272 research outputs found

    Energy-Efficient Vector OFDM PLC Systems with Dynamic Peak-Based Threshold Estimation

    Get PDF
    © 2013 IEEE. Power line communication (PLC) has made remarkable strides to become a key enabler of smart grid and its applications. Existing PLC systems are based on orthogonal frequency division multiplexing (OFDM), which has a high peak-to-average power ratio (PAPR). This paper presents vector OFDM (VOFDM) with advanced signal processing at the receiver to improve the energy efficiency of the PLC system. Results show that, due to its low PAPR properties, VOFDM is less sensitive to impulsive noise and provides a reduction of 5.8 dB in transmit power requirement relative to conventional OFDM. Furthermore, unlike the existing impulsive noise cancellation methods, the adopted signal processing technique also improves the SNR at the receiver by 2.1 dB, which further reduces the power requirement of the PLC transceiver. Together, these can simplify design, reduce cost, and improve energy efficiency of future PLC transceivers

    Cross-layer energy efficiency of plc systems for smart grid applications

    Get PDF
    Though opinions are still divided over the specific choices of technology for smart grid, there is a consensus that heterogeneous communications network is most appropriate. Power line communication (PLC) is promising because it is readily available and it aligns with the natural topology of power distribution network. One of the emerging realities is that the communication system enabling smart grid must be energy-efficient. This thesis employs a cross-layer approach to address energy efficiency of PLC networks in different smart grid scenarios. At network layer, this work exploits the topology of a PLC-enabled advanced metering infrastructure (AMI) to improve the probability of successful packet delivery across the network. The technique, termed AMI clustering, leverages the traditional structure of the low voltage (LV) network by organising the smart meters into clusters and locally aggregating their readings. Improvement in packet delivery inherently reduces energy wastage. Next, the adaptation layer exploits the low data rate transmission techniques to reduce the energy requirements of PLC nodes. To achieve that, this work developed a network model in NS-3 (an open-source network simulator) that considers PLC transceivers as resource-constrained devices and interconnects them to emulate home energy management system (HEMS). The model was validated with experimental results which showed that in the home area network (HAN), low-rate applications such as energy management can be supported over low-power PLC networks. Furthermore, at physical layer, this thesis proposes a more energy-efficient multi-carrier modulation scheme than the orthogonal frequency division multiplexing (OFDM) used in most of the current PLC systems. OFDM is widely known for its high peak-to-average-power ratio (PAPR) which degrades energy efficiency of the systems. This thesis found that by employing vector- OFDM (V-OFDM), power requirements of PLC transmitter can be reduced. The results also showed the energy efficiency can be further improved by using a dynamic noise cancellation technique such as dynamic peak-based threshold estimation (DPTE) at the receiver. By applying the proposed methods, packet delivery can be improved by 3% at network layer (which conserves energy) and reduced data rate can save about 2.6014 dB in transmit power. Finally, at physical layer, V-OFDM and DPTE can respectively provide 5.8 dB and 2.1 dB reduction in power requirements of the PLC transceivers. These signify that if V-OFDM is combined with DPTE, future PLC modems could benefit from energy-efficient power amplifiers at reduced cost

    A New Approach to Peak Threshold Estimation for Impulsive Noise Reduction Over Power Line Fading Channels

    Get PDF
    Impulsive noise (IN) is a major component that degrades signal integrity in power line communication (PLC) systems. PLC systems driven by orthogonal frequency-division multiplexing (OFDM) have Rayleigh distributed amplitudes. Based on the dynamic nature of each OFDM symbol, peak amplitude of the symbol was recently shown to be a suitable threshold for detecting IN, and this technique outperforms the conventional optimal blanking (COB) scheme. In this study, we improve the dynamic peak-based threshold estimation (DPTE) scheme that relies on the OFDM Rayleigh distributed amplitudes by converting the default Rayleigh distribution to uniform distribution to unveil IN with power levels below that of the conventional peak signal. Then, we perform nonlinear mitigation processing on the received signals, whose amplitudes exceed the uniformly distributed amplitude using blanking, a scheme we will refer to as uniformly distributed DPTE (U-DPTE). Our results (based on U-DPTE) significantly outperform the DPTE scheme by up to 4-dB gain in terms of output signal-to-noise ratio (SNR). Additionally and unlike earlier DPTE studies, we propose a novel threshold criterion that compensates the Gaussian noise power-level amplification (after equalization) for achieving the optimal SNR over a log-normal multipath fading channel. The results further reveal the suboptimality of the DPTE scheme over COB

    A new technique for reducing size of a wpt system using two-loop strongly-resonant inductors

    Get PDF
    Mid-range resonant coupling-based high efficient wireless power transfer (WPT) techniques have gained substantial research interest due to the number of potential applications in many industries. This paper presents a novel design of a resonant two-loop WPT technique including the design, fabrication and preliminary results of this proposal. This new design employs a compensation inductor which is combined with the transmitter and receiver loops in order to significantly scale down the size of the transmitter and receiver coils. This can improve the portability of the WPT transmitters in practical systems. Moreover, the benefits of the system enhancement are not only limited to the lessened magnitude of the TX & RX, simultaneously both the weight and the bill of materials are also minimised. The proposed system also demonstrates compatibility with the conventional electronic components such as capacitors hence the development of the TX & RX is simplified. The proposed system performance has been validated using the similarities between the experimental and simulation results. The power efficiency of the prototype circuit is found to be 93%, which is close to the efficiency reached by the conventional design. However, the weight of the transmitter and receiver inductors is now reduced by 78%, while the length of these inductors is reduced by 80%

    Reports on industrial information technology. Vol. 12

    Get PDF
    The 12th volume of Reports on Industrial Information Technology presents some selected results of research achieved at the Institute of Industrial Information Technology during the last two years.These results have contributed to many cooperative projects with partners from academia and industry and cover current research interests including signal and image processing, pattern recognition, distributed systems, powerline communications, automotive applications, and robotics

    Emulation of Narrowband Powerline Data Transmission Channels and Evaluation of PLC Systems

    Get PDF
    This work proposes advanced emulation of the physical layer behavior of NB-PLC channels and the application of a channel emulator for the evaluation of NB-PLC systems. In addition, test procedures and reference channels are proposed to improve efficiency and accuracy in the system evaluation and classification. This work shows that the channel emulator-based solution opens new ways toward flexible, reliable and technology-independent performance assessment of PLC modems

    Inferring Power Grid Information with Power Line Communications: Review and Insights

    Full text link
    High-frequency signals were widely studied in the last decade to identify grid and channel conditions in PLNs. PLMs operating on the grid's physical layer are capable of transmitting such signals to infer information about the grid. Hence, PLC is a suitable communication technology for SG applications, especially suited for grid monitoring and surveillance. In this paper, we provide several contributions: 1) a classification of PLC-based applications; 2) a taxonomy of the related methodologies; 3) a review of the literature in the area of PLC Grid Information Inference (GII); and, insights that can be leveraged to further advance the field. We found research contributions addressing PLMs for three main PLC-GII applications: topology inference, anomaly detection, and physical layer key generation. In addition, various PLC-GII measurement, processing, and analysis approaches were found to provide distinctive features in measurement resolution, computation complexity, and analysis accuracy. We utilize the outcome of our review to shed light on the current limitations of the research contributions and suggest future research directions in this field.Comment: IEEE Communication Surveys and Tutorials Journa

    Fifty Years of Noise Modeling and Mitigation in Power-Line Communications.

    Get PDF
    Building on the ubiquity of electric power infrastructure, power line communications (PLC) has been successfully used in diverse application scenarios, including the smart grid and in-home broadband communications systems as well as industrial and home automation. However, the power line channel exhibits deleterious properties, one of which is its hostile noise environment. This article aims for providing a review of noise modeling and mitigation techniques in PLC. Specifically, a comprehensive review of representative noise models developed over the past fifty years is presented, including both the empirical models based on measurement campaigns and simplified mathematical models. Following this, we provide an extensive survey of the suite of noise mitigation schemes, categorizing them into mitigation at the transmitter as well as parametric and non-parametric techniques employed at the receiver. Furthermore, since the accuracy of channel estimation in PLC is affected by noise, we review the literature of joint noise mitigation and channel estimation solutions. Finally, a number of directions are outlined for future research on both noise modeling and mitigation in PLC

    NOVEL OFDM SYSTEM BASED ON DUAL-TREE COMPLEX WAVELET TRANSFORM

    Get PDF
    The demand for higher and higher capacity in wireless networks, such as cellular, mobile and local area network etc, is driving the development of new signaling techniques with improved spectral and power efficiencies. At all stages of a transceiver, from the bandwidth efficiency of the modulation schemes through highly nonlinear power amplifier of the transmitters to the channel sharing between different users, the problems relating to power usage and spectrum are aplenty. In the coming future, orthogonal frequency division multiplexing (OFDM) technology promises to be a ready solution to achieving the high data capacity and better spectral efficiency in wireless communication systems by virtue of its well-known and desirable characteristics. Towards these ends, this dissertation investigates a novel OFDM system based on dual-tree complex wavelet transform (D
    • …
    corecore