16,380 research outputs found

    Energy Efficient Algorithm & Protocol For Wireless Industrial Sensor Network

    Get PDF
    Wireless sensor networks (WSNs) consists ofunattended sensors with limited storage, energy (battery power)and computation and communication capabilities. So, energy efficient mechanism for wireless communication on each sensor node is so crucial for wireless sensor networks. Wireless industrial sensor networks are wireless sensor networks which have been adapted to industrial applications. Most techniques for wireless sensor networks can be applied to wireless industrial sensor networks. A wireless sensor node is often powered by battery which is not easily replaced, so researching how to use itslimited energy effectively is the meaningful for wireless sensor networks(WSNs). Energy routing protocol is suitable for industrial applications due to its capability of energy efficient,real-time,reliable comm.& energy efficient algorithm is provided which based on power control

    A RELIABLE ROUTING MECHANISM WITH ENERGY-EFFICIENT NODE SELECTION FOR DATA TRANSMISSION USING A GENETIC ALGORITHM IN WIRELESS SENSOR NETWORK

    Get PDF
    Energy-efficient and reliable data routing is critical in Wireless Sensor Networks (WSNs) application scenarios. Due to oscillations in wireless links in adverse environmental conditions, sensed data may not be sent to a sink node. As a result of wireless connectivity fluctuations, packet loss may occur. However, retransmission-based approaches are used to improve reliable data delivery. These approaches need a high quantity of data transfers for reliable data collection. Energy usage and packet delivery delays increase as a result of an increase in data transmissions. An energy-efficient data collection approach based on a genetic algorithm has been suggested in this paper to determine the most energy-efficient and reliable data routing in wireless sensor networks. The proposed algorithm reduced the number of data transmissions, energy consumption, and delay in network packet delivery. However, increased network lifetime. Furthermore, simulation results demonstrated the efficacy of the proposed method, considering the parameters energy consumption, network lifetime, number of data transmissions, and average delivery delay

    High Performance Communication Framework for Mobile Sinks Wireless Sensor Networks

    Get PDF
    A wireless sensor networks typically consist of thousand of nodes and each node has limited power, processing and bandwidth resources. Harvesting advances in the past decade in microelectronics, sensing, wireless communications and networking, sensor networks technology is expected to have a significant impact on our lives in the twenty-first century. Proposed applications of sensor networks include environmental monitoring, natural disaster prediction and relief, homeland security, healthcare, manufacturing, transportation, and home appliances and entertainment. However, Communication is one of the major challenges in wireless sensor networks as it is the main source for energy depletion. Improved network lifetime is a fundamental challenge of wireless sensor networks. Many researchers have proposed using mobile sinks as one possible solution to improve the lifetime of wireless sensor networks. The reason is that the typical manyto- one communication traffic pattern in wireless sensor networks imposes a heavy forwarding load on the nodes close to the sinks. However, it also introduces many research challenges such as the high communication overhead for updating the dynamic routing paths to connect to mobile sinks and packet loss problems while transmitted messages to mobile sinks. Therefore, our goal is to design a robust and efficient routing framework for both non-geographic aware and geographic aware mobile sinks wireless sensor networks. In order to achieve this goal in non-geographic based mobile sinks wireless sensor networks, we proposed a spider-net zone routing protocol to improve network efficiency and lifetime. Our proposed routing protocol utilise spider web topology inspired by the way spiders hunt prey in their web to provide reliable and high performance data delivery to mobile sinks. For routing in geographic aware based mobile sinks wireless sensor networks, we proposed a fault-tolerant magnetic coordinate routing algorithm to allow these network sensors to take advantage of geographic knowledge to build a routing protocol. Our proposed routing algorithm incorporates a coordinated routing algorithm for grid based network topology to improve network performance. Our third contribution is a component level fault diagnosis scheme for wireless sensor networks. The advantage of this scheme, causal model fault diagnosis, is that it can "deeply understand" and express the relationship among failure behaviours and node system components through causal relations. The above contributions constitute a novel routing framework to address the routing challenges in mobile sinks wireless sensor networks, Our framework considers both geographic and non-geographic aware based sensor networks to achieve energy efficient, high performance and network reliability. We have analyzed the proposed protocols and schemes and evaluated their performances using analytical study and simulations. The evaluation was based on the most important metries in wireless sensor networks, such as: power consumption and average delay. The evaluation shows that our solution is more energy efficient, improves the network performance, and provides data reliability in mobile sinks wireless sensor networks

    An Energy Efficient, Load Balancing, and Reliable Routing Protocol for Wireless Sensor Networks

    Get PDF
    AN ENERGY EFFICIENT, LOAD BALANCING, AND RELIABLE ROUTING PROTOCOL FOR WIRELESS SENSOR NETWORKS by Kamil Samara The University of Wisconsin-Milwaukee, 2016 Under the Supervision of Professor Hossein Hosseini The Internet of Things (IoT) is shaping the future of Computer Networks and Computing in general, and it is gaining ground very rapidly. The whole idea has originated from the pervasive presence of a variety of things or objects equipped with the internet connectivity. These devices are becoming cheap and ubiquitous, at the same time more powerful and smaller with a variety of onboard sensors. All these factors with the availability of unique addressing, provided by the IPv6, has made these devices capable of collaborating with each other to accomplish common tasks. Mobile AdHoc Networks (MANETS) and Wireless Sensor Networks (WSN) in particular play a major role in the backbone of IoT. Routing in Wireless Sensor Networks (WSN) has been a challenging task for researchers in the last several years because the conventional routing algorithms, such as the ones used in IP-based networks, are not well suited for WSNs because these conventional routing algorithms heavily rely on large routing tables that need to be updated periodically. The size of a WSN could range from hundreds to tens of thousands of nodes, which will make routing tables’ size very large. Managing large routing tables is not feasible in WSNs due to the limitations of resources. The directed diffusion algorithm is a well-known routing algorithm for Wireless Sensor Networks (WSNs). The directed diffusion algorithm saves energy by sending data packets hop by hop and by enforcing paths to avoid flooding. The directed diffusion algorithm does not attempt to find the best or healthier paths (healthier paths are paths that use less total energy than others and avoid critical nodes). Hence the directed diffusion algorithm could be improved by enforcing the use of healthier paths, which will result in less power consumption. We propose an efficient routing protocol for WSNs that gives preference to the healthier paths based on the criteria of the total energy available on the path, the path length, and the avoidance of critical nodes. This preference is achieved by collecting information about the available paths and then using non-incremental machine learning to enforce path(s) that meet our criteria. In addition to preferring healthier paths, our protocol provides Quality of Service (QoS) features through the implementation of differentiated services, where packets are classified as critical, urgent, and normal, as defined later in this work. Based on this classification, different packets are assigned different priority and resources. This process results in higher reliability for the delivery of data, and shorter delivery delay for the urgent and critical packets. This research includes the implementation of our protocol using a Castalia Simulator. Our simulation compares the performance of our protocol with that of the directed diffusion algorithm. The comparison was made on the following aspects: • Energy consumption • Reliable delivery • Load balancing • Network lifetime • Quality of service Simulation results did not point out a significant difference in performance between the proposed protocol and the directed diffusion algorithm in smaller networks. However, when the network’s size started to increase the results showed better performance by the proposed protocol

    A Reliable Energy-Efficient Multi-Level Routing Algorithm for Wireless Sensor Networks Using Fuzzy Petri Nets

    Get PDF
    A reliable energy-efficient multi-level routing algorithm in wireless sensor networks is proposed. The proposed algorithm considers the residual energy, number of the neighbors and centrality of each node for cluster formation, which is critical for well-balanced energy dissipation of the network. In the algorithm, a knowledge-based inference approach using fuzzy Petri nets is employed to select cluster heads, and then the fuzzy reasoning mechanism is used to compute the degree of reliability in the route sprouting tree from cluster heads to the base station. Finally, the most reliable route among the cluster heads can be constructed. The algorithm not only balances the energy load of each node but also provides global reliability for the whole network. Simulation results demonstrate that the proposed algorithm effectively prolongs the network lifetime and reduces the energy consumption

    Design and Analysis of Enhanced LEACH based Energy Routing Protocol for Wireless Sensor Network

    Get PDF
    In recent times, wireless sensor networks, or WSNs, have attracted a lot of attention because of their extensive use in a variety of fields, such as industrial automation, healthcare, and environmental monitoring. Energy efficiency is a major problem for WSNs since sensor nodes frequently run on batteries and have little energy available. Effective routing techniques are essential for extending the life of the network and guaranteeing dependable data transfer. This work focuses on the performance analysis and numerical modeling of a new routing strategy that combines machine learning approaches to improve WSN energy efficiency. The suggested routing algorithm optimizes energy consumption and overall network performance by adjusting its recommendations in real-time in response to environmental and network variables. We assess this machine learning-based routing protocol's performance using large-scale numerical simulations, contrasting it with conventional routing protocols and emphasizing its possible advantages in terms of energy efficiency and dependable data delivery. We investigate a variety of situations in our simulations, taking into account different network topologies, traffic patterns, and environmental factors. We evaluate many measures, including energy consumption, network lifetime, packet delivery ratio, and end-to-end delay, in order to offer a thorough evaluation of the efficacy of the machine learning-based routing protocol. The outcomes show how energy-efficient the protocol is, guaranteeing long-lasting sensor nodes and reliable data transfer while adjusting to changing network conditions.The results of this study highlight how machine learning approaches can completely change how routing protocols are designed and optimized in wireless sensor networks with limited energy. This research helps to construct sustainable and dependable WSNs by enhancing energy efficiency and network performance, which makes it easier to deploy sensor networks in crucial applications
    corecore