2,602 research outputs found

    Energy-Efficient Low Power Listening for Wireless Sensor Networks in Noisy Environments

    Get PDF
    Low Power Listening (LPL) is a common MAC-layer technique for reducing energy consumption in wireless sensor networks, where nodes periodically wake up to sample the wireless channel to detect activity. However, LPL is highly susceptible to false wakeups caused by environmental noise being detected as activity on the channel, causing nodes to spuriously wake up in order to receive nonexistent transmissions. In empirical studies in residential environments, we observe that the false wakeup problem can significantly increase a node\u27s duty cycle, compromising the benefit of LPL. We also find that the energy-level threshold used by the Clear Channel Assessment (CCA) mechanism to detect channel activity has a significant impact on the false wakeup rate. We then design AEDP, an adaptive energy detection protocol for LPL, which dynamically adjust a node\u27s CCA threshold to improve network reliability and duty cycle based on application-specified bounds. Empirical experiments in both controlled tests and real-world environments showed AEDP can effectively mitigate the impact of noise on radio duty cycles, while maintaining satisfactory link reliability

    Wireless Sensor Networking in Challenging Environments

    Get PDF
    Recent years have witnessed growing interest in deploying wireless sensing applications in real-world environments. For example, home automation systems provide fine-grained metering and control of home appliances in residential settings. Similarly, assisted living applications employ wireless sensors to provide continuous health and wellness monitoring in homes. However, real deployments of Wireless Sensor Networks (WSNs) pose significant challenges due to their low-power radios and uncontrolled ambient environments. Our empirical study in over 15 real-world apartments shows that low-power WSNs based on the IEEE 802.15.4 standard are highly susceptible to external interference beyond user control, such as Wi-Fi access points, Bluetooth peripherals, cordless phones, and numerous other devices prevalent in residential environments that share the unlicensed 2.4 GHz ISM band with IEEE 802.15.4 radios. To address these real-world challenges, we developed two practical wireless network protocols including the Adaptive and Robust Channel Hopping (ARCH) protocol and the Adaptive Energy Detection Protocol (AEDP). ARCH enhances network reliability through opportunistically changing radio\u27s frequency to avoid interference and environmental noise and AEDP reduces false wakeups in noisy wireless environments by dynamically adjusting the wakeup threshold of low-power radios. Another major trend in WSNs is the convergence with smart phones. To deal with the dynamic wireless conditions and varying application requirements of mobile users, we developed the Self-Adapting MAC Layer (SAML) to support adaptive communication between smart phones and wireless sensors. SAML dynamically selects and switches Medium Access Control protocols to accommodate changes in ambient conditions and application requirements. Compared with the residential and personal wireless systems, industrial applications pose unique challenges due to their critical demands on reliability and real-time performance. We developed an experimental testbed by realizing key network mechanisms of industrial Wireless Sensor and Actuator Networks (WSANs) and conducted an empirical study that revealed the limitations and potential enhancements of those mechanisms. Our study shows that graph routing is more resilient to interference and its backup routes may be heavily used in noisy environments, which demonstrate the necessity of path diversity for reliable WSANs. Our study also suggests that combining channel diversity with retransmission may effectively reduce the burstiness of transmission failures and judicious allocation of multiple transmissions in a shared slot can effectively improve network capacity without significantly impacting reliability

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Self-Adapting MAC Layer for Wireless Sensor Networks

    Get PDF
    The integration of wireless sensors with mobile phones is gaining momentum as an enabling platform for numerous emerging applications. These mobile systems face dynamic environments where both application requirements and ambient wireless conditions change frequently. Despite the existence of many MAC protocols however, none can provide optimal performance along multiple dimensions, in particular when the conditions are frequently changing. Instead of pursuing a one-MAC-fit all approach we present a Self-Adapting MAC Layer (SAML) comprising (1) a Reconfigurable MAC Architecture (RMA) that can switch to different MAC protocols at run time and (2) a learning-based MAC Selection Engine that selects the protocol most suitable for the current condition and requirements. As the ambient conditions or application requirements change SAML dynamically switches MAC protocols to gain the desired performance. To the application SAML appears as a traditional MAC protocol and its benefits are realized without troubling the application with the underlying complexity. To test the system we implement SAML in TinyOS 2.x and realize three prototypes containing up to five MACs. We evaluate the system in controlled tests and real-world environments using a new gateway device that integrates a 802.15.4 radio with Android phones. Our experimental results show that SAML provides an efficient and reliable MAC switching, while adheres to the application specified requirements

    Is There Light at the Ends of the Tunnel? Wireless Sensor Networks for Adaptive Lighting in Road Tunnels

    Get PDF
    Existing deployments of wireless sensor networks (WSNs) are often conceived as stand-alone monitoring tools. In this paper, we report instead on a deployment where the WSN is a key component of a closed-loop control system for adaptive lighting in operational road tunnels. WSN nodes along the tunnel walls report light readings to a control station, which closes the loop by setting the intensity of lamps to match a legislated curve. The ability to match dynamically the lighting levels to the actual environmental conditions improves the tunnel safety and reduces its power consumption. The use of WSNs in a closed-loop system, combined with the real-world, harsh setting of operational road tunnels, induces tighter requirements on the quality and timeliness of sensed data, as well as on the reliability and lifetime of the network. In this work, we test to what extent mainstream WSN technology meets these challenges, using a dedicated design that however relies on wellestablished techniques. The paper describes the hw/sw architecture we devised by focusing on the WSN component, and analyzes its performance through experiments in a real, operational tunnel

    Power Optimization for Wireless Sensor Networks

    Get PDF

    Mitigating Radio Interference in Large IoT Networks through Dynamic CCA Adjustment

    Get PDF
    The performance of low-power wireless sensor networks used to build Internet of Things applications often suffers from radio interference generated by co-located wireless devices or from jammers maliciously placed in their proximity. As IoT devices typically operate in unsupervised large-scale installations, and as radio interference is typically localized and hence affects only a portion of the nodes in the network, it is important to give low-power wireless sensors and actuators the ability to autonomously mitigate the impact of surrounding interference. In this paper we present our approach DynCCA, which dynamically adapts the clear channel assessment threshold of IoT devices to minimize the impact of malicious or unintentional interference on both network reliability and energy efficiency. First, we describe how varying the clear channel assessment threshold at run-time using only information computed locally can help to minimize the impact of unintentional interference from surrounding devices and to escape jamming attacks. We then present the design and implementation of DynCCA on top of ContikiMAC and evaluate its performance on wireless sensor nodes equipped with IEEE 802.15.4 radios. Our experimental investigation shows that the use of DynCCA in dense IoT networks can increase the packet reception rate by up to 50% and reduce the energy consumption by a factor of 4
    • …
    corecore