2,664 research outputs found

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    Quantifying User Reputation Scores, Data Trustworthiness, and User Incentives in Mobile Crowd-Sensing

    Get PDF
    Ubiquity of mobile devices with rich sensory capabilities has given rise to the mobile crowd-sensing (MCS) concept, in which a central authority (the platform) and its participants (mobile users) work collaboratively to acquire sensory data over a wide geographic area. Recent research in MCS highlights the following facts: 1) a utility metric can be defined for both the platform and the users, quantifying the value received by either side; 2) incentivizing the users to participate is a non-trivial challenge; 3) correctness and truthfulness of the acquired data must be verified, because the users might provide incorrect or inaccurate data, whether due to malicious intent or malfunctioning devices; and 4) an intricate relationship exists among platform utility, user utility, user reputation, and data trustworthiness, suggesting a co-quantification of these inter-related metrics. In this paper, we study two existing approaches that quantify crowd-sensed data trustworthiness, based on statistical and vote-based user reputation scores. We introduce a new metric - collaborative reputation scores - to expand this definition. Our simulation results show that collaborative reputation scores can provide an effective alternative to the previously proposed metrics and are able to extend crowd sensing to applications that are driven by a centralized as well as decentralized control

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Mobile Sensing Systems

    Get PDF
    [EN] Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.This work has been partially supported by the "Ministerio de Ciencia e Innovacion", through the "Plan Nacional de I+D+i 2008-2011" in the "Subprograma de Proyectos de Investigacion Fundamental", project TEC2011-27516, and by the Polytechnic University of Valencia, through the PAID-05-12 multidisciplinary projects.Macias Lopez, EM.; Suarez Sarmiento, A.; Lloret, J. (2013). Mobile Sensing Systems. Sensors. 13(12):17292-17321. https://doi.org/10.3390/s131217292S1729217321131

    Efficient Compressive Sampling of Spatially Sparse Fields in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN), i.e. networks of autonomous, wireless sensing nodes spatially deployed over a geographical area, are often faced with acquisition of spatially sparse fields. In this paper, we present a novel bandwidth/energy efficient CS scheme for acquisition of spatially sparse fields in a WSN. The paper contribution is twofold. Firstly, we introduce a sparse, structured CS matrix and we analytically show that it allows accurate reconstruction of bidimensional spatially sparse signals, such as those occurring in several surveillance application. Secondly, we analytically evaluate the energy and bandwidth consumption of our CS scheme when it is applied to data acquisition in a WSN. Numerical results demonstrate that our CS scheme achieves significant energy and bandwidth savings wrt state-of-the-art approaches when employed for sensing a spatially sparse field by means of a WSN.Comment: Submitted to EURASIP Journal on Advances in Signal Processin
    • …
    corecore