280 research outputs found

    RandomCast: An Energy-Efficient Communication Scheme for Mobile Ad Hoc Networks

    Get PDF
    In mobile ad hoc networks (MANETs), every node overhears every data transmission occurring in its vicinity and thus, consumes energy unnecessarily. However, since some MANET routing protocols such as dynamic source routing (DSR) collect route information via overhearing, they would suffer if they are used in combination with 802.11 PSM. Allowing no overhearing may critically deteriorate the performance of the underlying routing protocol, while unconditional overhearing may offset the advantage of using PSM. This paper proposes a new communication mechanism, called RandomCast, via which a sender can specify the desired level of overhearing, making a prudent balance between energy and routing performance. In addition, it reduces redundant rebroadcasts for a broadcast packet, and thus, saves more energy. Extensive simulation using NS-2 shows that RandomCast is highly energy-efficient compared to conventional 802.11 as well as 802.11 PSM-based schemes, in terms of total energy consumption, energy goodput, and energy balance

    BLR: Beacon-Less Routing Algorithm for Mobile Ad-Hoc Networks

    Get PDF
    Routing of packets in a mobile ad-hoc network with a large number... this paper is a routing protocol that makes use of location information to reduce routing overhead. However, unlike other position-based routing protocols, BLR does not require nodes to periodically broadcast Hello-messages (called beaconing), and thus avoids drawbacks such as extensive use of scarce battery-power, interferences with regular data transmission, and performance degradation. BLR selects a forwarding node in a distributed manner among all its neighboring nodes with having information neither about their positions nor even about their existence. Data packets are broadcasted and the protocol takes care that just one of the receiving nodes forwards the packet. Optimized forwarding is achieved by applying a concept of Dynamic Forwarding Delay (DFD). Consequently, the node which computes the shortest forwarding delay relays the packet first. This forwarding is detected by the other nodes and suppresses them to relay the same packet any further. Analytical results and simulation experiments indicate that BLR provides efficient and robust routing in highly dynamic mobile ad-hoc networks

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    An energy-efficient communication system for ad hoc wireless and sensor networks

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 76-78).Existing ad hoc wireless and sensor network systems often trade off energy against performance. As such, it is hard to find a single deployable system that supports high data rates while maintaining energy-efficient operation. This research addresses the problem by designing a communication system that achieves high performance and reduces the energy needed for delivering data in multi-hop networks by a factor of 100 or more over IEEE 802.11. The system is composed of a duty cycling and pseudo-random Medium Access Control (MAC) that provides deterministic access to the shared medium. Furthermore, the MAC provides link level QOS to support high data rates required for real-time traffic as well as delay-bounded services such as voice and multi-media streaming.by William Nii Adjetey Tetteh.M.Eng

    Politecast - a new communication primitive for wireless sensor networks

    Get PDF
    Wireless sensor networks have the potential for becoming a huge market. Ericsson predicts 50 billion devices interconnected to the Internet by the year 2020. Before that, the devices must be made to be able to withstand years of usage without having to change power source as that would be too costly. These devices are typically small, inexpensive and severally resource constrained. Communication is mainly wireless, and the wireless transceiver on the node is typically the most power hungry component. Therefore, reducing the usage of radio is key to long lifetime. In this thesis I identify four problems with the conventional broadcast primitive. Based on those problems, I implement a new communication primitive. This primitive is called Politecast. I evaluate politecast in three case studies: the Steal the Light toy example, a Neighbor Discovery simulation and a full two-month deployment of the Lega system in the art gallery Liljevalchs. With the evaluations, Politecast is shown to be able to massively reduce the amount of traffic being transmitted and thus reducing congestion and increasing application performance. It also prolongs node lifetime by reducing the overhearing by waking up neighbors

    A Comparative Study of Energy Efficient Medium Access Control Protocols in Wireless Sensor Networks

    Get PDF
    This project investigates energy usage in three energy-efficient WSN MAC protocols (AS-MAC, SCP-MAC, and Crankshaft) on TelosB wireless sensors. It additionally presents BAS-MAC, an energy-efficient protocol of our own design. Our evaluations show that in single-hop networks with large send intervals and staggered sending, AS-MAC is best in the local gossip and convergecast scenarios, while SCP-MAC is best overall in the broadcast scenario. We conjecture that Crankshaft would perform best in extremely dense hybrid (unicast and broadcast) network topologies, especially those which broadcast frequently. Finally, BAS-MAC would be optimal in networks which utilize hybrid traffic with infrequent broadcasts, and where broadcasting is performed by motes that do not have an unlimited power source

    A Study of Medium Access Control Protocols for Wireless Body Area Networks

    Get PDF
    The seamless integration of low-power, miniaturised, invasive/non-invasive lightweight sensor nodes have contributed to the development of a proactive and unobtrusive Wireless Body Area Network (WBAN). A WBAN provides long-term health monitoring of a patient without any constraint on his/her normal dailylife activities. This monitoring requires low-power operation of invasive/non-invasive sensor nodes. In other words, a power-efficient Medium Access Control (MAC) protocol is required to satisfy the stringent WBAN requirements including low-power consumption. In this paper, we first outline the WBAN requirements that are important for the design of a low-power MAC protocol. Then we study low-power MAC protocols proposed/investigated for WBAN with emphasis on their strengths and weaknesses. We also review different power-efficient mechanisms for WBAN. In addition, useful suggestions are given to help the MAC designers to develop a low-power MAC protocol that will satisfy the stringent WBAN requirements.Comment: 13 pages, 8 figures, 7 table

    A Crosslayer Routing Protocol (XLRP) for Wireless Sensor Networks

    Get PDF
    The advent of wireless sensor networks with emphasis on the information being routed, rather than routing information has redefined networking from that of conventional wireless networked systems. Demanding that need for contnt based routing techniques and development of low cost network modules, built to operate in large numbers in a networked fashion with limited resources and capabilities. The unique characteristics of wireless sensor networks have the applicability and effectiveness of conventional algorithms defined for wireless ad-hoc networks, leading to the design and development of protocols specific to wireless sensor network. Many network layer protocols have been proposed for wireless sensor networks, identifying and addressing factors influencing network layer design, this thesis defines a cross layer routing protocol (XLRP) for sensor networks. The submitted work is suggestive of a network layer design with knowledge of application layer information and efficient utilization of physical layer capabilities onboard the sensor modules. Network layer decisions are made based on the quantity of information (size of the data) that needs to be routed and accordingly transmitter power leels are switched as an energy efficient routing strategy. The proposed routing protocol switches radio states based on the received signal strength (RSSI) acquiring only relevant information and piggybacks information in data packets for reduced controlled information exchange. The proposed algorithm has been implemented in Network Simulator (NS2) and the effectiveness of the protocol has been proved in comparison with diffusion paradigm

    Power-efficient multicasting algorithms for wireless ad hoc networks

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Protocol

    Get PDF
    hyperviso
    corecore