately

for every combination of M, n and FPGA device.

For CPUs and GPUs, WPT and MPPT do not require precision optimization because the only avail-

able reduced precision is single precision. In fact, the only precision-related choice is between single

and double precision. Of course, using single precision has some effect on the ESS ratios of (3.20).

Nevertheless, Speedupe f f under single precision on CPUs/GPUs was higher for all parameter combi-

nations and all devices presented above (for both WPT and MPPT). The effect of single precision on

3.6. Investigation and results 113

4 6 8 10 14 20 24 40 53
10

−3

10
−2

10
−1

10
0

10
1

10
2

Mantissa bits

E
S

S
/S

p
e

e
d

u
p

 r
a

ti
o

 (
v
s
.

s
e

q
.

D
P

 S
W

)

Raw speedup

ESS ratio (MCMC−related)

Effective speedup vs. sequential SW

Double
precision

Figure 3.12: MPPT on FPGA: The effect of precision on the factors of (3.20). (M,n) = (128,128).
The FPGA device used is the LX240T. The optimal number of mantissa bits is 14. All values in the

vertical axis are ratios (either ratios of ESS values or ratios of speedups)

ESS ratios has been incorporated into all Section 3.6 results.

Kernel optimization for GPUs: As mentioned in Section 3.3.1, the combination of blocks and tasks

(sub-densities) per thread in the CUDA kernels of GPU samplers can be optimized to minimize run-

time. This optimization is shown in Figure 3.13 for (M,n) = (8192,128) on the GTX285. Values

come from pre-runs. Some combinations are impossible because they lead to more threads per block

than the employed CUDA version allows. It is clear from the graph that assigning sufficient tasks

per block is necessary to achieve good performance and that processing several tasks per thread is

beneficial. This optimization has been applied to all the GPU samplers of the previous section.

3.6.5 FPGA memory considerations

All FPGA implementations have Sample, Probability and Data memories (their sizes given in Table

3.2), which use on-chip memory resources. The on-chip memory of an FPGA is limited. The largest

114 Chapter 3. Algorithms and architectures for Population-based MCMC

64
128

256
512

1024
2048

4096
8192

1248163264128

0

0.5

1

1.5

2

x 10
6

Number of blocks
per kernel

Number of tasks per thread

C
y
c
le

s
 f

o
r

e
x
e

c
u

ti
o

n

 o

f
G

lo
b

a
l
U

p
d

a
te

 k
e

rn
e

l

(32,512)

Figure 3.13: GPU kernel optimization: Cycles of global update kernel when the number of blocks and

the number of tasks (data) per thread change. The parameter combination used is (M,n)= (8192,128).
The GPU device used is the GTX285. Cycles are minimized when using 512 blocks and 32 tasks per

thread.

FPGA used here (VX1140T) has 8.2 MB of memory on chip. When using many chains and large data

sets, some or all of these memories have to be moved off chip. Performance can degrade if the off-

chip memory throughput is not enough to feed the processing modules. This mainly depends on the

ratio of computations over memory accesses in the probability density evaluation. Also, performance

can degrade if the FPGA-to-host memory throughput is lower than the rate at which the architecture

generates output data (MCMC samples).

For the mixture model examined here this is not an issue. Indicatively, if MPPT is implemented

on the LX240T FPGA with M = 32768 and n = 32768 (a combination not tested in this chapter),

the system is able to process 1.3 Global operations per second, based on (3.8) and the number of

pipelines that fit in the FPGA. Since not all memories fit in the FPGA, the two largest ones (Samples,

Probabilities) have to be implemented as off-chip memory and only the Data memory is kept on chip.

The system then needs to read 1.3×32768 samples and 1.3×32768 probabilities per second from off-

chip memory (since the Global operation operates on the samples and probabilities of all chains) and

3.7. Discussion 115

write 1.3× 32768 samples and 1.3× 32768 probabilities per second back to off-chip memory (since

the off-chip memory has to be up to data at all times). This translates to an input memory throughput

requirement of 1.62 MB/sec and an output memory throughput requirement of 1.62 MB/sec, which are

within the capabilities off-chip memory in FPGA boards. For example, the Xilinx ML605 board with

the LX240T device can reach a total I/O throughput of 5.9 GB/sec [91]. Also, other implementations

report much higher peak memory throughputs [150]. In contrast, if the ratio of computations over

memory accesses is very low (due to a different form of probability density) or if the Data memory

is moved off-chip, it is possible that the off-chip memory throughput will not be enough to feed the

system, becoming the bottleneck.

Moreover, the PCI-express connection to the host PC needs to be able to transfer the MCMC samples

and weights of the first chain as fast as they are generated by the architecture. The worst-case scenario

(in contrast to the previous paragraph) is when using a very small problem size (M = 8 and n = 128).

On the LX240T FPGA, the architecture is able to generate first-chain samples very fast in this scenario,

i.e. 2.27×106 first-chain samples/sec. Each sample comprises four 64 bit numbers, which means that

the required PCI-express throughput is close to 70 MB/sec. The RIFFA-based PCI-express connection

in the proposed system achieves a throughput of 120 MB/sec, which is sufficient. If the largest FPGA

in this chapter is used (VX1140T), the throughput requirement increases to the 382 MB/sec, which

cannot by covered by the PCI-express implementation employed here. Nevertheless, this throughput is

comfortably within the capabilities of faster PCI-express implementation which use more lanes and/or

a more recent generation of the PCI-express protocol.

3.7 Discussion

This chapter focuses on proposing novel FPGA architectures for popMCMC algorithms (more specif-

ically, the popular and representative PT algorithm), introduces methods to exploit custom precision

to reduce runtime (without introducing sampling error) and compares the performance of FPGAs to

that of other accelerator platforms.

Results showed that the baseline FPGA architecture is faster and more energy efficient than multi-core

CPU and GPU accelerators, especially when tackling small and medium-size problems. Moreover, it

is clear from the results that custom precision can improve the efficiency of PT without compromising

sampling quality, provided that it is used in accordance with the algorithm’s properties. Both custom

116 Chapter 3. Algorithms and architectures for Population-based MCMC

precision methods proposed in this chapter do this, managing to use reduced precision for the majority

of probability density evaluations and limiting double precision computations significantly. The pos-

terior samples of all runs were examined to confirm that the custom precision methods sample from

the “correct” posterior. This was the case, as theoretically expected.

Both methods are particularly suitable for mapping on FPGAs, where they deliver up to a 6.5x speedup

over the double precision sampler. The gains on CPUs and GPUs are smaller. The use of custom

precision in PT in combination with its FPGA implementation is an example of how to combine

knowledge about the MCMC method (in this case PT’s tolerance to using inexact computations in

parts of the implementation) with understanding of the underlying hardware to maximize efficiency.

The main disadvantage of WPT/MPPT is the way their performance scales with data size. A drop

in the effective speedup is observed after a certain point due to error accumulation in the likelihood

calculation (although the effective speedup is still higher than that of the GPUs). WPT and MPPT

thus lose part (but not all) of their performance advantage over GPUs when handling massive data

sets. The strengths and weaknesses of the two methods when mapped on FPGAs are:

WPT: This method is easier to implement; the main processing block is the same as in the baseline

architecture (with reduced precision) and the extra blocks are not complex. WPT is slightly slower

than MPPT in most situations. Also, since WPT is an IS method, the distribution is not actually

sampled and cannot be visualized.

MPPT: This method is faster than WPT by around 10% in most cases and generates actual samples

from the distribution. However, it is more complex to implement, since the main block has to be

modified to handle the use of two different precisions in updates.

WPT and MPPT can be applied to other sampling scenarios. WPT can be used in any MCMC method

in combination with thinning [9], a technique which retains only some of the samples (equivalent to

subsampling the MCMC output) to decrease correlation. In such a scenario, a custom precision block

could process all samples, while a double precision block could compute weights only for thinned

samples (which constitutes a much smaller workload). Moreover, both WPT and MPPT can be applied

to other population-based MCMC methods [7, 67], since all of them are based on the idea of utilizing

auxiliary chains to improve the mixing of the first chain.

The focus of this chapter is on optimally mapping PT to hardware and exploiting precision. The way

performance changes when using different likelihoods is outside the scope of this work. Having said

3.7. Discussion 117

that, the speedups demonstrated for the mixture model are expected to hold for other models with i.i.d.

data, since the same form of parallelism can be exploited. Performance scaling is also expected to be

similar to Figures 3.6 and 3.7 when using i.i.d. likelihoods (which is the case in a wide variety of real

problems). For non-i.i.d. likelihoods, probability evaluation might require computations which are

not SIMD, e.g. [10, 25], so speedups (and the way they scale) depend largely on the problem. The

flexibility of FPGA, which can tailor their architecture to a specific type of computation, could prove

beneficent in this scenario.

Overall, popMCMC algorithms are particularly suitable for parallel platforms due to their inherently

parallel structure. This is the reason why significant speedups over sequential software are possible

when implementing them on multi-core CPUs, GPUs and FPGAs. The following chapter will in-

vestigate the potential of using FPGA to accelerate a different class of MCMC algorithms (Particle

MCMC), which are not as straightforward to parallelize. Moreover, it will extend the approach of

co-designing the algorithm and the underlying hardware to this new class. Unlike the present chapter,

where the co-design was based on exploiting custom precision, the co-design approach of the next

chapter aims to maximize datapath utilization by modifying the algorithm.

Chapter 4

Algorithms and architectures for Particle

MCMC

4.1 Introduction

Most MCMC methods, including the Population-based MCMC sampler of Chapter 3, are based on

the assumption that the target probability density (i.e. the posterior in Bayesian applications) can

be evaluated pointwise up to a multiplicative constant. Nevertheless, this is not possible in several

scenarios, notably when performing inference on the joint space of unknown states and unknown

parameters in SSMs [33]. The pMCMC method (Algorithm 5 in Chapter 2) is designed to address

this challenge. It uses a Particle Filter (PF) inside an MCMC algorithm, in order to generate unbiased

estimates of the probability density. Andrieu and Roberts [45] showed that the use of these estimates

leads to sampling from the correct SSM posterior.

Despite pMCMC’s success since its invention in 2010 [33], its applicability suffers from two main

issues: 1) The computational cost of estimating the probability density using a PF is O(T ·P) (where

T is the number of hidden SSM states and P is the number of particles of the PF) [72]. This becomes

prohibitive in modern, big-data applications. Moreover, each pMCMC iteration requires a separate

PF run and typically thousands of iterations are needed. Therefore, performing inference for large

SSMs [48, 2] is currently impractical. The work in this chapter was initially motivated by such a

complex problem; SSMs in genetics, where the number of SSM states, which correspond to DNA

bases, can reach millions [14]. 2) The issue of multi-modality in the posterior, which can appear in

118

4.1. Introduction 119

certain modelling scenarios but has remained unaddressed in pMCMC literature (for more details on

these two issues, see Chapter 2).

In this chapter, the above challenges are tackled using FPGA acceleration and novel algorithmic mod-

ifications. The questions that this chapter considers are:

• “How can the inherent parallelism of pMCMC be exploited to achieve high sampling throughput

in an FPGA implementation?”

• “Can the pMCMC algorithm be enhanced to increase its efficiency for multi-modal posteriors?”

• “How can these enhancements be combined with extra hardware optimizations in order to fur-

ther boost performance?”

The results presented in this chapter make it clear that FPGAs can outperform other hardware plat-

forms when running pMCMC and that a new algorithm (which is proposed here) increases sampling

efficiency for multi-modal targets, while possessing favourable properties for mapping on FPGAs.

Chapter outline

Section 4.2 recalls the main equations and algorithms related to SSMs, PFs and pMCMC, which were

first presented in Chapter 2. The remaining sections contain the contributions of the chapter:

1. A new algorithm which combines existing MCMC methods (popMCMC and pMCMC) to ad-

dress target densities which are both analytically intractable and multi-modal. The algorithm

(named Population-based Particle MCMC - ppMCMC) extends pMCMC by using a population

of pMCMC chains instead of a single chain (in the same way that popMCMC uses multiple

chains) in order to improve mixing (section 4.3). The section also justifies the correctness of the

ppMCMC algorithm, i.e. it shows why it converges to the desired posterior distribution.

2. A novel FPGA architecture for pMCMC, which exploits the parallelism in the three steps of the

PF to achieve high sampling throughput. (section 4.4).

3. An FPGA architecture for ppMCMC which is based on the baseline pMCMC architecture but

provides support for multiple chains. The existence of multiple chains is exploited to increase

the utilization of the PF data path through coarse-grain pipelining. An analytical performance

model is introduced in order to quantify the speedup gains from such a strategy (section 4.4).

120 Chapter 4. Algorithms and architectures for Particle MCMC

The new algorithm and the two FPGA accelerators are applied to large-scale SSM inference in ge-

netics. More specifically, an SSM model of DNA methylation with unknown parameters is targeted.

This model can lead to uni-modal or multi-modal posteriors. The sampling throughput of the FPGA

is compared with the sampling throughput of state-of-the-art, optimized CPU and GPU pMCMC ac-

celerators [2] which are applied to the same problem. Moreover, for the multi-modal posterior case,

the trade-off between the number of MCMC chains and the number of PF particles in ppMCMC is

explored in order to maximize sampling throughput (Section 4.7).

4.2 State-space models and Particle MCMC

All the necessary background on SSMs and pMCMC can be found in Section 2.3.3 of Chapter 2. Here,

the main equations and algorithms are repeated for easier reference. The three SSM equations are the

following:

X1 ∼ p(X1) (4.1)

Xt ∼ p(Xt | Xt−1,θ), t > 1 (4.2)

Yt ∼ p(Yt | Xt ,θ), t > 0 (4.3)

The posterior when performing state estimation (with known parameters θ) in SSMs is the following:

pθ (X1:T | Y1:T) ∝ pθ (X1:T) pθ (Y1:T | X1:T) = p(X1)

(

∏
T
t=2 pθ (Xt | Xt−1)

) (

∏
T
t=1 pθ (Yt | Xt)

)

(4.4)

The Bayesian posterior when performing joint state and parameter estimation is the following:

p(X1:T ,θ | Y1:T) ∝ p(θ) p(X1:T | θ) p(Y1:T | X1:T ,θ)

= p(θ) p(X1)

(

∏
T
t=2 p(Xt | Xt−1,θ)

) (

∏
T
t=1 p(Yt | Xt ,θ)

) (4.5)

The proposal density of pMCMC is the following:

q((X∗1:T ,θ
∗) | (X1:T ,θ)) = q(θ ∗ | θ) p(X∗1:T | Y1:T ,θ

∗) (4.6)

4.3. ppMCMC: A new population-based pMCMC method 121

The acceptance ratio of pMCMC is the following:

ã = p(θ ∗) p̃(Y1:T |θ ∗) q(θ |θ ∗)
p(θ) p̃(Y1:T |θ) q(θ ∗|θ) (4.7)

The bootstrap PF and pMCMC algorithms are shown in Algorithms 7 and 8 respectively:

Algorithm 7 Bootstrap Particle Filter

1: procedure BOOTSTRAPPF(P, T , θ , Y1:T) - Inputs: P (number of particles), T (number of SSM

states), θ (parameter values for transition and observation densities), Y1:T (observations)

2: Initial state (t = 1):

3: for k = 1, ...,P do

4: Sample particle from initial density X̃k
1 ∼ p(X1) // sampling step

5: for k = 1, ...,P do

6: Calculate initial weight W k
1 ← pθ (Y1 | X̃k

1) // weight step

7: Remaining states:

8: for t = 2, ...,T do

9: for k = 1, ...,P do

10: Sample ancestor index ak from {1, ...,P} with probabilities proportional to

11: {W 1
t−1, ...,W

P
t−1} and set resampled particle Xk

t−1← X̃ak

t−1 // resampling step

12: for k = 1, ...,P do

13: Sample particle from transition density X̃k
t ∼ pθ (Xt | Xk

t−1) // sampling step

14: for k = 1, ...,P do

15: Calculate weight W k
t ← pθ (Yt | X̃k

t) // weight step

16: Likelihood estimate:

17: L←∏
T
t=1

(

1
P ∑

P
k=1W k

t

)

18: return (L, X1:P
1:T = {X1:P

1 , ...,X1:P
T }) (likelihood estimate and P particles for every SSM state)

4.3 ppMCMC: A new population-based pMCMC method

This section presents a novel MCMC algorithm, which is a combination of two existing MCMC meth-

ods (popMCMC and pMCMC). The new algorithm is called Population-based Particle MCMC (ppM-

CMC) and its purpose is to address problems where the SSM posterior presented in Section 2.3.3, i.e.

equation (4.5) of this chapter, is multi-modal. Multi-modality here is tackled only for the marginal

posterior of θ (i.e. the posterior marginalised over the states). In these cases, the standard pMCMC

algorithm faces the well-known issue of slow mixing, which is common to all single-chain MCMC

methods. The sampler tends to “get stuck” in one of the modes of the posterior and only rarely man-

ages to move to a different mode. Some of the modes might never be visited unless the sampler runs

for a very long time, i.e. the runtime becomes impractical for real-world use by practitioners. Thus

the user cannot be certain that the posterior has been explored completely. Of course, full exploration

122 Chapter 4. Algorithms and architectures for Particle MCMC

Algorithm 8 Particle MCMC

1: procedure PMCMC(P, T , Y1:T , N, θ init) - Inputs: P (number of particles), T (number of SSM

states), Y1:T (observations), N (number of MCMC samples), θ init (initial MCMC sample)

2: First iteration (i = 1):

3:

(

p̃(Y1:T | θ init), X1:P
1:T

)

← BootstrapPF(P,T ,θ init ,Y1:T) // get likelihood and state samples

4: Randomly select an index p from {1, ...,P} and set Xinit
1:T = X

p
1:T

5: Sample[1] = (θ init , X init
1:T) // save initial sample

6: Posterior[1] = p(θ init) p̃(Y1:T | θ init) // compute and save posterior

7: θ = θ init // temporary variable

8: Remaining iterations:

9: for i = 2, ...,N do

10: θ ∗ ∼ q(θ ∗ | θ) // propose new θ

11:

(

p̃(Y1:T | θ ∗), X1:P
1:T

)

← BootstrapPF(P,T ,θ ∗,Y1:T) // get likelihood and state samples

12: Randomly select an index p from {1, ...,P} and set X∗1:T = X
p
1:T

13: Accept proposed sample (θ ∗, X∗1:T) with probability min(1, ã)
14: if accepted then

15: Sample[i] = (θ ∗, X∗1:T) // save proposed sample

16: Posterior[i] = p(θ ∗) p̃(Y1:T | θ ∗) // compute and save posterior

17: θ = θ ∗ // temporary variable

18: else

19: Sample[i] = Sample[i−1] // replicate previous sample

20: Posterior[i] = Posterior[i−1] // replicate previous posterior

21: return (Sample[1 : N], Posterior[1 : N]) (N sets of MCMC samples and posterior values)

is never certain, even when using an algorithm with superior mixing. Nevertheless, improving mixing

makes it more likely that the modes will be found in a reasonable time frame (i.e. days or weeks).

Although most applications of pMCMC lead to uni-modal marginal posteriors for θ , there are mod-

elling scenarios, like the one described in section 4.5, where the posterior admits multiple modes. For

example, the methylation profile of whole blood consists of multiple methylation profiles originat-

ing in the different cell types that exist in the blood [14]. In order to model this using an SSM, the

transition density needs to be a mixture of densities with multiple unknown parameters. Inference on

mixtures leads to multi-modal posteriors.

The ppMCMC algorithm is a typical population-based MCMC method: It employs a population of M

MCMC chains, where each chain samples from a different target distribution, i.e. a modified version

of the SSM posterior in equation (4.5). The differences between the chains’ target distributions are

due to the use of tempering (in a PT-like fashion, see Chapter 3); each chain uses a separate PF

to approximate its likelihood (like in the pMCMC algorithm) but the likelihoods are then tempered.

Also, ppMCMC uses exchange moves between the chains in a predefined order (again in the same

way as PT). The combination of tempering and exchanges results in better mixing for multi-modal

4.3. ppMCMC: A new population-based pMCMC method 123

distributions but also introduces complications (which will be explained shortly). The two actions that

take place during each ppMCMC iteration are the update moves and the exchange moves:

Update Moves

During the update moves stage, each chain proposes candidate MCMC samples (X∗1:T ,θ
∗) (for its own

unique, modified SSM posterior) using the proposal:

q j((X
∗
1:T ,θ

∗) | (X1:T ,θ)) = q j(θ
∗ | θ) p(X∗1:T | Y1:T ,θ

∗), j ∈ {1, ...,M} (4.8)

where j is the chain index, (X1:T ,θ) is the previous sample of the chain, q j((X
∗
1:T ,θ

∗) | (X1:T ,θ))

is the full MCMC proposal density (for states and θ) for chain j and q j(θ
∗ | θ) is the component

of the proposal density which is related to θ for chain j. This component can be different between

chains, in order to account for the different target densities of each chain, i.e. chains with more diffuse

target densities mix faster when their proposal has larger variance. The component of the proposal

density which is related to states (p(X∗1:T | Y1:T ,θ
∗)) is the same for all chains. The proposed states

are generated by a PF exactly as in pMCMC. The only difference between the proposal schemes of

pMCMC and ppMCMC is the use of different variances in the θ component of the proposal. Note that

here, and in the remaining of the section (except the pseudo-code), the subscript j is dropped from the

candidate and previous samples of the chains to simplify notation.

After the candidate samples have been proposed, they are accepted or rejected based on the following

M-H acceptance ratio:

ã j =
p(θ ∗) p̃(Y1:T |θ ∗)

1
Temp j p(X∗1:T |Y1:T ,θ

∗) q j(θ |θ ∗) p(X1:T |Y1:T ,θ)

p(θ) p̃(Y1:T |θ)
1

Temp j p(X1:T |Y1:T ,θ) q j(θ ∗|θ) p(X∗1:T |Y1:T ,θ ∗)
=

p(θ ∗) p̃(Y1:T |θ ∗)
1

Temp j q j(θ |θ ∗)

p(θ) p̃(Y1:T |θ)
1

Temp j q j(θ ∗|θ)
, j ∈ {1, ...,M}

(4.9)

where notation is the same as in the standard pMCMC method and Temp j is the temperature of chain

j (with 1 = Temp1 < Temp2 < ... < TempM < ∞). The above ratio is different from the standard

pMCMC ratio in equation (4.7), since the estimated likelihood p̃(Y1:T | θ) is tempered. This is done

in order to achieve the posterior smoothing effect of all tempering schemes: The first chain of the

population has Temp1 = 1, which means that it is the only chain that is not tempered. The chain

samples from the exact same SSM posterior as a typical pMCMC algorithm (the “correct” posterior).

The auxiliary chains of the population (j ∈ {2, ...M}) are tempered, which means that they sample

from some smoothed (closer to uniform) version of the “correct” SSM posterior. As can be seen in

124 Chapter 4. Algorithms and architectures for Particle MCMC

the acceptance equation, the temperatures are applied only to the likelihood p̃(Y1:T | θ) (and not the

other terms in the left-most part of the equation). This is a typical approach in tempering MCMC

algorithms, since the likelihood is the component that usually contributes the most in the posterior

shape. Moreover, it is crucial to apply the temperature only to this component in order to simplify the

implementation of exchange steps (as will be shown below).

From examining equation (4.9), it is clear that no changes to the Bootstrap PF (compared to the

pMCMC case) are needed in order to implement the ratio and temper the likelihoods; the PF of each

chain generates a sample X∗1:T from p(X∗1:T | Y1:T ,θ
∗) which is used in the proposal. It also generates

an unbiased estimate p̃(Y1:T | θ ∗) of the “correct” (non-tempered) likelihood. The temperature is

applied after the termination of the PF. The terms p(X∗1:T |Y1:T ,θ
∗) and p(X1:T |Y1:T ,θ) are cancelled

out in the acceptance ratio (as in basic pMCMC).

What are the target distributions?

Although applying a temperature to the likelihood is a well-known technique in population-based

methods, in the case of ppMCMC it is not clear what the target distribution of each tempered chain is.

The term p(θ)p̃(Y1:T | θ)
1

Temp j p(X1:T |Y1:T ,θ) (which contains the likelihood estimate) is used in the

acceptance ratio of chain j but this does not lead the chain to converge to the posterior p(θ)p(Y1:T |

θ)
1

Temp j p(X1:T | Y1:T ,θ), as one would intuitively expect after comparing to the pMCMC case.

According to the theory presented in [45], a pMCMC chain converges to a target distribution provided

that unbiased estimates of the distribution’s density are used in the numerator and denominator of

the acceptance ratio. Nevertheless, the term p(θ) p̃(Y1:T | θ)
1

Temp j p(X1:T | Y1:T ,θ) is not an unbiased

estimator of p(θ)p(Y1:T | θ)
1

Temp j p(X1:T |Y1:T ,θ): Running a PF on the given SSM produces an unbi-

ased estimate p̃(Y1:T | θ) of the likelihood (i.e. E
[

p̃(Y1:T | θ)
]

= p(Y1:T | θ)). However, applying the

temperature after the likelihood estimate is generated (i.e. finding p̃(Y1:T | θ)
1

Temp j) does not maintain

unbiasedness with respect to the “correct” tempered likelihood (i.e. p(Y1:T | θ)
1

Temp j).

In more detail, because the function x 7→ x
1

Temp j is concave for Temp j ≥ 1, applying Jensen’s inequality

[151] leads to the following:

E
[

p̃(Y1:T | θ)
1

Temp j
]

≤ E
[

p̃(Y1:T | θ)
]

1
Temp j = p(Y1:T | θ)

1
Temp j (4.10)

This is true for all ppMCMC chains since all temperatures are greater or equal to one (for Temp j ≤ 1,

4.3. ppMCMC: A new population-based pMCMC method 125

the function is convex and the inequality is reversed). Equality holds only for Temp j = 1. There-

fore, unbiased estimates of the “correct” tempered likelihood densities p(Y1:T | θ)
1

Temp j (and thus the

respective posterior densities) can be acquired only when Temp j = 1 (i.e. only in the case of the

first chain). Nevertheless, this does not mean that the tempered chains do not converge to any target

distribution. In fact, chain j converges to the distribution whose density is unbiasedly estimated by

p(θ)p̃(Y1:T | θ)
1

Temp j p(X1:T | Y1:T ,θ). The densities of these distribution can be written as:

p j(X1:T ,θ | Y1:T) = p(θ) E
[

p̃(Y1:T | θ)
1

Temp j
]

p(X1:T | Y1:T ,θ), j ∈ {1, ...,M} (4.11)

These are the actual target densities of the M chains of the ppMCMC algorithm. Only for the first chain

the density is equal to the “correct” tempered posterior (with Temp1 = 1) and also to the “correct” SSM

posterior, i.e. p j(X1:T ,θ | Y1:T) = p(X1:T ,θ | Y1:T).

The key point here is that it is not necessary for the auxiliary chains to sample from the set of “correct”

tempered posteriors, since their samples are not kept. Only the samples of the first chain are kept

because they are the ones distributed according to the desired, “correct” SSM posterior. The auxiliary

chains are only employed to help the first chain mix faster; they need to explore the distribution space

quickly (and therefore their target distributions need to be closer to uniform) and occasionally feed

the first chain with samples through exchange moves. These samples help the first chain escape from

local modes. It is therefore enough for the auxiliary chains to sample from some set of tempered

versions of the SSM posterior (and not necessarily from the “correct” set of tempered posteriors). The

densities in equation (4.11) provide this tempering effect and therefore fulfil their purpose, i.e. they

move fast in the distribution space and help the first chain mix faster through exchange moves. In

fact, the term “correct” is only used here for reasons of clarity; there is no reason to believe that the

“correct” densities p(Y1:T | θ)
1

Temp j are the best candidates for use in auxiliary chains (with respect

to the mixing gains they offer). On the other hand, this does not mean that any density would serve

as a good auxiliary density, e.g. uniform auxiliary densities would not help the mixing of the first

chain because they are not concentrated around the true modes. In other words, some (not complete)

smoothing must be applied to the true densities but the exact form of the optimal auxiliary densities is

not known. In practical situations, the temperature set is tuned (using pre-runs) to improve mixing as

much as possible.

The above approach is similar to the MPPT custom precision technique presented in Chapter 3 for the

PT algorithm; in that case, custom precision approximations of the auxiliary chains’ target densities

126 Chapter 4. Algorithms and architectures for Particle MCMC

were used instead of the “correct” tempered densities. This did not affect the target distribution of the

first chain and also proved effective for improving mixing (for most precisions).

Exchange Moves

In every ppMCMC iteration, after all chains have finished the update moves, the exchange step

is performed. Exchange moves are attempted between chain pairs (1,2),(3,4), ... or chain pairs

(2,3),(4,5), ... (neighbouring chains) in a rotating manner. As mentioned above, the exchange moves

push MCMC samples from the high-temperature chains, which are closer to the uniform distribution,

to the lower-temperature chains, which are closer to the “correct” target distribution. Eventually sam-

ples reach the first chain which samples from the “correct distribution” and help it escape from local

modes. The exchange acceptance ratio between chains (q,r) is:

ẽq =
p(θ r) p̃(Y1:T |θ r)

1
Tempq p(Xr

1:T |Y1:T ,θ
r) p(θ q) p̃(Y1:T |θ q)

1
Tempr p(X

q
1:T |Y1:T ,θ

q)

p(θ q) p̃(Y1:T |θ q)
1

Tempq p(X
q
1:T |Y1:T ,θ q) p(θ r) p̃(Y1:T |θ r)

1
Tempr p(Xr

1:T |Y1:T ,θ r)

= p̃(Y1:T |θ r)
1

Tempq p̃(Y1:T |θ q)
1

Tempr

p̃(Y1:T |θ q)
1

Tempq p̃(Y1:T |θ r)
1

Tempr

(4.12)

where again the PF likelihood estimates are used, q ∈ {1, ...,M− 1}, r = q+ 1 and (Xq
1:T ,θ

q) and

(Xr
1:T ,θ

r) are the current samples of chains q and r respectively. The above equation shows why it

is important to apply the tempering technique only to the likelihood p(Y1:T | θ) and not to the term

p(X1:T | Y1:T ,θ); it allows the latter to cancel out in the exchange acceptance ratio and leads to the

simple form in the second line of the equation, which requires no additional PF runs (all the values are

already known from the preceding update step).

It is important to justify why the above exchange move fulfils the requirements of the theory of pM-

CMC [45] with regards to maintaining the correct target distributions of the two chains. The exchange

step is equivalent to a Metropolis update where the updated state is the joint state of both chains (with

indexes q and r). According to Andrieu and Roberts [45], a Metropolis update maintains the target

distribution as long as the numerator and denominator of the acceptance ratio are unbiased estimates of

the target density. In the case of the exchange step (and focusing only on the numerator for simplicity),

this means that the product p(θ r) p̃(Y1:T | θ r)
1

Tempq p(Xr
1:T |Y1:T ,θ

r) p(θ q) p̃(Y1:T | θ q)
1

Tempr p(Xq
1:T |

Y1:T ,θ
q) has to be an unbiased estimate of the product of the target densities of the two chains (which

4.4. FPGA architectures for pMCMC and ppMCMC 127

were given in equation (4.11)). It is easy to show that this is the case, since:

E[p(θ r) p̃(Y1:T | θ r)
1

Tempq p(Xr
1:T | Y1:T ,θ

r) p(θ q) p̃(Y1:T | θ q)
1

Tempr p(Xq
1:T | Y1:T ,θ

q)]

= p(θ r) p(Xr
1:T | Y1:T ,θ

r) p(θ q) p(Xq
1:T | Y1:T ,θ

q) E
[

p̃(Y1:T | θ r)
1

Tempq p̃(Y1:T | θ q)
1

Tempr

]

= p(θ r) p(Xr
1:T | Y1:T ,θ

r) p(θ q) p(Xq
1:T | Y1:T ,θ

q) E
[

p̃(Y1:T | θ r)
1

Tempq
]

E
[

p̃(Y1:T | θ q)
1

Tempr

]

= pq(X1:T ,θ
r | Y1:T) pr(X1:T ,θ

q | Y1:T)

(4.13)

The first equality is true because the first four terms in the second line of the equation are zero-

variance estimators. The second equality is true because the two estimates p̃(Y1:T | θ r)
1

Tempq and

p̃(Y1:T | θ q)
1

Tempr are independent estimators (since they are generated by two independent PFs, each

assigned to its own MCMC chain) and therefore the expectation of their product is equal to the product

of their expectations. The final equality is true due to equation (4.11).

The ppMCMC algorithm

The pseudo-code of ppMCMC is shown in Algorithm 9. All the differences compared to Algorithm 8

are included, i.e. multiple chains, different proposals and updates, exchange moves. They are all based

on the equations presented previously. Note that the update and exchange ratios in the pseudo-code

use slightly different notation compared to the previously derived equations for ease of presentation.

Apart from the inputs of pMCMC, ppMCMC requires also the number of chains, the initial samples

of each chain and the temperature of each chain. The output includes the samples and the posterior

density values of the first chain.

4.4 FPGA architectures for pMCMC and ppMCMC

This section presents novel FPGA architectures for the pMCMC and ppMCMC algorithms. For the

ppMCMC architecture, a performance model is described for the case when coarse-grain pipelining

of the multi-chain computations is used to enhance throughput.

4.4.1 Parallelism in the algorithms

The available parallelism of pMCMC is P, since all particles inside the PF can be processed in parallel

The N iterations of pMCMC and the T states of the SSM are strictly sequential. In ppMCMC the

128 Chapter 4. Algorithms and architectures for Particle MCMC

Algorithm 9 Population-based Particle MCMC

1: procedure PPMCMC(P, T , Y1:T , N, M, θ init
1:M, Temp1:M) - Inputs: P (number of particles), T

(number of SSM states), Y1:T (observations), N (number of MCMC samples), M (number of

chains), θ init
1:M (initial MCMC samples for all chains), Temp1:M (chain temperatures)

2: First iteration (i = 1):

3: for j = 1, ...,M do

4:

(

p̃(Y1:T | θ init
j), X1:P

1:T

)

← BootstrapPF(P,T ,θ init
j ,Y1:T) // get lik. & states (chain j)

5: Randomly select an index p from {1, ...,P} and set Xinit
1:T ← X

p
1:T

6: Sample[j][1]← (θ init
j , X init

1:T) // save initial sample (chain j)

7: Posterior[j][1]← p(θ init
j)

(

p̃(Y1:T | θ init
j)

1
Temp j

)

// compute and save posterior (chain j)

8: θ j← θ init
j // temporary variable (chain j)

9: Remaining iterations:

10: for i = 2, ...,N do

11: Chain updates:

12: for j = 1, ...,M do

13: θ ∗ ∼ q j(θ
∗ | θ j) // propose new θ (chain j)

14:

(

p̃(Y1:T | θ ∗), X1:P
1:T

)

← BootstrapPF(P,T ,θ ∗,Y1:T) // get lik. and states (chain j)

15: Randomly select an index p from {1, ...,P} and set X∗1:T = X
p
1:T

16: Accept proposed sample (θ ∗, X∗1:T) with probability

min
(

1,
p(θ ∗) p̃(Y1:T |θ ∗)

1
Temp j q j(θ j|θ ∗)

p(θ j) p̃(Y1:T |θ j)
1

Temp j q j(θ ∗|θ j)

)

17: if accepted then

18: Sample[j][i] = (θ ∗, X∗1:T) // save proposed sample (chain j)

19: Posterior[j][i] = p(θ ∗)
(

p̃(Y1:T | θ ∗)
1

Temp j

)

//comp. and save posterior (chain j)

20: θ j = θ ∗ // temporary variable (chain j)

21: else

22: Sample[j][i] = Sample[i−1] // replicate previous sample (chain j)

23: Posterior[j][i] = Posterior[i−1] // replicate previous posterior (chain j)

24: Chain exchanges:

25: for (q,r) = (1,2),(3,4), ... OR (q,r) = (2,3),(4,5), ... (in turn order) do

26: Exchange Sample[q][i]↔ Sample[r][i], Posterior[q][i]↔ Posterior[r][i] and θq ↔ θr

with probability min
(

1,
p̃(Y1:T |θr)

1
Tempq p̃(Y1:T |θq)

1
Tempr

p̃(Y1:T |θq)
1

Tempq p̃(Y1:T |θr)
1

Tempr

)

27: return (Sample[1][1 : N], Posterior[1][1 : N]) (N sets of MCMC samples and posterior values

from the first chain)

4.4. FPGA architectures for pMCMC and ppMCMC 129

available parallelism increases to M ·P due to the existence of M MCMC chains which can be updated

independently.

4.4.2 pMCMC architecture

The architecture of pMCMC is illustrated in Figure 4.1. Table 4.1 lists all the constant and variable

parameters related to the architecture and the pMCMC algorithm. Table 4.2 lists the sizes of all the

memory blocks of the system. The architecture consists of a pMCMC block and some extra logic

which is responsible for initialization and communication with the off-chip memory and the host PC.

The pMCMC block comprises all the necessary parts to implement a Metropolis MCMC sampler plus

a Bootstrap PF block which estimates the likelihood of the proposed sample and generates posterior

state samples. The PF block consists of three main stages; Transition & Weight, Partial sums and

Resampling stage. These stages perform the tasks described in section 2.3.3 for the PF (transition,

weight, resample) but they are grouped in a different way for implementation reasons (which will be

explained shortly).

In more detail (using the notation and line numbering of Algorithm 8): For iteration i of the MCMC

loop in line 9, the system reads the θ component of the current (latest) MCMC sample from the

Current theta memory and sends it to the Sample Proposal block. The block samples from the proposal

q(θ ∗ | θ) in line 10, which is model-specific and thus defined by the user. Any necessary random

numbers, which depend on the form of q(θ ∗ | θ)), are generated using Random Number Generators

(RNGs). The proposed value θ ∗ is written to the Proposed theta memory and then forwarded to the

PF block. The latter implements lines 11-12 of Algorithm 8, returning the estimated likelihood of

the proposed MCMC sample (p̃(Y1:T | θ ∗)) and a randomly selected state sample (X
p
1:T). These are

written to the respective memories. The proposed θ ∗ is also fed to the Prior Evaluation block, which

computes the prior value p(θ ∗) (also a model-specific computation). The Update block is responsible

for accepting or rejecting the proposed sample (lines 13-20), based on the acceptance ratio of equation

(4.7). To do this, it needs the proposed likelihood emitted by the PF block (p̃(Y1:T | θ ∗)), the proposed

prior emitted by the Prior Evaluation block p(θ ∗), the current MCMC sample’s likelihood and prior

(p̃(Y1:T | θ) and p(θ)) which are read from the respective memory, as well as the values q(θ | θ ∗) and

q(θ ∗ | θ). These two values are computed inside the Update block using θ and θ ∗. Finally, the Update

block needs a uniform random number from an RNG to implement the acceptance step. If the update

step is successful, the block writes the proposed MCMC sample and the proposed likelihood and prior

130 Chapter 4. Algorithms and architectures for Particle MCMC

S
a

m
p

le

P
ro

p
o

s
a

l

P
a

rtic
le

 F
ilte

r

C
u

rre
n

t

lik
e

lih
o

o
d

&
 p

rio
r

m
e

m
o

ry

C
u

rre
n

t

th
e

ta

m
e

m
o

ry

O
b

s
.

d
a

ta

m
e

m
o

rie
s

p
M

C
M

C

P
a

rtic
le

m
e

m
o

rie
s

2

R
e

p
lic

a
tio

n

c
o

u
n

ts

m
e

m
o

rie
s

T
ra

n
s

.

d
a

ta

m
e

m
o

rie
s

P
a

rtic
le

m
e

m
o

rie
s

1

P
ro

p
o

s
e

d

th
e

ta

m
e

m
o

ry

P
ro

p
o

s
e

d

lik
e

lih
o

o
d

m
e

m
o

ry

T
ra

n
s

itio
n

 &
 W

e
ig

h
t s

ta
g

e

S
ta

te

tra
n

s
itio

n

m
o

d
u

le

S
ta

te

tra
n

s
itio

n

m
o

d
u

le

S
ta

te

tra
n

s
itio

n

m
o

d
u

le

O
b

s
e

rv
a

tio
n

d

e
n

s
ity

m

o
d

u
le

O
b

s
e

rv
a

tio
n

d

e
n

s
ity

m

o
d

u
le

>

>
 >

R
e

s
a

m
p

lin
g

 s
ta

g
e

C
o

n
v

C
o

n
v

C
o

n
v

O
b

s
e

rv
a

tio
n

d

e
n

s
ity

m
o

d
u

le

...

...

...

...
.....

...

+

L
o

g
-w

e
ig

h
t

m
e

m
o

rie
s

R
N

G
s

R
N

G
s

R
N

G
s

E
s

tim
a

te
d

lik

e
lih

o
o

d

re
g

is
te

r

/
P

x
 x

x

/ //

C
e

il

C
e

il

C
e

il
- --

...

...

...

...

...
P

P

U
 u

p
d

a
te

lo

g
ic

U
1

U
2

U
B

S
u

m
(W

(1
:P

))

P
a

rtic
le

re

p
lic

a
tio

n

lo
g

ic

P
a

rtia
l

s
u

m
s

 S
a

v
e

d

p
a

rtic
le

s

m
e

m
o

ry

R
a

n
d

o
m

p
a

rtic
le

s

e
le

c
tio

n

lo
g

ic

u
R

N
G

u
R

N
G

P
a

rtic
le

in

itia
liz

a
tio

n

lo
g

ic

R
N

G

U
p

d
a

te

P
rio

r
E

v
a

lu
a

tio
n

P
ro

p
o

s
e

d

s
ta

te
s

m
e

m
o

ry

C
u

rre
n

t

s
ta

te
s

m
e

m
o

ry

W
rite

c
u

rre
n

t
th

e
ta

,
s

ta
te

s

a
n

d

p
o

s
te

rio
r

(in
d

e
x

 i)
to

 D
D

R

M
e

m
o

ry
,

R
N

G
 a

n
d

o

th
e

r
in

itia
liz

a
tio

n

lo
g

ic

R
e

a
d

fro

m

D
D

R

F
P

G
A

p
(th

e
ta

*)

p
(Y

 | th
e

ta
*)

X

X
*

th
e

ta
*

th
e

ta

th
e

ta
*

th
e

ta
*

p
(Y

 | th
e

ta
)

p
(th

e
ta

)

lo
g

-

S
u

m
(W

(1
:P

))

S
u

m
(W

(1
:P

))

S
u

m
(W

(1
:P

))

P
a

rtia
l s

u
m

s
 s

ta
g

e

...

...

- --

e
x
p

e
x
p

e
x
p

W
e

ig
h

t
m

e
m

o
rie

s

P

P
a

rtia
l

s
u

m
s

m

e
m

o
rie

s

A
c
c
u

m

...

A
c
c
u

m

A
c
c
u

m

P
a
rtia

l

s
u

m
s

lo
o

p

u
R

N
G

F
ig

u
re

4
.1

:
F

P
G

A
arch

itectu
re

fo
r

p
M

C
M

C
.
B

lo
ck

s
w

ith
red

d
o
tted

lin
es

o
p
erate

in
fi

x
ed

p
o
in

t
arith

m
etic

(see
[1

]).

4.4. FPGA architectures for pMCMC and ppMCMC 131

Table 4.1: Constant and variable parameters in the algorithms and architectures of this chapter

Symbol Description Range (used in

Section 4.7)

T Number of SSM states [100,16000]

nX Dimension of each SSM state Xt 1

nY Dimension of each SSM observation Yt 8

nθ Dimension of SSM’s unknown parameter θ 2

ntr Dimension of unknown parameters related to the transition density

(≤ nθ)

1

nobs Dimension of unknown parameters related to the observation density

(≤ nθ)

1

nZ Dimension of each (known) constant vector Zt used in transition den-

sity

1

P Number of particles used in PF [128,16000]

N Number of MCMC iterations in pMCMC or ppMCMC 10000

M Number of Markov chains in ppMCMC [1,5]

B Degree of parallelism in pMCMC and ppMCMC architectures (ap-

plies to many parts of the PF datapath)

2

drng Number of RNG modules in pMCMC and ppMCMC architectures [8,32]

Pmax Maximum number of particles in pMCMC and ppMCMC architec-

tures

[4096,16384]

Tmax Maximum number of SSM states in pMCMC and ppMCMC archi-

tectures

[4096,16384]

Mmax Maximum number of chains in ppMCMC architecture [1,8]

values to the respective current memories (which are the equivalent of Sample[i] and Posterior[i] in

Algorithm 8). Otherwise, the current memories remain unchanged (keeping the values Sample[i−1]

and Posterior[i− 1]). After the update is completed, the current memories are read and their values

are sent to the off-chip memory (using a DMA transfer). The biggest part of the transfer is due to the

current state sample, since its dimension (T) is typically much larger than the dimension of θ , while

the likelihood and prior are scalars. The above sequence of operations is repeated for all pMCMC

loop iterations until N samples and likelihoods/priors have been sent to the off-chip memory. The first

iteration of pMCMC (lines 3-7 in Algorithm 8) is done in a similar way but the proposal and update

steps are absent.

The memories outside the PF block have pre-defined sizes at compile time. These sizes are defined

according to the constant parameters Tmax, nθ and nX of Table 4.1. Table 4.2 (upper part) lists all the

memories and their sizes.

132 Chapter 4. Algorithms and architectures for Particle MCMC

Table 4.2: Memories of the pMCMC/ppMCMC architectures

Memory name Depth (entries) Width (bits) Partitioning

degree

Replication

in ppMCMC

(Mmax times)

Current theta 1 32 ·nθ n/a Yes

Current states Tmax 32 ·nX n/a Yes

Current likelihood and

prior

1 64 (2 x 32) n/a Yes

Proposed theta 1 32 ·nθ n/a Yes

Proposed states Tmax 32 ·nX n/a Yes

Proposed likelihood 1 32 n/a Yes

Particle (1 & 2) Pmax 32 ·nX B Yes

Transition data Tmax 32 ·nZ n/a No

Observation data Tmax 32 ·nY n/a No

Log-weight Pmax 32 B Yes

Weight Pmax 32 B Yes

Partial sums B 32 B Yes

Reduction counts Pmax log2(Pmax) B Yes

Saved particles Tmax 32 ·nX n/a Yes

Estimated likelihood 1 32 n/a Yes

Particle Filter block

Within the PF block of the architecture, which is activated once per pMCMC iteration, the three main

operations of the PF (transition, weight and resampling) are repeated T times (once for every PF time

step, including the initial state). The PF transition and weight operations are implemented inside

the Transition & Weight stage of the architecture. The PF resampling operation is implemented by

the Partial sums and Resampling stages. Also, with reference to Algorithm 7, the loop of line 8 is

implemented with the order of operations changed; the sample step happens first, followed by the

weight step and finally the resampling step. Each step has to process P particles (see the three loops in

lines 9, 12 and 14). Computations for each particle are independent and therefore they are parallelized

and pipelined. The degree of parallelism (number of parallel modules) is the same for all steps and it

is denoted by B (see also Table 4.1). This means that each parallel module processes P
B

particles. In

order to feed the modules with data at every cycle, each memory that is connected to the modules is

split into B separate sub-memories and each sub-memory is assigned to one module.

As shown in Figure 4.2 (again using the notation and line numbering of Algorithm 7), at each time step

t the particles X1:P
t−1 are read from the Particle memories and fed to the Transition & Weight Stage block

4.4. FPGA architectures for pMCMC and ppMCMC 133

(which implements lines 12-15). The B state transition modules sample from the transition density of

equation (4.2) in order to propagate the particles to the next time step, i.e. they generate X̃1:P
t . Random

numbers are provided by suitable RNGs. The proposed θ ∗ (more specifically, its sub-component θ ∗tr)

is used as the parameter of the transition density. Any model-specific constants which are used inside

the transition density (Z1:T , mentioned in Section 2.3.3) are stored into the Transition data memories

and read by the state transition modules. The propagated particles are written to Particle memories

2 and also passed to the observation density modules to compute the weights W 1:P
t . The weights are

not computed directly; the log-weights log(W 1:P
t) are computed instead, they are then renormalized

using the maximum log-weight and finally exponentiated (part of these computations are done in the

Partial sums stage). Using log-weights helps avoid floating point numerical issues. It is the standard

approach in PF literature, especially when the number of particles is large [54]. The B observation

density modules compute the log-weight of each particle using the logarithm of the observation density

of equation (4.3). The proposed θ ∗ (more specifically, its sub-component θobs) is used as the parameter

of the observation density. Also, the data Y1:T are stored in the Observation data memories and they

are read by the modules. When the log-weights are computed, they are written to the Log-weight

memories and also passed to a comparator tree. The maximum log-weight is found when all weights

have passed through the tree.

The following two stages of the architecture perform the resampling operation (equivalent to lines 9-

11 of Algorithm 7). Among the various resampling algorithms that have been proposed, the Residual

Sytematic Resampling (RSR) method of Athalye et al. [111] is used here. RSR does not perform

resampling in the way shown in lines 9-11 of Algorithm 7. One difference of RSR is that it does

not produce ancestor indices (ak in line 10). Instead, it produces replication counts rk. This is the

number of times that particle k is replicated during resampling. Also, in contrast to other resampling

methods [54], RSR does not need to compute a cumulative sum before resampling starts. Instead, it

only requires partial sums of weights for every parallel processing module. In other words, processing

module l ∈ {1,B} requires the partial sum ∑
(l−1) P

B

k=1 W k
t . An FPGA implementation of the RSR method

(modified to improve throughput) was proposed by Liu et al. [1] and it is adopted here. The imple-

mentation makes use of fixed point arithmetic in some of its parts in order to reduce latency and allow

more efficient pipelining. For a detailed description of the implementation, see [1].

In the Partial Sums stage, the largest log-weight (which was found previously) is used for renormal-

ization of all log-weights. The renormalized log-weights are exponentiated to find the renormalized

134 Chapter 4. Algorithms and architectures for Particle MCMC

weights of the particles, which are written to the Weight memories. Also, a set of B parallel accu-

mulator modules receive the renormalized weights and produce the sums of weights of each module

∑
l P

B

k=(l−1) P
B
+1

W k
t , l ∈ {1, ...B}. These are then used to generate the partial sums and the sum of all

weights and they write them to the respective memories.

In the Resampling stage, B parallel datapaths are responsible for computing the replication counts

for each particle. The datapath operates on a number of inputs: 1) A set of B values U1:b, which are

initialized using the partial sums and then updated as particles stream through the data path (for details

on the utility of these values, see [111] and [1]), 2) The weights, 3) The number of particles, 4) The

total sum of weights.

Finally, the replication counts are read from the replication memories one by one (not in parallel) and

based on their values, the particle set is regenerated. Each particle that has a replication count above

zero is copied from Particle memories 2 to Particle memories 1. The number of copies created in

Particle memories 2 is equal to the particle’s replication count. Two particle memories are required in

order to avoid overwriting a particle before its replication count is examined (which would be possible

if only one particle memory was used). The replication process cannot be parallelized by replicating

each bunch of P
B

particles separately, since the total number of replications of a bunch might exceed

the memory partition assigned to it (which is again 1
B

of the total memory). For instance, if P = 10 and

B = 2, each parallel block would process 5 replication counts/particles and have a particle memory of

length 5 to its disposal. If particle k = 1 has a replication count of 6, this means that the first parallel

block does not have enough memory space to replicate the particle and needs to access the second

memory block.

In parallel to the resampling operation, the mean of the current weights 1
P ∑

P
k=1W k

t is computed, its log-

arithm is found and the maximum log-weight is used to invert the renormalization mentioned above.

The generated value is fed to an accumulator (lower right part of Figure 4.1). After the above PF

stages have been repeated T times, the accumulator’s output is the estimate of the log-likelihood

log(p̃(Y1:T | θ ∗) = log(L) = ∑
T
t=1 log(1

P ∑
P
k=1W k

t) (line 17). This estimate is written to the Proposed

likelihood memory outside the PF block. Also, at the end of the T time steps, the Saved particles

memory has stored a randomly selected set of particles, i.e. the proposed state X∗1:T in Algorithm 8.

This is copied to the Proposed states memory outside the PF block.

The processing of the initial PF state in Lines 3-6 of Algorithm 7 is done in the same way but in this

4.4. FPGA architectures for pMCMC and ppMCMC 135

case the initial density of equation (4.1) is used to initialize the particles (Particle initialization logic

block). The initial particles are written to Particle memories 1. The resampling step is performed for

the initial state without any effect (it is not necessary) to simplify the implementation.

The memories within the PF all have pre-defined sizes at compile time. These sizes are defined

according to the constant parameters Pmax, Tmax, nθ , nX , nY and nZ of Table 4.1, which are all given

by the user. Table 4.2 (lower part) lists all the memories and their sizes (along with the degree of

partitioning for each memory).

4.4.3 ppMCMC architecture

The ppMCMC architecture is shown in Figure 4.2. The differences compared to the pMCMC archi-

tecture are that: 1) Many chains need to be processed at each MCMC step and 2) Exchange moves

need to be performed. In order to process multiple chains, the Proposed theta, Proposed states, Pro-

posed likelihood, Current theta, Current states, Current likelihood and prior memories are replicated

M times (equal to the number of chains). This way, each chain has its separate memory and can be

updated and exchanged without interfering with the other chains. The size of each of the M memories

is the same as in the pMCMC architecture (see Table 4.2).

The architecture performs the same steps as the pMCMC architecture but for all chains. With ref-

erence to Algorithm 9, for MCMC iteration i ∈ {2, ...,N} (loop in line 10) and for chain iteration

j ∈ {1, ...,M} (loop in line 12), all the steps described previously for pMCMC (sample proposal, PF

run, prior evaluation and update) are performed using the respective blocks in the ppMCMC architec-

ture. The Proposal, Update, Exchange and Prior blocks are pipelined, which means they can process

one chain per clock cycle. The Proposal block proposes θ ∗ values for all chains (one chain per cycle)

and when it finishes with all M chains the PF blocks starts (which is described later). Only one PF

block is instantiated (as in pMCMC); all chains are processed by this one block. After the PF block

has computed likelihoods and sampled states for all chains, the remaining blocks (Update, Exchange)

are fed with one chain per cycle and they perform the respective operations. The Update block has

an extra input compared to the pMCMC architecture: The temperature of the chain which is currently

processed (Temp j).

As shown in the loop of line 25, at each MCMC iteration, exchanges are attempted between specific

pairs of chains (either (1,2),(3,4)... or (2,3),(4,5),...). As soon as a pair of chains which is designated

136 Chapter 4. Algorithms and architectures for Particle MCMC

S
a

m
p

le

P
ro

p
o

s
a

l

P
a

rtic
le

 F
ilte

r

O
b

s
.

d
a

ta

m
e

m
o

rie
s

ppMCMC

T
ra

n
s

itio
n

 &
 W

e
ig

h
t s

ta
g

e

S
ta

te

tra
n

s
itio

n

m
o

d
u

le

S
ta

te

tra
n

s
itio

n

m
o

d
u

le

S
ta

te

tra
n

s
itio

n

m
o

d
u

le

P
a

rtia
l s

u
m

s
 s

ta
g

e

O
b

s
e

rv
a

tio
n

d

e
n

s
ity

m
o

d
u

le

O
b

s
e

rv
a

tio
n

d

e
n

s
ity

m

o
d

u
le

>

>
 >

R
e

s
a

m
p

lin
g

 s
ta

g
e

C
o
n
v

C
o
n
v

C
o
n
v

O
b

s
e

rv
a

tio
n

d
e

n
s

ity

m
o

d
u

le

...

...

...

...

...

...
.....

...

+

- --

R
N

G
s

R
N

G
s

R
N

G
s

e
x
p

e
x
p

e
x
p

/
P

x
 x

x

/ //

C
e
il

C
e
il

C
e
il

- --

...

...

...

...

...

P

P

P

U
 u

p
d

a
te

lo
g

ic

U
1

U
2

U
B

S
u

m
(W

(1
:P

))

P
a

rtic
le

re

p
lic

a
tio

n

lo
g

ic

P
a

rtia
l

s
u

m
s

u
R

N
G

u
R

N
G

P
a

rtic
le

in
itia

liz
a

tio
n

lo

g
ic

R
N

G

U
p

d
a

te

P
rio

r
E

v
a

lu
a

tio
n

W
rite

c

u
rre

n
t

th
e

ta
,

s
ta

te
s

a
n

d

p
o

s
te

rio
r

(in
d

e
x

 i,
c

h
a

in
 1

)

to
 D

D
R

M
e

m
o

ry
,

R
N

G
 a

n
d

o

th
e

r

in
itia

liz
a

ti
o

n
 lo

g
ic

R
e

a
d

fro

m

D
D

R

F
P

G
A

p
(th

e
ta

*)

p
(Y

 | th
e
ta

*)

X

X
*

th
e

ta
*

th
e

ta
(j)

th
e

ta
*

th
e

ta
*

p
(Y

 | th
e
ta

(j))

p
(th

e
ta

(j))

lo
g

-

A
c
c
u

m

...

A
c
c
u

m

A
c
c
u

m

P
a

rtia
l

s
u

m
s

lo
o

p

S
u

m
(W

(1
:P

))

S
u

m
(W

(1
:P

))

S
u

m
(W

(1
:P

))

C
u

rre
n

t th
e
ta

m

e
m

o
ry

(c

h
a
in

 M
m

a
x
)

C
u

rre
n

t th
e
ta

m

e
m

o
ry

(c
h

a
in

 1
)

...

P
ro

p
o

s
e
d

 th
e
ta

m

e
m

o
ry

(c
h

a
in

 1
)

P
ro

p
o

s
e
d

 th
e
ta

s

m
e
m

o
ry

(c

h
a
in

 M
m

a
x
)

...

P
ro

p
o

s
e
d

 s
ta

te
s

m
e
m

o
ry

(c
h

a
in

 1
)

P
ro

p
o

s
e
d

 s
ta

te
s

m
e
m

o
ry

(c

h
a
in

 M
m

a
x
)

...

P
ro

p
o

s
e

d

lik
e

lih
o

o
d

m
e

m
o

ry
 (c

h
a

in
 1

)

P
ro

p
o

s
e

d

lik
e

lih
o

o
d

 m
e

m
o

ry

(c
h

a
in

 M
m

a
x
)

...

C
u

rre
n

t s
ta

te
s

m
e
m

o
ry

(c
h

a
in

 1
)

C
u

rre
n

t s
ta

te
s

m
e
m

o
ry

(c

h
a
in

 M
m

a
x
)

...

C
u

rre
n

t lik
e
lih

o
o

d
s

&
 p

rio
rs

 m
e
m

o
ry

(c
h

a
in

 1
)

C
u

rre
n

t lik
e
lih

o
o

d
s

&
 p

rio
rs

 m
e
m

o
ry

(c

h
a
in

 M
m

a
x
)

...

P
a
rtic

le

m
e
m

o
rie

s

1
 (c

h
a
in

 1
)

P
a
rtic

le

m
e
m

o
rie

s

1
 (c

h
a
in

M

m
a
x
)

...

P
a
rtic

le

m
e
m

o
rie

s
 2

(c

h
a
in

 1
)

P
a
rtic

le

m
e
m

o
rie

s
 2

(c

h
a
in

 M
m

a
x
)

...

T
ra

n
s

.
d

a
ta

m

e
m

o
rie

s

W
e
ig

h
t

m
e
m

o
rie

s

(c
h

a
in

 1
)

W
e
ig

h
t

m
e
m

o
rie

s

(c
h

a
in

 M
m

a
x
)

...

L
o

g
-w

e
ig

h
t

m
e

m
o

rie
s

(c
h

a
in

 1
)

L
o

g
-w

e
ig

h
t

m
e

m
o

rie
s

(c
h

a
in

 M
m

a
x
)

...

R
e
p

lic
a
tio

n

c
o

u
n

ts

m
e
m

o
rie

s

(c
h

a
in

 1
)

R
e
p

lic
a
tio

n

c
o

u
n

ts

m
e
m

o
rie

s

(c
h

a
in

 M
m

a
x
)

...

R
a

n
d

o
m

p

a
rtic

le

s
e

le
c

tio
n

lo

g
ic

P
a

rtia
l s

u
m

s

m
e

m
o

rie
s

(c
h

a
in

 1
)

P
a

rtia
l s

u
m

s

m
e

m
o

rie
s

(c
h

a
in

 M
m

a
x
)

...

S
a
v
e
d

p

a
rtic

le
s

m
e
m

o
ry

(c

h
a
in

 1
)

S
a
v
e
d

p

a
rtic

le
s

m
e
m

o
ry

(c

h
a
in

 M
m

a
x
)

...

E
s

tim
a

te
d

lik

e
lih

o
o

d

re
g

is
te

rs

(c
h

a
in

s

1
:M

m
a

x
)

p
(Y

 | th
e
ta

(q
)), p

(th
e
ta

(q
)), th

e
ta

(q
), X

(q
)

p
(Y

 | th
e
ta

(r)), p
(th

e
ta

(r)), th
e
ta

(r), X
(r)

T
e
m

p
q

T
e
m

p
ru

R
N

G

T
e
m

p
j

to
 c

u
rre

n
t s

ta
te

s
 m

e
m

o
rie

s

to
 c

u
rre

n
t lik

. &
 p

rio
r m

e
m

o
rie

s

E
x

c
h

a
n

g
e

u
R

N
G

F
ig

u
re

4
.2

:
F

P
G

A
arch

itectu
re

fo
r

p
p
M

C
M

C
.
B

lo
ck

s
w

ith
red

d
o
tted

lin
es

o
p
erate

in
fi

x
ed

p
o
in

t
arith

m
etic

(see
[1

]).

4.4. FPGA architectures for pMCMC and ppMCMC 137

for exchange in the current MCMC iteration (chains q and r in Figure 4.2) has been updated, the

exchange blocks of the ppMCMC architecture starts processing the exchange move between those

chains. Its inputs include the current θ , X1:T , p̃(Y1:T | θ) and p(θ) of chains q and r, as well as the

temperatures of the chains and a uniform random number. These are used to compute the ratio in line

26 of Algorithm 9 and exchange the MCMC samples, likelihoods and priors (line 26) between the

respective memories if the exchange is successful. The prior density evaluation overlaps with the PF

run as in pMCMC.

Coarse-grain pipelining in the PF

The above modifications to the pMCMC architecture are enough to acquire a baseline ppMCMC

implementation. However, it is possible to improve the performance of this baseline implementation

by exploiting coarse grain pipelining inside the PF. During a PF run of a single chain, the PF datapath is

traversed T times (once per time step). One traversal comprises the Transition & Weight, Partial sums

and Resampling stages and each of these stages can only start after the previous one has finished. This

means that at each moment in time, only one of the three stages is utilized in the FPGA architecture.

Let the latencies of the three stages be Lattw, Latps, Latre (for the P particles to be processed at each

stage). Then the total latency for one time step is Lattw +Latps +Latre. Without applying coarse-grain

pipelining, the order with which tasks are fed into the pipeline is the following: Starting from the first

chain j = 1, the first time step t = 1 traverses the PF datapath. When it finishes, the second time step

t = 2 traverses the datapath, etc. When all T time steps of the first chain have finished, the PF run of

the first chain is complete. The next chain j = 2 then begins to be processed, starting from time step

t = 1, etc. This goes on until all chains have completed their PF runs. The total latency for M chains

with T time steps each is M ·T · (Lattw +Latps +Latre).

In order to increase the utilization of the PF datapath, the proposed ppMCMC architecture exploits

the fact that each chain’s PF run in ppMCMC is completely independent; a PF run does not need to

wait for the PF run of the previous chain to finish. Although the PF block of ppMCMC is the same

as in pMCMC (i.e. a single block), it is configured to exploit the independence of ppMCMC chains

in order to increase datapath utilization. The architecture feeds the PF datapath with multiple chains

at the same time. This happens by changing the order with which the tasks are fed to the PF datapath:

The first task is time step t = 1 of chain j = 1. This is followed by time step t = 1 of chain j = 2,

then time step t = 1 of chain j = 3, etc. When all the first time steps have been processed, the system

138 Chapter 4. Algorithms and architectures for Particle MCMC

������

������

������

������

������

������

������

������

������

������

�������

�������

�������

�������

�������

Lattw = 300 Latps = 230 Latre = 350

350 cycles delay350 cycles delay

Transition & weight datapath Partial sums datapath Resampling datapath

Chain: j=5

Time step: t=2

Chain: j=4

Time step: t=2

Chain: j=3

Time step: t=2

Figure 4.3: Coarse-grain pipelining in ppMCMC architecture for a specific SSM model and specific

parameter configuration (P, T , M). The Resampling stage in this example has latency Latre = 350,

which is the largest latency among the three PF stages. Thus a new chain can be fed to the PF datapath

every Latre = 350 clock cycles. Here, three chains (j = 3, j = 4, j = 5) are inside the datapath, all of

them at the same time step t = 2. Chain j = 4 will enter the Resampling stage one cycle after chain

j = 3 exits the Resampling stage.

starts processing the second time steps (t = 2) for all chains, etc. By changing the order of operations,

the available parallelism is exposed and it is possible to pipeline the tasks. In other words, since all

chains are independent, the tasks with index t = 1 of all chains can be pipelined easily. Of course,

pipelining can only be coarse-grain, since the three stages of the PF cannot be shared by two chains at

a time. Each chain needs to have enough time to finish a PF stage before the next chains reaches the

same stage (no two chains are in the same stage at the same time). Using this technique, it is possible

to introduce a new chain to the PF datapath (i.e. the Transition stage) every max(Lattw,Latps,Latre)

clock cycles. This means that the total latency is reduced to M ·T ·max(Lattw,Latps,Latre)). Exact

formulas for the above quantities are given in the next section. Figure 4.3 depicts how the coarse-grain

pipelining strategy is used to process multiple chains simultaneously and increase datapath utilization

in the PF block of ppMCMC.

In order to implement the above pipelining strategy, it is necessary for many “virtual” PFs to work

simultaneously using the same PF hardware block. This requires the use of multiple memories (one

for each chain) for all the variables accessed by the PF. The ppMCMC architecture uses M Particle,

Log-weight, Weight, Saved particles, Replication counts and Partial sums memories, instead of one

memory of each type in pMCMC (in fact, Mmax memories exist in the architecture as shown in Table

4.2 and explained in the next paragraph). Exactly as in the pMCMC architecture, each of the M

memories is partitioned into B independent memory blocks in order to feed the B processing modules

in parallel. The Transition data and Observation data memories do not need to be replicated, since the

data are common for all chains. This is shown in Figure 4.2.

4.4. FPGA architectures for pMCMC and ppMCMC 139

Resource overheads compared to pMCMC architecture

The resource overheads of the ppMCMC architecture are mainly the extra memories. Mmax memories

of each kind need to be instantiated (see Table 4.2, last column), instead of 1 (Mmax is the upper limit

of chains that can be used and it is set at compile time). The Transition data and Observation data

memories do not need to be replicated. The Exchange block is an additional overhead which takes up

relatively few resources (see Section 4.7), since the exchange ratio is simple to compute.

4.4.4 Performance models

This section gives exact formulas for the latency and throughput of the various blocks in the archi-

tectures. These models are later used to break down the total clock cycles consumed by the pMCMC

architecture into the clock cycles of the various blocks (see Section 4.7.3). The correctness of the

pMCMC model is also validated using real pMCMC runs on the FPGA. The ppMCMC performance

model is used to estimate the performance of the proposed ppMCMC architecture (which is not run on

the FPGA). The results of Section 4.7.5 (including the design space exploration to find the parameter

combinations that maximize performance) are based on these estimates.

pMCMC

The latency of the Transition & Weight stage is:

Lattw =Cst +Cod +Lattree +
⌈

P
B

⌉

(4.14)

where Cst is the latency of one state transition module (depends on the targeted SSM), Cod is the latency

of one observation density module (depends on the targeted SSM), Lattree = ⌈log(B)⌉ ·Latcomp is the

latency of the comparator tree and the term
⌈

P
B

⌉

is the latency for passing all the P particles through

the transition and observation modules when the degree of parallelism of the architecture is equal to

B (the degree of parallelism applies to transition and observation modules as well as the comparator

tree). All parallel modules are pipelined and can receive one input per cycle.

The latency of the Partial sums stage is:

Latps = Latsub +Latexp +Lataccum +
⌈

P
B

⌉

·Latadd +Latpsl (4.15)

140 Chapter 4. Algorithms and architectures for Particle MCMC

where Latsub and Latexp are the latencies of the subtraction and exponent operators, Lataccum = Latadd

is the latency of the accumulator, Latpsl = B · Latadd is the latency of the partial sums loop (which

forms B partial sums) and the term
⌈

P
B

⌉

·Latadd is the latency for processing all P particles when the

degree of parallelism of the architecture is equal to B (the degree applies to the subtracters, exponents

and to the accumulator modules). All operators are pipelined but they can receive one input per Latadd

cycles because of the latency of the floating point adder.

The latency of the Resampling stage is:

Latre = LatinitU +Latmult +Latdiv +Latconv +LatsubF +LatceilF +
⌈

P
B

⌉

+P ·Latrep (4.16)

where LatinitU is the latency required to initialize the U values using the partial sums and Latmult ,

Latdiv, Latconv, LatsubF and LatceilF are the latencies of the multiplication, division, float-to-fixed point

conversion, fixed-point subtracter and fixed-point ceiling operators. The term
⌈

P
B

⌉

is the latency for

processing all P particles when the degree of parallelism of the architecture is equal to B (the degree

applies to all above operators). All operators are pipelined and can receive one input per cycle. Finally,

the term P ·Latrep is due to the particle replication loop, which replicates each particle a number of

times equal to its replication factor. The number of replications changes randomly at runtime. Latrep

is the mean number of cycles needed for the replication of each particle.

Given the latencies of the three stages, the latency of the PF critical path for one time step (one iteration

of the loop in line 8 of Algorithm 7) is:

Latts pmcmc =C1 +Lattw +Latps +Latre (4.17)

where C1 is some extra constant latency incurred by minor computations before and after the three

PF stages (to initialize variables, read/process proposed θ ∗ parameter fed from the blocks outside

the PF, select and save random particle). For a specific implementation of the architecture in Xilinx

Vivado HLS 2014.1 on a Xilinx Zynq ZC706 board, using single precision floating point arithmetic,

this constant takes the value C1 = 127.

The total latency for a complete run of the PF (equivalent to one call of Algorithm 7 or to line 11 in

Algorithm 8) is:

Latp f pmcmc =C2 +
⌈

P
B

⌉

+T ·Latts pmcmc (4.18)

4.4. FPGA architectures for pMCMC and ppMCMC 141

where the term T ·Latts is due to the T time steps which are processed sequentially, the term
⌈

P
B

⌉

is due

to the particle initialization before each PF run and C2 is a constant latency due to minor computations

before each iteration. For a specific implementation of the architecture in Xilinx Vivado HLS 2014.1

on a Xilinx Zynq ZC706 board, using single precision floating point arithmetic, this constant takes the

value C2 = 21.

The latency of the critical path of each pMCMC iteration (one iteration of the loop in line 9 of Algo-

rithm 8) is:

Latiter pmcmc =C3 +Latprop +Latp f pmcmc +Latacc +(T +1)+Latmem cpy (4.19)

where Latprop is the latency of sampling from the MCMC proposal q(θ ∗ | θ) in line 10 of Algorithm

8 (depends on the choice of proposal) and Latacc = 2 · Latadd + Latsub + Latcomp is the latency of

computing the acceptance ratio (4.7) and comparing with a uniform number (using log-values). The

term T + 1 is due to the transfer of the proposed SSM states and the estimated likelihood (generated

by the PF) from the memories within the PF block to the respective memories outside the PF block

(when the update is successful, lines 15-16 in Algorithm 8). The term C3 is a constant latency due

to other computations within the pMCMC loop, before and after the PF run (initializations, copying

of variables between registers). For a specific implementation of the architecture in Xilinx Vivado

HLS 2014.1 on a Xilinx Zynq ZC706 board, using single precision floating point arithmetic, this

constant takes the value C3 = 42. The term Latmem cpy is the latency needed to transfer the new MCMC

sample (updated or not) to the off-chip memory after the MCMC iteration. Vivado HLS estimates this

latency to be Latmem cpy = nθ + 1+T . Note that the prior density and proposal density latencies are

omitted from (4.19) because their datapaths are not in the critical path of the MCMC iteration; both

are computed at the same time that the PF is running and their latencies are much smaller than the PF

latency Latp f pmcmc.

The total latency of the pMCMC algorithm (all N iterations) is:

Latpmcmc = Latinit pmcmc +Lat f irst pmcmc +(N−1) ·Latiter pmcmc (4.20)

where Lat f irst pmcmc = C3 +Latp f pmcmc +(T + 1)+Latmem cpy is the latency of the first pMCMC it-

eration (lines 3-7 in Algorithm 8) and Latinit pmcmc is the latency for initializing the system (copying

initial values from the off-chip memory and initializing the RNGs). It is equal to Latinit pmcmc =

142 Chapter 4. Algorithms and architectures for Particle MCMC

21+2 ·nθ +T · (nZ)+T ·nY +drng +1000 ·drng, where all the terms are related to data transfer laten-

cies, except for the term 1000 ·drng which is the latency for initializing the RNGs (using 1000 cycles

of initialization time for each RNG). All the symbols are explained in Table 4.1.

Finally, the total runtime of the pMCMC system (including the time to transfer data from/to the host

PC) is:

Timetotal pmcmc =
Latpmcmc

f req
+TimeI/O pmcmc

(4.21)

where f req is the clock frequency of the pMCMC IP in Hz and TimeI/O is the time needed for commu-

nication with the host PC (including time spent on parts of the FPGA system other than the pMCMC

IP, e.g. a CPU on the FPGA). TimeI/O cannot be modelled exactly. A calibration procedure based on

actual runtimes of the system is used to estimate this quantity.

ppMCMC

For pMCMC, the latencies of the three PF stages are the same as the ones shown in Equations (4.14),

(4.15) and (4.16). The latency of processing one time step for all chains (the same for all chains, e.g.

t = 1) is:

Latts ppmcmc =C1 +(Lattw +Latps +Latre)+(M−1) ·max(Lattw,Latps,Latre) (4.22)

Since one chain is inserted into the pipeline every max(Lattw,Latps,Latre) cycles, the cost of process-

ing all chains is (M− 1) ·max(Lattw,Latps,Latre) plus the latency of the first chain (term inside the

brackets) plus C1. The most cycle-expensive stage of the PF data path can be any of the three stages

mentioned above.

The latency of processing all T time steps of all M chains (i.e. completing M PF runs) is:

Latp f ppmcmc =C2 +M ·
⌈

P
B

⌉

+T ·Latts ppmcmc (4.23)

where the term M ·
⌈

P
B

⌉

represents the cycles needed for particle initialization for all chains and T ·

Latts ppmcmc are the cycles needed to complete all time steps for all chains.

The latency of one ppMCMC iteration (one iteration of the loop in line 10 of Algorithm 9, which

4.4. FPGA architectures for pMCMC and ppMCMC 143

comprises updates and exchanges for all chains) is:

Latiter ppmcmc =C3 +(Latprop +M)+Latp f ppmcmc +(Latacc +Latex +(T +1)+M)+Latmem cpy

(4.24)

where the term (Latprop +M) is the latency needed to pass all chains through the pipelined Sample

Proposal block, Latex = Latmult +Latadd +Latsub +Latcomp is the latency for computing the exchange

ratio (4.12) and comparing with a uniform number (using log-values), the term (Latacc +Latex +(T +

1) +M) is the latency to pass all chains through the pipelined Update and Exchange blocks (plus

updating the current sample memories) and the term Latmem cpy is the latency to copy the MCMC

sample of the first chain to the off-chip memory (only samples of the first chain are kept).

The total latency of the ppMCMC algorithm (all N iterations) is:

Latppmcmc = Latinit ppmcmc +Lat f irst ppmcmc +(N−1) ·Latiter ppmcmc (4.25)

where Lat f irst ppmcmc = C3 +Latp f ppmcmc +(T + 1+M)+Latmem cpy is the latency of the first ppM-

CMC iteration (lines 3-8 in Algorithm 9) and Latinit pmcmc is the latency for initializing the sys-

tem (copying initial values from the off-chip memory and initializing the RNGs). It is equal to

Latinit ppmcmc = 21+ 2 ·M · nθ +M + T · (nZ) + T · nY + drng + 1000 · drng, where all the terms are

related to data transfer latencies from off-chip memory, except for the term 1000 · drng which is the

latency for initializing the RNGs (using 1000 cycles of initialization time for each RNG). All the

symbols are explained in Table 4.1.

Finally, the total runtime of the ppMCMC system (including the time to transfer data from/to the host

PC) is:

Timetotal ppmcmc =
Latppmcmc

f req
+TimeI/O ppmcmc

(4.26)

where f req is the clock frequency of the pMCMC IP in Hz and TimeI/O is the time needed for commu-

nication with the host PC (including time spent on parts of the FPGA system other than the ppMCMC

IP, e.g. a CPU on the FPGA).

144 Chapter 4. Algorithms and architectures for Particle MCMC

4.5 Case Study

Statistical genetics is a representative example of a complex Bayesian application which typically han-

dles large-scale data. SSMs are suitable to model many phenomena in genetics. Here, an SSM which

models DNA methylation profiles is used as a case study. DNA methylation is a biochemical process

which happens naturally in specific positions of the genome. During methylation, a methyl group is

added to a cytosine or adenine nucleotide. Methylation plays a key role in normal development but it

is also associated with a number of diseases [152, 14].

The goal of methylation analysis is to discover which positions of the genome contribute to the ap-

pearance of some disease through the mechanism of methylation. Methylation analysis can be done

either using single-tissue DNA (e.g. DNA from cells of the heart) or using multiple-tissue DNA (e.g.

whole-blood samples which contain several distinct tissues) [14]. In both cases, it is challenging to in-

fer a methylation profile because the current technology used to detect methylation in each DNA base

within a DNA sequence generates a lot of noise and also because the length of the DNA sequences

that need to be analysed in large (up to 107 bases). Here, the two cases (single- and multiple- tissue

methylation) are examined separately, since they lead to different kinds of posterior distributions.

Single-tissue DNA - Uni-modal posterior

In the single-tissue DNA case, a methylation data set from rats is used in order to discover the genetic

causes of glomerulonephritis (GN), which is a very common cause of kidney disease. In the UK,

Europe and the US, GN is the third most common cause of end-stage kidney disease, accounting for

10-15% of patients. In order to understand which positions in the genome play a role in the appearance

of GN through methylation, single-tissue data from rats are used. DNA samples from two rat strains

(i ∈ {1,2}) are employed: 1) Wistar-Kyoto (WKY) rats which demonstrate significant reproducible

susceptibility to GN when inoculated with nephrotoxic serum, 2) Lewis (LEW) rats which are resistant

to GN. DNA from four biological replicates (j ∈ {1, ...,4}) from each strain is collected and sodium

bisulfite treatment is applied to it. This is a typical setting of comparing affected and control subjects

to understand the differences in methylation profiles.

Sodium bisulfate treatment is a process that allows the detection of methylated DNA bases through a

chemical reaction that affects only the bases that are not methylated. A number of bisulfate experi-

ments are performed for each base. The resulting data from applying the treatment are: 1) the total

4.5. Case Study 145

number of bisulfate experiments at each DNA position t (ni jt) and 2) the number of successful detec-

tions of methylation at each DNA position t (Y i
jt), with t ∈ {1, ...,T}. All data are generated using the

tool proposed in [14]. The goal is to discover the probability that position t is methylated (for each t),

given the number of experiments and the number of successful detections.

The problem’s complexity originates not only in the size of the sequences but also in the fact that a

lot of noise is typically present in the bisulfate experiment results. For example, it is common for a

small number of “spikes” of successful detections to appear in an area of otherwise un-methylated

DNA. This should be treated as measurement noise. This is where the use of SSMs (whose states are

correlated with each other) proves useful, as will be shown in the following paragraphs.

In order to analyse the data, the following model is built: The data can be described as a series of

binomial experiments (one experiment per strain i ∈ {1,2}, per biological replicate j ∈ {1, ...,4} and

per DNA position t ∈ {1, ...,T}). The number of DNA positions T can range up to 107 for a whole

chromosome. Here, DNA chunks of up to 16384 positions are used. Formally:

xi jt ∼ Bin(ni jt , pi jt) (4.27)

Here, Bin(ni jt , pi jt) is a binomial distribution, xi jt represents the number of successes, ni jt represents

the number of trials and pi jt represents the probability that this DNA position is methylated. This

model corresponds well with the way the bisulfate treatment experiments are performed (a series of

experiments per base, with an approximately equal probability of success for a certain replicate). The

equation assigns a different probability for each one of the four replicates at the same DNA position.

This helps improve accuracy, since the different replicates might react differently to the treatment

and/or their genome might be less/more affected by methylation. Nevertheless, the probabilities of the

replicates at a particular position cannot be fully independent, since the affected replicates must have

some degree of correlation between their methylation profiles (although these profiles are not identi-

cal). To enforce this correlation, the model assumes that there is a common mean for the probabilities

of the replicates at the same position. The common mean of the probabilities of all the replicates for

strain i and for position t is denoted µit . It is related to the probabilities pi jt) using the following

equation:

logit(pi jt)∼ Normal(µit ,σ
2
i) (4.28)

where σ2
i is the common observation variance for strain i (which is unknown). The above equation

146 Chapter 4. Algorithms and architectures for Particle MCMC

is called a random effect. It enforces a common mean (µit) but also adds the necessary randomness

between replicates through the variance σ2
i .

Another key part of the model is the definition of a spatial dependence between the above means,

which corresponds to a reality in methylation analyses; methylated nucleotides are correlated and

the appearance of large consecutive areas of methylated or non-methylated nucleotides is common.

In order to model this correlation, the model is extended by specifying a non-observable Markov

dependence:

µit ∼ Normal(µi,t−1,σ
2
t) (4.29)

where σ2
t is the variance due to the DNA position, which depends on a common (unknown) variance σ

and the DNA physical position (δt) as follows: σ2
t =σ2|δt−δt−1|. Introducing this spatial dependence

in the model, helps tackle the issue of noise in the bisulfate experiments (e.g. sudden “spikes” of

methylated based in an otherwise un-methylated region). For more information on spatial dependence

in methylation profiles, see [14].

The above model can be translated into an SSM with unknown parameters. A separate SSM is defined

for each strain i and the hidden state of SSM i at time step t is Xi
t = µit (therefore, nX = 1). The

transition equation (which corresponds to (4.29)) is:

Xi
t ∼ Normal(Xi

t−1,σ
2
t), t > 1 (4.30)

The physical positions of the DNA are the known constant parameters of the transition density Zt =

δt , with nZ = 1. The observations of SSM i at time step t are Yi
t = Y i

1:4,t = xi,1:4,t . Therefore, the

observation equations (which correspond to (4.27)) are:

Yi
jt ∼ Bin(ni jt , pi jt), j ∈ {1, ...4}, t > 0 (4.31)

The dimension of the data per time step is nY = 8 (both xi,1:4,t and ni,1:4,t are included). Using the

above observation equation, the likelihood/weight of particle k ∈ {1, ...,P} inside the PF (see Section

2.3.3) is:

W k
t = ∏

4
j=1 BinPDF(xi jt ,ni jt , pi jt) (4.32)

where BinPDF(xi jt ,ni jt , pi jt) is the binomial density and the three arguments are the successes, trials

and probability of success. The product is converted to a sum when using log-densities.

4.5. Case Study 147

The intermediate random effect equation (4.28) is used to connect the transition and observation den-

sities. Finally, the prior state equation (representing the state of the first DNA base) is:

Xi
1 ∼ Normal(0,1) (4.33)

The SSM’s unknown parameters (θ in Section 4.2) are the variances σ2
i and σ2, i.e. θ = [σ2

i ,σ
2]. In

other words, the goal of SSM inference in this case is to use the collected bisulfate experiment data in

order to:

1. Estimate the mean probabilities of methylation (µit) for each base t and for each replicate i (this

is not part of θ but it is estimated by the PF inside pMCMC). The probabilities pi jt of each

replicate j are not necessary but they are also estimated.

2. Infer the parameter σi, which shows how much variance exists between the probabilities of

different replicates.

3. Infer the parameter σ , which shows how much spatial dependence exists between the mean

probabilities of a sequence of DNA bases.

pMCMC is able to infer a probability density for all of the above quantities. The posterior of θ in

this case is uni-modal (although the true position of the mode is unknown). The dimensions of the

unknown parameters are nθ = 2, ntr = 1, nobs = 1. The data for experiments are generated setting

θ = [1,0.1].

Multiple-tissue DNA - Multi-modal posterior

In the multiple-tissue DNA case, the DNA comes from various tissues. In this case, the methylation

profile is a mixture of different profiles. The exact same strains, replicates and DNA lengths are

used as in the single-tissue case but each set of data comes from a mixture of two tissues. The only

difference in the multiple-tissue SSM model that results from this change is that the state transition

has to be modelled as a mixture of two distributions, i.e.:

Xi
t ∼ ∑

2
c=1

[

wc ·Normal(Xi
t−1,σ

2
tc)
]

, t > 1 (4.34)

where wc = 0.5 is the weight of the mixture component with index c ∈ {1,2} and σ2
tc = σ2

c |δt −δt−1|

is the unknown variance of component with index c.

148 Chapter 4. Algorithms and architectures for Particle MCMC

All the other equations are the same as in the single-tissue case. The SSM’s unknown parameters (θ

in Section 4.2) are the variances σ2
i , σ2

1 and σ2
2 , i.e. θ = [σ2

i ,σ
2
1 ,σ

2
2]. Therefore, the model has one

extra parameter compared to the single-tissue model. pMCMC estimates the SSM states (mean prob-

abilities of methylation), the parameter σ2
i (variance between replicates) and the parameters σ2

1 and

σ2
2 (spatial dependences between a sequence of bases). The data for experiments are generated setting

θ = [0.2,10,0.02]. The posterior of θ in this case is multi-modal with modes in θ = [0.2,10,0.02]

and θ = [10,0.2,0.02]. This makes the exploration of the posterior challenging, as will be shown in

Section 4.7.

4.6 Implementation

4.6.1 IP implementation and FPGA system integration

pMCMC

The pMCMC sampler was implemented in C++ using Xilinx Vivado HLS 2014.1. Single precision

floating point was used for all datapaths. Single precision is one of the two default precision config-

urations in MCMC literature. This chapter uses single instead of double precision in order to achieve

better performance for the case study presented above.

The PROTOIP framework (available in Xilinx Tcl store [153]) was used for prototyping. The system

was mapped on a Xilinx ZC706 Zynq board and connected to the host PC via an Ethernet cable. The

system clock (which is also used in the IPs) was set to f req = 144 MHz. The full system on the board

is shown in Figure 4.4. It consists of the pMCMC IP, an AXI bus, an ARM Cortex processor and a

DMA controller. The ARM processor acts as a UDP/IP server over Ethernet and communicates with

a client Matlab application in the host. The DMA controller is used by both the ARM processor and

the pMCMC IP to access the off-chip DDR memory of the ZC706 board.

The sequence of operations for a complete run of the pMCMC sampler are the following: The Matlab

application in the host allows the user to select the parameters of the pMCMC sampler (e.g. the

constants N,P,T and several initialization values like the initial pMCMC sample). The parameters are

sent to the ARM processor and forwarded to the DDR memory. Then a start signal is sent from the

host to the ARM processor, which is passed to the pMCMC IP. The IP performs the pMCMC run and

writes the output MCMC samples and likelihoods to the DDR directly. The ARM processor constantly

4.6. Implementation 149

pMCMC IP

FPGA

ARM CPU

UDP/IP server

AXI bus

DMA

controller

Off-chip DDR

memory

Initialization input, Saved

MCMC samples (output)

Ethernet

PHY

Ethernet

MAC

Host PC

Matlab

application

UDP/IP client -
input generation -

output storage

Figure 4.4: FPGA/host system prototype.

queries the state of the IP. When the IP terminates, the processor copies the MCMC output from the

DDR to the host.

ppMCMC

The ppMCMC sampler was only implemented in software (Matlab). It was not implemented in Vivado

HLS. In order to assess the throughput of the ppMCMC hardware architecture, the performance model

presented in Section 4.4.4 was used. The differences between the pMCMC and ppMCMC architec-

tures are limited, since the same single PF block is used in both of them with the only modification in

the PF datapath being the use of coarse-grain pipelining in ppMCMC. The effect of this difference in

the latency and the performance is incorporated in the model, as shown in Section 4.4.4. The results of

the software runs were used to assess the effect of the number of chains and the number of particles on

the mixing of ppMCMC (see Section 4.7). It has to be noted that the Matlab implementation is only

used to compare pMCMC and ppMCMC in the algorithmic level, assuming sequential implementa-

tions. The FPGA and GPU versions are compared against an optimized CPU version in C++ (not in

Matlab).

150 Chapter 4. Algorithms and architectures for Particle MCMC

4.6.2 Random number generators

RNGs are needed in many parts of the pMCMC and ppMCMC architectures. Uniform RNGs are

needed for the Update and Exchange blocks, as well as to select random particles and perform Re-

sampling inside the PF. Depending on the MCMC proposal, various types of RNGs might be needed

to feed the Sample Proposal block. The same applies to the State transition and Observation density

blocks inside the PF, which require different RNGs depending on the transition and observation den-

sities of the SSM. When targeting the case study of Section 4.5, only Gaussian RNGs are needed for

these blocks.

The Tausworthe Uniform RNG described by L’Ecuyer [154] was implemented in Vivado HLS and

used throughout the system. For Gaussian random numbers, a CDF inversion method which uses a

polynomial approximation (Thomas et al. [155]) was employed.

4.7 Investigation and results

In this section, the two FPGA accelerators for pMCMC and ppMCMC are compared to state-of-the-

art pMCMC implementations on a multi-core CPU and a GPU. The LibBi framework [2] for SSM

inference was used to create the CPU and GPU implementations of pMCMC. Both the uni-modal

and multi-modal SSM of Section 4.5 were defined in LibBi using the framework’s domain-specific

modelling language. LibBi was then configured to run joint state estimation and parameter inference

on the SSM using pMCMC. Also, sequential implementations of pMCMC and ppMCMC in Matlab

are used to compare the two algorithms when no hardware acceleration is employed.

The complete list of comparisons is the following: For the uni-modal SSM, comparisons were per-

formed between the FPGA pMCMC sampler and LibBi’s pMCMC samplers in the CPU and GPU.

For the multi-modal SSM, comparisons were made between the pMCMC and ppMCMC algorithms

in Matlab and in an FPGA (including an exploration of the chains/particles design space). Also, the

two FPGA samplers were compared to LibBi’s pMCMC samplers in the CPU and GPU.

4.7. Investigation and results 151

4.7.1 Platforms and devices

As mentioned previously, the pMCMC architecture were mapped on a Xilinx ZC706 Zynq board,

which contains a Z-7045 FPGA. The board was connected to a host PC with a quad-core Intel Core

i7-2600 CPU (frequency 3.4 GHz) and 16 GB of RAM through an Ethernet cable. All implementations

were done in single precision floating point arithmetic.

The CPU pMCMC sampler (compiled automatically using LibBi) ran on a server with a quad-core

Intel Core 2 Q9550 CPU (frequency 2.83 GHz) and 8 GB of RAM. LibBi was configured to make use

of OpenMP multithreading with 4 threads and SSE vector parallelism. Intel C++ compiler 2011 was

used by LibBi to compile the code (LibBi uses a C++ template library) and all implementations ran

in single precision. Every effort was made to select the LibBi compilation parameters that maximize

performance.

The GPU pMCMC sampler (compiled using LibBi) ran on an Nvidia Tesla C2050 GPU. The host

server had a quad-core Intel Core 2 Q9550 CPU (frequency 2.83 GHz) and 8 GB of RAM. LibBi

was configured to make use of all the optimizations of the CPU version in combination with the use

of CUDA. The implementation ran in single precision. Every effort was made to select the LibBi

compilation parameters that maximize performance.

The (sequential) Matlab pMCMC/ppMCMC code ran on the same server used for the CPU pMCMC

sampler without any exploitation of parallelism.

4.7.2 Resource utilization

Table 4.3 contains the FPGA resource utilization results for the pMCMC and ppMCMC samplers. The

chosen architecture parameters are shown above the table. The numbers for pMCMC are post-place

and route results from Xilinx Vivado 2014.1. The numbers for ppMCMC are estimates based on the

extra modules and memories which were described in Section 4.4.3. More specifically, the ppMCMC

IP takes up slightly more LUTs, FFs and DSPs than the pMCMC IP due to the Exchange module. The

extra resources needed for this module were estimated by synthesizing a stand-alone Exchange block

in Vivado HLS. Also, the BRAM utilization of ppMCMC is significantly larger due to the instantiation

of separate memory replicates for each chain (the maximum number of chains was set to Mmax = 5).

The memories which are replicated are listed in 4.2 (see last column). The estimation of the extra

152 Chapter 4. Algorithms and architectures for Particle MCMC

Table 4.3: Resource utilization of the pMCMC/ppMCMC IPs and the respective FPGA systems. Ar-

chitecture parameters were set to B = 2, drng = 30, Pmax = 8192, Tmax = 8192 (for both samplers),

Mmax = 5 (for ppMCMC). The numbers in the parentheses show what percentage of the available

Z-7045 resources is needed for the given block.

Block name LUTs FFs DSPs BRAMs

pMCMC IP 85593 (39.1%) 109017 (24.9%) 710 (78.8%) 223 (40.9%)

ppMCMC IP (estimate) 87122 (39.8%) 110543 (25.2%) 752 (83.5%) 496 (91.0%)

Others (AXI bus, DMA,

CPU)

729 (0.3%) 926 (0.2%) 0 (0%) 0 (0%)

pMCMC system total 86322 (39.4%) 109943 (25.1%) 710 (78.8%) 223 (40.9%)

ppMCMC system total (esti-

mate)

87851 (40.1%) 111469 (25.5%) 752 (83.5%) 496 (91.0%)

Xilinx Z-7045 total resources 218600

(100%)

437200 (100%) 900 (100%) 545 (100%)

BRAMs was done based on the memory sizes of Table 4.2 and the post-place and route results of

pMCMC.

There are two resource types which limit the implementation in different ways: 1) The critical com-

putational resource for both samplers (i.e. the one that limits B - the degree of parallelism) is the

number of available DSPs in the device. The chosen FPGA device has 900 DSP and this limits the

degree of parallelism to B = 2. LUT and FF utilization is significantly lower. 2) The number of

available BRAMs in the device forces an upper limit on the problem sizes that can be addressed in

pMCMC/ppMCMC (Tmax and Pmax) and the number of chains that can be used in ppMCMC (Mmax).

The maximum number of SSM states and particle for pMCMC using the particular FPGA device is

Tmax = 16384 and Pmax = 16384 (although the results in Table 4.3 were generated using the combi-

nation Tmax = 8192 and Pmax = 8192). Other combination can also be applied, e.g. Tmax = 8192 and

Pmax = 32768. For ppMCMC, an additional limitation is the maximum number of chains Mmax, which

has been set to Mmax = 5 here. In order to run more chains, either a larger FPGA device with more

BRAMs has to be used or Tmax and Pmax need to be reduced.

4.7.3 pMCMC: Hardware comparison (uni-modal posterior)

In order to compare the performance of the CPU, GPU and FPGA samplers, the single-tissue model

of Section 4.5 was used with various data sizes (i.e. number of SSM states or time steps or T). The

number of particles in the PF (P) was also set to different values to investigate how the performance

of the samplers scales as the problem size increases. For each combination of T and P, the pMCMC

samplers were used to generate N = 10000 MCMC samples from the uni-modal posterior of the single-

4.7. Investigation and results 153

tissue SSM. This section compares the samplers’ performance in two different ways:

1. Comparison based only on the runtime necessary to generate N MCMC samples, i.e. Timetotal ,

for various values of P and T .

2. Comparison based on both the runtime as well as the effect that P has on the mixing of the

sampler.

The performance metric for the first comparison is the samples per second that the sampler can gener-

ate:

Samples/sec = N
Timetotal

(4.35)

This metric is also called “raw performance” in this section and the speedup that refers to it is called

“raw speedup”. The performance metric for the second comparison is the effective samples per second

that the sampler can generate:

ES/sec = ESS
Timetotal

(4.36)

where ESS is the effective sample size of the N MCMC samples. Effective sample size (due to au-

tocorrelation) [156] is the most common metric of MCMC mixing in the literature (see also Chapter

2); it estimates how many independent (effective) samples the dependent MCMC samples are equiv-

alent to, i.e. it quantifies the “exploration value” of the samples. This is necessary for assessing

pMCMC performance, since the number of particles (P) influences mixing: A sample from pMCMC

with P = 512 has a different “exploration value” compared to a sample from pMCMC with P = 256.

ES/sec simultaneously considers raw speed (Timetotal) and mixing speed (ESS); it is the metric that

ultimately interests a practitioner. The same metric was used in Chapter 3 to quantify the effect of cus-

tom precision on the mixing of the Parallel Tempering algorithm. This metric is also called “effective

performance” in this section and the speedup that refers to it is called “effective speedup”.

Raw performance comparison

Figures 4.5 and 4.6 compare the various samplers using the metric (4.35). They show how the raw

speedups of the GPU and FPGA samplers over the multi-core CPU sampler scale with the number

of particles when T = 1000 and when T = 16000 respectively. All speedups refer to a fixed P, i.e.

comparisons are made between different platforms with the same P. The actual runtimes of the CPU

sampler for T = 1000 ranged from 58 minutes (for P = 256) to 2.4 days (for P = 16384). For T =

154 Chapter 4. Algorithms and architectures for Particle MCMC

16000, the actual runtimes ranged from 13.6 hours (for P = 256) to 37.2 days (for P = 16384). The

largest runs (which were impractical to perform) were terminated early (e.g. for N = 100 or N = 10)

and the measured runtimes were multiplied by the necessary factor. This does not affect the accuracy

of the comparisons since MCMC iterations are purely sequential. It is worth noting that typically

more than 10000 samples are needed in pMCMC applications and many independent runs have to be

performed. Therefore, the runtimes of LibBi’s multi-core CPU implementation are clearly prohibitive.

The achieved raw speedups of each device are very similar between Figures 4.5 and 4.6, showing that

the number of states does not affect the performance of the samplers (which is expected, since states

are processed sequentially and not in parallel). In contrast, the number of particles affects the raw

speedups of the GPU and FPGA, since more particles offer more parallelism which can be exploited

by the devices. The GPU is slower than the CPU by up to 4.1x for small numbers of particles but

becomes faster by up to 3.9x for P≥ 2048. This significant increase in the GPU’s raw speedup shows

that the GPU is under-utilized when only a small amount of parallel computations are performed. For

8192-16384 particles the raw speedup of the GPU flattens out because the GPU is fully utilized.

The FPGA’s raw speedup over the CPU is 6.4x-14.9x. Its raw speedup also increases with P but it

reaches values close to its peak value much earlier than the GPU. This is due to the FPGA archi-

tecture’s ability to exploit even modest amounts of parallelism in the algorithm. The speedup of the

FPGA is 3.8x-30.8x higher than the raw speedup of the GPU. The speedup over the GPU decreases

with larger P as the GPU gradually reaches its peak performance (the FPGA is close to its peak per-

formance even for P = 1024).

Regarding the multi-core CPU sampler, it has to be noted that its runtime grows proportionately to the

number of particles (although this is not shown in the figure). This reveals that even 256 particles are

enough to fully utilize the CPU’s resources.

Figure 4.7 examines the raw performance of the FPGA sampler (i.e. without taking into account

the mixing of the samples) in a different way. It shows the number of FPGA clock cycles spent for

each step of the pMCMC architecture for different numbers of particles. The numbers come from the

performance model of Section 4.4.4. In other words, the figure shows how the latency functions of

Section 4.4.4 vary with the parameter P (number of particles) when T , B and N are fixed to the values

shown in the figure caption. The figure also shows the actual (from a real run) runtime of the pMCMC

architecture (taken from Figure 4.5) converted to FPGA clock cycles.

4.7. Investigation and results 155

256 512 1024 2048 4096 8192 16384
10

−1

10
0

10
1

10
2

Number of particles (P)

S
p
e
e
d
u
p
 v

s
.
L
ib

B
i−

C
P

U
 (

C
o
re

 2
 Q

9
5
5
0
)

LibBi−GPU (Tesla C2050)

FPGA (Z−7045)

Figure 4.5: Raw speedup of GPU [2] and FPGA vs. multi-core CPU [2] implementation of pMCMC.

The number of SSM states/time steps is set to T = 1000. Measured runtimes include time to transfer

data between the devices and the hosts.

From comparing the purple and black lines in the figure, it is clear that the proposed performance

model is accurate, with relative error between 0.7% and 7.5%. The larger error is observed for P= 256

due to the larger relative effect of the CPU and I/O clock cycles (which cannot be modelled precisely)

on the total clock cycles.

Moreover, the figure reveals how the total clock cycles are broken down into the three stages of the

PF. It is clear that, for the particular SSM case study, the Transition and Weight stage is the one that

consumes the fewest cycles among the three PF stages. The resampling stage is the most expensive

stage. Also, the PF clock cycles increasingly dominate the total clock cycles of the system as more

particles are used; for P = 256 the PF takes 54.2% of the total clock cycles but this increases to 98.5%

for P = 16384. Similar results were observed for other values of T . The CPU and I/O clock cycles

constitute a large part of the total cycles for P = 256 (45.6%) but become negligible for large P (1.4%

of the total for P = 16384).

Figure 4.8 illustrates the way the clock cycles of the various steps of pMCMC change when the degree

of parallelism of the architecture (B), i.e. the number of parallel modules in each PF stage, scales.

This is equivalent to investigating how the clock cycles (or the time) of each step change when more

resources are available to implement the computations of the step. All the numbers in Figure 4.8 are

156 Chapter 4. Algorithms and architectures for Particle MCMC

256 512 1024 2048 4096 8192 16384
10

−1

10
0

10
1

10
2

Number of particles (P)

S
p
e
e
d
u
p
 v

s
.
L
ib

B
i−

C
P

U
 (

C
o
re

 2
 Q

9
5
5
0
)

LibBi−GPU (Tesla C2050)

FPGA (Z−7045)

Figure 4.6: Raw speedup of GPU [2] and FPGA vs. multi-core CPU [2] implementation of pMCMC.

The number of SSM states/time steps is set to T = 16000. Measured runtimes include time to transfer

data between the devices and the hosts.

based on the performance model of Section 4.4.4, using a fixed problem size (T = 1000, P = 16384).

In other words, the figure shows how the functions of Section 4.4.4 vary with the parameter B when

T , P and N are fixed.

The figure reveals that the Resampling stage of the PF becomes the bottleneck computation when B

increases. For B = 1, the Resampling stage accounts for 46.5% of the total clock cycles. For B = 16,

the Resampling stage accounts for 90.1% of the total clock cycles. The number of Resampling clock

cycles decreases only slightly when instantiating more parallel processing modules. This happens

because of the particle replication step at the end of the Resampling stage, which is represented by

the term P ·Latrep in Equation (4.16). It is clear from the equation that this is the only non-constant

term in all three PF stages (Equations (4.14)-(4.16)) which does not have a denominator B. This is

due to the reasons mentioned in Section 4.4.2; the particles replication cannot be parallelized because

memory access conflicts have to be avoided. The clock cycles of the remaining PF stages (Transition

and Weight, Partial Sums) decrease almost proportionately with B (which is expected from looking

at Equations (4.14) and (4.15)). The total number of clock cycles decreases with larger B but the

speedup gains are diminishing. The figure also shows what degree of parallelism is accessible given

the resources of five real Xilinx devices. As mentioned previously, Zynq Z-7045 was used as an

4.7. Investigation and results 157

256 512 1024 2048 4096 8192 16384
10

9

10
10

10
11

10
12

Number of particles (P)

N
u

m
b

e
r

o
f

F
P

G
A

 c
lo

c
k
 c

y
c
le

s

Transition & Weight (model)

Partial sums (model)

Resampling (model)

Particle Filter (model)

CPU & I/O (model)

pMCMC system total (model)

pMCMC system total (truth)

Figure 4.7: Total clock cycles consumed by each stage of the pMCMC architecture as the number of

particles (P) changes. The remaining parameters are set to T = 1000, B= 2, N = 10000, Tmax = 16384,

Pmax = 16384.

implementation platform in this chapter. The other four devices’ parallelism degrees were estimated

based on their available resources and the resource utilization results from Z-7045.

Effective performance comparison

The above comparison of the pMCMC accelerators using the first metric (Samples/sec) provides

information on how the relative speed of the accelerators scales with the number of particles. This

is useful for assessing raw speed and choosing an accelerator when the number of particles is known

(e.g. it has already been chosen by the practitioner). Nevertheless, when the number of particles has to

be tuned, the second performance metric (ES/sec) has to be used instead, since it takes into account

both the raw speed and the effect of P on mixing.

Figure 4.9 shows the ESS of the pMCMC sampler (which is the same for all implementations - CPU,

GPU, FPGA) when P varies. It is clear that the gains in mixing are significant when P ranges from

158 Chapter 4. Algorithms and architectures for Particle MCMC

1 2 4 8 16
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

13

Degree of parallelism (B)

N
u

m
b

e
r

o
f

F
P

G
A

 c
lo

c
k
 c

y
c
le

s

Partial Sums (model)

Transition & Weight (model)

Resampling (model)

Particle Filter (model)

CPU & I/O (model)

pMCMC system total (model)

Virtex
UltraScale+
VU9P

Virtex 7
VX550T

Zynq
Z−7100

Zynq
Z−7045

Zynq
Z−7030

Figure 4.8: Total clock cycles consumed by each stage of the pMCMC architecture as the degree

of parallelism (B) changes. The remaining parameters are set to T = 1000, P = 16384, N = 10000,

Tmax = 16384, Pmax = 16384. Five FPGA devices are shown in the top horizontal axis in order to

demonstrate what degree of parallelism is possible with each device’s available resources (assuming

full resource utilization). An actual implementation was done only for Zynq Z-7045. The other four

devices were placed in the graph based on projections.

256 to a 1024 but grow at a slower rate for larger P. The fluctuation in the figure is due to the variance

of the ESS estimator.

Figure 4.10 shows the ES/sec (effective performance) of the multi-core CPU, GPU and FPGA pM-

CMC samplers for varying P. Absolute performances (instead of speedups) are shown in order to

make it possible to compare configurations which use different values of P. The results give a signifi-

cantly different image of how the performance changes with P compared to the previously presented

results. The ES/sec of all samplers increases with P until P = 1024 and then drops for larger P. This

is because the ESS grows faster than the runtime for P ≤ 1024 (for all platforms). This is clear by

observing the steep increase of ESS in Figure 4.9 for P ≤ 1024. In contrast, for P > 1024, ESS im-

provement from using larger P is outweighted by the longer runtimes. For the CPU sampler, runtime

increases proportionately to P for all P and ES/sec peaks for P = 1024. The GPU sampler’s perfor-

mance also peaks for P = 1024. It then drops at a slower rate than the CPU sampler’s performance,

4.7. Investigation and results 159

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

100

200

300

400

500

600

700

800

Number of particles (P)

E
S

S

Figure 4.9: ESS achieved by pMCMC sampler for various P when sampling from the uni-modal SSM

posterior. The other parameters are set to T = 1000 and N = 10000. The fluctuations in the graph are

due to the fact that the ESS value is approximated and thus variance is present.

staying close to the peak value until P = 16384. This is because the GPU’s massive parallel resources

allow it to increase P without paying a large penalty in runtime (runtime grows slower than propor-

tionately with P). This small penalty allows the GPU to be relatively efficient (in terms of ES/sec)

for large P. The peak GPU performance is 1.2x higher than the peak CPU performance. The FPGA’s

ES/sec also peaks at P = 1024. The peak FPGA performance is 12.1x higher than the peak CPU

performance and 10.0x higher than the peak GPU performance. Larger P leads to reduced ES/sec.

The reduction happens at a faster rate than in the GPU case because the FPGA achieves close-to-full

resource utilization earlier than the GPU (as demonstrated in Figures 4.5 and 4.6) and thus the FPGA’s

runtime grows almost linearly after P = 1024. This leads the performance gap between FPGA and

GPU to decline with larger P. Finally, notice that for P ≥ 8192 the performance of all devices drops

at a similar rate, since all of them are fully utilized (and thus runtime grows proportionately to P).

The above results (although coming from applying pMCMC to a specific SSM posterior) demonstrate

that a larger number of particles is not always preferable for high sampling efficiency (when mixing is

taken in to account). This has already been shown in Pitt et al. [130], Sherlock et al. [132] and Doucet

et al. [131] but with the assumption that pMCMC runtime grows proportionately to P. In contrast, the

above comparison considers the runtimes of parallel pMCMC accelerators, which grow slower than

160 Chapter 4. Algorithms and architectures for Particle MCMC

256 512 1024 2048 8192 16384
10

−3

10
−2

10
−1

10
0

Number of particles (P)

E
S

/s
e

c

LibBi−CPU (Core 2 Q9550)

LibBi−GPU (Tesla C2050)

FPGA (Z−7045)

Figure 4.10: ES/sec achieved by the multi-core CPU, GPU and FPGA pMCMC samplers for various

P when sampling from the uni-modal SSM posterior. The other parameters are set to T = 1000 and

N = 10000.

proportionately to P until parallel resources are fully utilized (apart from the CPU sampler where full

utilization is reached even for P = 256).

It has to be noted that, in order to perform the above optimization, MCMC runs are necessary for all P

values and all devices. These runs can be short if the algorithm converges quickly, i.e. if few samples

are required to get an accurate estimate of ESS. The examined case study belongs to this category;

accurate ESS estimates are produced even with N = 1000 pMCMC samples. In cases where pMCMC

needs a large number of samples to converge, the overhead of performing runs for all P settings can

be significant. Nevertheless, even in this case, the typical scenario is that a practitioner performs the

few runs required to optimize P, as well as runs to optimize other parameters of the algorithm and

then uses the optimal parameters to perform a set of final runs. This set typically consists of dozens

of independent runs which are longer than the optimization runs. The final runs are used to get the

output estimate (2.9) and its variance. Therefore, the set of long final runs typically takes much more

time than the few (relatively short) runs needed for parameter optimization.

Note that no ppMCMC results are included in this section. This is because the ppMCMC algorithm

is unsuitable for this problem; using extra chains does not improve mixing for uni-modal posteriors.

Therefore, the extra area and extra computations of the ppMCMC FPGA architecture make it less

4.7. Investigation and results 161

efficient than the pMCMC FPGA architecture in all scenarios mentioned above.

4.7.4 ppMCMC vs. pMCMC: Algorithm comparison and trade-offs (multi-modal

posterior)

In this section, the performance of the proposed ppMCMC algorithm when sampling from a multi-

modal distribution is evaluated, without the use of any hardware acceleration. The multiple-tissue

posterior of Section 4.5 is used as the target distribution and sequential software implementations (in

Matlab) of pMCMC and ppMCMC are compared in order to reveal what sampling efficiency gains

are possible by using different combinations of MCMC chains and PF particles and how the two

algorithms’ performances compare. Matlab is used instead of a LibBi CPU implementation because

LibBi does not support ppMCMC. The temperatures of ppMCMC were chosen based on manual

tuning as follows: For M = 2 the setting Temp1:2 = [1,2.5] was used, for M = 3 the setting Temp1:3 =

[1,2.5,5] was used, for M = 4 the setting Temp1:4 = [1,2.5,5,10] was used and for M = 5 the setting

Temp1:5 = [1,2.5,5,10,15] was used.

The performance metric used in this section is ES/sec (described in the previous section). This metric

is necessary for the same reason described previously, i.e. to take into account the effect of mixing in

total efficiency. Moreover, in the case of ppMCMC, not only P but also M (the number of ppMCMC

chains) affects mixing. For example, a sample from ppMCMC when using M = 3 MCMC chains has a

different “exploration value” compared to a sample from ppMCMC when using M = 2 MCMC chains

or a sample from pMCMC which is generated with only one MCMC chain.

Figure 4.11 shows the ESS and ES /sec of the Matlab implementation of ppMCMC when the number

of chains ranges from M = 2 to M = 5 and the number of particles ranges from P = 150 to P = 8200.

The ESS and ES /sec of the Matlab implementation of pMCMC for the same P range is also shown.

The number of SSM states is fixed to T = 200. N = 10000 MCMC samples are generated for each

combination. Larger values of M (for ppMCMC) and P (for both methods) improve mixing (ESS in

(4.36)) but at the same time they increase runtime (Timetotal in (4.36)). The latter is not shown here

but it grows proportionately to P and M (since the implementation is sequential). By exploring the

above trade-off between ESS and Timetotal it is possible to find the optimal combination of M and

P for ppMCMC, as well as the optimal P for pMCMC (the latter optimization was also done for the

single-tissue posterior in the previous section).

162 Chapter 4. Algorithms and architectures for Particle MCMC

It is clear from the figure that mixing improves with both M and P but most of the gains come with

moderate numbers of chains and particles, e.g. up to M = 3 and P = 1200. Increasing both values

above those limits offers small gains. The above design space exploration is done for the first time in

the pMCMC literature. Previous works have only addressed the way the mixing of pMCMC changes

with the size of the particle set.

Regarding ES /sec, in pMCMC it is maximized for P = 300, while in ppMCMC it is maximized for

(P = 300, M = 3). The latter is 1.96x faster than the former. For the same P, using multiple chains

is more efficient (in terms of ES /sec) than single-chain pMCMC by up to 2.8x (despite the extra

computational cost from running multiple chains). The only ppMCMC configuration which is slower

than pMCMC is (P = 150, M = 2). The figure also indicates that increasing P above a certain number

decreases ES /sec for any M. This happens because the gains in ESS are small for very large P, while

Timetotal increases proportionately to P. The optimal ES /sec values when fixing M are achieved

either for P = 300 or P = 600, depending on M. The gains from using ppMCMC are expected to

increase when applied to SSM posteriors with larger dimensions (nθ) and more modes (the example

used here has nθ = 3 and 2 modes).

Note that the above optimization of P and M also requires runs to be performed for all candidate

parameter combinations, as described in the end of Section 4.7.3 for pMCMC. The same comments

on the overhead of these runs apply here (and in the following section).

4.7.5 ppMCMC vs. pMCMC: Hardware comparison and trade-offs (multi-modal pos-

terior)

In this section, the (estimated) performance of the proposed ppMCMC FPGA architecture is evaluated

using the multi-tissue model. The same chains/particles design space exploration is performed, as in

the software-based comparison of the previous section. Moreover, the FPGA ppMCMC performance

is compared to the CPU and GPU implementations of pMCMC (which use LibBi [2]). The runtimes

of the FPGA sampler were estimated based on the model of Section 4.4.4.

The ES /sec metric for the FPGA implementation is affected by two factors, as mentioned previ-

ously; the runtime (Timetotal) and the mixing (ESS). The former factor is illustrated in Figure 4.12,

which shows the raw speedup of FPGA ppMCMC compared to Matlab ppMCMC when considering

only the runtime Timetotal and not the effect of mixing. This is equivalent to the Samples/sec (raw

4.7. Investigation and results 163

1
0

2
1
0

3
1
0

4
1
0

−
4

1
0

−
2

ES/sec

1
0

2
1
0

3
1
0

405
0
0

N
u

m
b

e
r

o
f

p
a

rt
ic

le
s
 (

P
)

ESS

p
M

C
M

C
 E

S
/s

e
c

p
p

M
C

M
C

 E
S

/s
e

c
 (

M
=

2
)

p
p

M
C

M
C

 E
S

/s
e

c
 (

M
=

3
)

p
p

M
C

M
C

 E
S

/s
e

c
 (

M
=

4
)

p
p

M
C

M
C

 E
S

/s
e

c
 (

M
=

5
)

p
M

C
M

C
 E

S
S

N

p
p

M
C

M
C

 E
S

S
N

 (
M

=
2

)

p
p

M
C

M
C

 E
S

S
N

 (
M

=
3

)

p
p

M
C

M
C

 E
S

S
N

 (
M

=
4

)

p
p

M
C

M
C

 E
S

S
N

 (
M

=
5

)

F
ig

u
re

4
.1

1
:

E
S

S
an

d
E

S
/
se

c
o
f

p
M

C
M

C
an

d
p
p
M

C
M

C
in

se
q
u
en

ti
al

M
at

la
b

im
p
le

m
en

ta
ti

o
n
s

w
h
en

th
e

n
u
m

b
er

o
f

ch
ai

n
s

(M
)

an
d

th
e

n
u
m

b
er

o
f

p
ar

ti
cl

es
(P

)

ch
an

g
e.

T
h
e

m
u
lt

i-
m

o
d
al

,
m

u
lt

i-
ti

ss
u
e

S
S

M
o
f

se
ct

io
n

4
.5

is
u
se

d
as

th
e

ta
rg

et
d
is

tr
ib

u
ti

o
n
.

T
h
e

S
S

M
ti

m
e

st
ep

s
ar

e
fi

x
ed

to
T
=

2
0
0
.

N
=

1
0
0
0
0

sa
m

p
le

s
ar

e

g
en

er
at

ed
fo

r
ea

ch
co

m
b
in

at
io

n
an

d
th

e
E

S
S

an
d

ru
n
ti

m
e

ar
e

m
ea

su
re

d
in

o
rd

er
to

co
m

p
u
te

E
S
/

se
c.

164 Chapter 4. Algorithms and architectures for Particle MCMC

performance) metric described in Section 4.7.3 for pMCMC. The same parameters as in the Matlab

evaluation are used, i.e. T = 200 and N = 10000. The number of chains and particles varies. The

actual runtimes of the Matlab sampler range from 76 minutes for P = 150 and M = 2 to 7.3 days for

P = 8200 and M = 5. The raw speedup of the FPGA pMCMC sampler over the Matlab pMCMC

sampler is also shown.

From observing the figure, it is clear that the use of multiple chains improves the efficiency of the

FPGA architecture, i.e. the raw speedup over Matlab improves with larger M. There is a gain of up to

2.6x in raw speedup when moving from M = 1 (pMCMC) to M = 5 when P is fixed. This is due to the

use of coarse-grain pipelining, which was described in Section 4.4.3 and which increases the number

of MCMC chains that the PF can process per second. Moreover, the figure shows an improvement of

raw speedup with the number of particles (which is also supported by the earlier results for pMCMC,

see Figures 4.5 and 4.5). This is due to increased utilization of FPGA resources when P is large.

Overall, the raw speedup in Figure 4.12 ranges from 31.8x to 132.9x.

The second factor that affects the ES /sec metric for the FPGA implementation is mixing (measured

by ESS). The effect of this factor has already been explained and presented in Figure 4.11. The ESS

of the FPGA implementations is the same as the ESS of the Matlab implementations when the same

P and M are used.

A comparison of the two factors that affect ES /sec (mixing and runtime/speedup over Matlab) reveals

that mixing is more important because ESS varies significantly (from ESS = 4.8 to ESS = 202.4 as

shown in Figure 4.11) while speedup over Matlab varies from 31.8x to 132.9x (Figure 4.11).

The ES /sec of the FPGA ppMCMC sampler is shown in Figure 4.13 for all M, along with the ES /sec

of the FPGA pMCMC, GPU pMCMC and CPU pMCMC samplers. The same parameters as in the

Matlab evaluation, i.e. T = 200, N = 10000, are used. The ES /sec of the CPU pMCMC peaks for

P = 300 and drops for larger P because the extra computational cost outweighs the ESS benefit (the

latter is equal to the ESS in Figure 4.11). The same behaviour was observed when applying the CPU

pMCMC to the single-tissue, uni-modal posterior in Section 4.7.3. The ES /sec of the GPU pMCMC

peaks at P = 600 and remains close to its peak value for larger P because the computational cost

here is smaller than in the CPU case (the GPU has more parallel resources to utilize and pays small

Timetotal penalties for larger P, as already explained earlier). The ES /sec of the FPGA pMCMC

peaks at P = 600. This peak performance is 10.7x and 12.8x higher than the peak CPU and GPU

4.8. Conclusions 165

150 300 600 1200 4200 8200
20

40

60

80

100

120

140

Number of particles (P)

R
a
w

 s
p
e
e
d
u
p
 v

s
.
M

a
tl
a
b

ppMCMC (M=2)

ppMCMC (M=3)

ppMCMC (M=4)

ppMCMC (M=5)

pMCMC

Figure 4.12: Raw speedup of FPGA ppMCMC sampler compared to sequential Matlab implementa-

tion of ppMCMC and raw speedup of FPGA pMCMC sampler compared to sequential Matlab im-

plementation of pMCMC. the number of chains (M) and the number of particles (P) change. The

multi-modal, multi-tissue SSM of section 4.5 is used as the target distribution. The SSM time steps

are fixed to T = 200.

performances respectively. The fastest ppMCMC configuration (P = 300, M = 4) is 34.9x, 41.8x and

3.24x faster than the fastest CPU, GPU and FPGA pMCMC configurations. Notice that the optimal

ppMCMC configuration changes from Matlab to FPGA. By comparing Figures 4.11 and 4.13, it can

be observed that combinations with large P and (especially) M are more “favoured” in the FPGA than

they are in Matlab. This happens because 1) FPGA runtime does not increase proportionately to P

and M as in Matlab (it increases at a slower rate) and 2) chain pipelining in the ppMCMC architecture

improves efficiency for M > 1. For constant P, adding chains improves ES /sec by up to 3.96x vs.

pMCMC, while in Matlab the equivalent improvement is 2.8x.

4.8 Conclusions

This chapter introduced a novel particle-based MCMC algorithm called ppMCMC, which combines

pMCMC with the principles of population-based MCMC methods in order to achieve higher mixing

speed in multi-modal target distributions. Moreover, two FPGA architectures (one for the basic pM-

CMC and one for ppMCMC) were proposed, taking advantage of the flexibility of FPGAs to optimize

166 Chapter 4. Algorithms and architectures for Particle MCMC

1
5

0
3

0
0

6
0

0
9

0
0

1
2

0
0

4
2

0
0

8
2

0
0

1
0

−
3

1
0

−
2

1
0

−
1

1
0

0

N
u

m
b

e
r o

f p
a

rtic
le

s
 (P

)

ES/sec

p
M

C
M

C
−

F
P

G
A

p
p
M

C
M

C
−

F
P

G
A

 (M
=

2
)

p
p
M

C
M

C
−

F
P

G
A

 (M
=

3
)

p
p
M

C
M

C
−

F
P

G
A

 (M
=

4
)

p
p
M

C
M

C
−

F
P

G
A

 (M
=

5
)

p
M

C
M

C
−

C
P

U
 [3

]

p
M

C
M

C
−

G
P

U
 [3

]

F
ig

u
re

4
.1

3
:

E
S
/
sec

o
f

F
P

G
A

p
p
M

C
M

C
,
F

P
G

A
p
M

C
M

C
,

G
P

U
p
M

C
M

C
an

d
C

P
U

p
M

C
M

C
sam

p
lers

w
h
en

sam
p
lin

g
fro

m
th

e
m

u
lti-m

o
d
al,

m
u
lti-tissu

e
S

S
M

o
f

sectio
n

4
.5

.
T

h
e

n
u
m

b
er

o
f

ch
ain

s
(M

)
an

d
th

e
n
u
m

b
er

o
f

p
articles

(P
)

ch
an

g
e.

T
h
e

S
S

M
tim

e
step

s
are

fi
x
ed

to
T
=

2
0
0

an
d

N
=

1
0
0
0
0
.

4.8. Conclusions 167

the speed of the samplers.

The evaluation of the algorithm and the architectures showed that the FPGA samplers are significantly

faster in terms of sampling speed compared to state-of-the-art CPU and GPU samplers when applied to

a SSM inference for DNA methylation problems. Results showed that the FPGA pMCMC architecture

reaches its peak performance earlier than the GPU. The performance of the FPGA pMCMC sampler

does not increase proportionately to the FPGA device’s size, because the resampling step involves a

non-parallelizable operation (generation of new particle population by replicating particles from the

previous population). This issue is the subject of future work. It could be addressed by the use of

distributed resampling algorithms which do not require all the parallel nodes to have access to the

whole particle memory, although the effects of this strategy on resampling performance need to be

examined.

Regarding the ppMCMC FPGA sampler, results showed that by exploiting the design space trade-offs

of the architecture (i.e. tuning the number of particles and the number of chains), it is possible to find

the parameter combination which maximizes effective sampling performance. The speed gains due

to the ppMCMC algorithm (vs. pMCMC) without hardware acceleration, as well as the gains due

to the ppMCMC FPGA architecture vs. the pMCMC FPGA architecture and pMCMC samplers in

other platforms were quantified. The FPGA ppMCMC sampler was shown to be an order of magni-

tude faster than the CPU and GPU pMCMC samplers and up to 3.24x faster than the FPGA pMCMC

sampler when sampling from a multi-modal distribution. The above results confirm that the combina-

tion of ppMCMC and a specialized FPGA architecture offers significant efficiency gains over existing

algorithms and accelerators when the posterior is multi-modal.

It is worth noting that ppMCMC is an unbiased algorithm; in all experiments that were performed,

ppMCMC converged to the “true” posterior densities (confirmed either by comparing to pMCMC’s

results on the same target distribution or by comparing to the known “true” model), as theoretically

expected.

The design space explorations of Section 4.7.3-4.7.5 are performed for specific SSM case studies.

Therefore, the optimal parameter configurations found cannot be generalized to other problems. De-

pending on the posterior’s shape, dimension, number of modes, distance between modes, etc, different

parameter configurations will lead to the best mixing and to the best effective performance (ES/sec).

However, it is expected that for all problems the ES/sec metric will not increase monotonically with

168 Chapter 4. Algorithms and architectures for Particle MCMC

P and M (for ppMCMC), either in software or in hardware. There will always be some intermediate

combination of P and M that maximizes ES/sec. Also, any performance gap between FPGAs and

GPUs is expected to gradually reduce with P and M and GPU samplers will generally reach peak

effective performance for larger values of P and M compared to FPGAs and CPUs.

Regarding the raw speedup of FPGAs vs. CPUs and GPUs, the results presented in Figures 4.5 and

4.12 can be generalized more easily than effective speedup results. The FPGA should reach similar

speedups over other platforms for different problems, as long as the same numbers of particles are

used. Transition and observation densities in SSMs are typically well-known densities (e.g. Gaussian,

Binomial, Poisson) which require similar arithmetic operators to implement. Therefore, the imple-

mentation costs and thus the performance differences between devices are likely to be maintained for

other SSMs. The critical factor that defines raw performance differences between devices is the cho-

sen parameters of the algorithm (P and M); the performance of each device scales differently with

these parameters, as shown in Figures 4.5 and 4.12.

Overall, the pMCMC and ppMCMC algorithms can benefit a lot from FPGA acceleration despite the

complications related to the resampling step of the PF. The following chapter will approach the prob-

lem of MCMC acceleration from a different perspective compared to the rest of this thesis. It will focus

on generic MCMC acceleration (independent of the targeted MCMC algorithm) and it will propose a

precision optimization method to maximize the speedup offered by an FPGA implementation.

Chapter 5

Arithmetic precision optimization for

generic MCMC

5.1 Introduction

The two preceding chapters examined specific classes of MCMC algorithms and exploited their in-

herent parallelism in order to construct parallel implementations. They also proposed novel modifica-

tions to these algorithms, which combined knowledge about the characteristics of the algorithms and

the features of FPGAs, achieving an increase in sampling efficiency. Although the gains from this

approach were shown to be significant, each algorithmic modification and FPGA mapping presented

in the previous chapters is specific to the targeted MCMC algorithm or to algorithms from the same

MCMC family (e.g. population-based MCMC).

This chapter follows a different path; instead of focusing on a specific MCMC class, it targets the

entirety of MCMC methods and seeks a general way to improve sampling efficiency in an FPGA

setting. This general approach comprises using custom (reduced) arithmetic precision when evaluating

the probability density p(θ) inside MCMC, instead of the double floating-point precision which is the

default approach in MCMC literature. All other parts of the MCMC algorithm operate in double

precision. Custom precision is a unique capability of FPGAs (see Chapter 2). By reducing precision,

arithmetic operators become cheaper in terms of FPGA area and thus more parallel operators can be

instantiated. At the same time though, error is introduced in calculations. In the case of MCMC, error

translates to bias in the estimation of the integral of Equation (2.8). This bias in the output estimate of

169

170 Chapter 5. Arithmetic precision optimization for generic MCMC

MCMC has already been defined in equation (2.26) of Chapter 2.

Since all MCMC methods require the computation of a probability density, the above approach has

potential as a general method which can increase MCMC’s computational efficiency in any problem.

What is more, the presence of large-scale data in modern Bayesian application has made the evaluation

of the probability density the main computational bottleneck in most MCMC methods. Therefore,

focusing on decreasing the computational cost of this particular part of MCMC is a priority.

In order to use custom precision in practice for the above task, it is necessary to figure out what

precision configuration is optimal for the probability density evaluations inside MCMC, taking into

account the effect of precision on performance and output bias. This chapter poses the following

questions:

• “Assuming that the probability density in MCMC is evaluated using custom precision (result-

ing in a biased output estimate), what precision configuration should be selected to minimize

MCMC runtime in the FPGA while simultaneously bounding the bias in the estimation of

(2.8)?”

• “Is it possible to discover this configuration without performing full MCMC runs in all preci-

sions?”

The methods and results presented in this chapter show that it is possible to select an optimized pre-

cision which satisfies a bias threshold by performing short MCMC pre-runs in multiple precisions on

the FPGA and using an efficient bias estimator (which is proposed here).

Chapter outline

Section 5.2 introduces some basic concepts on the use of custom arithmetic in an MCMC setting,

including its effect on the convergence of the algorithms and on the output bias. It repeats some of the

background of Chapter 2 for easier reference. The following sections constitute the main part of the

chapter and include the following contributions:

1. The introduction of an efficient estimator of the bias that appears in the output estimate of

MCMC when evaluating the probability density p(θ) in custom precision (Section 5.3). The

estimator requires MCMC samples from a sampler which operates in the custom precision of

5.1. Introduction 171

interest. It is able to produce a bias estimate using few MCMC samples (compared to the ones

needed to get the output estimate, i.e. to get an estimate of the integral (2.8) using (2.9)).

2. A precision optimization method for FPGA-mapped MCMC samplers, which exploits the pro-

posed bias estimator and the reconfigurability of FPGAs to automatically choose a minimized

precision from within a pre-defined set of precision configurations, while satisfying the user’s

bias tolerance requirements (Section 5.4). Due to the stochasticity of MCMC, the output esti-

mate is always approximated within some standard deviation. MCMC practitioners set a target

standard deviation and run the algorithm until this target is reached. Given a specific output

estimate (e.g. the mean of the probability distribution), a target standard deviation for the output

estimate, a tolerable bias and a few other user parameters, the automated precision optimization

method can find a minimized precision whose bias is within tolerance (with a certain probabil-

ity). The optimization trades off output accuracy for resource savings (due to reduced precision).

Resource savings lead to higher parallelization factors and thus shorter runtimes. The process

involves pre-runs on the FPGA (1st bitstream) to estimate the bias of each precision and choose

the optimized one for the final, long FPGA run (2nd bitstream). The pre-runs add only a small

runtime overhead, owing to the efficiency of the bias estimator and the use of a termination

criterion.

The proposed optimization method is automated, can tailor the precision to user requirements (most

importantly the kind of output estimate and the bias tolerance) and can be applied to any MCMC

algorithm (with the assumption that the likelihood computation inside MCMC is parallelizable in

some way but without any assumption on the form that this parallelism takes). The chosen precision is

not necessarily the minimum precision that satisfies the bias tolerance (this is why the term optimized

is used, instead of the term optimal), since: 1) The candidate precisions are limited, 2) A smaller

precision than the chosen one might satisfy the bias threshold but the available time for pre-runs might

not be enough to know this with enough certainty.

The proposed methodology is evaluated using two Bayesian inference problems (Section 5.7): Mixture

model inference and neural network regression. The PT algorithm is used to sample from the models.

The performance of the methodology is compared with the baseline PT FPGA accelerator of Chapter

3 on the same FPGA. Results show that the optimized-precision designs are 2.85x-4.90x faster than

double-precision designs (including the optimization overhead), depending on the type of estimate and

the user parameters. Results are also presented on the trade-off between bias in the output estimate

172 Chapter 5. Arithmetic precision optimization for generic MCMC

and speedup. Finally, a comparison with an existing unbiased precision optimization methodology [3]

is included.

5.2 MCMC estimates and the effect of custom precision

5.2.1 MCMC in infinite and double precision

As mentioned in previous chapters, the typical problem that MCMC aims to solve is the estimation of

the integral:

I = Ep[f (θ)] =
∫

f (θ)p(θ)dθ (5.1)

where θ is a random vector, p(θ) is the probability density of θ (the posterior in Bayesian inference),

f (θ) is a function of interest (e.g. mean, moment) and Ep[f (θ)] denotes the expectation of f (θ) when

θ is distributed according to p(θ). The above integral is the same as the one given in Equation (2.8).

MCMC draws samples θ (i), i ∈ {1, ...,N} from p(θ) (i.e. the target distribution) and uses them to

evaluate:

Ĩ = 1
N

N

∑
i=1

f (θ (i))≈ I (5.2)

which is an unbiased estimator of the integral (5.1). (5.2) is called the output estimate (also given in

Equation (2.9)). The method presented in this chapter performs precision optimization for a specific

output estimate, i.e. specific p(θ) and f (θ), given by the user.

For finite N, (5.2) differs from (5.1) by some Normal-distributed random number with mean zero and

variance σ2
Ĩ

, called the variance of the output estimate:

σ2
Ĩ
=

σ2
f

N
(5.3)

where σ2
f is the variance of the function of interest f (θ) under p(θ). The variance σ2

f is constant for

fixed f (θ) and p(θ) but it is unknown. The variance σ2
Ĩ

can be reduced arbitrarily by increasing N but

this requires more computational time. In this chapter, σ2
Ĩ

, σ2
f and all other variances that follow are

approximated by running the MCMC sampler multiple times (typically 30-100) with different random

seeds. In the rest of the chapter a run refers to such a set of parallel runs.

As already explained in Section 2.6.3, the above equations are theoretical; they assume that all compu-

5.2. MCMC estimates and the effect of custom precision 173

tations inside MCMC are performed in infinite precision and therefore MCMC samples are distributed

according to the true distribution and the output estimate (5.2) converges to the true value (5.1) for

N→∞. Nevertheless, in practical MCMC implementations on digital devices, infinite precision is im-

possible to achieve. As a result, almost all work in MCMC literature uses double or single precision

floating point, which are considered adequate for existing problems. In this chapter, double precision

is considered equivalent to infinite precision in all implementations. The reason for this choice is the

following: This chapter deals with precision optimization and this optimization is done using a certain

precision as reference, i.e. the reference precision is considered equivalent to infinite precision. There-

fore, the highest of the two default precisions in literature (double precision) is used here to resemble

infinite precision as closely as possible.

5.2.2 Parts of MCMC - precision domains

Each MCMC algorithm consist of two parts:

1. The evaluation of the probability of each proposed sample according to the probability density

(target density) p(θ). This part is specific to the targeted problem.

2. The generic operations, which mainly include proposing samples and accepting/rejecting them

according to their probability density value. This part is generic for a given MCMC algorithm,

i.e. it is the same regardless of the targeted problem (although it changes for each different

MCMC algorithm).

The probability evaluations (first part) take up the bulk of the computation time, especially when

complex models and large-scale data are employed. The generic MCMC operations are much less

computationally demanding. Therefore, the crucial task to achieve higher sampling throughput in

MCMC is the minimization of the cost of implementing p(θ).

As already explained in Section 2.6.3, if the two parts of MCMC are treated as separate precision

domains, it is possible to acquire four different precision combinations, shown in Table 2.1. In this

chapter, Combination D/C is used. This combination performs all generic operations in double preci-

sion and uses custom precision only for density evaluations. It thus guarantees convergence to some

probability distribution. Due to the use of custom precision for probability density evaluations, this

stationary distribution is not the “true” distribution (p(θ)) but an approximation of it (denoted pc(θ),

174 Chapter 5. Arithmetic precision optimization for generic MCMC

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

θ

p
c
(θ

)

c=(53,11)

c=(6,11)

c=(4,11)

c=(2,11)

Figure 5.1: The same Normal target density (Mean = 0, Variance = 1) for different precision configu-

rations.

where c = (mantissa bits, exponent bits) is the precision configuration used). See Figure 5.1 (recalled

from Chapter 2) for an example of what a custom precision density looks like for different c.

It is worth noting that, in Chapter 3, the two proposed custom precision algorithms for PT used a mix

of Combinations D/D and D/C. WPT performed all probability computations in custom precision and

generic operations in double precision (like Combination D/C) but used double precision to correct the

output estimate. Therefore, the use of custom precision had no effect on the output, which converged

to the “true” value (like Combination D/D). MPPT used custom precision for probability evaluations

in auxiliary chains (like Combination D/C) and double precision for probability evaluations in the first

chain (like Combination D/D). All generic operations were performed in double precision. The effect

of this mixed strategy was the same as in WPT; no bias in the output. The approach presented in this

chapter differs in that it permits bias in the output estimate but controls it.

FPGA-mapped MCMC samplers contain one hardware block for the generic MCMC operations and

one hardware block which implements p(θ) (which can consist of multiple parallel sub-blocks). For

5.2. MCMC estimates and the effect of custom precision 175

Propose

samples

Probability Evaluation

(parallel pipelines)

Accept/

Reject

samples

FPGA

Other

generic

modules

MCMC

Double precision domain

Custom precision domain

Figure 5.2: Double and custom precision domains in an FPGA implementation of MCMC (Combina-

tion D/C in Table 2.1). The double precision domain corresponds to the generic MCMC operations.

The custom precision domain corresponds to the Probability Evaluation block.

example, in Chapter 3, the Parallel Tempering FPGA architecture contains a Probability Evaluation

block responsible for computing the densities (possibly using multiple parallel pipelines) and several

other blocks which perform the generic operations. Because p(θ) is the bottleneck computation in any

MCMC algorithm with large-scale data, sampling throughput increases when more parallel blocks are

instantiated to compute p(θ). Following Combination D/C, this chapter focuses on how to minimize

the cost of implementing these blocks by automatically optimizing the employed precision in the

block that evaluates p(θ). Figure 5.2 shows a high-level description of an FPGA implementation

which follows Combination D/C.

5.2.3 MCMC estimate when using custom precision probability densities

When custom floating point precision is used to compute p(θ), MCMC samples are distributed ac-

cording to pc(θ), where c = (mantissa bits, exponent bits) is the precision configuration used. All

custom precisions in this chapter are lower than double precision and use 11 exponent bits.

Recalling Chapter 2, the approximated integral is no longer given by Equation (2.8). It is now the

176 Chapter 5. Arithmetic precision optimization for generic MCMC

following:

Ic = Epc
[f (x)] =

∫

f (θ)pc(θ)dθ (5.4)

The value of the custom precision output estimate is:

Ĩc = Ẽpc
[f (x)] = 1

N

N

∑
i=1

f (θ (i))≈ Ic (5.5)

where θ (i), i ∈ {1, ...,N} are samples drawn from pc(θ). The variance of this estimator σ2
Ĩc

is found in

the same way as the variance of the double-precision estimator (see Equations (5.3)), only now σ2
f is

different since samples are drawn from pc.

5.3 Proposed bias estimator

This section proposes an efficient estimator of the bias in the MCMC output estimate when the prob-

ability distribution is evaluated in custom precision. Section 5.4 uses this bias estimator to develop an

automated precision optimization method.

5.3.1 Bias estimator

Combining Equations (5.1) and (5.4), it is easy to find the following expression, which gives the bias

in the output estimate due to the use of custom precision (same as equation (2.26) in Chapter 2):

bc = I− Ic =
∫

f (θ)p(θ)dθ − ∫ f (θ)pc(θ)dθ (5.6)

This quantity needs to be approximated for all candidate precision configurations (all values of c) in

order to choose which configuration to use (i.e. in order to optimize precision). In this chapter, it is

assumed that bc is a scalar, although the proposed optimization methodology can be easily extended

to cases where bc is a vector.

Figure 5.3 shows a simple example of a double- and a custom-precision MCMC estimator. The es-

timated quantity is the mean of a Gaussian distribution. The true value is 4. The bias is visible near

the end of the runs. Standard deviations are also visible. The bias is independent of the estimator’s

standard deviation and cannot be avoided when sampling with reduced precision.

5.3. Proposed bias estimator 177

0 10 20 30 40 50 60 70 80 90 100 110
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Number of generated MCMC samples (x100)

O
u
tp

u
t
e
s
ti
m

a
te

Custom precision (6,11)

Double precision (53,11)

Bias

Figure 5.3: Double- and custom-precision (c = (6,11)) sampling for the same output estimate Ĩ. The

error bars are equal to two times the standard deviation of the estimate (±2∗σĨ for double and±2∗σĨc
)

for custom precision. The true value of the estimated integral is I = 4

Straightforward estimator: Estimating bc based on (5.6) would require two separate MCMC runs

(targeting first p(θ) and then pc(θ)) in order to estimate the two integrals and then subtract them. The

variance σ2
str of this straightforward bias estimator would be equal to the sum of the variances of the

two output estimates: σ2
str = σ2

Ĩ
+σ2

Ĩc
. Thus, this bias estimator has a larger variance than any of the

two output estimators for an equal number of samples. Figure 5.5 shows (among other things) the

ratio
σ2

str

σ2
Ĩc

for all precisions for one of the examples of Section 5.5. σ2
str is around two times larger than

σ2
Ĩc

. Optimizing the precision with this straightforward method would require a long MCMC run for

each candidate precision configuration to estimate its bias with sufficient accuracy, making the total

runtime larger than the time for a double-precision run (the default choice).

Proposed estimator: Here, a more efficient bias estimator is proposed. It achieves significantly

smaller variance compared to the straightforward approach, as will be demonstrated in Section 5.3.2.

It thus enables precision optimization by using only a set of short MCMC pre-runs (one for each

precision configuration).

178 Chapter 5. Arithmetic precision optimization for generic MCMC

The bias can be rewritten as:

bc =
∫

f (θ)p(θ)dθ − ∫ f (θ)pc(θ)dθ =
∫

f (θ)(p(θ)− pc(θ))dθ =
∫

f (θ) p(θ)−pc(θ)
pc(θ)

pc(θ)dθ

=
∫

f (θ)(p(θ)
pc(θ)
−1)pc(θ)dθ =

∫

f (θ)(wc(θ)−1)pc(θ)dθ

=
∫

fbc
(θ)pc(θ)dθ = Epc

[fbc
(θ)]

(5.7)

where wc(θ) =
p(θ)
pc(θ)

and fbc
(θ) = f (θ)(wc(θ)−1). The weight wc(θ

(i)) is the ratio of the probability

density of sample θ (i) computed using double precision over the probability density of sample θ (i)

computed using custom precision. The proposed bias estimator approximates the integral in the last

line of (5.7) by taking MCMC samples from pc(θ) and computing the following estimate (similarly

to (5.5)):

b̃c =
1
N

N

∑
i=1

fbc
(θ (i))≈ bc (5.8)

Nevertheless, to get this estimate, it is also necessary to compute the probability density of each sample

in double precision (p(θ (i))) to get the weights wc(θ). This requires extra computations (i.e. a double

precision density evaluation module in the FPGA) but it will be shown in the following sections that

this overhead is small compared to the runtime savings from using custom precision.

Moreover, another issue needs to be addressed before using the proposed estimator: In Bayesian

inference, the distributions p(θ) and pc(θ) are typically known only up to a normalizing constant:

p(θ) = pu(θ)
Cp

(5.9)

pc(θ) =
pu

c(θ)
Cpc

(5.10)

where Cp and Cpc
are the normalizing constants and only the unnormalized densities pu(θ) and pu

c(θ)

can be evaluated. This means that the weights

wc(θ) =
pu(θ)
pu

c(θ)
1

(
Cp

Cpc
)
= wu

c(θ)
1

(
Cp

Cpc
)

(5.11)

(where wu
c(θ) =

pu(θ)
pu

c(θ)
is the unnormalized weight) cannot be evaluated exactly because the ratio of

constants
Cp

Cpc
is unknown.

In order to address this problem, an estimator of the ratio of constants is devised here. The ratio

can be estimated by the mean of the unnormalized weights wu
c(θ) based on (5.12). Since p(θ) is a

probability density, its integral over all θ is equal to one, which leads to the following sequence of

5.3. Proposed bias estimator 179

equations (using Equations (5.9)-(5.11)):

∫

p(θ)dθ = 1

⇔ ∫ p(θ)
pc(θ)

pc(θ)dθ = 1

⇔ ∫

pu(θ)
Cp

pu
c (θ)
Cpc

pc(θ)dθ = 1

⇔ ∫ pu(θ)
pu

c(θ)
pc(θ)dθ =

Cp

Cpc

⇔ Epc
[wu

c(θ)] =
Cp

Cpc

(5.12)

Therefore, samples from an MCMC run in precision c can be used not only to estimate the bias bc

(as described above) but also to estimate the ratio
Cp

Cpc
. At the end of the MCMC run, the mean of the

unnormalized weights is computed and then used to normalize the weights by dividing each weight

with it. The result is the set of normalized weights wc(θ1:N). These can then be used in the estimator

(5.8). The variance of (5.8) is found in the same way as the previous variances, substituting fbc
for f :

σ2
b̃c
=

σ2
fbc

N
(5.13)

It is worth noting that the above weight normalization technique was not applied in the bias estimator

proposed by Chow et al. [3], since that work focused on non-MCMC Monte Carlo simulations, where

the sampled distributions are fully known (in contrast to MCMC where distributions are known only

up to a normalizing constant). Moreover, in Chow et al. [3] the computational bottleneck was the

computation of the function f (θ) and not the generation of samples from p(θ). Therefore, custom

precision was applied only to the computation of f (θ) after the samples had been generated.

The variables and constants mentioned in the above sections are summarized in Table 5.1 for easier

reference.

5.3.2 Variance: Proposed bias estimator vs. Straightforward bias estimator vs. Cus-

tom precision output estimator

The above section described the proposed estimator but did not explain why it is preferable over the

straightforward estimator and how their efficiencies compare. This section investigates these ques-

tions.

As shown in Figure 5.1, custom precision densities pc(θ) are generally close to the “true” double

180 Chapter 5. Arithmetic precision optimization for generic MCMC

Table 5.1: Variables and constants in this chapter.

Symbol Description

c Precision configuration c =(mantissa bits, exponent bits)

p(θ), pc(θ) Target probability distributions in double precision and custom precision c re-

spectively

I, Ic True values of integrals in double precision and custom precision c respectively

Ĩ, Ĩc Output estimates for double precision and custom precision c respectively

f (θ) Function of interest in (5.1)

fbc
(θ) Bias function for precision c in (5.7)

b̃c True value of bias for custom precision c

b̃c Bias estimate for custom precision c

σ2
I ,σ

2
Ic

Variance of Ĩ and Ĩc

σ2
bc

Variance of b̃c

pu(θ), pu
c(θ) Unnormalized target probability distributions in double precision and custom

precision c
Cp

Cpc
Ratio of normalizing constants of p(θ) and pc(θ)

wc(θ),w
u
c(θ) Weights and unnormalized weights for custom precision c

precision densities p(θ) unless the precision configuration c has few mantissa bits (e.g. 4 mantissa

bits). Because of this behaviour, the weights of the bias estimator wc(θ) =
p(θ)
pc(θ)

take values close to

one when c is not very low. Therefore, the function fbc
(θ) = f (θ)(wc(θ)− 1) takes values close to

zero and much smaller than f (θ) when θ ∼ pc(θ). Due to the small values it takes, the function fbc
(θ)

also has smaller variance than f (θ) (σ2
fbc

< σ2
f). Figure 5.4 illustrates an example of this behaviour

by comparing the histograms of f (θ) = θ (mean estimate) and fbc
(θ) = θ(wc(θ)−1) under the same

distribution pc(θ) (c = (13,11)), taken from one of the case studies of Section 5.5.

The small variance of function fbc
(θ) translates into small variance σ2

b̃c
for the bias estimator (5.5)

(due to Equation 5.3). Figure 5.5 shows the ratio
σ2

b̃c

σ2
Ĩc

for different precisions c, when N = 106 MCMC

samples are used for both estimators. σ2
b̃c

is orders of magnitude smaller than σ2
Ĩc

for any configuration

with more than 8 to 9 mantissa bits. Therefore, for these precisions, the bias estimator (5.8) needs

much fewer samples than the custom-precision output estimator (5.5) to achieve the same variance.

This property is crucial for the proposed method. It means that, using the proposed bias estimator, it

is possible to perform short MCMC pre-runs for a set of candidate precisions to estimate the biases

for a given output estimate, without posing a large overhead to the final run (which is used to get

the output estimate (5.4)). Figure 5.5 also depicts the ratio
σ2

str

σ2
Ĩc

(which involves the straightforward

estimator). This ratio is always above one, showing that performing pre-runs in all candidate precisions

is impractical using this approach (as mentioned previously).

5.4. Optimization method 181

−4 −2 0 2 4 6 8
0

1

2

3

4

5

6

7
x 10

4

θ

N
b

r.
 s

a
m

p
le

s

Bias function

Function of interest ❢✭✸✮

❢❜❝✭✸✮

Figure 5.4: Histograms of f (θ) and fbc
(θ) for the mean estimator under pc(θ) with c = (13,11),

where pc(θ) is a Gaussian mixture distribution (Section 5.5). The variance of f (θ) is significantly

larger.

5.4 Optimization method

The goal of the optimization method is to choose the most resource-economical (with the fewest

bits) precision configuration c or a near-optimal configuration out of a user-defined set of candidate

configurations, while probabilistically guaranteeing that the custom-precision output estimator (5.5)

introduces bias bc within a user-specified range. To do this, short FPGA pre-runs are performed for

all candidate precisions and the bias is estimated using the estimator of the previous section.

The steps of the optimization process are shown in Figure 5.6. The process requires some input from

the user and then follows four steps: The double- and custom- precision pre-runs (Steps 1 and 2), the

precision selection (Step 3) and the final run (Step 4). The method exploits the reconfiguration property

of FPGAs to optimize precision. Two different configuration bitstreams are used in the process. Steps

1 and 2 use the same mixed-precision bitstream, which is able to draw MCMC samples in any of the

candidate precisions and in double precision. Step 4 uses a different, optimized-precision bitstream,

which draws samples only in the optimized precision (which was selected by the previous steps). Step

3 runs in software on the host PC. Both bitstreams are taken from a library of pre-compiled bitstreams

(Section 5.4.5). The flow of the method is described in detail in Sections 5.4.1-5.4.4.

182 Chapter 5. Arithmetic precision optimization for generic MCMC

5 10 15 20 25 30 35 40
10

−15

10
−10

10
−5

10
0

10
5

Mantissa bits

V
a

ri
a

n
c
e

 r
a

ti
o

σ
2

str

σ
2

Ĩc

σ
2

b̃c

σ
2

Ĩc

Figure 5.5: Ratios
σ2

b̃c

σ2
Ĩc

(variance of proposed bias estimator over variance of custom precision output

estimator) and
σ2

str

σ2
Ĩc

(variance of “straightforward” bias estimator over variance of custom precision

output estimator) for various mantissa bit configurations (exponents bits=11). pc(θ) is a Gaussian

mixture distribution (Section 5.5) and f (θ) is the mean estimator. N = 106 samples are used for all

estimators. The proposed estimator’s variance (σ2
b̃c

) is orders of magnitude smaller than that of the

output estimator (σ2
Ĩc

) for most precisions. The straightforward estimator’s variance (σ2
str) is always

larger than σ2
Ĩc

.

5.4.1 User input

Table 5.2 summarizes the input parameters. The user defines a target SDT for the standard deviation

σĨc
of the output estimate (5.5). This means that the final run will continue until this standard deviation

is reached. This is a common user input in MCMC literature. The standard deviation is used instead

of the variance because it is easier to interpret (same unit as the estimate). All standard deviations

are approximated by performing multiple MCMC runs (typically 30-100) with different random seeds

(a run refers to such a set of multiple runs). Apart from SDT , the user also gives a threshold Tbias

for the bias which can be tolerated. Tbias is given as a percentage of SDT (e.g. setting Tbias = 0.5

translates to a bias tolerance equal to 50% of SDT). Together, SDT and Tbias determine the bias

threshold SDT ·Tbias, which is the maximum absolute bias that can be tolerated. By changing these

parameters, the user trades off accuracy in the output estimate for lower precision (and thus higher

performance through increased parallelization). The bias threshold can alternatively be defined as an

absolute number without affecting the presented optimization process but this is not pursued here. The

5.4. Optimization method 183

D
o

u
b

le
-

p

re
c

is
io

n

p
(t

h
e

ta
)

e
v

a
lu

a
to

r
C

u
s
to

m
 p

re
c
is

io
n

p
(t

h
e

ta
)

e
v
a

lu
a

to
rs

S
te

p
 1

 -
 D

o
u

b
le

-p
re

c
is

io
n

 p
re

-r
u

n

(m
ix

e
d

-p
re

c
is

io
n

 F
P

G
A

b

it
s
tr

e
a

m
)

I/
0

W
e

ig
h

t

e
v

a
lu

a
to

r

P
ro

b
a

b
il

it
y

o

f
c

a
n

d
id

a
te

s

a
m

p
le

M
C

M
C

G
e

n
e

ri
c

b

lo
c

k

. . .

O
u

tp
u

t

s
a

m
p

le

O
p

ti
m

iz
e

d

p
re

c
is

io
n

 p
(t

h
e

ta
)

e
v

a
lu

a
to

r

O
u

tp
u

t

s
a

m
p

le

S
te

p
 2

-

C
u

s
to

m
-p

re
c
is

io
n

 p
re

-r
u

n
s

(m
ix

e
d

-p
re

c
is

io
n

 F
P

G
A

b

it
s
tr

e
a

m
)

S
te

p
 4

 -

F

in
a

l
ru

n
 (

o
p

ti
m

iz
e

d
-

p
re

c
is

io
n

 F
P

G
A

b

it
s
tr

e
a

m
)

G
e

n
e

ri
c

b

lo
c

k

. . .

C
u

s
to

m
 p

re
c
is

io
n

p

(t
h

e
ta

)
e
v
a
lu

a
to

rs

W
e

ig
h

t
e

v
a

lu
a

to
r

O
u

tp
u

t

s
a

m
p

le

.
.
.
.

C
u

s
to

m
 p

re
c

is
io

n

p
ro

b
a

b
il

it
y

D
o

u
b

le

p

re
c

is
io

n

p
ro

b
a

b
il

it
y

W
e

ig
h

t

P
ro

b
a

b
il

it
y

o

f
c

a
n

d
id

a
te

s
a

m
p

le

M
C

M
C

G
e

n
e

ri
c

b

lo
c

k

. . .

G
e

n
e

ri
c

b

lo
c

k

. . .

I/
0

D
o

u
b

le
-

p

re
c

is
io

n

p
(t

h
e

ta
)

e
v

a
lu

a
to

r

P
ro

b
a

b
il

it
y

o

f
c

a
n

d
id

a
te

s

a
m

p
le

M
C

M
C

G
e

n
e

ri
c

b

lo
c

k

. . .

G
e

n
e

ri
c

b

lo
c

k

. . .

I/
0

S
te

p
 3

-
P

re
c
is

io
n

s
e

le
c
ti
o

n
 (

S
W

)

p
re

-r
u

n
s

te
rm

in
a

ti
o

n
 t

im
e

b
ia

s
 e

s
ti
m

a
te

s
 (

w
it
h

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
s
)

o
p

ti
m

iz
e

d

p
re

c
is

io
n

F
ig

u
re

5
.6

:
O

p
ti

m
iz

at
io

n
m

et
h
o
d

fl
o
w

:
S

te
p
s

1
,2

(m
ix

ed
-p

re
ci

si
o
n

F
P

G
A

b
it

st
re

am
),

3
(h

o
st

P
C

so
ft

w
ar

e)
an

d
4

(o
p
ti

m
iz

ed
-p

re
ci

si
o
n

F
P

G
A

b
it

st
re

am
)

ar
e

sh
o
w

n
.

D
u
ri

n
g

S
te

p
1
,
th

e
d
o
u
b
le

-p
re

ci
si

o
n

m
o
d
u
le

is
u
se

d
to

d
ra

w
M

C
M

C
sa

m
p
le

s.
D

u
ri

n
g

S
te

p
2
,
it

ev
al

u
at

es
th

e
p
ro

b
ab

il
it

ie
s

o
f

al
l

g
en

er
at

ed
sa

m
p
le

s,
w

h
ic

h

ar
e

u
se

d
fo

r
w

ei
g
h
t

ev
al

u
at

io
n
s.

G
re

y
-c

o
lo

u
re

d
b
lo

ck
s

(S
te

p
1
)

ar
e

u
n
u
se

d
.

T
h
e

to
p

p
ar

t
o
f

th
e

fi
g
u
re

sh
o
w

s
th

e
in

fo
rm

at
io

n
p
as

se
d

b
y

ea
ch

st
ep

to
th

e
n
ex

t.

184 Chapter 5. Arithmetic precision optimization for generic MCMC

Table 5.2: User parameters in the optimization method

SDT Target standard deviation in output estimate.

Tbias Bias threshold as a percentage of SDT .

S Set of candidate precision configurations (each precision is specified as a pair of inte-

gers: c = (mantissa bits, exponent bits)).

Term% Time available for Steps 1 and 2 as a percentage of test .

Prmin Minimum probability to accept a precision. If the probability of the event “the abso-

lute bias is smaller than SDT ·Tbias” is higher than Prmin, the precision is acceptable.

user also defines the set of candidate precisions (S) and the parameters Term% and Prmin, which will

be explained shortly.

5.4.2 Steps 1 and 2: Pre-runs (mixed-precision bitstream)

The goal of the pre-runs is to estimate the bias for every precision. A mixed-precision bitstream is

loaded on the FPGA (Steps 1 and 2 in Figure 5.6). It contains probability evaluation blocks in all

candidate precisions (S) and in double precision, a block which implements the generic operations of

the MCMC algorithm in double precision (see Section 5.2.2 for more details) and a weight evaluation

module in double precision. Sampling with precision c is done by plugging the respective probability

evaluation block to the generic block (which can easily be done at runtime).

Step 1 consists of a single, short, double-precision MCMC run, which estimates how much time a

double-precision FPGA sampler would need to give an output estimate with standard deviation equal

to SDT . This estimated time is then used to find how long the pre-runs can last without introducing a

large overhead to the final run, i.e. specify a reasonable time to be given for pre-runs.

During Step 1, the double precision probability evaluation block is plugged in the generic MCMC

modules. The system generates MCMC samples and sends them to the host PC in DMA batches. The

host PC uses a generalized version of the Gelman-Rubin diagnostic [35] (popular in MCMC literature)

in order to detect if the sampler has converged after each new batch (convergence is necessary for the

samples to be usable). When convergence is achieved, sampling stops. At that point, the standard

deviation in the output estimate (SDpre) is evaluated based on the multiple independent MCMC runs

that comprise the pre-run. Also, the number of generated samples of each independent run (Npre) is

noted. These two numbers are then used to estimate the number of samples that a double precision

5.4. Optimization method 185

FPGA sampler would need to reach a standard deviation of SDT (the target standard deviation):

NT = Npre
SD2

pre

SD2
T

(5.14)

The equation holds because the standard deviation of MCMC-based estimates drops with 1√
N

(see

equation (5.3)). Using the above equation, it can be inferred that a double-precision FPGA run would

need test seconds to reach SDT :

test =
NT

T Hd p

(5.15)

Here, T Hd p is the throughput (in samples/sec) of a double-precision FPGA sampler which utilizes

the whole device (i.e. uses as many parallel pipelines in the probability evaluation block as can fit

in the device). This quantity is known, since it is assumed that bitstreams which utilize the whole

FPGA are available in all precisions and their sampling throughputs are known. For more information

on the assumption made about the available bitstreams, the probability evaluation blocks and their

parallelism see Section 5.4.5.

After calculating test , the system decides how much time should be devoted to Steps 1 and 2 in order

to limit the overhead to the total runtime. This decision is taken based on the user parameter Term%

which expresses what percentage of test should be given to Steps 1 and 2. Reasonable values are 5% or

10% (Term% = 0.05 or Term% = 0.1 respectively) but the user is free to set this parameter. Although

(5.15) might be a rough estimate because of the short double-precision pre-run, high accuracy is not

needed to ensure a small overhead.

After the available time for pre-runs is known, Step 2 starts. For each candidate precision configu-

ration, it estimates the bias b̃c introduced in the output estimate, as well as the standard deviation of

the bias σb̃c
. The two quantities are given by (5.8) and (5.13) respectively. In order to generate the

necessary custom precision MCMC samples inside the FPGA (i.e. sample from pc(θ) for all c ∈ S),

the custom-precision probability evaluation blocks (unused in Step 1) are sequentially plugged to the

generic block of the system. An equal number of samples is taken for each c. The double-precision

block is now used for a different purpose compared to Step 1. It computes all sample probabilities

in double precision and sends them to the weight evaluator module to get the weights wc(θ). The

samples and weights are sent to the host in batches until Term% · test seconds have passed (since the

start of Step 1) and b̃c and σb̃c
are computed in the host PC for all precisions.

186 Chapter 5. Arithmetic precision optimization for generic MCMC

5.4.3 Step 3: Selection (software)

Step 3 chooses the optimized precision based on the user’s accuracy requirements. It runs in the host

PC (Figure 5.6). Each bias estimate is a Normal random variable (see Section 5.2.1) with mean b̃c and

standard deviation σb̃c
. The criterion to accept a configuration c is the probability that the absolute

value of its bias bc is smaller than the user-defined tolerance:

p(−SDT ·Tbias < bc < SDT ·Tbias) = NCDF(SDT ·Tbias, b̃c,σb̃c
)−NCDF(−SDT ·Tbias, b̃c,σb̃c

)

(5.16)

where NCDF(x,µ,σ) is the value in x of a Normal cumulative density function with mean µ and

standard deviation σ . If the probability in (5.16) is larger than a user-defined value Prmin (e.g. Prmin =

0.95), the bias is very likely to be within tolerance and thus the configuration is accepted. Otherwise,

the bias is considered too large. The definition of “very likely” rest in the user. The lowest precision

to pass this test is chosen as the optimized one. If no precision passes the test, double-precision is

chosen. The optimized precision might not always be the optimal one, as will be demonstrated in

Section 5.7. Moreover, it has to be noted that the optimization method guantantees the bound on the

bias probabilistically, i.e. with some probability smaller than one, and not deterministically.

5.4.4 Step 4: Final runs (optimized-precision bitstream)

After Step 3, a second bitstream is selected from the pre-compiled library (which contains bitstream in

all candidate precisions) and loaded on the FPGA. It contains probability evaluation blocks only in the

optimized precision and a generic MCMC block (Figure 5.6 (right)). The throughput of this sampler

is higher than the throughput of Step 2 samplers, since the FPGA resources that were previously used

to instantiate blocks in the various candidate precisions are now available to be used exclusively for

implementing blocks in the selected precision. Also, the auxiliary double precision block found in the

first bitstream is not required. The final MCMC run lasts until SDT is reached. The resulting estimate

is biased within tolerance (guaranteed with probability Prmin).

5.4.5 Assumptions

The two main parts in an MCMC implementation on an FPGA are the probability evaluation block

and the generic block (which includes all the remaining operations). Figure 5.2 illustrates a high level

5.4. Optimization method 187

description of the two domains. Here, it is assumed that hardware blocks which implement probability

density functions pc(θ) are available for all precisions c. Also a hardware block which implements

the generic parts of MCMC in double precision is assumed to be available. These can be similar to the

blocks presented in Chapter 3 or in other FPGA implementation in the literature [25].

The speedup offered by the optimization method is based on the assumption that the first bitstream

(which includes probability evaluation blocks in all candidate precisions) is used to select a precision

and then the second bitstream is able to use this precision to accelerate sampling (compared to the

sampling speed achieved by a double precision implementation). In order for this acceleration to be

significant, it is necessary that the probability density can be evaluated in parallel. In other words, it

is necessary that the probability evaluation block is constructed in a way that allows the instantiation

of more parallel blocks to increase throughput (for example, see the way the i.i.d. probability density

is implemented in Chapter 3, although other forms of parallelism are also suitable). If this is the case,

it is possible to increase the amount of parallelism in the FPGA by reducing precision, since reduced

precision leads to lower resource consumption by a single block. If the probability density is not

parallelizable, reducing precision offers savings in terms of FPGA area but this cannot be exploited

to increase parallelism. The only gains in terms of sampling speed come from the drop in the latency

of the probability evaluation block, which is usually limited. Therefore, the optimization method can

be applied regardless of the form of the probability density but significant gains in sampling speed are

expected only when the probability density is parallelizable.

As mentioned above, the method assumes that a library of pre-compiled bitstreams has been generated

off-line. This is a realistic assumption, since the bitstreams are re-usable (i.e. the same p(θ) is

often sampled in different problems and settings). The library includes versions of the first bitstream

(used in Steps 1 and 2) for various sets (S) of candidate precisions, as well as versions of the second

bitstream (used in Step 4) in all precisions. Full utilization of the targeted FPGA’s resources is assumed

for Step 4 bitstreams. This means that these bitstreams use the maximum amount of parallelism

allowed by the device in order to maximize throughput. Bitstreams used in Steps 1 and 2 can also use

parallelism in the probability evaluation blocks if enough FPGA resources are available, although this

approach is not explored here (each custom precision probability evaluation block comprises a single

datapath/pipeline). Because it is practically difficult to create versions of the Step 1/2 bitstream for

every possible combination of candidate precisions S, an alternative is to include only some common

combinations (or even one combination) in the library.

188 Chapter 5. Arithmetic precision optimization for generic MCMC

Since Step 4 bitstreams in all candidate precision are available, the throughput of the MCMC sampler

with full FPGA utilization is known for all precisions (including double precision). This information

is used in Step 1 of the method to decide how much time will be allocated for pre-runs, as described

in Section 5.4.2.

Finally, it is assumed that the MCMC method is properly tuned in order to avoid large convergence

times. Correct tuning is outside of the scope of this work. In order to detect convergence of the

double-precision sampler during Step 1, a generalized version of the Gelman-Rubin diagnostic [35]

is used (as mentioned earlier). This diagnostic compares the multiple independent MCMC runs and

produces a metric (called the potential scale reduction factor and denoted R̂ in [35]) which suggests

convergence if its value is close to one (e.g. below 1.1). Although no guarantee of convergence can be

provided by such metrics, they are a standard approach in literature and this is why they are used here.

5.5 Case studies: Models and MCMC method

Two Bayesian inference models are used for evaluation. Both case studies involve the handling of

i.i.d. data, which permits the exploitation of parallelism in the probability evaluation block, as men-

tioned in Section 5.4.5. Parallelism is exploited in the same way as in Chapter 3, i.e. by instantiating

multiple parallel pipelines inside the block. Other forms of parallelism in the probability density can

be exploited, although this is not investigated here.

5.5.1 Mixture model

Mixture models (MMs) are a family of models heavily used in machine learning [9]. Here, a Gaussian

MM defined in [16] is used. The same mixture model case study was used in Chapter 3 but it is

summarized here for easier reference.

A set of i.i.d. data d1:n, where dl ∈ℜ for l ∈ {1, ...,n}, is given (see [16]). In this chapter, the number

of data is fixed to n = 100. Each observation is distributed according to:

p(dl|µ1:4,σ1:4,a1:4) =
4

∑
i=1

aiNPDF(dl|µi,σi) (5.17)

Here, the number of mixture model components is fixed to 4, NPDF denotes the density of a univari-

5.5. Case studies: Models and MCMC method 189

ate Gaussian distribution, µ1:4, σ1:4 and a1:4 are the parameters of the model (means, variances and

weights of components respectively). The parameters are fixed to σi = σ = 0.55 and ai = a = 1/4 for

i∈ {1, ...,4}. The parameter µ1:4 is the unknown parameter which is sampled by MCMC, i.e. θ = µ1:4

(same as in [16]). The prior distribution on µ1:4 is a four-dimensional uniform. In order to perform

inference, a data set d1:n is simulated using µ1:4 = (−3,0,3,6). The goal is to infer µ by sampling

from its posterior distribution.

Due to the i.i.d. assumption, the likelihood is a product of sub-densities:

p(d1:100|µ1:4) =
100

∏
j=1

p(d j|µ1:4,σ1:4,a1:4) (5.18)

Let p(µ1:4) be the density of a uniform prior. Then the log-posterior density of µ1:4 is given by:

log(p(µ1:4|d1:100)) ∝
100

∑
l=1

log
(

p(dl|µ1:4)
)

+ log(p(µ1:4)) (5.19)

5.5.2 Neural network model

Neural networks (NNs) are universal function approximators [6]. Bayesian inference is one of the

methods used to train NNs. Here, an example from [6] is used: Input data din = x1:200 with xt =

(1,−10+ t ∗ .1) and output data dout = y1:200 with yt = g(xt)+ εt are generated, where εt ∼ N(0,σ2)

for t ∈ {1, ...,200} is noise. The function g(·) is unknown and is approximated by a 2-2-1 NN:

g̃(xt) =
2

∑
j=1

β jψ(x
′
tγ j) (5.20)

where β j ∈ ℜ and γ j ∈ ℜ2 are the connection weights of the network. The activation function ψ(z)

is a tanh function. The model can be viewed as a non-linear regression model, where the aim is to

infer the unknown parameters β1:2 and γ1:2 and the unknown variance of the noise σ2. In this chapter,

the unknowns are packed into a single variable θ = {β1:2,γ1:2,σ
2} and samples from the posterior of

this variable are generated using MCMC. The prior distributions are described in [6]. The data are

simulated using γ1 = (2,−1), γ2 = (1,1.5), β1 = 20, β2 = 10, σ = .1. The log-posterior distribution

is given by:

log(p(β1:2,γ1:2,σ
−2|din,dout)) ∝

−(100+ν−1)log(σ2)− 1
2σ2 {2δ +

200

∑
t=1

[yt −
2

∑
j=1

β jψ(x′tγ j)]
2}−

2

∑
j=1

β 2
j

2σ2
β

−
2

∑
j=1

2

∑
i=1

γ2
i j

2σ2
γ

(5.21)

190 Chapter 5. Arithmetic precision optimization for generic MCMC

where the prior constant parameters are set to ν = 0.01, δ = 0.01, σβ = 20 and σγ = 5 [6].

5.5.3 MCMC algorithm

The optimization method proposed in this chapter can be applied to any MCMC algorithm. Neverthe-

less, a particular MCMC algorithm is used here to evaluate performance; the Parallel Tempering (PT)

MCMC algorithm [6] is employed to sample from the posterior of the two models. The number of

chains is set to m = 32 for both case studies and the remaining tuning parameters of PT are identical

to the ones used in Chapter 3. Both the Bayesian case studies presented above lead to multi-modal

distributions. These are the problems that PT is suitable for, although this is not related to the ideas

introduced in this chapter.

5.6 Implementation

5.6.1 IP implementation and FPGA system integration

The FPGA systems which process the pre-runs stage and the final run stage (for all precisions) were

implemented in VHDL, using floating point operators generated by FloPoCo [97] and the Xilinx Core

Generator. The generic parts of the PT sampler are the same as the generic parts of the baseline PT

implementation of Chapter 3.

The same system setup as in Chapter 3 was used to test the optimization method: It is based on the

RIFFA prototyping framework (version 1.0) [143]. RIFFA wraps the PT IP and uses a PCI-express

connection to transfer between the FPGA and the host PC. All the I/O on the hardware side and the

software drivers on the host side are handled by the framework. A small piece of C code was written

for the host side in order to initialize the FPGA, start the run and receive the outputs. Moreover, a

double buffering architecture was designed on top of RIFFA in order to be able to send output data

(MCMC samples and weights) to the host PC through DMA, right after they are generated by the IP.

All FPGA samplers were synthesized, placed and routed using Xilinx XPS 13.1. The bitstreams were

downloaded to a Xilinx ML605 board, which contains a Xilinx Virtex-6 LX240T FPGA. The board

was connected to a host PC containing an Intel i5-650 CPU and running Linux. The IP clock of all

designs was set to f req = 210 MHz.

5.6. Implementation 191

The double precision FPGA implementation of PT which serves as the reference for comparison in

Section 5.7.2 is the baseline PT sampler of Chapter 3 (with all tuning parameters identical to the ones

used in this chapter).

5.6.2 Transferring data between the host and the FPGA

The sequence of operations for generating samples using the FPGA is the same as in Chapter 3, i.e. a C

application in the host uses RIFFA driver functions to send the initialization data directly to the FPGA

IP and order the IP to start, the IP generates the samples and writes them to the double buffer within

the FPGA and simultaneously the data are sent back to the host, where the RIFFA driver receives them

and stores them in a file.

Nevertheless, extra operations are needed to perform the four steps of the optimization method which

are described in the previous section. During Step 1, the double precision FPGA sampler needs to

generate a set of independent MCMC pre-runs. These runs need to be sent to the host in DMA batches

(chunks). The size of the batch is set to N = 5000, i.e. batch 1 contains the first N = 5000 MCMC

samples for each independent run, batch 2 contains the next N = 5000 MCMC samples for each

independent run, etc. Therefore, the C function in the host requests batches of N = 5000 new samples

for every independent run and waits to receive the results (the size of the batch can be customized).

This is done so that a check for convergence can be performed frequently to avoid generating more

MCMC samples than necessary. After a batch is received, the R̂ metric of Brooks and Gelman [35]

is evaluated (using all independent runs) to check whether convergence has occurred with the batches

received so far. If convergence has not occurred, the next batch is requested for all independent runs.

If convergence has occurred, the available time for Steps 1 and 2 is evaluated as described in Section

5.4.2. The same process is followed during Step 2 for all precisions until the available time for pre-

runs (Term% · test) expires. Also, a weight is generated for every sample. The result of Step 2 is that

an equal number of samples is generated for every precision. The host is then able to compute biases

and standard deviations for each bias and decide on which precision to use. This is followed by the

final runs, where the optimized bitstream is loaded on the FPGA and a set of independent runs is

performed. In this case, after every batch of samples arrives at the host, the standard deviation of the

output estimate is found and compared to the target standard deviation SDT . When SDT is reached,

the final run terminates and the output estimate is evaluated.

192 Chapter 5. Arithmetic precision optimization for generic MCMC

0 10 20 30 40 60
0

0.5

1

1.5

2

2.5

3

x 10
4

L
U

T
s

0 10 20 30 40 60
0

50

100

150

200

250

Mantissa bits

D
S

P
/B

R
A

M
 b

lo
c
k
s

x

+
o

LUTs
DSP blocks
BRAM blocks

Double precision

Generic block

Figure 5.7: Resource utilization of a single probability evaluation pipeline (many of which can exist

in a probability evaluation block). The pipeline implements the MM posterior using precisions with

various mantissa sizes (exponent bits are always 11). The generic MCMC block’s resources (which

always operate in double precision and are not part of the precision optimization) are also shown.

5.7 Investigation and results

This section presents resource utilization results for the bitstreams and blocks described above, an

evaluation of the optimization method using the two case studies and a comparison with an unbiased

precision optimization method found in the literature [3].

5.7.1 Resource utilization

Figure 5.7 shows the resource utilization of a single probability evaluation pipeline (many of which can

be instantiated within a probability evaluation block) for different precisions (MM case study). Large

savings are possible by reducing precision, allowing for the instantiation of more parallel blocks. The

resource utilization of a generic MCMC block is also shown.

5.7. Investigation and results 193

5.7.2 Performance evaluation - trade-off between speed and bias

The optimization methodology and the proposed FPGA-based system were applied to both case stud-

ies for a variety of output estimates (combination of some posterior variable and some function of

interest f (θ)) and for various user parameters combinations.

Demonstration of the method’s steps

This section demonstrates the results of each step of the optimization method using a particular case

study and parameter setting: The 2nd moment of the unknown variable µ1 from the MM case study

was set as the output estimate. The target standard deviation was set to SDT = 0.02 and the bias tol-

erance to Tbias = 0.5. Six candidate precisions were used in the first (mixed-precision) bitstream

(S = {(23,11),(19,11),(15,11),(13,11),(11,11),(9,11)}). The minimum acceptance probability

was set to Prmin = 0.95 and the termination parameter was set to Term% = 0.05. The number of

independent MCMC runs in each set was set to 30 (applies to all steps and all precisions).

The double precision pre-run of Step 1 was terminated after the first batch of samples was sent from

the FPGA to the host, since the R̂ metric suggested convergence when the batch arrived (R̂ = 1.012).

This shows that the MCMC sampler is well-tuned and convergences rapidly. The standard deviation

of the output estimate at that point (SDpre) was evaluated and used (along with the number of samples

Npre = 5000, the user parameter SDT and the throughput T Hd p) to compute test , using Equations (5.14)

and (5.15).

After Step 1 finished, Step 2 began using the same bitstream. Figure 5.8 shows the results of Step

2 for three out of the six candidate precisions. The generated samples were used to evaluate the

bias estimates at various times from the beginning of Step 2 to its termination (although this is done to

provide details on the evolution of the bias - the method only needs to compute the biases and standard

deviations at the termination of Step 2). Both the bias and its standard deviation increase with lower

precisions, as shown in the figure. The figure also shows that Step 2 terminates after around 8.5 ·105

samples to limit the pre-runs’ overhead. The time of termination is decided based on test (evaluated by

the preceding Step 1) and the user parameter Term% = 0.05, as described in Section 5.4.2.

Based on the output of Step 2, Step 3 runs on the host in order to decide which precision to use.

Figure 5.9 shows the precision selection procedure (with Prmin = 0.95). The probability that a bias is

within tolerance (see Equation (5.16)) converges to a certain value for each precision as more samples

194 Chapter 5. Arithmetic precision optimization for generic MCMC

0 5 10 15

−0.1

−0.05

0

0.05

0.1

Samples (x50000)

B
ia

s
 e

s
ti
m

a
te

(12,11)
(14,11)
(16,11)

Step 2 termination

Figure 5.8: Step 2: Bias estimates for 3 out of the six 6 candidate precisions. The MM case study is

targeted and the output estimate is the 2nd moment of µ1. Error bars represent ±2σb̃c
. The vertical

line shows when the pre-runs need to stop to avoid large overheads to the final run (the line is set based

on the output of Step 1).

are drawn. Few samples suffice to show that the probability is acceptable for high precisions (e.g.

(20,11)). More samples are needed for some lower precisions, e.g. (16,11) (this is due to the higher

variance in the bias estimates for lower precisions, see Figures 5.5 and 5.8). The fluctuations of

the probability values appear because the values are estimates and thus come with some variance.

At termination, the lowest precision which gives tolerable bias with 95% probability (or above) is

c = (16,11). This is chosen as the optimized precision. Note that the host needs to compute the

probabilities only after all samples have been generated (end of Step 2), although Figure 5.9 shows the

probability values at various time instances. In other words, Step 3 computes the probabilities only at

the right-most point of Figure 5.9.

When the optimized precision has been chosen, the final bitstream which corresponds to this precision

(i.e. includes probability evaluation blocks only in the chosen precision) is loaded and the final run

(Step 4) starts. It has to be noted that the optimized precision is not always the optimal one in the set

S. If the pre-runs terminate too early because of a large target SDT or small Term%, a sub-optimal

precision can be chosen (e.g. if Step 2 terminates after 105 samples in Figure 5.9). This means a sub-

5.7. Investigation and results 195

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Samples (x50000)

P
✭❥
❜

❝❥
❁

❙
❉

❚
✧
�

✁✐
❛s

✮

(20,11)

(16,11)

(14,11)

(12,11)

(10,11)

Step 2 termination

Pr
min

Figure 5.9: Step 3: Probability that the bias is within tolerance for five out of the six candidate

precisions (Precision c = (24,11) is omitted). The output estimate is the 2nd moment of µ1 (MM case

study). Parameters are set to SDT = 0.02, Tbias = 0.5, Prmin = 0.95, Term% = 0.05. The optimized

precision is c = (16,11).

optimal sampling throughput in the final run. Nevertheless, the bias threshold is still probabilistically

guaranteed. Moreover, as mentioned in the introduction, a sub-optimal precision might be chosen due

to the limited number of candidate precisions in the set S.

Optimization results - comparison to double precision FPGA samplers

Table 5.3 contains the results of applying the optimization method to the two case studies for different

functions of interest and parameter combinations. The parameters S, Term% and Prmin remain the

same as above. The SDT values were chosen to represent one to three decimal digits of accuracy in

the MCMC estimate and the chosen Tbias values give bias thresholds smaller or equal to one SDT .

All final runs lasted until SDT was reached. The last column of Table 5.3 shows the speedups that

the optimization system achieves against a reference double precision FPGA sampler (baseline PT

sampler in Chapter 3) on the same FPGA and using the same tuning parameters. The speedup is

defined as follows:

Speedup = TimeDP

Timeopt+TimeOP

(5.22)

196 Chapter 5. Arithmetic precision optimization for generic MCMC

Table 5.3: Optimization results for various estimates and user parameters from the Mixture Model

(MM) and the Neural Network (NN) case studies. In all cases: Prmin = 0.95, Term% = 0.05 and

S = {(24,11),(20,11),(16,11),(14,11),(12,11),(10,11)}.
Output estimate SDT Tbias Optimized

precision

Optimization

runtime

Timeopt

(Steps 1-3)

Final run

runtime

TimeOP

(Step 4)

Speedup

vs. DP

FPGA

Mean of µ1 (MM)

5 ·10−2 1 (14,11) 112.5 sec 102.1 sec 3.96x

2 ·10−2 0.5 (16,11) 461.74 sec 705.3 sec 4.31x

7 ·10−3 0.05 (20,11) 3427.9 sec 6571.7 sec 4.10x

2nd moment of µ1 (MM)
5 ·10−2 0.5 (16,11) 302.7 sec 399.2 sec 4.05x

5 ·10−2 0.1 (20,11) 331.0 sec 455.1 sec 3.76x

Mean of β1 (NN)
2 ·10−2 0.5 (16,11) 15312.4 sec 47184.0 sec 4.90x

5 ·10−2 0.01 (24,11) 2465.8 sec 14119.2 sec 2.95x

2nd moment of γ10 (NN)
5 ·10−3 0.5 (20,11) 1855.8 sec 6166.8 sec 3.44x

2 ·10−3 0.5 (24,11) 11073.5 sec 49358.7 sec 2.85x

where TimeDP is the time that the reference double-precision FPGA sampler needs to achieve the target

standard deviation SDT in the output estimate, Timeopt is the time spent for optimizing precision using

the proposed methodology (i.e. the time consumed by the first FPGA bitstream to complete Steps 1-2

plus the time spent by the host PC to complete Step 3) and TimeOP is the time that the optimized-

precision FPGA sampler needs to achieve the target standard deviation SDT in the output estimate

(i.e. the time consumed by the second FPGA bitstream to perform the final run - Step 4). The times

Timeopt and TimeOP are shown in Table 5.3. In all cases, the chosen precisions are lower than double

precision. Depending on the output estimate and the parameters, optimized precisions range from

(14,11) to (24,11). The speedups range from 2.85x to 4.90x. All of this speedup is due to the use

of lower precision (which translates into more parallel probability evaluation pipelines in the final run

compared to the ones used by the reference double precision sampler). All other parts of the two PT

implementations are identical.

By looking at the Timeopt and TimeOP values in Table 5.3, it can be observed that larger SDT leads to

the optimization process (pre-runs - Timeopt) taking up a larger percentage of the total runtime (e.g.

compare Timeopt and TimeOP in lines 1-3). This can be explained as follows: The runtime of the

first bitstream (which dominates Timeopt) is a fixed percentage of the theoretical runtime test , which

is the estimated runtime of a double-precision sampler aiming to reach SDT . Therefore, the runtime

of the first bitstream changes proportionately to the estimated runtime of the double precision sampler

(which is inversely proportional to SD2
T). The runtime of the second bitstream (TimeOP) is related

to SDT in the same way but it is also affected by the chosen (optimized) precision. This precision

5.7. Investigation and results 197

becomes smaller with larger SDT (since the error tolerance is less strict and smaller precision can be

used). The result of using smaller precisions is that less time is needed to complete the final run using

the second bitstream. Therefore, when SDT is increased, the runtime of the second bitstream (TimeOP)

decreases both due to its inversely proportional relationship with SD2
T and due to the use of smaller

optimized precisions. This is a faster rate of decrease compared to the runtime of the first bitstream

(most of Timeopt), which simply drops inversely proportionally to SD2
T . The faster rate of decrease in

TimeOP, leads Timeopt to take a larger percentage of the total runtime as SDT grows.

Comparing the first three lines of the table, it is also clear that the speedup in the first line is lower than

the speedup in the other two lines, in spite of the lower optimized precision that the method achieves

in the first line. This is due to the increased SDT setting which increased the pre-runs (first bitstream)

overhead (as explained in the previous paragraph). The increased pre-runs overhead cancels out the

speedup gains offered by the low precision in the second bitstream. Moreover, large SDT values can

have a negative effect on speedup in another way: Large SDT means that Step 2 can become too short

(due to small test), resulting in a sub-optimal precision being chosen (for example a sub-optimal choice

would be made if the run in Figure 5.9 stopped after 50000 samples).

On the other edge of the bias tolerance spectrum (e.g. for the strict SDT and Tbias configuration in

the last line of the table), the speedups also decrease but in this case it is a result of the high selected

precision (c = (24,11)) which results in a slow final run (higher precisions offer smaller sampling

throughputs). The peak speedups vs. the double precision sampler are achieved with intermediate

SDT values (which also lead to intermediate precisions). Finally, it is worth noting that the pre-runs

runtime is only affected by SDT and Term%, not by Tbias. The latter only affects precision selection,

i.e. higher precisions are needed in order to guarantee smaller Tbias.

Figure 5.10 shows how the speedup over the double precision FPGA sampler changes with the choice

of accuracy parameters SDT and Tbias for a fixed output estimate (mean of µ1 in the MM case study).

Speedup is defined in the same way as above (see equation (5.22)). The optimized precisions are be-

tween (12,11) and (24,11) and a speedup between 2.99x and 4.61x is achieved. There is a tendency

for higher speedups as the user requirements become less strict (larger SDT and Tbias). This is due to

the selection of lower precisions. Nevertheless, the speedup drops with higher SDT for SDT > 0.02

(instead of increasing). This is due to the effect of the pre-runs overhead as well as the choice of

suboptimal precisions in some cases, as described in the previous paragraph. The relatively sudden

drop in acceleration for SDT = 0.005 and SDT = 0.0025 when Tbias = 0.01 is due to the use of pre-

198 Chapter 5. Arithmetic precision optimization for generic MCMC

0.0025
0.005

0.02
0.05

0.1 0.01

0.1
0.2

0.5
1

2.5

3

3.5

4

4.5

5

T
bias

SD
T

S
p

e
e

d
u

p
 v

s
.

D
P

 F
P

G
A

Figure 5.10: Trade-off between tolerable bias and speedup (vs. double precision FPGA sampler).

Bias tolerance is represented by the two parameters SDT and Tbias. The output estimate is the mean

of µ1 (MM case study). The other user parameters are set to Prmin = 0.95, Term% = 0.05 and S =
{(24,11),(20,11),(16,11),(14,11),(12,11),(10,11)}.

cision configuration c = (24,11), which requires significantly more FPGA resources to implement a

probability density pipeline compared to lower precisions.

One of the key ideas of the presented method is that it targets a specific output estimate each time. It

does not attempt to optimize for all possible estimates (functions f (θ)) related to the target distribution

p(θ). By doing this, the precision is highly optimized for the problem under investigation only. i.e.

the method can exploit information about the shape of f (θ) in order to optimize precision.

Moreover, through the manipulation of input parameters, the choice of precision can be adapted to the

specific accuracy requirements of the user. The user can exploit the bias/standard deviation tradeoff,

which is common to statisticians. Another possibility is to adapt the pre-run overhead according to

how many final runs are going to be performed. For example, it is common for the distribution to be

sampled many times (e.g. 20 final runs of 100 independent MCMC runs each) to investigate MCMC

tuning parameters. In this case, the pre-runs only need to be done once (i.e. 1 set of 100 independent

runs). This means that the pre-runs overhead is now very small compared to the total runtime (which

is dominated by the 20 final runs of 100 MCMC runs each). This is a scenario where the user could

choose to increase the time available for pre-runs in the hope that a better (lower) precision will be

5.7. Investigation and results 199

chosen; since the pre-runs will have more time to reduce the variance of the bias estimates, it is

possible that a precision which was considered inadequate with shorter pre-runs will now prove to be

adequate based on the probabilistic criterion of Equation (5.16). In general, the assumption that only

one set of final runs will be performed (which is used throughout the chapter) is strict.

5.7.3 Comparison to an unbiased precision optimization approach

The methodology presented in this chapter focuses on MCMC samplers and aims to reduce preci-

sion as much as possible while tolerating a custom amount of bias in the output. It is interesting to

investigate the relative advantages of this approach compared to an unbiased precision optimization

approach. The only existing unbiased precision optimization method in literature, which is applicable

to Monte Carlo algorithms, is described by Chow et al. [3]. The method focuses on non-MCMC

Monte Carlo sampling, where the generated samples come from simple distributions (e.g. Normal)

and they are independent (not correlated as in MCMC). In order to perform precision optimization,

Chow et al. [3] propose the use of mixed precision sampling where: 1) A low precision sampler gen-

erates samples from the target distribution, 2) A mixed precision sampler (consisting of high- and low-

precision modules) generates samples from the distribution of the bias. The output estimates of the

two samplers are added in order to correct the bias of the low precision sampler and get an unbiased

result. Therefore, Chow et al. [3] do not introduce any bias in the output. The standard deviation of

the output is equal to the sum of the standard deviations of the low- and mixed-precision estimates.

The sampler runs until the target standard deviation (SDT) is reached.

Here, the method of Chow et al. [3] is ported to the MCMC domain in order to create an unbiased pre-

cision optimization method that targets MCMC. This unbiased method is compared with the method

presented in this chapter. Some necessary changes and assumptions are made in order to make the

comparison possible:

1) Chow et al. [3] assigned the double-precision part of the mixed-precision computations to a CPU. In

contrast, the unbiased method of this section implements both the low-precision and mixed-precision

computational modules of the method inside the FPGA.

2) In contrast with the bias estimator proposed in [3], the bias estimator of Section 5.3 (which is

suitable for MCMC samplers) is used in the unbiased method of this section.

3) As in [3], for each target SDT a particular combination of low-precision and mixed-precision mod-

200 Chapter 5. Arithmetic precision optimization for generic MCMC

ules are instantiated in order to minimize the runtime needed to reach the target standard deviation

(SDT). The process described in [3] to perform this optimization is followed here, although the mixed

precision part is substituted by the bias estimator introduced in this chapter.

4) It is assumed that the pre-runs procedure (Steps 1 and 2) described in this chapter is used in order

to estimate σ2
f and the various σ2

fbc
in the unbiased method (for all c ∈ S). These quantities are needed

in [3] (and in the unbiased method of this section) in order to optimize the number of low- and mixed-

precision modules for a given SDT . This overhead is not included in the results of [3], where it is

assumed that the variances are known from beforehand. Nevertheless, it is reasonable to assume that

pre-runs are needed every time a new target distribution is examined (as done in this chapter). It is

assumed that the pre-runs termination criterion introduced earlier in this chapter is used to terminate

the pre-runs in the unbiased method and therefore the same runtime overhead is added.

5) It is assumed that, after estimating the variances, the unbiased method decides which precision is

optimal (equivalent to Step 3 in the previous sections) and then performs the final run using the low-

and mixed-precision modules (equivalent to Step 4 in the previous sections).

6) The unbiased method was not implemented on a real FPGA. The throughput and runtime presented

in this section for the unbiased method were estimated based on: 1) The resource utilization of the

probability evaluation modules in the various precisions, 2) The available resources of the ML605

FPGA, 3) The bias and variance of the bias results from the real runs of the previous section, 4)

Equations (17) and (18) of [3].

Figure 5.11 shows the speedup of the method proposed in this chapter against the unbiased method

when targeting the mean of µ1 (MM case study) with SDT = 0.007. The figure shows how the speedup

changes when adjusting the bias “knob” Tbias. The pre-runs runtime overhead is included in all mea-

surements. The unbiased method uses a combination of 1 mixed precision module and 9 low precision

modules for the final run. The low precision is set to c = (16,11), which gives the minimum runtime

compared to other configurations. The method proposed in this chapter uses a varying number of

low precision modules for the final run, depending on Tbias (since Tbias affects the chosen precision as

explained earlier in the chapter). The chosen precisions range from c = (14,11) to c = (24,11).

It is clear from Figure 5.11 that the method proposed in this chapter is faster than the unbiased method

by up to 1.45x. This is a result of being able to instantiate more parallel probability evaluation mod-

ules inside the second bitstream, compared to the modules instantiated in the second bitstream of the

5.8. Discussion 201

unbiased method. The reason for this difference is that the unbiased method needs a double precision

module in the second bitstream to correct bias. This module consumes a significant percentage of the

FPGA’s resources. The penalty that the method proposed in this chapter pays is the addition of (con-

trollable) bias in the output estimate. As the bias tolerance converges to zero, the speedup decreases,

since larger precisions are chosen by the proposed method, which lead to more time-consuming fi-

nal runs. In contrast, the unbiased method keeps using the same precision configuration (since it has

no Tbias parameter). Setting the bias tolerance to zero (Tbias = 0) makes the proposed method 3.3x

slower than the unbiased method (not shown in Figure 5.11). This happens because, with Tbias = 0,

the chosen (optimized) precision is always double precision. Double precision probability evaluation

modules consume a lot of area in the FPGA, which means that only 2 of these modules fit in the final

bitstream (in contrast to the 9 low precision modules of the unbiased method). Therefore, the (biased)

method proposed in this chapter is worth using in this case study only when some bias can be tolerated.

Similar results are achieved for other functions f (θ).

5.8 Discussion

This chapter presents a method that exploits the reconfigurable nature of FPGAs to minimize the

arithmetic precision of any FPGA-mapped MCMC sampler, while probabilistically guaranteeing a

user-constrained bias in the output. The method uses an efficient bias estimator, which is proposed

here. Results show that significant speedups over double-precision designs are achieved and that the

method allows the user freedom to adjust the amount of bias according to requirements, trading off

speed for accuracy or vice versa. A comparison with a ported version of the unbiased method presented

in [3] shows that a speedup of up to 1.45x is possible when bias can be tolerated in the estimate. A

potential drawback of the method is the requirement to perform pre-runs in all candidate precisions,

although this can be a negligible overhead in many case (as explained in the preceding sections).

Due to the explosion in the amount of data processed by modern MCMC samplers, the computational

cost of evaluating the probability density is growing at a fast rate. Minimizing this cost in any way is

highly desirable to tackle large-scale analyses. The method presented in this chapter manages to do

this without making any assumption on the form of the probability density, apart from the assumption

that it is parallelizable in some way. This technique can thus prove valuable for many problems in

Bayesian inference, in contrast to parallelization techniques which are optimized for the computational

202 Chapter 5. Arithmetic precision optimization for generic MCMC

10
−3

10
−2

10
−1

10
0

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

T
bias

S
p
e
e
d
u
p
 v

s
 p

o
rt

e
d
 u

n
b
ia

s
e
d
 m

e
th

o
d
 o

f
[1

]

(16,11) (16,11) (14,11)

(24,11)

(20,11)

(16,11)

Figure 5.11: Speedup of the method proposed in this chapter against ported unbiased method of Chow

et al. [3] for various values of Tbias. The target standard deviation is SDT = 0.007. The output estimate

is the mean of µ1 (MM case study). The other user parameters are set to Prmin = 0.95, Term% = 0.05

and S = {(24,11),(20,11),(16,11),(14,11),(12,11),(10,11)}. The chosen (optimized) precisions of

the method proposed in this chapter are shown above each point in the graph. The low precision of

the ported unbiased method is always c = (16,11) (optimized using the process described in [3]). The

runtimes of both methods include the time spent for pre-runs, as well as the time spent for the final

runs.

structures found in particular classes of densities.

Moreover, a lot of stochastic methods in recent years have made use of bias “knobs” similar to the one

used in this chapter (e.g. [79] and [80]). This allows the user to sacrifice accuracy in favour of speed,

which can prove crucial for computationally demanding inference tasks. Therefore, the focus of this

chapter on biased inference is on par with a wider trend in the Bayesian and Monte Carlo literatures,

which emphasizes the need to cut computational costs even if this leads to some degree of inaccuracy

in the result. The following chapter, which concludes this thesis, provides more information on the

current state of the MCMC and MCMC acceleration fields, as well as a discussion of possible future

developments.

Chapter 6

Conclusion

The previous chapters propose novel MCMC algorithms, modifications to existing MCMC algorithms,

FPGA architectures for MCMC and precision optimization methodologies for MCMC on FPGAs,

with the aim of improving the efficiency of MCMC sampling for large Bayesian problems. This

chapter gives an overview of the current state of research on MCMC acceleration, summarizes the

main achievements of the thesis, discusses some important questions that were posed in the previous

chapters, and proposes future work directions to improve on the results presented in this thesis.

6.1 Overview of MCMC acceleration research

One of the major scientific challenges of recent years has been the pressing demand for ways to anal-

yse and extract knowledge from massive data sets, particularly using advanced statistical methods.

This trend, which is the main motivation for the rise and evolution of Data science, has also influenced

developments in the MCMC literature. Since MCMC is one of the mainstream methods used for ex-

tracting the knowledge from data and the computational burden of large-scale MCMC-based analysis

has naturally exploded, the interest in exploiting parallel hardware platforms for tackling this burden

has gained momentum recently. Although accelerating MCMC through the use of parallel hardware is

still a relatively under-mined research field, it has already had an effect on the way statisticians under-

stand MCMC-based inference. Practitioners now realize that MCMC computation is not synonymous

to MCMC methodology, i.e. the construction of MCMC algorithms to process the data. It is rather

a term that represents many design aspects, such as how the algorithm will be mapped to a hardware

203

204 Chapter 6. Conclusion

device, how the data will be managed, etc. All of these aspects need to be taken into account when

designing and implementing MCMC. It has also become clear that the requirements of modern applied

statistics in fields such as machine learning, medicine, biology and environmental modelling can no

longer be addressed simply by improving MCMC algorithms (which was the assumption in the first

15 years of “modern” MCMC history) [157]. The use of parallel platforms and High Performance

Computing (HPC) infrastructure is a necessity and a shift has to be made towards embracing them as

a powerful tool for performing MCMC-based analysis [158, 159].

The above realisations are mirrored in the way Data science is being understood and defined: A field

that combines statistics and computing, aiming to use data (in many cases “big” data) in order to

extract useful knowledge and help make decisions [157, 160, 158]. MCMC is one of the algorithms

used in Data science, particularly when Bayesian models are employed. Thus this combination of

statistics and computing is naturally becoming a trend in MCMC literature [16, 2, 26, 67, 66, 76].

As discussed in Chapter 2, multi-core CPUs, GPUs and FPGAs have all been employed to achieve

higher sampling throughputs during the last few years. Currently, most of the fundamental MCMC

methods which are widely used by the statistics community (Hamiltonian Monte Carlo, Parallel Tem-

pering, Particle MCMC, Slice sampling), have been mapped to parallel hardware, offering speedups

of one to two orders of magnitude compared to desktop CPUs. Nevertheless, several popular MCMC

methods have not been implemented in hardware, although they are amenable to parallelization (e.g.

MCMC with multiple proposals [56]). This is also true for newer methods; despite the fact that some

of them have been designed with parallel hardware in mind [77, 78], there is a lack of real-world, mas-

sively parallel implementations. In addition to work focusing on specific MCMC methods, there are

several efforts towards accelerating model-specific computations (i.e. computation of the likelihood)

using parallel hardware. Nevertheless, these efforts lack general applicability.

Despite this increasing relevance of parallel hardware for MCMC computation, the MCMC com-

munity is still a long way from widely adopting parallel hardware implementations for everyday

inference tasks. This problem is more intense in academia than it is in industry, since in the latter

multi-disciplinary teams (including data engineers) are typically employed to exploit parallel hard-

ware infrastructure. In contrast, academic statistics researchers are accustomed to implementing their

algorithms in R and Matlab or using some high-level tool like WinBUGS [161]. Even C/C++ im-

plementations are rare. Knowledge of MPI, CUDA, OpenCL or hardware description languages is

extremely scarce. Cooperation between statisticians and computer scientists/engineers in academia

6.2. Summary and discussion of thesis achievements 205

has increased but it is far from common.

Moreover, while CPUs and GPUs have proved popular for MCMC acceleration, FPGAs have been

limited to specific application areas (e.g. phylogenetics [25, 63]). In academia, this can be attributed

to the almost non-existent availability of FPGA boards outside engineering departments and the fact

that writing code for them is difficult and requires specialized skills (even when using High Level

Synthesis tools). Nevertheless, FPGAs combine a series of features that make them attractive for

MCMC computation; fully custom architecture, custom precision, fast on-chip communication, low

power consumption. In addition, the latest FPGAs provide native support for floating point compu-

tations (using dedicated hardened circuitry similar to the well-known fixed point multipliers). Given

that MCMC algorithms are implemented almost exclusively in floating point, this new capability is

promising.

Finally, almost no attention has been given on the idea of co-designing MCMC algorithms and MCMC

hardware. This comment applies to all hardware platforms. Existing literature has focused on naively

mapping MCMC methods/likelihood computations to hardware. This approach can be successful in

many cases (especially when the algorithm is embarrassingly parallel) but fails to fully exploit the

power of modern computing platforms.

6.2 Summary and discussion of thesis achievements

This thesis contains several contributions towards the use of FPGA as MCMC accelerators. It enriches

the toolset of hardware-accelerated MCMC samplers, paying particular attention to how algorithm

design and hardware design can be done jointly.

Chapter 3 focused on popMCMC (and more specifically on Parallel Tempering). It investigated ways

in which popMCMC can be accelerated using FPGAs, moving along two directions. Firstly, it pre-

sented an FPGA architecture for popMCMC, which achieved significant speedups over sequential

software and optimized CPU and GPU samplers (for most problem sizes). This architecture made ex-

tensive use of pipelining and parallelism, exploiting the structure of the Global updates and exchanges

of the popMCMC algorithm. The impressive speedups over sequential software are a result of the

suitability of the algorithm for parallelization. Secondly, the chapter looked into ways in which the

efficiency of this baseline FPGA sampler can be further improved by jointly enhancing the algorithm

206 Chapter 6. Conclusion

and the underlying hardware. Two novel modifications to the popMCMC algorithm were proposed,

along with accompanying FPGA architectures. Both modifications were based on using custom pre-

cision in an algorithm-aware fashion. The first modification used low precision for all popMCMC

chains and corrected sampling errors using importance weights for the first chain, which proved to

be a small overhead compared to the speed gains from reducing precision. The second modification

showed that it is possible to use low precisions for all auxiliary chains and high precision only in the

first chain with no cost in sampling accuracy. Speedups of up to 6.5x over the baseline FPGA sampler

were achieved using the above two modifications on an FPGA.

The absence of sampling errors in both custom precision methods is important. Although biased

sampling methods are common nowadays, most MCMC practitioners are still used to working with

unbiased methods. Also, avoiding trade-offs between accuracy and speed (which require tuning)

improves ease of use. Moreover, in applications that require accurate sampling, unbiased methods

have an obvious advantage. Furthermore, both custom precision techniques are good examples of

the fusion of algorithm and hardware design mentioned above. This fusion was successful because

popMCMC has the distinctive characteristic that only the samples from the first chain are actually

kept. The samples of auxiliary chains are thrown away and this can be exploited in the FPGA platform,

which can use very low precisions. The two modified methods were also mapped to CPUs and GPUs,

where the gains are smaller compared to FPGAs since precision cannot be fully customized. This

reveals that FPGAs are an extremely promising platform for MCMC if their relative advantages are

exploited in a way that suits the algorithm. The speedups of FPGAs over the other platforms when

custom precision is used range up to one order of magnitude.

The main limitation of the two custom precision techniques is that their effective speedups (i.e.

speedups that take into account the effect of mixing) over software drop when large data sizes are

used in the likelihood due to the accumulation of precision-related error in computations (which has

a negative effect on mixing). Tackling this disadvantage is an open research question. Moreover,

although both methods guarantee unbiased sampling with any custom precision configuration, their

performance is maximized at specific precision configurations which are application-dependent. Find-

ing the optimal precision configuration requires pre-runs in many different precisions. These pre-runs

can be short if the sampler convergences quickly to the target distribution, since in this case few

samples are required to get an accurate estimate of the necessary ESS metrics. Nevertheless, if con-

vergence is slow, pre-runs have to be long to make sure that the samplers converge before they give

6.2. Summary and discussion of thesis achievements 207

an accurate estimate of ESS. Whether long pre-runs are a problem depends on the way the practi-

tioner uses the sampler. Fortunately, MCMC practitioners typically perform a few pre-runs to tune

algorithm parameters (e.g. the variance of the proposal distribution) and then perform multiple final

runs (usually dozens) to get the final estimate of the integral of interest and estimate the variance of

the estimate. In this scenario, the optimization of precision can be seen as an extra tuning step. The

overhead from performing a few custom precision runs is small compared to the runtime needed for

the final runs (since the final runs are more in number) and the gain from performing the final runs in

reduced precision is significant.

In Chapter 4, the focus was transferred to another popular and computationally intensive MCMC

variant, the pMCMC algorithm. pMCMC is commonly used on SSMs with unknown parameters, a

class of Bayesian models which is used in many real applications and often needs to process large

data sets. The chapter introduced the first FPGA-based accelerator for pMCMC. The tailored FPGA

architecture focused mostly on parallelizing the PF operations inside each pMCMC iteration. The

achieved speedups over state-of-the-art CPU-based and GPU-based pMCMC samplers ranged up to

one order of magnitude. The performance of the FPGA was limited by the resampling step, which

is not trivially parallelizable (due to the particle memory update after replication indexes are found).

The results also showed that larger numbers of PF particles in pMCMC do not always lead to higher

effective performance. This has already been shown in previous literature [132] but Chapter 4 extended

the analysis to take into account the effect of parallel hardware implementations.

Continuing the approach of fusing hardware and algorithmic design, the chapter also introduced a

novel pMCMC algorithm which aims at increasing sampling efficiency for multi-modal posterior dis-

tributions in SSMs, along with a tailored architecture which maps the algorithm to an FPGA. The

new algorithm, denoted ppMCMC, combined the features of pMCMC and popMCMC, effectively

transforming pMCMC to a multiple-chain method. The FPGA architecture made use of coarse-grain

pipelining in the PF datapath to increase resource utilization, taking advantage of the independence

of the PF runs of different ppMCMC chains. Results indicated that the new algorithm and its FPGA

architecture provide significant speedups over pMCMC implementations in CPUs and GPUs when

multi-modal posteriors are targeted. These speedups can be maximized by tuning the number of par-

ticles and the number of chains. The results again confirmed that the co-design of algorithms and

hardware is beneficial when knowledge about the functionality and purpose of the targeted method is

exploited.

208 Chapter 6. Conclusion

The proposed hardware-supported samplers enable pMCMC to compete with approximate methods

for SSM inference, such as [83], which are faster than software-based pMCMC. This is critical for

applications where exact results are required. Until recently, pMCMC’s applicability was limited by

long runtimes. Practitioners are more likely to use pMCMC when knowing that sampling can finish

in a reasonable time frame through the help of hardware acceleration. Demonstration of the benefits

of pMCMC over [83] for difficult problems is the subject of future work. Regarding ppMCMC,

finding the optimal combination of chains and particles requires pre-runs, with the comments made

previously on popMCMC also applying in this case. One possible limitation of ppMCMC is that it

requires replicating most of the memories in the system so that each chain has its own set of memories.

Although the numbers of chains are unlikely to range to more than a few dozens in real scenarios,

replicating memories can be costly when massive numbers of particles are used.

Finally, Chapter 5 followed a different approach compared to the previous two chapters. It proposed a

generic methodology to optimize the precision used for probability density computations inside each

MCMC step. The methodology is applicable to any FPGA-based MCMC sampler and is based on

performing short pre-runs to estimate the bias introduced by each precision configuration within a

pre-defined set of candidate configurations. The bias refers to the estimate of the integral of interest.

The main contributions of the chapter are a novel bias estimator which is based on combining high-

and low-precision samples and a methodology which uses the bias estimates to find the minimum

precision which satisfies a user-defined bias tolerance. The methodology was implemented on an

FPGA system, where the reconfigurability of FPGAs was exploited by successively loading mixed-

precision and optimized-precision bitstreams on the device. The achieved speedups over a reference

double precision FPGA sampler were up to 4.9x (including the optimization overhead from the first

bitstream). This speedup was achieved with some cost in terms of bias but the amount of bias can be

controlled by the user.

By design, the proposed methodology targets a specific type of estimate (i.e. specific function f (θ)

in equation (2.8)). It is thus able to optimize precision specifically for this estimate and for the bias

that the user selects, which is more effective than precision optimization for all estimates. Due to

the recent explosion in the size of inference tasks in real world problems, the idea of accepting some

bias in the result in exchange for faster inference has gained ground [79], despite the inclination of

most practitioners to use unbiased methods (as mentioned above). The method presented here is an

extension of approximate MCMC inference ideas into the field of FPGA computation, which has not

6.2. Summary and discussion of thesis achievements 209

been attempted before. The ability to control the bias is a plus, since most approximate inference

methods do not give any guarantee on the level of introduced bias.

The speedups that the presented method achieves are similar to the ones achieved by the two custom

precision popMCMC samplers in Chapter 3. This demonstrates that this is the range of speedups

that should be expected when lowering precision in FPGA implementations of MCMC (given that

the introduced bias is not significant). The slightly higher speedup in Chapter 3 is explained by the

fact that the methods proposed there are tailored for the specific algorithm, while the methodology is

Chapter 5 is generic.

The main caveat of the method is the requirement to perform pre-runs in all candidate precisions. This

can create similar issues as the ones described for the methods in Chapter 3, although a long final

run consisting of multiple independent iterations will, again, make the pre-run overhead small. In

addition, in the case of Chapter 5, the pre-runs’ MCMC samples have potential for reuse: If a different

type of estimate (function f (θ)) is needed, the same pre-run samples can be used to find a new optimal

precision for the new estimate without repeating the pre-runs (i.e. Steps 1 and 2 of the methodology

are avoided). The new optimal precision is then used to perform the new final run. Having said

that, the most desirable scenario for a precision optimization methodology would be to avoid pre-

runs entirely (i.e. avoid simulation-based optimization). Such an “off-line” precision optimization

approach (i.e. without taking samples) would remove the complexity of implementing and compiling

a separate bitstream for pre-runs.

General comments

As a general conclusion, this thesis has shown that FPGAs are a promising platform for MCMC

acceleration. The reported speedups for two popular MCMC families are encouraging and outperform

state-of-the-art samplers in CPUs and GPUs, while the generic precision methodology showed that any

MCMC method can enjoy efficiency gains when using an FPGA. The most unique contribution of the

thesis is the idea of co-designing MCMC algorithms and MCMC hardware, which led to significant

performance improvements over straightforward implementations. Particularly, the exploration of

the various ways in which custom precision can benefit MCMC samplers (depending on the algorithm

and the user requirements) shows the large potential of FPGAs as MCMC accelerators and encourages

further research on the topic as well as on the wider domain of approximate inference.

The main limitations of the presented work are related to the pre-runs that are necessary to optimize

210 Chapter 6. Conclusion

arithmetic precision and/or tune other parameters of the architectures; although typically short, pre-

runs can present problems in the scenarios mentioned above. Nevertheless, even the baseline versions

of the architectures (without tuning) manage to outperform competing platforms. Furthermore, the

fact that the PT architecture is implemented in VHDL can hinder its wide adoption, since specifying

the MCMC posterior in VHDL is beyond the typical skill set of practitioners. The pMCMC archi-

tecture is not limited by this, since it is written in C++. Finally, it is important to note that the thesis

focused on optimizing the core computations (main compute kernels) of various methods on a single

FPGA device. This work can have significant impact on MCMC-based inference in several sectors

of academia (where single-device computation is common), as well as in industry. Nevertheless, the

extension and enhancement of the presented systems in order to be used in distributed, multi-device

environments is necessary in the future to cover the increased computational demands of big data

inference.

Comparison of computing platforms

Regarding the suitability of the various computing platforms (multi-core CPUs, GPUs and FPGAs)

for MCMC inference, the choice depends on several factors. The multi-core CPU platform is by far

the easiest to program, making it ideal for users with no parallel programming background. It is also

available in practically every PC. Moreover, a lot of application-specific software libraries for multi-

cores can be found, which makes MCMC implementation easier for practitioners. Nevertheless, the

limited parallelism of multi-core CPUs and the fact that their frequencies have stopped increasing

mean that they cannot satisfy the needs of demanding statistical analyses. Multi-core CPUs can be

faster and should be preferred over the other two platforms when the implemented algorithm is non-

parallel and/or is dominated by conditional operations and/or accesses the memory randomly. The

mainstream Gibbs and Reversible-Jump MCMC samplers [9] are good examples. The former is purely

sequential, while the latter contains operations which do not map well to parallel platforms.

GPUs have massive computational power and are relatively easy to program. Someone with no par-

allel programming experience can learn to write efficient CUDA code in a few months. Moreover,

GPUs are widely accessible, as they are embedded in most PCs, and they are relatively cheap. GPUs

offer significant speedups if the characteristics of the implemented algorithm match their architecture

(i.e. if the algorithm is SIMD). Even for non-SIMD algorithms, it is possible to modify the way the

computations happen in order to achieve better mapping to the GPU architecture, although this re-

quires effort and does not always help. For popMCMC and pMCMC algorithms, GPUs are a good

6.2. Summary and discussion of thesis achievements 211

match, since they can easily exploit the existing parallelism. Unfortunately, there are only small gains

(or no gains) in MCMC mixing when increasing the number of chains and the number of particles

respectively above a certain limit. This means that it is likely that the GPU device will remain under-

utilized in many real use cases where small or medium numbers of chains and particles are used. This

can change if the likelihood computations are SIMD, since more parallel tasks are available. GPUs

are also suitable for other parallel MCMC methods, e.g. Multiple-Try Metropolis [56] and related

methods.

Finally, FPGAs are capable of delivering high speedups but they are harder to program. Nevertheless,

some of their attributes make them strong competitors in the statistical computing field. They have

the advantage of a completely customizable architecture, translating to significant performance gains

(as demonstrated in this thesis). More specifically, they are not limited to exploiting embarrassingly

parallel algorithms, like GPUs are; provided the designer is familiar with the structure and character-

istics of the targeted methods, FPGAs can efficiently exploit non-obvious and/or limited parallelism,

maximize pipelining effectiveness and adapt the memory architecture to the access pattern of the al-

gorithm. This is particularly important for Bayesian inference, since the types of computations in

the likelihood and the prior change from application to application; they can range from easily par-

allelizable Gaussian evaluations to complex linear algebra operations [10] or specialized algorithms,

e.g. Felsenstein’s pruning algorithm for phylogenetic likelihoods [25]. An architecture tailored for

the targeted computations can perform much better than a generic one, although the development time

is relatively long. In addition to the tailored architecture, FPGAs offer the ability to experiment with

custom precision, which is one of the main themes of this thesis. MCMC algorithms which are robust

to precision reduction are ideal candidates for FPGA implementation. Finally, FPGAs provide sig-

nificantly higher on-chip memory bandwidth compared to GPUs and CPUs, which can pay off when

implementing MCMC methods with frequent communication between parallel processes.

Unfortunately, FPGAs also suffer from limitations that can hinder their wide adoption by the statistics

community. They require programmers with a specialized skill set, they require long development

times, they are generally not available in data centres and university clusters (with a few exceptions)

and they are usually more expensive than GPUs and CPUs. The first two limitations can be mitigated

by the fact that, during the last few years, several high level synthesis tools have been developed for

FPGAs, allowing developers to write code in C, C++, OpenCL, etc [93]. This removes most of the

barriers that software programmers faced until today and also accelerates development. Nevertheless,

212 Chapter 6. Conclusion

the wider availability of FPGAs remains an issue. Recent developments in the CPU/FPGA field [162]

might contribute to change this situation, and further extend the use of FPGAs in data centre and HPC

environments.

6.3 Future work

Long term predictions on where the MCMC acceleration field is heading are hard. Nevertheless, it

is likely that, as GPUs, FPGAs and heterogeneous devices become more common in big data centres

[162] and big data analyses become mainstream for a wide range of businesses and universities, the

demand for optimized libraries to accelerate MCMC (as well as other data analysis algorithms) will

grow significantly. New algorithms, suitable for the above environment, are also likely to be proposed.

In more detail, algorithms and accelerators will seek to exploit distributed computing principles (as

single-device processing is not enough for massive analyses), will leverage the power and flexibility

of heterogeneous computing and will look to trade accuracy for speed and vice versa. Furthermore,

research on how these algorithms can efficiently access memory [163] is likely to prove crucial, since

memory access is one of the main bottlenecks in modern large-scale analyses. Finally, in order for

accelerators to be widely accessible, they need to closely integrate with existing high-level MCMC

tools.

Based on the above trends and predictions, as well as the work presented in this thesis, this section

suggests possible directions for future research.

6.3.1 Targeting other MCMC methods

There are numerous computationally intensive MCMC algorithms which are often employed in de-

manding Bayesian applications and which could benefit from hardware acceleration. Of particular

interest are some recently proposed samplers which are based on data partitioning [78, 77, 75]. These

are specifically designed for implementation on parallel platforms since they allow many independent

MCMC samplers to tackle separate chunks of data. Another extremely promising recent algorithm is

Firefly Monte Carlo (FMC) [62], which is designed to tackle large data sets. FMC subsamples the

data in each iteration; a full sub-likelihood is computed only for a few data (“bright data”) and an

approximation of the sub-likelihood is used for the rest of the data (“dark data”). In order to avoid

6.3. Future work 213

sampling bias, the approximation has to be a lower bound on the true sub-likelihood. This algorithm

is promising for FPGA implementation because it can be combined with custom precision techniques;

instead of using a function approximation for the dark data, a custom precision approximation can be

used, leading to area savings. The lower bound requirement can be satisfied by using formal verifi-

cation tools like Gappa++ [164]; Gappa++ can give the maximum precision-related error when the

sub-likelihood is evaluated in a certain precision (vs. full precision). The maximum error can then

be subtracted from the sub-likelihood expression to guarantee that the expression is a lower bound on

the true (full precision) sub-likelihood. The algorithm’s mixing behaviour when precision changes has

to be investigated. It is possible that this algorithm scales better with large data sets compared to the

WPT and MPPT methods of Chapter 3.

Moreover, some older but popular methods like Hamiltonian Monte Carlo, Slice sampling and Multiple-

Try Metropolis are promising candidates for parallelization. Although some work exists in the litera-

ture on how to map these methods to GPUs, FPGAs have not been employed. It would be interesting

to explore ways in which custom precision can be used within these methods. For example the compu-

tation of the gradient in Hamiltonian Monte Carlo helps the algorithm propose better samples and mix

faster but it is not critical for accuracy in a similar way that auxiliary chains do not affect the accuracy

of popMCMC. Therefore, custom precision could be used to compute the gradient and the effects on

mixing could be investigated.

There are also several methods that do not strictly belong to the MCMC family but they are used in the

same problems, share a lot of characteristics with MCMC and are amenable to hardware acceleration.

One example is the recently proposed SMC2 method [134], which is a competitor of pMCMC. Like

pMCMC, SMC2 uses a PF for state estimation. Nevertheless, instead of the MCMC algorithm that is

used by pMCMC for parameter estimation, SMC2 employs a second PF on top of the first one. This

feature increases the available parallelism of the method from O(P) to O(P2), which is ideal for mas-

sively parallel platforms. Another algorithm which offers potential for hardware acceleration is ABC

[81]. The main idea of this method is to completely avoid likelihood computations when deciding

whether to keep a proposed sample. Instead, ABC plugs the proposed sample to the model/likelihood

and simulates data from it, i.e. it generates random data assuming that the unknown parameter of the

model is equal to the proposed sample. This shifts the computational burden from computing the like-

lihood to generating random samples from a known model. Given that most Bayesian likelihoods can

be decomposed into simple distributions (e.g. Gaussian distributions), this boils down to generating

214 Chapter 6. Conclusion

random samples from these simple distributions. FPGAs are known for their efficiency in generat-

ing Gaussian and Uniform random numbers [5, 94]. This could prove a significant advantage when

implementing ABC.

6.3.2 Extension to distributed and heterogeneous platforms

With the computational demands of modern Bayesian inference problems increasing rapidly, it is

crucial that the various existing MCMC computational kernels are extended to run on distributed plat-

forms and that an increased adoption of distributed MCMC methods is pursued. A good example is

the pMCMC architecture of Chapter 4. The bottleneck computation in this architecture is the resam-

pling operation, whose wall clock time does not drop significantly when larger device sizes are used.

This scaling problem limits the applicability of the system to SSMs with massive amounts of parti-

cles. In order to be able to tackle these models, distributed resampling is the most promising approach

[112]. Distributed resampling partitions the particle set into blocks and runs independent resampling

operations for each block. Several ways have been proposed to avoid bias in the resampling results.

Another case of distributed MCMC computation is the class of data partitioning methods mentioned

previously [78, 77, 75]. Research on hardware accelerators needs to focus more on mapping methods

like these to distributed platforms (multi-FPGA and multi-GPU systems, HPC), as well as extending

other methods to be amenable to distributed computation. Issues that need to be addressed include

communication between devices and correctness of results.

Moreover, the exploitation of heterogeneous computing techniques for MCMC is a completely un-

explored research avenue. There are several opportunities in the MCMC toolset to optimally allo-

cate tasks to different devices, e.g. use CPUs/GPUs for double precision computations and FPGAs

for custom precision computations or allocate matrix computations (commonly required to evaluate

likelihoods in Bayesian models) to different devices depending on the size and shape of the matrix.

Adoption of cross-platform programming languages like OpenCL [165] could prove valuable in this

setting.

6.3.3 Tools to improve accessibility of hardware for MCMC

As mentioned above, the adoption of hardware accelerators by the MCMC community has been lim-

ited. The main reason behind this slow adoption is the lack of user-friendly tools to allow practitioners

6.3. Future work 215

to use parallel hardware without having to write code. This comment also applies to the accelerators

presented in this thesis. Although the generic modules of the popMCMC and pMCMC architectures

are reusable, the probability density modules inside the system need to be written every time a new

inference task is targeted.

Most of the available tools in the MCMC community are limited to using CPUs and do not provide

any support for parallel computation. The most popular ones are WinBUGS [161], which uses Gibbs

sampling and Slice sampling to tackle Bayesian hierarchical models, and Stan [166], which uses

Hamiltonian Monte Carlo as its default sampler. The development of tools to automate the process of

implementing MCMC in hardware is a relatively new idea. Several R packages provide parallel CPU

support to R routines (including MCMC), namely the packages parallel, snow, rparallel and gputools

[167]. These packages cannot bridge the gap between MCMC practitioners and parallel devices. The

only MCMC package which explicitly focuses on parallel platforms (CPUs, GPUs) is the recent LibBi

framework [2] which is designed for targeting SSMs and supports pMCMC and SMC2.

A promising path towards creating hardware-based MCMC tools is to concentrate on a specific class of

Bayesian models or a group of related classes and also on a group of MCMC methods that are suitable

for these classes. This limits the space of possible problems that the user can address (i.e. the flexibility

of the tool) but also allows the tool designer to build optimized compute kernels for this particular

problem, which are easy to parameterize and can be reused. This is particularly relevant for FPGAs,

since compilation of new bitstreams should be avoided due to long compile times. The above approach

has been followed by LibBi [2] for SSMs-pMCMC but could also be applied to other combinations of

models and methods, e.g. Gaussian process inference (where the main kernels perform linear algebra

computations) combined with Metropolis-Hastings or Hamiltonian Monte Carlo.

In the case of FPGAs, a tool based on the above principles should provide the user with a domain-

specific language in which the model of interest can be described. The exact form of the description

depends on the model class. Based on the description, the model-specific parts of the system should be

compiled automatically, possibly using floating point operator libraries such as FloPoCo [97]. These

parts typically include the probability density evaluators, e.g. the probability density pipelines used

in the PT architectures of Chapter 3. These evaluator blocks should then be plugged-in to the generic

MCMC architecture. The tool should be able to detect parallel tasks and automatically map them to

hardware using a library of reusable compute kernels. Some of the above features have already been

embedded in the pMCMC accelerator of Chapter 4. A mature FPGA-based MCMC tool would be

216 Chapter 6. Conclusion

able to automatically optimize the various system parameters, i.e. simultaneously optimize MCMC

algorithm parameters, architecture parallelism and precision, given some information from the user.

An extra step towards making FPGA-based MCMC tools more accessible is to create an interface

between FPGA synthesis software and one of the mainstream software tools used to perform MCMC-

based inference (BUGS, Stan). These tools have a large user base which is in need of hardware

acceleration capabilities.

6.3.4 Off-line precision optimization

As mentioned above, all precision optimization methods found in this thesis (in Chapters 3 and 5) are

based on performing pre-runs in a set of candidate precisions and then choosing the “best” precision

based on some criterion.

Nevertheless, an “off-line” precision optimization approach, i.e. optimization without performing pre-

runs and collecting samples, could also be investigated in future work. This would greatly simplify the

optimization process and would remove the need for generating multiple FPGA bitstreams. Neverthe-

less, off-line optimization is a challenging problem, since the decision about which precision to use

has to be taken without using samples. A metric has to be devised that is easy to compute in software

and can give useful information on the accuracy of each precision.

A possible solution could employ a formal verification tool like Gappa++ [164] to place an upper

bound on the error of each precision compared to double precision when computing the posterior

distribution. This upper bound would then be used to bound the error in the estimate (2.9) of integral

(2.8) (i.e. the output estimate). This would allow for a similar bias tolerance criterion to be applied

as in Chapter 5. Techniques to tighten the output bias bound (which is likely to be loose for complex

densities) should be investigated.

For discrete state spaces, the results of [136] could also be used to connect the precision-related error

(perturbation) in the transition matrix of the chain to some metric of divergence between the approx-

imate and true target distributions (e.g. total variation). For continuous state spaces, similar results

exist but they are difficult to apply due to computational issues. Ways to approximate the connection

between the perturbation in the transition kernel and the divergence metric could be devised for these

cases.

6.3. Future work 217

A third way to implement off-line precision optimization is to follow an approach like the one used

by the ABC method [81]. In a similar way that ABC simulates data from the candidate model and

compares them to the real data in order to accept or reject the model, an off-line precision optimiza-

tion method could simulate data from the model in all candidate precisions (which does not require

likelihood evaluations) and then compare the data to double precision data in order to decide which

precisions provide adequate accuracy. A potential issue is the choice of the summary statistic which

will be used to compare the data. Many statistics have been proposed [82] but no universally best

recipe exists.

All the above approaches aim at controlling the error in the output when custom precision is used,

i.e. they are similar to the approach of Chapter 5. Nevertheless, they could be extended to cover cases

where the mixing of the sampler needs to be controlled and optimized (i.e. similar to the approach

of Chapter 3). This would require analytical results on how precision is related to mixing for specific

MCMC methods.

Bibliography

[1] S. Liu, G. Mingas, and C.-S. Bouganis, “Parallel resampling for particle filters on FPGAs,”

in Field-Programmable Technology (FPT), 2014 International Conference on, Dec 2014, pp.

191–198.

[2] L. Murray, “Bayesian State-Space Modelling on High-Performance Hardware Using LibBi,”

Journal of Statistical Software, vol. 67, no. 1, pp. 1–36, 2015.

[3] G. C. T. Chow, A. H. T. Tse, Q. Jin, W. Luk, P. H. Leong, and D. B. Thomas, “A mixed precision

Monte Carlo methodology for reconfigurable accelerator systems,” in Proc. FPGA. New York,

NY, USA: ACM, 2012, pp. 57–66.

[4] C. P. Robert and G. Casella, Monte Carlo statistical methods. Springer Texts in Statistics,

2004, vol. 319.

[5] D. B. Thomas, L. Howes, and W. Luk, “A Comparison of CPUs, GPUs, FPGAs, and Massively

Parallel Processor Arrays for Random Number Generation,” in Proceedings of the ACM/SIGDA

International Symposium on Field Programmable Gate Arrays, ser. FPGA ’09. New York, NY,

USA: ACM, 2009, pp. 63–72.

[6] J. S. Liu, Monte Carlo strategies in scientific computing. Springer, 2001.

[7] A. Jasra, D. A. Stephens, and C. C. Holmes, “On population-based simulation for static infer-

ence.” Statistics and Computing, pp. 263–279, 2007.

[8] M. Tibbits, M. Haran, and J. Liechty, “Parallel multivariate slice sampling,” Statistics and Com-

puting, vol. 21, no. 3, pp. 415–430, 2011.

[9] Handbook of Markov Chain Monte Carlo, 1st ed. Chapman and Hall/CRC, May 2011.

218

BIBLIOGRAPHY 219

[10] L. Bottolo and S. Richardson, “Evolutionary stochastic search for Bayesian model exploration,”

Bayesian Analysis, vol. 5, no. 3, pp. 583–618, 09 2010.

[11] A. U. Asuncion, P. Smyth, and M. Welling, “Asynchronous distributed estimation of topic mod-

els for document analysis,” Statistical Methodology - Advances in Data Mining and Statistical

Learning, vol. 8, no. 1, pp. 3 – 17, 2011.

[12] G. W. Peters, G. R. Hosack, and K. R. Hayes, “Ecological non-linear state space model selection

via adaptive particle Markov chain Monte Carlo (AdPMCMC),” ArXiv e-prints 1005.2238, May

2010.

[13] L. Bottolo, M. Chadeau-Hyam, D. I. Hastie, T. Zeller, B. Liquet, P. Newcombe, L. Yengo, P. S.

Wild, A. Schillert, A. Ziegler, S. F. Nielsen, A. S. Butterworth, W. K. Ho, R. Castagn, T. Mun-

zel, D. Tregouet, M. Falchi, F. Cambien, B. G. Nordestgaard, F. Fumeron, A. Tybjrg-Hansen,

P. Froguel, J. Danesh, E. Petretto, S. Blankenberg, L. Tiret, and S. Richardson, “GUESS-ing

Polygenic Associations with Multiple Phenotypes Using a GPU-Based Evolutionary Stochastic

Search Algorithm,” PLoS Genet, vol. 9, no. 8, p. e1003657, 08 2013.

[14] O. J. L. Rackham et al., “WGBSSuite: simulating whole-genome bisulphite sequencing data

and benchmarking differential DNA methylation analysis tools,” Bioinformatics, vol. 31(14),

2015.

[15] Y. Li, M. Mascagni, and A. Gorin, “A decentralized parallel implementation for parallel tem-

pering algorithm,” Parallel Comput., vol. 35, pp. 269–283, May 2009.

[16] A. Lee, C. Yau, M. B. Giles, A. Doucet, and C. C. Holmes, “On the Utility of Graphics Cards to

Perform Massively Parallel Simulation of Advanced Monte Carlo Methods,” Journal of Com-

putational and Graphical Statistics, vol. 19, no. 4, pp. 769–789, 2010.

[17] I. Murray, “Advances in Markov chain Monte Carlo methods,” PhD thesis, Gatsby computa-

tional neuroscience unit, University College London, 2007.

[18] N. B. Asadi, T. H. Meng, and W. H. Wong, “Reconfigurable computing for learning Bayesian

networks,” in Proceedings of the 16th international ACM/SIGDA symposium on Field pro-

grammable gate arrays, ser. FPGA ’08. New York, NY, USA: ACM, 2008, pp. 203–211.

[19] F. Belletti, M. Cotallo, A. Cruz, L. Fernandez, A. Gordillo-Guerrero, M. Guidetti, A. Maiorano,

F. Mantovani, E. Marinari, V. Martin-Mayor, A. Muoz-Sudupe, D. Navarro, G. Parisi, S. Perez-

220 BIBLIOGRAPHY

Gaviro, M. Rossi, J. Ruiz-Lorenzo, S. Schifano, D. Sciretti, A. Tarancon, R. Tripiccione, J. Ve-

lasco, D. Yllanes, and G. Zanier, “Janus: An FPGA-Based System for High-Performance Sci-

entific Computing,” Computing in Science Engineering, vol. 11, no. 1, pp. 48–58, 2009.

[20] Z. Ghahramani, “Bayesian non-parametrics and the probabilistic approach to modelling,”

Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences, vol. 371, no. 1984, 2012.

[21] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian data analysis. Taylor &

Francis, 2014, vol. 2.

[22] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted Boltzmann Machines for Collabora-

tive Filtering,” in Proceedings of the 24th International Conference on Machine Learning, ser.

ICML ’07. New York, NY, USA: ACM, 2007, pp. 791–798.

[23] T. Flury and N. Shephard, “Bayesian inference based only on simulated likelihood: Particle

filter analysis of dynamic economic models,” Econometric Theory, vol. 27, pp. 933–956, 10

2011.

[24] J. Yan, M. Cowles, S. Wang, and M. Armstrong, “Parallelizing MCMC for Bayesian spatiotem-

poral geostatistical models,” Statistics and Computing, vol. 17, no. 4, pp. 323–335, 2007.

[25] S. Zierke and J. Bakos, “FPGA acceleration of the phylogenetic likelihood function for

Bayesian MCMC inference methods,” BMC Bioinformatics, vol. 11, no. 1, pp. 184+, 2010.

[26] J. Gross, W. Janke, and M. Bachmann, “Massively parallelized replica-exchange simulations

of polymers on GPUs,” Computer Physics Communications, vol. 182, no. 8, pp. 1638–1644,

2011.

[27] D. J. Earl and M. W. Deem, “Parallel tempering: Theory, applications, and new perspectives,”

Phys. Chem. Chem. Phys., vol. 7, pp. 3910–3916, 2005.

[28] J. G. Propp and D. B. Wilson, “Exact sampling with coupled Markov chains and applications to

statistical mechanics,” Random Structures and Algorithms, vol. 9, no. 1-2, pp. 223–252, 1996.

[29] A. Doucet and A. M. Johansen, “A tutorial on particle filtering and smoothing: Fifteen years

later,” Handbook of Nonlinear Filtering, vol. 12, pp. 656–704, 2009.

BIBLIOGRAPHY 221

[30] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of

State Calculations by Fast Computing Machines,” The Journal of Chemical Physics, vol. 21,

no. 6, pp. 1087–1092, 1953.

[31] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian

Restoration of Images,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.

PAMI-6, no. 6, pp. 721 –741, nov. 1984.

[32] R. E. Caflisch, “Monte Carlo and quasi-Monte Carlo methods,” Acta Numerica, vol. 7, pp.

1–49, 1998.

[33] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov chain Monte Carlo methods,”

Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 72, no. 3, pp.

269–342, 2010.

[34] W. Gilks and D. Spiegelhalter, Markov chain Monte Carlo in practice. Chapman & Hall/CRC,

1996.

[35] S. P. Brooks and A. Gelman, “General Methods for Monitoring Convergence of Iterative Sim-

ulations,” Journal of Computational and Graphical Statistics, vol. 7, no. 4, pp. 434–455, 1998.

[36] R. E. Kass, B. P. Carlin, A. Gelman, and R. M. Neal, “Markov Chain Monte Carlo in Practice:

A Roundtable Discussion,” The American Statistician, vol. 52, no. 2, pp. 93–100, 1998.

[37] A. E. Gelfand and A. F. M. Smith, “Sampling-Based Approaches to Calculating Marginal Den-

sities,” Journal of the American Statistical Association, vol. 85, no. 410, pp. pp. 398–409, 1990.

[38] C. Robert and G. Casella, “A Short History of Markov Chain Monte Carlo: Subjective Recol-

lections from Incomplete Data,” Statist. Sci., vol. 26, no. 1, pp. 102–115, 02 2011.

[39] W. K. Hastings, “Monte Carlo Sampling Methods Using Markov Chains and Their Applica-

tions,” Biometrika, vol. 57, no. 1, pp. pp. 97–109, 1970.

[40] G. McLachlan and D. Peel, Finite mixture models. Wiley Series in Probability and Statistics,

2004.

[41] C. J. Geyer, “Markov Chain Monte Carlo Maximum Likelihood,” in Computing Science and

Statistics, Proceedings of the 23rd Symposium on the Interface, 1991, pp. 156–163.

222 BIBLIOGRAPHY

[42] J. Owen, D. Wilkinson, and C. Gillespie, “Scalable inference for markov processes with in-

tractable likelihoods,” Statistics and Computing, vol. 25, no. 1, pp. 145–156, 2015.

[43] R. G. Everitt, “Bayesian parameter estimation for latent markov random fields and social net-

works,” Journal of Computational and Graphical Statistics, vol. 21, no. 4, pp. 940–960, 2012.

[44] M. A. Beaumont, “Estimation of Population Growth or Decline in Genetically Monitored Pop-

ulations,” Genetics, vol. 164, no. 3, pp. 1139–1160, 2003.

[45] C. Andrieu and G. O. Roberts, “The pseudo-marginal approach for efficient Monte Carlo com-

putations,” Ann. Statist., vol. 37, no. 2, pp. 697–725, 04 2009.

[46] P. E. Jacob and A. H. Thiery, “On nonnegative unbiased estimators,” The Annals of Statistics,

vol. 43, no. 2, pp. 769–784, 04 2015.

[47] I. Nevat, G. W. Peters, A. Doucet, and J. Yuan, “Channel Tracking for Relay Networks via

Adaptive Particle MCMC,” ArXiv e-prints 1006.3151, Jun. 2010.

[48] M. Dowd, E. Jones, and J. Parslow, “A statistical overview and perspectives on data assimilation

for marine biogeochemical models,” Environmetrics, vol. 25, no. 4, pp. 203–213, 2014.

[49] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of Fluids

Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[50] N. Kantas, A. Doucet, S. S. Singh, J. M. Maciejowski, and N. Chopin, “On Particle Methods

for Parameter Estimation in State-Space Models,” ArXiv e-prints 1412.8695, Dec. 2014.

[51] O. Cappe, S. Godsill, and E. Moulines, “An Overview of Existing Methods and Recent Ad-

vances in Sequential Monte Carlo,” Proceedings of the IEEE, vol. 95, no. 5, pp. 899–924, May

2007.

[52] N. Gordon, D. Salmond, and A. Smith, “Novel approach to nonlinear/non-Gaussian Bayesian

state estimation,” Radar and Signal Processing, IEE Proceedings F, vol. 140, no. 2, pp. 107–

113, Apr 1993.

[53] R. Douc and O. Cappe, “Comparison of resampling schemes for particle filtering,” in Image

and Signal Processing and Analysis, 2005. ISPA 2005. Proceedings of the 4th International

Symposium on, Sept 2005, pp. 64–69.

BIBLIOGRAPHY 223

[54] L. M. Murray, A. Lee, and P. E. Jacob, “Parallel resampling in the particle filter,” Journal of

Computational and Graphical Statistics, vol. 0, no. ja, pp. 0–0, 0.

[55] R. Neal, “Slice Sampling,” Annals of Statistics, vol. 31, pp. 705–767, 2000.

[56] J. S. Liu, F. Liang, and W. H. Wong, “The Multiple-Try Method and Local Optimization in

Metropolis Sampling,” Journal of the American Statistical Association, vol. 95, no. 449, pp.

pp. 121–134, 2000.

[57] S. Duane, A. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid Monte Carlo,” Physics Letters

B, vol. 195, no. 2, pp. 216 – 222, 1987.

[58] M. Girolami and B. Calderhead, “Riemann manifold Langevin and Hamiltonian Monte Carlo

methods,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 73,

no. 2, pp. 123–214, 2011.

[59] P. J. Green, “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model

Determination,” Biometrika, vol. 82, no. 4, pp. pp. 711–732, 1995.

[60] A. Jasra, C. C. Holmes, and D. A. Stephens, “Markov chain monte carlo methods and the label

switching problem in bayesian mixture modeling,” Statistical Science, vol. 20, no. 1, pp. pp.

50–67, 2005.

[61] C. Andrieu and J. Thoms, “A tutorial on adaptive MCMC,” Statistics and Computing, vol. 18,

pp. 343–373, 2008.

[62] D. Maclaurin and R. P. Adams, “Firefly Monte Carlo: Exact MCMC with Subsets of Data,”

ArXiv e-prints 1403.5693, Mar. 2014.

[63] N. Alachiotis, E. Sotiriades, A. Dollas, and A. Stamatakis, “Exploring FPGAs for accelerating

the phylogenetic likelihood function,” in Parallel Distributed Processing, 2009. IPDPS 2009.

IEEE International Symposium on, may 2009, pp. 1 –8.

[64] M. Whiley and S. Wilson, “Parallel algorithms for Markov chain Monte Carlo methods in latent

spatial Gaussian models,” Statistics and Computing, vol. 14, no. 3, pp. 171–179, 2004.

[65] I. Lebedev, C. Fletcher, S. Cheng, J. Martin, A. Doupnik, D. Burke, M. Lin, and J. Wawrzynek,

“Exploring Many-Core Design Templates for FPGAs and ASICs,” International Journal of

Reconfigurable Computing, Article ID 439141, 15 pages, vol. 2012, 2012.

224 BIBLIOGRAPHY

[66] M. Suchard, Q. Wang, C. Chan, J. Frelinger, A. Cron, and M. West, “Understanding GPU pro-

gramming for statistical computation: Studies in massively parallel massive mixtures,” Journal

of Computational and Graphical Statistics, vol. 19, no. 2, p. 419438, 2010.

[67] W. Zhu, A. Yaseen, and Y. Li, “DEMCMC-GPU: An Efficient Multi-Objective Optimiza-

tion Method with GPU Acceleration on the Fermi Architecture,” New Generation Computing,

vol. 29, no. 2, pp. 163–184, 2011.

[68] “Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of

Verification, Validation, and Uncertainty Quantification,” The National Academies Press, 2012.

[69] M. L. Stein, J. Chen, and M. Anitescu, “Stochastic approximation of score functions for Gaus-

sian processes,” Ann. Appl. Stat., vol. 7, no. 2, pp. 1162–1191, 06 2013.

[70] J. Rougier, S. Guillas, A. Maute, and A. D. Richmond, “Expert Knowledge and Multivariate

Emulation: The ThermosphereIonosphere Electrodynamics General Circulation Model (TIE-

GCM),” Technometrics, vol. 51, no. 4, pp. 414–424, 2009.

[71] P. Torma, A. György, and C. Szepesvári, “A Markov-Chain Monte Carlo Approach to Simul-

taneous Localization and Mapping,” in International Conference on Artificial Intelligence and

Statistics, 2010, pp. 852–859.

[72] G. Hendeby, R. Karlsson, and F. Gustafsson, “Particle Filtering: The Need for Speed,”

EURASIP Journal on Advances in Signal Processing, vol. 2010, no. 1, p. 181403, 2010.

[73] J. Brown and D. Capson, “A Framework for 3D Model-Based Visual Tracking Using a GPU-

Accelerated Particle Filter,” Visualization and Computer Graphics, IEEE Transactions on,

vol. 18, no. 1, pp. 68–80, Jan 2012.

[74] S. Sutharsan, T. Kirubarajan, T. Lang, and M. McDonald, “An Optimization-Based Parallel

Particle Filter for Multitarget Tracking,” Aerospace and Electronic Systems, IEEE Transactions

on, vol. 48, no. 2, pp. 1601–1618, APRIL 2012.

[75] S. L. Scott, A. W. Blocker, and F. V. Bonassi, “Bayes and Big Data: The Consensus Monte

Carlo Algorithm,” in Bayes 250, 2013.

[76] W. Neiswanger, C. Wang, and E. Xing, “Asymptotically Exact, Embarrassingly Parallel

MCMC,” ArXiv e-prints 1311.4780, Nov. 2013.

BIBLIOGRAPHY 225

[77] S. Minsker, S. Srivastava, L. Lin, and D. Dunson, “Scalable and Robust Bayesian Inference via

the Median Posterior,” in Proceedings of the 31st International Conference on Machine Learn-

ing (ICML-14), T. Jebara and E. P. Xing, Eds. JMLR Workshop and Conference Proceedings,

2014, pp. 1656–1664.

[78] X. Wang and D. B. Dunson, “Parallelizing MCMC via Weierstrass Sampler,” ArXiv e-prints

1312.4605, Dec. 2013.

[79] A. Korattikara, Y. Chen, and M. Welling, “Austerity in MCMC Land: Cutting the Metropolis-

Hastings Budget,” ArXiv e-prints 1304.5299, Apr. 2013.

[80] R. Bardenet, A. Doucet, and C. Holmes, “Towards scaling up Markov chain Monte Carlo:

an adaptive subsampling approach,” in Proceedings of the 31st International Conference on

Machine Learning (ICML-14), T. Jebara and E. P. Xing, Eds. JMLR Workshop and Conference

Proceedings, 2014, pp. 405–413.

[81] T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P. Stumpf, “Approximate Bayesian compu-

tation scheme for parameter inference and model selection in dynamical systems,” Journal of

The Royal Society Interface, vol. 6, no. 31, pp. 187–202, 2009.

[82] P. Fearnhead and D. Prangle, “Constructing summary statistics for approximate Bayesian com-

putation: semi-automatic approximate Bayesian computation,” Journal of the Royal Statistical

Society: Series B (Statistical Methodology), vol. 74, no. 3, pp. 419–474, 2012.

[83] H. Rue, S. Martino, and N. Chopin, “Approximate Bayesian inference for latent Gaussian mod-

els by using integrated nested Laplace approximations,” Journal of the Royal Statistical Society:

Series B (Statistical Methodology), vol. 71, no. 2, pp. 319–392, 2009.

[84] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, “An Introduction to Variational Methods

for Graphical Models,” Machine Learning, vol. 37, no. 2, pp. 183–233, 1999.

[85] J. v. Newmann, “First Draft of a Report on the EDVAC,” Tech. Rep., 1945.

[86] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, vol. 38,

no. 8, pp. 114–117, Apr. 1965.

[87] Ross, Philip E., “Why CPU Frequency Stalled,” 2008. [Online]. Available: http:

//spectrum.ieee.org/computing/hardware/why-cpu-frequency-stalled

226 BIBLIOGRAPHY

[88] Flynn, Laurie J., “Intel halts development of 2 new microprocessors,” 2004. [Online].

Available: http://www.nytimes.com/2004/05/08/business/08chip.html?ex=1399348800&en=

98cc44ca97b1a562&ei=5007

[89] T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O. Mencer, W. Luk, and P. Y. K. Cheung,

“Reconfigurable computing: architectures and design methods,” in IEE Proceedings - Comput-

ers and Digital Techniques, 2005, pp. 193–207.

[90] Altera, “The industrys first floating-point fpga,” 2014. [Online]. Available: https:

//www.altera.com/en US/pdfs/literature/po/bg-floating-point-fpga.pdf

[91] K. Vipin, S. Shreejith, D. Gunasekera, S. A. Fahmy, and N. Kapre, “System-level FPGA de-

vice driver with high-level synthesis support,” in Field-Programmable Technology (FPT), 2013

International Conference on, Dec 2013, pp. 128–135.

[92] A. Rafique, N. Kapre, and G. Constantinides, “Enhancing performance of Tall-Skinny QR fac-

torization using FPGAs,” in Field Programmable Logic and Applications (FPL), 2012 22nd

International Conference on, Aug 2012, pp. 443–450.

[93] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang, “High-Level Synthesis

for FPGAs: From Prototyping to Deployment,” Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, vol. 30, no. 4, pp. 473–491, 2011.

[94] D. Thomas, “FPGA Gaussian Random Number Generators with Guaranteed Statistical Accu-

racy,” in Field-Programmable Custom Computing Machines (FCCM), 2014 IEEE 22nd Annual

International Symposium on, May 2014, pp. 149–156.

[95] B. Betkaoui, D. Thomas, and W. Luk, “Comparing performance and energy efficiency of FP-

GAs and GPUs for high productivity computing,” in Field-Programmable Technology (FPT),

2010 International Conference on, 2010, pp. 94–101.

[96] Nvidia, “New Features in CUDA 7.5,” 2015. [Online]. Available: http://devblogs.nvidia.com/

parallelforall/new-features-cuda-7-5

[97] F. de Dinechin and B. Pasca, “Designing Custom Arithmetic Data Paths with FloPoCo,” IEEE

Design and Test of Computers, vol. 28, pp. 18–27, 2011.

BIBLIOGRAPHY 227

[98] J. Detrey and F. de Dinechin, “Parameterized floating-point logarithm and exponential functions

for FPGAs,” Microprocessors and Microsystems, Special Issue on FPGA-based Reconfigurable

Computing, vol. 31, no. 8, pp. 537–545, 2007.

[99] C. P. R. Olivier Cappe, “Markov chain monte carlo: 10 years and still running!” Journal of the

American Statistical Association, vol. 95, no. 452, pp. 1282–1286, 2000.

[100] L. Murray, “Distributed Markov chain Monte Carlo,” Proceedings of Neural Information Pro-

cessing Systems, Workshop on Learning on Cores, Clusters and Clouds, vol. 11, 2010.

[101] J. S. Rosenthal, “Parallel computing and Monte Carlo algorithms,” Far East Journal of Theo-

retical Statistics, vol. 4, pp. 207–236, 1999.

[102] D. J. Wilkinson, “Parallel Bayesian Computation,” Statistics Textbooks and Monographs, vol.

184, p. 477, 2006.

[103] V. Gopal and G. Casella, “Running Regenerative Markov Chains in Parallel,” 2011.

[104] A. L. Beam, S. K. Ghosh, and J. Doyle, “Fast Hamiltonian Monte Carlo Using GPU Comput-

ing,” Journal of Computational and Graphical Statistics, vol. 0, no. ja, pp. 00–00, 0.

[105] J. Byrd, S. Jarvis, and A. Bhalerao, “Reducing the run-time of MCMC programs by multi-

threading on SMP architectures,” in Parallel and Distributed Processing, 2008. IPDPS 2008.

IEEE International Symposium on, April 2008, pp. 1 –8.

[106] I. Strid, “Efficient parallelisation of MetropolisHastings algorithms using a prefetching ap-

proach,” Computational Statistics and Data Analysis, vol. 54, no. 11, pp. 2814 – 2835, 2010.

[107] E. Angelino, E. Kohler, A. Waterland, M. Seltzer, and R. P. Adams, “Accelerating MCMC via

Parallel Predictive Prefetching,” ArXiv e-prints 1403.7265, Mar. 2014.

[108] V. K. Mansinghka, E. M. Jonas, and J. B. Tenenbaum, “Stochastic Digital Circuits for Proba-

bilistic Inference,” Massachussets Institute of Technology, Technical Report MIT-CSAIL-TR-

2008-069, 2008.

[109] D. J. Earl and M. W. Deem, “Optimal Allocation of Replicas to Processors in Parallel Tem-

pering Simulations,” The Journal of Physical Chemistry B, vol. 108, no. 21, pp. 6844–6849,

2004.

228 BIBLIOGRAPHY

[110] M. Bolic, “Architectures for Efficient Implementation of Particle Filters,” Ph.D. dissertation,

Stony Brook, NY, USA, 2004, aAI3149104.

[111] A. Athalye, M. Bolic, S. Hong, and P. M. Djuric, “Generic Hardware Architectures for Sam-

pling and Resampling in Particle Filters,” EURASIP Journal on Advances in Signal Processing,

vol. 2005, no. 17, p. 476167, 2005.

[112] M. Bolic, P. Djuric, and S. Hong, “Resampling algorithms and architectures for distributed

particle filters,” Signal Processing, IEEE Transactions on, vol. 53, no. 7, pp. 2442–2450, July

2005.

[113] S. Saha, N. Bambha, and S. Bhattacharyya, “Parameterized design framework for hardware

implementation of particle filters,” in Acoustics, Speech and Signal Processing, 2008. ICASSP

2008. IEEE International Conference on, March 2008, pp. 1449–1452.

[114] M. Happe, E. Lubbers, and M. Platzner, “An adaptive Sequential Monte Carlo framework with

runtime HW/SW repartitioning,” in Field-Programmable Technology, 2009. FPT 2009. Inter-

national Conference on, Dec 2009, pp. 175–182.

[115] T. C. Chau, M. Kurek, J. S. Targett, J. Humphrey, G. Skouroupathis, A. Eele, J. Maciejowski,

B. Cope, K. Cobden, P. Leong, P. Y. Cheung, and W. Luk, “SMCGen: Generating Reconfig-

urable Design for Sequential Monte Carlo Applications,” in Field-Programmable Custom Com-

puting Machines (FCCM), 2014 IEEE 22nd Annual International Symposium on, May 2014,

pp. 141–148.

[116] T. Chau, W. Luk, P. Cheung, A. Eele, and J. Maciejowski, “Adaptive Sequential Monte Carlo

approach for real-time applications,” in Field Programmable Logic and Applications (FPL),

2012 22nd International Conference on, Aug 2012, pp. 527–530.

[117] B. Ye and Y. Zhang, “Improved FPGA implementation of particle filter for radar tracking ap-

plications,” in Synthetic Aperture Radar, 2009. APSAR 2009. 2nd Asian-Pacific Conference on,

Oct 2009, pp. 943–946.

[118] J. U. Cho, S. H. Jin, X. D. Pham, J. W. Jeon, J. E. Byun, and H. Kang, “A Real-Time Object

Tracking System Using a Particle Filter,” in Intelligent Robots and Systems, 2006 IEEE/RSJ

International Conference on, Oct 2006, pp. 2822–2827.

BIBLIOGRAPHY 229

[119] J. Mountney, I. Obeid, and D. Silage, “Modular particle filtering FPGA hardware architecture

for brain machine interfaces,” in Engineering in Medicine and Biology Society, EMBC, 2011

Annual International Conference of the IEEE, Aug 2011, pp. 4617–4620.

[120] K. Hwang and W. Sung, “Load Balanced Resampling for Real-Time Particle Filtering on

Graphics Processing Units,” Signal Processing, IEEE Transactions on, vol. 61, no. 2, pp. 411–

419, Jan 2013.

[121] M.-A. Chao, C.-Y. Chu, C.-H. Chao, and A.-Y. Wu, “Efficient parallelized particle filter design

on CUDA,” in Signal Processing Systems (SIPS), 2010 IEEE Workshop on, Oct 2010, pp. 299–

304.

[122] M. Chitchian, A. Simonetto, A. S. van Amesfoort, and T. Keviczky, “Distributed Computation

Particle Filters on GPU-architectures for Real-time Control Applications,” IEEE Transactions

on Control Systems Technology, vol. 21, no. 6, pp. 2224–2238, November 2013.

[123] M. Chitchian, A. van Amesfoort, A. Simonetto, T. Keviczky, and H. Sips, “Adapting Particle

Filter Algorithms to Many-Core Architectures,” in Parallel Distributed Processing (IPDPS),

2013 IEEE 27th International Symposium on, May 2013, pp. 427–438.

[124] K. Par and O. Tosun, “Parallelization of particle filter based localization and map matching

algorithms on multicore/manycore architectures,” in Intelligent Vehicles Symposium (IV), 2011

IEEE, June 2011, pp. 820–826.

[125] R. Cabido, A. Montemayor, and J. Pantrigo, “High performance memetic algorithm particle

filter for multiple object tracking on modern GPUs,” Soft Computing, vol. 16, no. 2, pp. 217–

230, 2012.

[126] A. Gelencsr-Horvth, G. Tornai, A. Horvth, and G. Cserey, “Fast, parallel implementation of par-

ticle filtering on the GPU architecture,” EURASIP Journal on Advances in Signal Processing,

vol. 2013, no. 1, 2013.

[127] O. Mateo Lozano and K. Otsuka, “Real-time Visual Tracker by Stream Processing,” Journal of

Signal Processing Systems, vol. 57, no. 2, pp. 285–295, 2009.

[128] O. Rosen, A. Medvedev, and M. Ekman, “Speedup and tracking accuracy evaluation of parallel

particle filter algorithms implemented on a multicore architecture,” in Control Applications

(CCA), 2010 IEEE International Conference on, Sept 2010, pp. 440–445.

230 BIBLIOGRAPHY

[129] S. Henriksen, A. G. Wills, T. B. Schon, and B. Ninness, “Parallel Implementation of Particle

MCMC Methods on a GPU,” System Identification, 16th IFAC Symposium on, pp. 1143–1148,

2012.

[130] M. K. Pitt, R. dos Santos Silva, P. Giordani, and R. Kohn, “On some properties of Markov

chain Monte Carlo simulation methods based on the particle filter,” Journal of Econometrics,

vol. 171, no. 2, pp. 134 – 151, 2012, bayesian Models, Methods and Applications.

[131] A. Doucet, M. K. Pitt, G. Deligiannidis, and R. Kohn, “Efficient implementation of Markov

chain Monte Carlo when using an unbiased likelihood estimator,” Biometrika, 2015.

[132] C. Sherlock, A. H. Thiery, G. O. Roberts, and J. S. Rosenthal, “On the efficiency of pseudo-

marginal random walk Metropolis algorithms,” The Annals of Statistics, vol. 43, no. 1, pp.

238–275, 02 2015.

[133] J.-C. Duan and A. Fulop, “Density-Tempered Marginalized Sequential Monte Carlo Samplers,”

Journal of Business & Economic Statistics, vol. 0, no. ja, pp. 00–00, 2014.

[134] N. Chopin, P. E. Jacob, and O. Papaspiliopoulos, “SMC2: an efficient algorithm for sequential

analysis of state space models,” Journal of the Royal Statistical Society: Series B (Statistical

Methodology), vol. 75, no. 3, pp. 397–426, 2013.

[135] L. Breyer, G. O. Roberts, and J. S. Rosenthal, “A note on geometric ergodicity and floating-

point roundoff error,” Statistics & Probability Letters, vol. 53, no. 2, pp. 123–127, June 2001.

[136] A. Y. Mitrophanov, “Sensitivity and Convergence of Uniformly Ergodic Markov Chains,” Jour-

nal of Applied Probability, vol. 42, no. 4, pp. pp. 1003–1014, 2005.

[137] X. Tian and C.-S. Bouganis, “A Run-Time Adaptive FPGA Architecture for Monte Carlo Simu-

lations,” in Field Programmable Logic and Applications (FPL), 2011 International Conference

on, September 2011, pp. 116 –122.

[138] M. Fielding, D. J. Nott, and S.-Y. Liong, “Efficient MCMC Schemes for Computationally Ex-

pensive Posterior Distributions,” Technometrics, vol. 53, no. 1, pp. 16–28, 2011.

[139] R. Gramacy, R. Samworth, and R. King, “Importance tempering,” Statistics and Computing,

vol. 20, pp. 1–7, 2010.

[140] “Intel Cilk Plus,” http://software.intel.com/en-us/intel-cilk-plus.

BIBLIOGRAPHY 231

[141] “Intel C and C++ Compilers,” http://software.intel.com/en-us/c-compilers.

[142] “Optimizing Parallel Reduction in CUDA,” http://docs.nvidia.com/cuda/cuda-samples/index.

html.

[143] M. Jacobsen, Y. Freund, and R. Kastner, “RIFFA: A Reusable Integration Framework for FPGA

Accelerators,” in Field-Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th

Annual International Symposium on, 2012, pp. 216–219.

[144] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing CUDA workloads using

a detailed GPU simulator,” in Performance Analysis of Systems and Software, 2009. ISPASS

2009. IEEE International Symposium on, 2009, pp. 163–174.

[145] Nvidia, “Nvidia CUDA Compiler Driver NVCC.” [Online]. Available: http://docs.nvidia.com/

cuda/cuda-compiler-driver-nvcc

[146] “Xilinx Power Estimator,” http://www.xilinx.com/products/technology/power/xpe.html.

[147] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, “MPFR: A Multiple-

Precision Binary Floating-Point Library with Correct Rounding,” ACM Transactions on Math-

ematical Software, vol. 33, no. 2, pp. 13:1–13:15, Jun. 2007.

[148] Y. F. Atchadé, G. O. Roberts, and J. S. Rosenthal, “Towards optimal scaling of metropolis-

coupled Markov chain Monte Carlo,” Statistics and Computing, vol. 21, no. 4, pp. 555–568,

2011.

[149] A. B. Owen, Monte Carlo theory, methods and examples, 2013.

[150] “Maxeler MAX3 Card,” http://www.maxeler.com/content/hardware.

[151] J. Jensen, “Sur les fonctions convexes et les ingalits entre les valeurs moyennes,” Acta Mathe-

matica, vol. 30, no. 1, pp. 175–193, 1906.

[152] K. D. Robertson, “DNA methylation and human disease,” Nature Reviews Genetics, vol. 6,

no. 8, pp. 597–610, 2005.

[153] A. Suardi, E. C. Kerrigan, and G. A. Constantinides, “Fast FPGA prototyping toolbox for em-

bedded optimization,” in Control Conference (ECC), 2015 European. IEEE, 2015, pp. 2589–

2594.

232 BIBLIOGRAPHY

[154] P. L’Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators,” Mathematics of

Computation, vol. 65, no. 213, pp. pp. 203–213, 1996.

[155] D. B. Thomas, W. Luk, P. H. Leong, and J. D. Villasenor, “Gaussian Random Number Genera-

tors,” ACM Comput. Surv., vol. 39, no. 4, Nov. 2007.

[156] C. J. Geyer, “Practical Markov Chain Monte Carlo,” Statistical Science, vol. 7, no. 4, pp. pp.

473–483, 1992.

[157] “Wikipedia article: Data science,” https://en.wikipedia.org/wiki/Data science.

[158] N. Matloff, Parallel Computing for Data Science: With Examples in R, C++ and CUDA, ser.

Chapman & Hall/CRC The R Series. Taylor & Francis, 2015.

[159] J. L. Reyes-Ortiz, L. Oneto, and D. Anguita, “Big Data Analytics in the Cloud: Spark on

Hadoop vs MPI/OpenMP on Beowulf,” Procedia Computer Science, vol. 53, pp. 121 – 130,

2015, {INNS} Conference on Big Data 2015 Program San Francisco, CA, {USA} 8-10 August

2015.

[160] “Wikipedia article: DNA methylation,” http://en.wikipedia.org/wiki/DNA methylation.

[161] D. Lunn, D. Spiegelhalter, A. Thomas, and N. Best, “The BUGS project: Evolution, critique

and future directions,” Statistics in Medicine, vol. 28, no. 25, pp. 3049–3067, 2009.

[162] Clark, Don, “Intel Completes Acquisition of Altera,” 2015. [Online]. Available: http:

//www.wsj.com/articles/intel-completes-acquisition-of-altera-1451338307

[163] P. E. Jacob, L. M. Murray, and S. Rubenthaler, “Path storage in the particle filter,” Statistics and

Computing, vol. 25, no. 2, pp. 487–496, 2013.

[164] M. D. Linderman, M. Ho, D. L. Dill, T. H. Meng, and G. P. Nolan, “Towards Program Op-

timization Through Automated Analysis of Numerical Precision,” in Proceedings of the 8th

Annual IEEE/ACM International Symposium on Code Generation and Optimization, ser. CGO

’10. New York, NY, USA: ACM, 2010, pp. 230–237.

[165] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Programming Standard for Heteroge-

neous Computing Systems,” IEEE Des. Test, vol. 12, no. 3, pp. 66–73, May 2010.

[166] Stan Development Team, “Stan: A C++ Library for Probability and Sampling, Version 2.5.0,”

2014. [Online]. Available: http://mc-stan.org/

BIBLIOGRAPHY 233

[167] “The Comprehensive R Archive Network,” http://cran.r-project.org, http://cran.r-project.org.

