13,436 research outputs found

    ANALYSIS RESOURCE AWARE FRAMEWORK BY COMBINING SUNSPOT AND IMOTE2 PLATFORM WIRELESS SENSOR NETWORKS USING DISTANCE VECTOR ALGORITHM

    Get PDF
    Efficiency energy and stream data mining on Wireless Sensor Networks (WSNs) are a very interesting issue to be discussed. Routing protocols technology and resource-aware can be done to improve energy efficiency. In this paper we try to merge routing protocol technology using routing Distance Vector and Resource-Aware (RA) framework on heterogeneity wireless sensor networks by combining sun-SPOT and Imote2 platform wireless sensor networks. RA perform resource monitoring process of the battery, memory and CPU load more optimally and efficiently. The process uses Light-Weight Clustering (LWC) and Light Weight Frequent Item (LWF). The results obtained that by adapting Resource-Aware in wireless sensor networks, the lifetime of wireless sensor improve up to ± 16.62%. Efisiensi energi dan stream data mining pada Wireless Sensor Networks (WSN) adalah masalah yang sangat menarik untuk dibahas. Teknologi Routing Protocol dan Resource-Aware dapat dilakukan untuk meningkatkan efisiensi energi. Dalam penelitian ini peneliti mencoba untuk menggabungkan teknologi Routing Protocol menggunakan routing Distance Vector dan Resource-Aware (RA) framework pada Wireless Sensor Networks heterogen dengan menggabungkan sun-SPOT dan platform Imote2 Wireless Sensor Networks. RA melakukan proses pemantauan sumber daya dari memori, baterai, dan beban CPU lebih optimal dan efisien. Proses ini menggunakan Light-Weight Clustering (LWC) dan Light Weight Frequent Item (LWF). Hasil yang diperoleh bahwa dengan mengadaptasi Resource-Aware dalam Wireless Sensor Networks, masa pakai wireless sensor meningkatkan sampai ± 16,62%

    Energy Efficient Protocol with Static Clustering (EEPSC) Comparing with Low Energy Adaptive Clustering Hierarchy (LEACH) Protocol

    Get PDF
    A wireless sensor network with a large number of tiny sensor nodes can be used as an effective tool for gathering data in various situations. One of the major issues in wireless sensor networks is developing an energy-efficient routing protocol which has a significant impact on the overall lifetime of the sensor network. In this paper, we propose a novel hierarchical with static clustering routing protocol called Energy-Efficient Protocol with Static Clustering (EEPSC). EEPSC, partitions the network into static clusters, eliminates the overhead of dynamic clustering and utilizes temporary-cluster-heads to distribute the energy load among high power sensor nodes; thus extends network lifetime. We have conducted simulation-based evaluations to compare the performance of EEPSC against Low-Energy Adaptive Clustering Hierarchy (LEACH). Our experiment results show that EEPSC outperforms LEACH in terms of network lifetime and power consumption minimization. Keywords—Clustering methods, energy efficiency, routing protocol, wireless sensor network

    Increase the Alive Nodes based on the Cluster Head Selection Algorithm for Heterogeneous Wireless Sensor Networks

    Get PDF
    The use of Wireless Sensor Networks WSNs is estimated to bring enormous changes in data gathering processing and distribution for different environments and applications However a WSN is a powerful controlled system since nodes run on limited power batteries Prolong the lifetime of sensor networks depends on efficient management of sensing node of energy Hierarchical routing protocols are best known in regard to energy efficient By using a clustering technique hierarchical routing protocol greatly minimize the energy consumed in collecting and distributing the data The proposed protocol focuses on reducing the energy consumption and increasing the energy efficiency and also increasing the number of alive nodes of wireless sensor networks better than exiting protoco

    Energy-Efficient Multi-Level and Distance-Aware Clustering Mechanism for WSNs

    Full text link
    [EN] Most sensor networks are deployed at hostile environments to sense and gather specific information. As sensor nodes have battery constraints, therefore, the research community is trying to propose energyefficient solutions for wireless sensor networks (WSNs) to prolong the lifetime of the network. In this paper, we propose an energy-efficient multi-level and distance-aware clustering (EEMDC) mechanism for WSNs. In this mechanism, the area of the network is divided into three logical layers, which depends upon the hop-count-based distance from the base station. The simulation outcomes show that EEMDC is more energy efficient than other existing conventional approaches.This work has been partially supported by the 'Ministerio de Ciencia e Innovacion', through the 'Plan Nacional de I+D+i 2008-2011' in the 'Subprograma de Proyectos de Investigacion Fundamental', project TEC2011-27516, and by the Polytechnic University of Valencia, through the PAID-15-11 multidisciplinary projectsMehmood, A.; Khan, S.; Shams, B.; Lloret, J. (2015). Energy-Efficient Multi-Level and Distance-Aware Clustering Mechanism for WSNs. International Journal of Communication Systems. 28(5):972-989. https://doi.org/10.1002/dac.2720S972989285Sendra, S., Lloret, J., Garcia, M., & Toledo, J. F. (2011). Power Saving and Energy Optimization Techniques for Wireless Sensor Neworks (Invited Paper). Journal of Communications, 6(6). doi:10.4304/jcm.6.6.439-459Bri D Garcia M Lloret J Dini P Real deployments of wireless sensor networks Third International Conference on Sensor Technologies and Applications (SENSORCOMM 2009) 2009 8 23GUI, L., VAL, T., & WEI, A. (2011). A Novel Two-Class Localization Algorithm in Wireless Sensor Networks. Network Protocols and Algorithms, 3(3). doi:10.5296/npa.v3i3.863Rajeswari, A., & P.T, K. (2011). A Novel Energy Efficient Routing Protocols for Wireless Sensor Networks Using Spatial Correlation Based Collaborative Medium Access Control Combined with Hybrid MAC. Network Protocols and Algorithms, 3(4). doi:10.5296/npa.v3i4.1296Lloret, J., Garcia, M., Tomás, J., & Boronat, F. (2008). GBP-WAHSN: A Group-Based Protocol for Large Wireless Ad Hoc and Sensor Networks. Journal of Computer Science and Technology, 23(3), 461-480. doi:10.1007/s11390-008-9147-6Lloret, J., Garcia, M., Bri, D., & Diaz, J. (2009). A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks. Sensors, 9(12), 10513-10544. doi:10.3390/s91210513LEHSAINI, M., GUYENNET, H., & FEHAM, M. (2010). Cluster-based Energy-efficient k-Coverage for Wireless Sensor Networks. Network Protocols and Algorithms, 2(2). doi:10.5296/npa.v2i2.325Liu, G., Xu, B., & Chen, H. (2011). Decentralized estimation over noisy channels in cluster-based wireless sensor networks. International Journal of Communication Systems, 25(10), 1313-1329. doi:10.1002/dac.1308Cheng, L., Chen, C., Ma, J., & Shu, L. (2011). Contention-based geographic forwarding in asynchronous duty-cycled wireless sensor networks. International Journal of Communication Systems, 25(12), 1585-1602. doi:10.1002/dac.1325Wang, X., & Qian, H. (2011). Hierarchical and low-power IPv6 address configuration for wireless sensor networks. International Journal of Communication Systems, 25(12), 1513-1529. doi:10.1002/dac.1318Zhang, D., Yang, Z., Raychoudhury, V., Chen, Z., & Lloret, J. (2013). An Energy-Efficient Routing Protocol Using Movement Trends in Vehicular Ad hoc Networks. The Computer Journal, 56(8), 938-946. doi:10.1093/comjnl/bxt028Chen, J.-S., Hong, Z.-W., Wang, N.-C., & Jhuang, S.-H. (2010). Efficient Cluster Head Selection Methods for Wireless Sensor Networks. Journal of Networks, 5(8). doi:10.4304/jnw.5.8.964-970Peiravi, A., Mashhadi, H. R., & Hamed Javadi, S. (2011). An optimal energy-efficient clustering method in wireless sensor networks using multi-objective genetic algorithm. International Journal of Communication Systems, 26(1), 114-126. doi:10.1002/dac.1336Zeynali, M., Mollanejad, A., & Khanli, L. M. (2011). Novel hierarchical routing protocol in wireless sensor network. Procedia Computer Science, 3, 292-300. doi:10.1016/j.procs.2010.12.050Heinzelman W Chandrakasan A Balakrishnan H Energy-efficient communication protocol for wireless microsensor networks 33rd Hawaii International Conference on System Sciences (HICSS) 2000 3005 3014Wang, A., Yang, D., & Sun, D. (2012). A clustering algorithm based on energy information and cluster heads expectation for wireless sensor networks. Computers & Electrical Engineering, 38(3), 662-671. doi:10.1016/j.compeleceng.2011.11.017Gou H Yoo Y An energy balancing LEACH algorithm for wireless sensor networks Proceedings of the 7th International Conference on Information Technology: New Generations (ITNG) 2010Ding, P., Holliday, J., & Celik, A. (2005). Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks. Lecture Notes in Computer Science, 322-339. doi:10.1007/11502593_25Bandyopadhyay S Coyle E An energy-efficient hierarchical clustering algorithm for wireless sensor networks The 32nd IEEE International Conference on Computer Communication (INFOCOM 2003) 2003Jarry, A., Leone, P., Nikoletseas, S., & Rolim, J. (2011). Optimal data gathering paths and energy-balance mechanisms in wireless networks. Ad Hoc Networks, 9(6), 1036-1048. doi:10.1016/j.adhoc.2010.11.003Zhu, Y., Wu, W., Pan, J., & Tang, Y. (2010). An energy-efficient data gathering algorithm to prolong lifetime of wireless sensor networks. Computer Communications, 33(5), 639-647. doi:10.1016/j.comcom.2009.11.008Khamfroush H Saadat R Khademzadeh A Khamfroush K Lifetime increase for wireless sensor networks using cluster-based routing International Association of Computer Science and Information Technology-Spring Conference (IACSIT-SC 2009) 2009Li, H., Liu, Y., Chen, W., Jia, W., Li, B., & Xiong, J. (2013). COCA: Constructing optimal clustering architecture to maximize sensor network lifetime. Computer Communications, 36(3), 256-268. doi:10.1016/j.comcom.2012.10.006Aslam N Phillips W Robertson W Sivakumar S A multi-criterion optimization technique for energy efficient cluster formation in wireless sensor networks 4th IEEE Consumer Communications and Networking Conference, (CCNC 2007) 2007 650 654Yi, S., Heo, J., Cho, Y., & Hong, J. (2007). PEACH: Power-efficient and adaptive clustering hierarchy protocol for wireless sensor networks. Computer Communications, 30(14-15), 2842-2852. doi:10.1016/j.comcom.2007.05.034Yong, Z., & Pei, Q. (2012). A Energy-Efficient Clustering Routing Algorithm Based on Distance and Residual Energy for Wireless Sensor Networks. Procedia Engineering, 29, 1882-1888. doi:10.1016/j.proeng.2012.01.231Chuan-Chi W A minimum transmission energy consumption routing protocol for user-centric wireless networks 2011 1143 1148Kumar, D., Aseri, T. C., & Patel, R. B. (2009). EEHC: Energy efficient heterogeneous clustered scheme for wireless sensor networks. Computer Communications, 32(4), 662-667. doi:10.1016/j.comcom.2008.11.025Kim KT Moon SS Tree-Based Clustering (TBC) for energy efficient wireless sensor networks IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA) 2010 680 685Yu, J., Qi, Y., Wang, G., & Gu, X. (2012). A cluster-based routing protocol for wireless sensor networks with nonuniform node distribution. AEU - International Journal of Electronics and Communications, 66(1), 54-61. doi:10.1016/j.aeue.2011.05.002Ye M Li C Wu J EECS: an Energy Efficient Clustering Scheme in wireless sensor networks 24th IEEE International Performance on Computing, and Communications Conference 2005 535 540Gautama N Lee W Pyun J Dynamic clustering and distance aware routing protocol for wireless sensor networks PE-WASUN'09 2009Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660-670. doi:10.1109/twc.2002.804190Lai, W. K., Fan, C. S., & Lin, L. Y. (2012). Arranging cluster sizes and transmission ranges for wireless sensor networks. Information Sciences, 183(1), 117-131. doi:10.1016/j.ins.2011.08.029Pantazis, N. A., Vergados, D. J., Vergados, D. D., & Douligeris, C. (2009). Energy efficiency in wireless sensor networks using sleep mode TDMA scheduling. Ad Hoc Networks, 7(2), 322-343. doi:10.1016/j.adhoc.2008.03.006OMNeT++ Community Documentation and Tutorials of omnet++ http://www.omnetpp.org/Castallia Documentation and Tutorials of Castalia Simulator for WSN and BAN http://castalia.research.nicta.com.au/index.php/en/Research Group on Computer Networks and Multimedia Communication UFPA - Brazil Download-Leach-v2-for-Castalia http://www.gercom.ufpa.br/index.php?option=com_filecabinet&view=files&id=1&Itemid=31&lang=p

    A Review of Cluster Heads Selection in WSN

    Get PDF
    In recent years there has been a growing interest in Wireless Sensor Networks (WSN). Recent advancements in the field of sensing, computing and communications have attracted research efforts and huge investments from various quarters in the field of WSN. Also sensing networks will reveal previously unobserved phenomena. Network’s lifetime depends on energy efficiency and load balancing of wireless sensor network. The main aim of clustering is to provide the scalability and reduce energy consumption. Cluster head consume more energy as compare to non cluster head nodes. Proper selection of cluster head increases the network lifetime and energy efficiency. This paper provides an overview of clustering, cluster head election mechanisms and LEACH protocol

    A Secure and Low-Energy Zone-based Wireless Sensor Networks Routing Protocol for Pollution Monitoring

    Full text link
    [EN] Sensor networks can be used in many sorts of environments. The increase of pollution and carbon footprint are nowadays an important environmental problem. The use of sensors and sensor networks can help to make an early detection in order to mitigate their effect over the medium. The deployment of wireless sensor networks (WSNs) requires high-energy efficiency and secures mechanisms to ensure the data veracity. Moreover, when WSNs are deployed in harsh environments, it is very difficult to recharge or replace the sensor's batteries. For this reason, the increase of network lifetime is highly desired. WSNs also work in unattended environments, which is vulnerable to different sort of attacks. Therefore, both energy efficiency and security must be considered in the development of routing protocols for WSNs. In this paper, we present a novel Secure and Low-energy Zone-based Routing Protocol (SeLeZoR) where the nodes of the WSN are split into zones and each zone is separated into clusters. Each cluster is controlled by a cluster head. Firstly, the information is securely sent to the zone-head using a secret key; then, the zone-head sends the data to the base station using the secure and energy efficient mechanism. This paper demonstrates that SeLeZoR achieves better energy efficiency and security levels than existing routing protocols for WSNs.Mehmood, A.; Lloret, J.; Sendra, S. (2016). A Secure and Low-Energy Zone-based Wireless Sensor Networks Routing Protocol for Pollution Monitoring. Wireless Communications and Mobile Computing. 16(17):2869-2883. https://doi.org/10.1002/wcm.2734S286928831617Sendra S Deployment of efficient wireless sensor nodes for monitoring in rural, indoor and underwater environments 2013Javaid, N., Qureshi, T. N., Khan, A. H., Iqbal, A., Akhtar, E., & Ishfaq, M. (2013). EDDEEC: Enhanced Developed Distributed Energy-efficient Clustering for Heterogeneous Wireless Sensor Networks. Procedia Computer Science, 19, 914-919. doi:10.1016/j.procs.2013.06.125Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems, 52(4), 2489-2502. doi:10.1007/s11235-011-9568-3Garcia, M., Lloret, J., Sendra, S., & Rodrigues, J. J. P. C. (2011). Taking Cooperative Decisions in Group-Based Wireless Sensor Networks. Cooperative Design, Visualization, and Engineering, 61-65. doi:10.1007/978-3-642-23734-8_9Garcia, M., & Lloret, J. (2009). A Cooperative Group-Based Sensor Network for Environmental Monitoring. Cooperative Design, Visualization, and Engineering, 276-279. doi:10.1007/978-3-642-04265-2_41Jain T Wireless environmental monitoring system (wems) using data aggregation in a bidirectional hybrid protocol In Proc of the 6th International Conference ICISTM 2012 2012Senouci, M. R., Mellouk, A., Senouci, H., & Aissani, A. (2012). Performance evaluation of network lifetime spatial-temporal distribution for WSN routing protocols. Journal of Network and Computer Applications, 35(4), 1317-1328. doi:10.1016/j.jnca.2012.01.016Heinzelman WR Chandrakasan A Balakrishnan H Energy-efficient communication protocol for wireless microsensor networks In proc of the 33rd Annual Hawaii International Conference on System Sciences 2000 2000Xiangning F Yulin S Improvement on LEACH protocol of wireless sensor network In proc of the 2007 International Conference on Sensor Technologies and Applications SensorComm 2007 2007Tong M Tang M LEACH-B: an improved LEACH protocol for wireless sensor network In proc of the 6th International Conference on Wireless Communications Networking and Mobile Computing WiCOM 2010 2010Mohammad El-Basioni, B. M., Abd El-kader, S. M., Eissa, H. S., & Zahra, M. M. (2011). An Optimized Energy-aware Routing Protocol for Wireless Sensor Network. Egyptian Informatics Journal, 12(2), 61-72. doi:10.1016/j.eij.2011.03.001Younis O Fahmy S Distributed clustering in ad-hoc sensor networks: a hybrid, energy-efficient approach In proc of the Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies INFOCOM 2004 2004Noack, A., & Spitz, S. (2009). Dynamic Threshold Cryptosystem without Group Manager. Network Protocols and Algorithms, 1(1). doi:10.5296/npa.v1i1.161Nasser, N., & Chen, Y. (2007). SEEM: Secure and energy-efficient multipath routing protocol for wireless sensor networks. Computer Communications, 30(11-12), 2401-2412. doi:10.1016/j.comcom.2007.04.014Alippi, C., Camplani, R., Galperti, C., & Roveri, M. (2011). A Robust, Adaptive, Solar-Powered WSN Framework for Aquatic Environmental Monitoring. IEEE Sensors Journal, 11(1), 45-55. doi:10.1109/jsen.2010.2051539Parra L Sendra S Jimenez JM Lloret J Smart system to detect and track pollution in marine environments, in proc. of the 2015 2015 1503 1508Atto, M., & Guy, C. (2014). Routing Protocols and Quality of Services for Security Based Applications Using Wireless Video Sensor Networks. Network Protocols and Algorithms, 6(3), 119. doi:10.5296/npa.v6i3.5802Liu, Z., Zheng, Q., Xue, L., & Guan, X. (2012). A distributed energy-efficient clustering algorithm with improved coverage in wireless sensor networks. Future Generation Computer Systems, 28(5), 780-790. doi:10.1016/j.future.2011.04.019Bri D Sendra S Coll H Lloret J How the atmospheric variables affect to the WLAN datalink layer parameters 2010Ganesh, S., & Amutha, R. (2013). Efficient and secure routing protocol for wireless sensor networks through SNR based dynamic clustering mechanisms. Journal of Communications and Networks, 15(4), 422-429. doi:10.1109/jcn.2013.000073Amjad M 2014 Energy efficient multi level and distance clustering mechanism for wireless sensor networksMeghanathan, N. (2015). A Generic Algorithm to Determine Maximum Bottleneck Node Weight-based Data Gathering Trees for Wireless Sensor Networks. Network Protocols and Algorithms, 7(3), 18. doi:10.5296/npa.v7i3.796

    A Novel Routing Protocol For Wireless Sensor Networks With Improved Energy Efficient LEACH

    Get PDF
    Wireless Sensor Networks (Wsns) Have Been Widely Considered As One Of The Most Important Technologies For The Twenty-First Century. A Typical Wireless Sensor Network(WSN) Used For Environmental Condition Monitoring, Security Surveillance Of Battle-Fields, Wildlife Habitat Monitoring, Etc. Cluster-Based Hierarchical Routing Protocols Play An Essential Role In Decreasing The Energy Consumption Of Wireless Sensor Networks (Wsns). A Low-Energy Adaptive Clustering Hierarchy (LEACH) Has Been Proposed As An Application-Specific Protocol Architecture For Wsns. However, Without Considering The Distribution Of The Cluster Heads (Chs) In The Rotation Basis, The LEACH Protocol Will Increase The Energy Consumption Of The Network. To Improve The Energy Efficiency Of The WSN, We Propose A Novel Modified Routing Protocol In This Paper. The Newly Proposed Improved Energy-Efficient LEACH (IEE-LEACH) Protocol Considers The Residual Node Energy And The Average Energy Of The Networks. To Achieve Satisfactory Performance In Terms Of Reducing The Sensor Energy Consumption, The Proposed IEE-LEACH Accounts For The Numbers Of The Optimal Chs And Prohibits The Nodes That Are Closer To The Base Station (BS) To Join In The Cluster Formation. Furthermore, The Proposed IEE-LEACH Uses A New Threshold For Electing Chs Among The Sensor Nodes, And Employs Single Hop, Multi-Hop, And Hybrid Communications To Further Improve The Energy Efficiency Of The Networks. The Simulation Results Demonstrate That, Compared With Some Existing Routing Protocols, The Proposed Protocol Substantially Reduces The Energy Consumption Of Wsns
    • …
    corecore