9 research outputs found

    Statistical analysis and comparison of 2T and 3T1D e-DRAM minimum energy operation

    Get PDF
    Bio-medical wearable devices restricted to their small-capacity embedded-battery require energy-efficiency of the highest order. However, minimum-energy point (MEP) at sub-threshold voltages is unattainable with SRAM memory, which fails to hold below 0.3V because of its vanishing noise margins. This paper examines the minimum-energy operation point of 2T and 3T1D e-DRAM gain cells at the 32-nm technology node with different design points: up-sizing transistors, using high- V th transistors, read/write wordline assists; as well as operating conditions (i.e., temperature). First, the e-DRAM cells are evaluated without considering any process variations. Then, a full-factorial statistical analysis of e-DRAM cells is performed in the presence of threshold voltage variations and the effect of upsizing on mean MEP is reported. Finally, it is shown that the product of the read and write lengths provides a knob to tradeoff energy-efficiency for reliable MEP energy operation.Peer ReviewedPostprint (author's final draft

    Low Power SoC Design

    Get PDF
    The design of Low Power Systems-on-Chips (SoC) in very deep submicron technologies becomes a very complex task that has to bridge very high level system description with low-level considerations due to technology defaults and variations and increasing system and circuit complexity. This paper describes the major low-level issues, such as dynamic and static power consumption, temperature, technology variations, interconnect, DFM, reliability and yield, and their impact on high-level design, such as the design of multi-Vdd, fault-tolerant, redundant or adaptive chip architectures. Some very low power System-on-Chip (SoC) will be presented in three domains: wireless sensor networks, vision sensors and mobile TV

    Analysis and minimization of practical energy in 45nm subthreshold logic circuits

    Full text link

    Elastic circuits

    Get PDF
    Elasticity in circuits and systems provides tolerance to variations in computation and communication delays. This paper presents a comprehensive overview of elastic circuits for those designers who are mainly familiar with synchronous design. Elasticity can be implemented both synchronously and asynchronously, although it was traditionally more often associated with asynchronous circuits. This paper shows that synchronous and asynchronous elastic circuits can be designed, analyzed, and optimized using similar techniques. Thus, choices between synchronous and asynchronous implementations are localized and deferred until late in the design process.Peer ReviewedPostprint (published version

    Energy autonomous systems : future trends in devices, technology, and systems

    Get PDF
    The rapid evolution of electronic devices since the beginning of the nanoelectronics era has brought about exceptional computational power in an ever shrinking system footprint. This has enabled among others the wealth of nomadic battery powered wireless systems (smart phones, mp3 players, GPS, …) that society currently enjoys. Emerging integration technologies enabling even smaller volumes and the associated increased functional density may bring about a new revolution in systems targeting wearable healthcare, wellness, lifestyle and industrial monitoring applications

    Low Voltage Circuit Design Techniques for Cubic-Millimeter Computing.

    Full text link
    Cubic-millimeter computers complete with microprocessors, memories, sensors, radios and power sources are becomingly increasingly viable. Power consumption is one of the last remaining barriers to cubic-millimeter computing and is the subject of this work. In particular, this work focuses on minimizing power consumption in digital circuits using low voltage operation. Chapter 2 includes a general discussion of low voltage circuit behavior, specifically that at subthreshold voltages. In Chapter 3, the implications of transistor scaling on subthreshold circuits are considered. It is shown that the slow scaling of gate oxide relative to the device channel length leads to a 60% reduction in Ion/Ioff between the 90nm and 32nm nodes, which results in sub-optimal static noise margins, delay, and power consumption. It is also shown that simple modifications to gate length and doping can alleviate some of these problems. Three low voltage test-chips are discussed for the remainder of this work. The first test-chip implements the Subliminal Processor (Chapter 4), a sub-200mV 8-bit microprocessor fabricated in a 0.13µm technology. Measurements first show that the Subliminal Processor consumes only 3.5pJ/instruction at Vdd=350mV. Measurements of 20 dies then reveal that proper body biasing can eliminate performance variations and reduce mean energy substantially at low voltage. Finally, measurements are used to explore the effectiveness of body biasing, voltage scaling, and various gate sizing techniques for improving speed. The second test-chip implements the Phoenix Processor (Chapter 5), a low voltage 8-bit microprocessor optimized for minimum power operation in standby mode. The Phoenix Processor was fabricated in a 0.18µm technology in an area of only 915x915µm2. The aggressive standby mode strategy used in the Phoenix Processor is discussed thoroughly. Measurements at Vdd=0.5V show that the test-chip consumes 226nW in active mode and only 35.4pW in standby mode, making an on-chip battery a viable option. Finally, the third test-chip implements a low voltage image sensor (Chapter 6). A 128x128 image sensor array was fabricated in a 0.13µm technology. Test-chip measurements reveal that operation below 0.6V is possible with power consumption of only 1.9µW at 0.6V. Extensive characterization is presented with specific emphasis on noise characteristics and power consumption.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/62233/1/hansons_1.pd

    Cache designs for reliable hybrid high and ultra-low voltage operation

    Get PDF
    Increasing demand for implementing highly-miniaturized battery-powered ultra-low-cost systems (e.g., below 1 USD) in emerging applications such as body, urban life and environment monitoring, etc., has introduced many challenges in the chip design. Such applications require high performance occasionally, but very little energy consumption during most of the time in order to extend battery lifetime. In addition, they require real-time guarantees. The most suitable technological solution for those devices consists of using hybrid processors able to operate at: (i) high voltage to provide high performance and (ii) near-/sub-threshold (NST) voltage to provide ultra-low energy consumption. However, the most efficient SRAM memories for each voltage level differ and it is mandatory trading off different SRAM designs, especially in cache memories, which occupy most of the processorÂżs area. In this Thesis, we analyze the performance/power tradeoffs involved in the design of SRAM L1 caches for reliable hybrid high and NST Vcc operation from a microarchitectural perspective. We develop new, simple, single-Vcc domain hybrid cache architectures and data management mechanisms that satisfy all stringent needs of our target market. Proposed solutions are shown to have high energy efficiency with negligible impact on average performance while maintaining strong performance guarantees as required for our target market

    Energy optimality and variability in subthreshold design

    No full text
    corecore