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Abstract—Bio-medical wearable devices restricted to their small-
capacity embedded-battery require energy-efficiency of the highest order.
However, minimum-energy point (MEP) at sub-threshold voltages is
unattainable with SRAM memory, which fails to hold below 0.3V because
of its vanishing noise margins. This paper examines minimum-energy
operation of 2T and 3T1D e-DRAM gain cells as an alternative to
SRAM at 32nm technology node with different design points: up-sizing
transistors, using high-Vth transistors, read/write wordline assists and
temperature. First, the e-DRAM cells are evaluated without considering
any process variations. The design-space is explored by creating a
kriging meta-model to reduce the number of simulations. A full-factorial
statistical analysis of e-DRAM cells is performed in presence of threshold
voltage variations and the effect of upsizing on mean MEP is reported.
Finally, it is shown that the product of the read and write lengths provides
a knob for trade-off between energy-efficiency and reliable MEP energy
operation.

I. INTRODUCTION

The emergence of Internet-of-Things (IOT) has opened up new
opportunities to collect data for analysis in the cloud using wireless
battery-operated wearable sensors. The number of these devices is
expected to increase to 35 sextillion units in 2020 [1] finding use cases
in many domains which were till yet silicon-free. Achieving a smaller
form factor and higher energy-efficiency is of prime importance
in a bio-medical wearable devices. Recently, embedded-DRAM (e-
DRAM) caches have been advocated as the successors of SRAM [2]–
[6] considering their higher densities (> 2X) [7] and smaller leakage,
due to fewer number of transistor. 3T1D e-DRAM gain-cell is shown
to be capable of achieving access speeds comparable to 6T SRAM [6]
and with larger device density [3]. The maximum energy efficiency
has been shown to exist at sub-threshold circuit operation [8], [9].
However the 6-Transistor SRAM bit-cell cannot provide enough
reliability because of its reduced noise margin at these ultra-low
voltages. Operating e-DRAMs at sub-threshold/near-threshold region
offers the next step in the direction of increasing energy-efficiency
of wearable biomedical health-monitoring systems. This simulation-
based exploratory paper makes the following contributions:

1) Comparison of the read energy at MEP considering up-sizing of
transistors, word-line boosting, high threshold-voltage transistors
and temperature using kriging based regression modelling.

2) Statistical analysis of read energy at MEP in presence of thresh-
old voltage variations.

II. BACKGROUND

The energy consumption in CMOS circuits is mainly constituted
of the dynamic energy and leakage energy. The former is spent in
switching capacitive loads and the later is consumed by sub-threshold
leakage currents when the transistors are off. Dynamic energy of
the circuit can be decreased quadratically by scaling supply voltage

(VDD). When the VDD is aggressively scaled down to sub-threshold
voltages, the driving-current (Ion, VGS = VDD) and the off-current
(Ioff , VGS = 0) are given by the equation,

ISUB = Ioe
VGS−Vth/nVT

The delay (td) of the circuit increases exponentially when the supply
voltage is scaled to sub-threshold region thereby increasing the
leakage energy per operation of the circuit. The MEP of the circuit
can be achieved at VDD in the sub-threshold region [8], [9]. However,
the presence of process variations lead to variability in the Ion,
Ioff currents and the circuit delay. Consequently there are significant
variations in MEP energy and delay and their means shift to higher
values when the process variations increase. Moreover, the leakage
current is highly dependent on the temperature and a shift in the
operating temperature can cause significant increase in the MEP
energy of the circuit [10].

Also, the operating voltages for a processor are limited to
the minimum-voltage required for the reliable operation of on-chip
SRAM cache which fails when scaling down to ultra-low voltages be-
cause of its shrinking noise margins, Nevertheless, SRAM dominates
the energy consumption among the components of a processor [11]
and several alternative SRAM bit-cells have been proposed. These
sub-threshold SRAM bit-cells have 8-transistors [12] or 10-transistors
[13]–[15].
As an alternative to SRAM bit-cells, Meinerzhagen et.al. [16] in-
vestigated sub-threshold 2T e-DRAM gain-cells for ultra-low power
medical applications. Their study showed reliable operation for 2kb
e-DRAM array up to sub-threshold voltage of 0.4V at mature 0.18µm
node and up to near-threshold voltage of 0.6V at scaled 40nm
node. The gain cells 2T and 3T1D are fully compatible with the
standard CMOS technology and do not need additional process steps
to fabricate the cell capacitor such as in the case of 1T1C eDRAM
cell. These gain cells being smaller than the SRAM bitcells, thus have
promising potential to improve the energy efficiency and reduce the
silicon cost. Further, Amat et.al. [2] observed that the 3T1D gain-
cells exhibits better reliability in front of device variability and single
event upsets than the 2T gain cell.

A. 2T and 3T1D gain cells

2T and 3T1D gain cells are two-port memories with separate read
and write paths as shown in Fig.1, which also shows the waveforms
for their read/write operation. Since the leakage current of the nMOS
transistor is significantly higher than that of the pMOS transistor,
alternate cell configurations that mix the transistor types (pMOS write
transistor and nMOS transistors for the read path) achieve better
memory cell performance than the nMOS-only design [2], [3]. The
storage node capacitor (SN), formed by T2’s gate capacitance and
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Fig. 1: Schematic of (a) 2T and (b) 3T1D gain cell. Read operation begins
by pre-charging the read bitline. Subsequently read word-line is driven
low for 2T and high for 3T1D gain cell to complete the read operation.

Fig. 2: Read minimum energy point (MEP) for a) 6T SRAM is 7e-20J at
0.3V. b) 3T1D gain-cell is 4e-22J at 0.2V.

T1’s diffusion capacitance, stores the data as charge. To write data
into the gain cell, T1 is turned on to transfer charge from BLWrite to
SN. Fig.2 shows the MEP for read operation of 3T1D gain-cell and
6T SRAM bitcell, 6T has read MEP energy ∼200X that of 3T1D.

III. METHODOLOGY

We study the energy-efficiency of 2T and 3T1D e-DRAM gain-
cell within the following design space:

1) Different sizing of transistors: Nominal transistor sizes are taken
from Lovin et.al. [17]. The lengths and widths are increased in
the range [1x, 2x, 3x, 4x] for each one of the e-DRAM cell
transistors.

2) Wordline assist: A voltage offset in the range [0 to 0.2V] is
applied to WLRead and WLWrite.

∆rwl During a read operation, over-drive the WLRead for the 3T1D
and under-drive the WLRead for the 2T. The effect is a faster
read access and reduction in the read leakage energy. During
standby (retention), under-drive the WLRead for the 3T1D
and over-drive the WLRead for the 2T. The effect is a decrease
in sub-threshold leakage through the read path.

∆wwl During read and standby (retention), over-drive WLWrite to
decrease the sub-threshold leakage through the write path.

3) High threshold voltage transistors: High threshold voltage tran-
sistors with ∆V th in the range [0 to 0.2V].

4) Temperature: The operating temperature is varied from −70◦C
to 100◦C

In order to estimate the energy at Minimum-energy point (MEP),
the dynamic and leakage energies of the gain-cell are estimated by
measuring current flowing through the zero-voltage sources, V1 and
V2, in the read and write path as shown in Fig.3 with 2T gain-cell
as an example. The MEP read energy is defined as the sum of Read-
0 and Read-1 energy at MEP voltage. The voltage sweep required
to estimate MEP is performed down to 0.1V. The spice net-lists of
the 2T and 3T1D gain-cells are simulated in HSPICE [18] circuit
simulator. The e-DRAMs were shown to perform reliably in near-
threshold region at 40nm node in [16]. So in this paper, e-DRAM

Fig. 3: The zero-voltage sources V1 and V2 are added to the write
and read path. The current through these voltage sources is measured
to estimate the leakage and dynamic energies during the read operation.

(a) 2T (b) 3T1D

Fig. 4: Regression validation for kriging model of 2T and 3T1D MEP
energy. The top plot shows the agreement between predicted and actual
values using leave-one-out cross validation. The middle plot verifies the
assumption that residuals are randomly distributed around zero without
any drift. The bottom plot verifies the assumption that residuals are almost
normally distributed.

gain-cells are studied at the next scaled technology node 32nm (using
HP PTM models [19]) which is going to be the technology node for
the future sub-threshold circuit implementations.

A. Kriging meta-model for nominal(without-variation) case

In the design-space with four levels per parameter, there exists
262,144 (49) designs (2 lengths, 2 widths, 2 High Vth transistors,
read and write wordline boosting and a temperature parameter ) for
2T cell and 1,073,741,824 (415) designs for 3T1D cell. Furthermore,
a voltage sweep needs to be performed at each of these design points
to estimate the MEP. Design exploration with these many simulations
can be very time expensive. Hence, a kriging meta-model [20] with
matern kernel is first made for each of the metrics and then the
subsequent analysis is done using these meta-models. To create these
meta-models, 1000 points are sampled using the Latin-Hypercube-
Sampling (LHS) method to produce a space-filling design. However,
for a high-dimensional space, the distribution of points provided by
LHS may deviate considerably from a uniform distribution (leading
to high-discrepancy). Thus, an additional step of LHS optimization
is performed, using the Enhanced Stochastic Evolutionary (ESE)
algorithm provided in the DiceDesign package of R [21]. The kriging
model trend is specified as a first order polynomial with a second
order interactions. The model is cross validated by leave-one-out
which gives coefficient of determination (R2) 0.73 for 2T MEP
energy. The validation plots for the regression model of 2T and 3T1D
gain cells are shown in figure Fig.4.



(a) 2T (b) 3T1D

Fig. 5: Contour plots for MEP energy when up-sizing transistors. Increas-
ing the write transistor length decreases MEP energy while increasing read
transistor width increases MEP energy. Increasing both together keeps the
MEP energy same. Colormap is blue for low MEP energy and pink for
high MEP energy

B. Full Factorial Analysis in presence of process variations

In the presence of process variations, it is necessary to find
statistically significant design parameters. To compare each of these
parameters of significance, their confidence intervals for improvement
in MEP are needed. For this, a 2k full factorial design experiment with
5000 replications is done for up-sized designs (lengths and widths
of transistors with two levels [1x, 4x]). The p-values from ANOVA
test [22] are then used to identify statistically significant design
parameters with significance level of 0.001. The 95% confidence
intervals for each design parameter in the effects-model are estimated
as : estimate±tα/2,df

√
varianceestimator , where α = 0.05 and df

is the degrees of freedom of error term. The variability in threshold
voltage is assumed to be 6% following the EU project statement [23].

IV. RESULTS

A. Nominal Analysis (without process variations)

1) Sizing: The width of the read transistor is typically up-sized to
increase the retention time. This however increases the MEP energy.
The contour plot in Fig.5 shows that it is possible to decrease MEP
energy when up-sizing the write transistor length while also up-
sizing the read transistor width. The HSPICE simulation of 4x write
transistor length design shows a decrease in MEP energy by 29% for
2T and 26% for 3T1D.

2) Wordline Boosting: Applying read wordline boosting increases
the MEP energy In contrast, the effect of write wordline boosting
is to reduce the MEP energy. This can be seen in Fig.6. HSPICE
simulations of 0.2V read wordline boosting design shows MEP energy
is higher by 564% for 2T and 61% for 3T1D . While HSPICE
simulation of 0.2V write wordline boosting design shows MEP energy
is lower by 34% for 2T and 41% for 3T1D.

3) High Threshold Voltage Transistors: Using high threshold
voltage transistors in the read and write paths to decrease leakage
current has opposite effects on the MEP energy. While using high
threshold transistors on the write path is reducing MEP energy, using
high threshold transistors in the read path increases the MEP energy.
This effect can be explained by the increase in the read delay which
would consequently increase the read leakage energy. The contour
plots in Fig.7 suggest that designs with high threshold transistors on
both read and write path have lower MEP energy than designs with
only high threshold read transistors. The HSPICE simulation of 0.2V
higher threshold voltage for write transistor shows a decrease in MEP
energy by 35% for 2T and 25% for 3T1D. The HSPICE simulation of
the design with 0.2V higher threshold voltage read transistors shows

(a) 2T (b) 3T1D

Fig. 6: Contour plots for MEP energy when wordline boosting in applied.
Boosting read word line (RWL) is increasing MEP energy. Boosting write
word line (WWL) is decreasing MEP energy. Colormap is blue for low
MEP energy and pink for high MEP energy

Fig. 7: Contour plots for MEP energy when high threshold transistors are
used, with x-axis and y-axis as ∆Vth. A high threshold voltage transistor
in the write path decreases MEP energy. In contrast, using a high threshold
transistor in the read path increases the MEP energy. Colormap is blue
for low MEP energy and pink for high MEP energy

(a) 2T (b) 3T1D

Fig. 8: Temperature increases MEP energy. This can be mitigated by
increasing the write transistor length. Colormap is blue for low MEP
energy and pink for high MEP energy

an increase in the MEP energy by 860% for 2T and 293% for 3T1D.

4) Temperature: Increase in temperature increases the read MEP
energy. However, the increase in energy can be reduced by also
increasing the write length as in seen in Fig.8. HSPICE simulations
show that at 100◦C the increase in MEP energy is 116.9% for 2T and
130% for 3T1D. This increase is then reduced with the 4x up-sizing
of write transistor length to only 12% for 2T and 23% for 3T1D.

In summary, the read MEP energy is reduced by either write
wordline boosting or using write transistor with high threshold voltage
or by up-sizing write transistor length for both 2T and 3T1D gain
cells. Thus reducing leakage current through write path is necessary
to reduce MEP energy, especially at higher temperatures. On the
contrary, reducing read delay by either up-sizing read transistor width
or read wordline boosting increases the read MEP energy.



(a) 2T

Fig. 9: Boxplot for MEP energy vs Up-sizing. X-labels are the different
up-sizing combinations with first two symbols for read and write transistor
lengths and last two for widths. ”S” is 1x and ”L” is 4x increase. For
instance, SSSS is the design with all read and write lengths/widths of 1x
size. In 2T gain cell, the distribution of MEP energy for designs with 1x
read transistor width (first 8 designs from left) have similar distribution
as the designs with 4x read transistor width (last 8 designs). Up-sized
designs of 3T1D gain cells show larger standard deviation than 2T gain
cells.

B. Full-Factorial analysis in presence of threshold voltage variations

In presence of process variations, the difference in median MEP
energy of different read and write path transistor up-sizing is shown
in boxplot Fig.9. For both 2T and 3T1D gain cells, the design with
4x up-sized length for read transistors and width for write transistors
(S.L.L.S design) has the maximum median MEP energy. In the case
of the 2T gain cell, up-sizing the width of the read transistor has only
12% increase in median MEP energy. The comparison of the 2T gain
cell’s median MEP energy of the first 8 designs (designs with 1x
read transistor width) with the last 8 designs (designs with 4x read
transistor width) in the Fig.9 suggests that up-sizing read transistor
width does not have significant effect on the median MEP energy.
To verify this, the p-values from the ANOVA test are calculated
for the main effects model. The results are shown in Tables I and
??. The p-value in this analysis is interpreted as the probability of
observing a difference in the mean MEP energy for an up-sized design
with a sample size of 5000 when there is no actual change in MEP
energy (i.e. the probability of observing different means when the
null hypothesis is true). The effect of an up-sized design on MEP
energy is considered to be statistically significant if its p-value is
small. Considering the significance level of 0.001 (i.e. less than one
in thousand chance of being wrong), since the p-value for up-sizing
of read transistor width is greater than this significance level, the
null hypothesis that up-sizing read transistor width has no statistically
significant effect on MEP energy in presence of Vth variations cannot
be rejected.

The Tukey’s honest significant differences test [24] is then used
to estimate the set of 95% confidence intervals (CI) of differences be-
tween the mean MEP energy between 1x and 4x levels of statistically
significant up-sizing factors. The results are shown in Tables II and

TABLE I: p-values for different 2T and 3T1D up-sizing. Smaller p-value
means that factor has statistically significant effect. A p-value larger than
0.001 is considered to have no strong statistically significant effect on the
response variable.

2T
Write
Length

Write
Width

Read
Length

Read
Width

p-value 2e-16 2e-16 2e-16 0.68585

3T1D
Write
Length

Write
Width

Read
Length
(T2)

Read
Length
(T3)

Read
Width
(T2)

Read
Width
(T2)

Diode
Length

Diode
Width

p-value 2e-16 2e-16 2e-16 2e-16 2e-16 2e-16 0.8693 0.7525

TABLE II: 2T: 95% CI for difference in means of MEP energy between
levels :small (1x) and large (4x), for read and write transistors up-sizing.
”L” is for large and ”S” is for small.

Factor difference
means of levels

lower
95% CI

upper
95% CI summary

write length µ(L) − µ(S) -3.31e-21 -3.28e-21 atleast 60% dec
write width µ(L) − µ(S) 3.14e-21 3.17e-21 atleast 140% inc
read length µ(L) − µ(S) 4.75e-21 4.78e-21 atleast 349% inc

III. The increase (decrease) in the mean MEP energy at the 4x up-
sizing level is calculated as the percentage relative difference between
the lower (upper) level value of its 95% CI and the mean at 1x up-
sizing level. Up-sizing the write transistor length reduces the mean
MEP energy by at-least 60% for 2T and 63% for 3T1D gain cells
in presence of threshold voltage variations. The up-sizing factor with
largest increase in mean MEP energy in presence of vth variations
for both 2T and 3T1D gain cell is the read transistor length with at
least 349% increase for 2T and at least 215% increase for 3T1D.

C. Fitting a Log-Normal distribution to MEP energy under process
variations

The previous section provided comparison of the empirical mean
MEP energies among the up-sized gain-cell designs. When designing
memories for IoT devices, it is also necessary to compare the higher
quantiles of the MEP energy distribution to estimate the probability of
meeting the energy constraints. In the case of a Normally distributed
data, the 0.998 quantile (which is µ± 3σ under Normal distribution)
or higher estimates are used when comparing the yield. However, as
the boxplots in Fig.9 show, the distribution of the MEP energy is not a
Normal distribution rather have a long right-tail. Hence, to accurately
compare the MEP energy distributions of the up-sized designs at
higher quantiles similar to the (µ + 3σ) under Normal distribution,
the energy values at the 0.998 and higher quantiles must be first
found. This requires fitting a long-tail distribution to the empirical
MEP energy distribution.

The subthreshold current is exponentially dependent on the
threshold voltage of the transistors. Since, the threshold voltages
of the transistors are considered to be Normally distributed random
variables due to the presence of process variations. Hence, the
subthreshold current (both the on-current, ION , and the off-current
IOFF ) is a Log-Normal random variable, and as a consequence so is
delay, td, which is dependent on the random variable ION [25]. The
leakage energy given by: ELEAK ∝ IOFF ∗ td, is a product of two
Log-Normal random variables, which are however not independent
because the voltage at storage node, SN, influences both the ION
TABLE III: 3T1D: 95% CI for difference in means of MEP energy
between levels :small (1x) and large (4x), for read and write transistor
up-sizing. ”L” is for large and ”S” is for small.

Factor difference
means of levels

lower
95% CI

upper
95% CI summary

write length µ(L) − µ(S) -3.87e-21 -3.86e-21 atleast 63% dec
write width µ(L) − µ(S) 3.66e-21 3.68e-21 atleast 160% inc
read length (T2) µ(L) − µ(S) 1.01e-21 1.027e-21 atleast 27% inc
read length (T3) µ(L) − µ(S) 4.30e-21 4.32e-21 atleast 215% inc
read width (T2) µ(L) − µ(S) -9.02e-22 -8.86e-22 atleast 19% dec
read width (T3) µ(L) − µ(S) 8.62e-22 8.78e-22 atleast 24% inc



flowing through the read path and IOFF flowing through the write
path (Fig.3). The leakage energy is thus not an exact Log-Normal
distribution. Still, it is seen from the Fig.10 that CDF plots of fitted
Log-Normal distributions better approximate the empirical MEP en-
ergy CDF than the fitted Normal distribution. The Normal distribution
parameters are estimated using the maximum likelihood estimate
(MLE). The parameters for Log-Normal distribution are estimated
using three different estimation approaches to compare their accuracy
at the longer right tail: (1) maximum-likelihood (MLE), (2) quantile-
matching (QME) and (3) maximum-goodness-of-fit. The quantile-
matching method estimates the Log-Normal distribution parameters
by minimizing the distance between the observed and theoretical
quantiles. We specify one of the quantile probability = 0.998, which
is the quantile probability of µ+ 3σ under Normal distribution. This
gives better fit at higher values of the MEP energy distribution. The
maximum-goodness-of-fit method provides the estimates of the Log-
Normal distribution parameters for which the distance between the
CDF of the fitted distribution and the CDF of the empirical MEP read
energy distribution is minimum. Furthermore, achieving correctness
of the estimated CDF at the right-tail (higher energy values) of the
MEP read energy is important because the empirical distribution
of the MEP energy has a longer right tail. Hence, the following
Anderson-Darling statistic [26], [27] are considered for fitting the
Log-Normal distribution to the empirical MEP energy distribution
with higher accuracy at the right-tail:

ADR =

∫ ∞
−∞

(CDFEmpirical(x) − CDFLog−Normal(x))
2

(1 − CDFLog−Normal(x))
dx

ADR2 =

∫ ∞
−∞

(CDFEmpirical(x) − CDFLog−Normal(x))
2

(1 − CDFLog−Normal(x))2
dx

(1)

Both of the above right-tail AD statistics, give larger weights to
observations at the right tail, thereby, decrease the discrepancy
between the right tails of the empirical MEP energy distribution and
the fitted Log-Normal distribution. Moreover, among these two right-
tail AD statistics, the ADR2 has larger weights at the right tail. The
Fig.10 also shows the discrepancy at the tails using the QQ plots
of the fitted Normal and Log-Normal distributions and the empirical
MEP energy distribution. The Log-Normal distribution fitted using
AD statistic provides higher accuracy of quantiles than others at the
right-tail of the MEP energy distribution (top area in the QQ-plot).
This accuracy comes at the cost of larger discrepancy at the left-
tail of the distribution (lower-left area in CDF plot). Since, we are
only interested in comparing quantiles for higher MEP energy values
(which are on the right-tail), the use of the maximum-goodness-of-
fit estimation method based on the ADR2 statistic is used for fitting
Log-Normal distribution to the empirical distribution of MEP energy.
Tables IV shows that using Normal distribution to fit the empirical
MEP energy distribution results in under-estimating the MEP energy
at higher quantiles. For instance, the 2T MEP energy at 0.998
quantile under the Log-Normal distribution, is 22.43% higher than
the 0.998 quantile (µ+ 3σ) under Normal distribution. Thus, 99.7%
confidence interval of the MEP energy would be under-estimated if
it is calculated as µ± 3σ.
Moreover, the Log-Normal distribution fitted using MLE estimates
of parameters, also under-estimates the quantiles of the MEP energy
compared to those fitted using right-tail AD statistic. This is also seen
in the QQ plot of Fig.10, where the Log-Normal distribution fitted
using MLE estimates assigns MEP energy values at higher empirical
quantiles to lower theoretical quantiles (that is, for observations lying
above the straight line in the QQ plot).
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Fig. 10: CDF and QQ-plot comparing the accuracy of the fitted Normal
distribution (N-MLE) and Log-Normal distributions (LN-MLE, LN-QME,
LN-ADR, LN-ADR2) with respect to the empirical MEP energy data. The
Log-Normal distribution fitted using maximum-goodness-of-fit estimate
(LN-ADR2) predicts the tail better than the other fitted distributions

TABLE IV: 2T gain-cell: Fitting Normal distribution to MEP energy
underestimates the quantiles at the right tail of the distribution (quantiles
at same probability as µ+ 1σ, µ+ 3σ, µ+ 5σ under normal distribution)
in comparison with the fitted Log-Normal distribution

Relative Error in the Quantile estimates of
fitted Normal distribution compared to

the fitted Log-Normal estimates
Parameter estimation methods for

fitting Log-Normal distribution
MLE QME AD AD 2nd Order

Probability of Quantile
Under Normal distribution

Prob =
CDF (µ+ 1σ) =

0.8413447
-0.89% -1.55% -1.57% -0.82%

Prob =
CDF (µ+ 3σ) =

0.9986501
12.24% 16.13% 17.65% 22.43%

prob =
CDF (µ+ 5σ) =

0.9999997
37.06% 50.66% 54.66% 66.19%

D. Shrinking the right tail of MEP energy distribution

The longer tails of the MEP energy restrict from achieving a
reliable minimum-energy operation. The higher quantiles are also
at higher energy values at the far end of the right-tail of MEP
energy distribution. As such, reducing the right tail of the MEP
energy distribution would be highly beneficial for the energy-efficient
operation. Here onwards, µ and σ refer to the mean and sigma of
the fitted MLE Normal distribution to the empirical MEP energy
distribution (In this case, µ then is equal to the empirical mean
of energy distribution). Fig.11 compares the QQ plot for five up-
sizing options: width of the read transistor, length of write transistor,
both read width and write length together, and the lengths read and
write transistors together. Upsizing the lengths of both read and write
transistors, provides an almost Normal distribution of MEP energy.
For this up-sized 2T design, the difference between the 0.998 quantile
of fitted Normal distribution (that is µ+3σ) and 0.998 quantile of the
fitted Log-Normal distribution is only 1.46%, compared to the 66%
relative difference for nominal size design. Thus, it provides shorter
right tails than the other designs. However, this shrinkage in MEP
energy distribution tail comes at the cost of 150% increase in mean
MEP energy.

In order to compare upsized designs in terms of their right-tail
length, a kriging model is made to predict the discrepancy between
the µ + 3σ of the fitted Normal MEP energy distribution and the
0.998-quantile of the fitted Log-Normal MEP energy distribution,
with transistor sizes as the predictors of the model. The upsized
designs which have longer right tails will also show larger discrepancy
in the 0.998 quantile from the µ+ 3σ estimate.
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b) 4x Read Width
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c) 4x Write Length
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d) 4x Write Length & Read Width
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e) 4x Write & Read Length

Fig. 11: Upsizing lengths of both read and write transistors decreases the right tail of MEP energy distribution

In Fig.12(a), it is seen in the QQ plot that the resulting model has
non-Normal residuals and moreover, the distribution of standardized
residual (middle sub-figure) shows that these residuals have an un-
equal variances. The prediction given by the kriging model for a given
transistor upsizing is the mean of Normally distributed predictions
for that upsized design. So, in this case, because the residuals are
not Normally distributed, the mean of the predictions by the kriging
model will not be accurate. Furthermore, The un-equal variances
of the residuals violates the assumption of homogeneous variance
of the random error which results in larger variance (uncertainty)
of the model predictions. Hence, addressing both these problems is
necessary to build at an accurate model for predicting the 0.998-
quantile discrepancy. Since, the QQ plot in Fig.12(a) shows that the
residuals have higher values at the tails than if they were normally
distributed, a log transformation of the target variable, that is
log(D0.998Q)=log(Quantile(0.998) − (µ + 3σ)) is modeled using
kriging with transistor lengths and widths as predictors. The analysis
of the residuals of the consequent model is shown in Fig.12(b).
The residuals with this model have normally distribution with nearly
same variance, as such it satisfies the normality and uniform-variance
assumptions of the kriging model. Thus the consequent model to
predict the 0.998 quantile discrepancy is of the form:

log(D0.998Q) = G(Lengthwrite, Lengthread,Widthwrite,Widthread)) + ε
(2)

where, G is a stationary Gaussian random field with covariance
between vectors in the field defined by a kernel function (in this
case, matern kernel is used), and ε is the i.i.d random error.
Altogether, following models are created using kriging regression:

1) Log(D0.998Q) - To predict the discrepancy in the fitted Log-
Normal 0.998 Quantile of the MEP energy from that of fitted
Normal distribution (that is µ+3σ). It is used as a measure of
the energy distribution’s right-tail length because larger right-tail
will increase the 0.998 quantile value compared to (µ+3σ). Log-
transformation is needed to satisfy the normality and uniform
variance assumption of the model residuals.

2) µlognormal - To predict the mean MEP energy predicted by the
fitted Log-Normal distribution. It is used to compare the energy-
efficiency among the upsized designs at the mean of their energy
distributions. Note that the mean under the fitted Log-Normal
distribution will be smaller than the empirical mean of the MEP
energy distribution because Log-Normal distribution takes into
consideration that some data lies at right-tail. For instance, for
the nominal sized design, it’s empirical mean is 7.26e-22J while
the mean of the fitted Log-Normal distribution is 7.06e-22J. No
transformation is needed as the residuals satisfy the normality
and uniform variance assumptions.

3) Log(Q(0.998)) - To predict the MEP energy at the 0.998-
Quantile, Q(0.998), under the fitted Log-Normal distribution. It

(a) Q(0.998)-(µ+3σ) (b) Log(Q(0.998)-(µ+3σ))

Fig. 12: Model diagnostic plots: Convalidation, homoscedasticity (Equal
variance of residuals) and Normality of residuals, for the model of
deviation between 0.998 Quantile under fitted Log-Normal and Normal
MEP energy distribution

is used to compare the energy-efficiency at higher quantile than
mean. Upsized designs with smaller 0.998-Quantile MEP energy
also have smaller probability of exceeding energy constraints of
the IoT device, than those designs with larger energy values.
Log-transformation is needed to satisfy the normality and uni-
form variance assumptions of the residuals in the model.

The contour plots in the Fig.13 show a) the trend in the mean of
MEP energy distribution, b) its 0.998 quantile, and c) its deviation
from Normal distribution against the read and write length upsizing. It
is seen that increasing the write length decreases µlognormal initially
and then increases them. For instance, in the case of design with
3x read length, the mean MEP energy is around 108x10−23J for
1x write length, 91x10−23J for 2x write length, 86x10−23J for
3x write length and 104x10−23J for 4x write length. Similar trend
is seen in Fig.13(b) for Q(0.998), which is the energy at the 0.998
quantile of the MEP energy distribution. The contour plot, Fig.13(c)
shows that the discrepancy from Normal distribution is least when
both the read length and write length are increased.

The mean of MEP distribution and the discrepancy of its 0.998
quantile from the Normal distribution are related to the product and
the ratio of the upsizing in write and read lengths. This is seen in
the graphs of Fig.14(a),(b) where the increase in the write length
to read length ratio (0.25 to 4) increases the energy-efficiency by
decreasing the mean MEP energy (117x10−23J to 51x10−23J, 56%
decrease) and the 0.998 quantile (161x10−23J to 92x10−23J, 42%
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Fig. 13: Contour plots comparing upsizing of read and write lengths. All
number labeling contours are in the order of 10−23.
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Fig. 14: Write-Length/Read-Length ratio -vs- (a) lognormal mean (b)
0.998 quantile (c) Discrepancy of 0.998 quantile from µ + 3σ, for 4000
grid points (200x200) with the write and read length between [1x,4x]
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Fig. 15: Product of write length and read length -vs- a) lognormal mean
(b) 0.998 quantile (c) Discrepancy of 0.998 quantile from µ+3σ, for 4000
grid points (200x200) with the write and read length between [1x,4x]

decrease). However, Fig.14(c) shows that the discrepancy from the
Normal distribution is also larger when write length is larger than read
length (2x10−23J at ratio=4/4=1 to 14x10−23J at ratio=4/1=4, 600%
increase). On the other hand, a larger write length and read length
product (1 to 16), decreases the discrepancy from Normal distribution
(17x10−23J to 2x10−23J, 88% decrease) but at the cost of lower
energy-efficiency (mean increases from 70x10−23J to 117x10−23J,
67% increase), seen in Fig.15.

In order to find trade-offs between achieving higher energy-
efficiency and achieving normally distributed MEP energy, the prod-
uct (MxD = µlognormal ∗ D0.998Q) of the mean MEP energy and
the discrepancy from Normal distribution is taken. The values of
µlognormal and D0.998Q are scaled to [1, 2] before taking the product
to make it independent of units. A design with lower mean MEP
energy and smaller discrepancy from Normal distribution will also
have smaller value of MxD. The Fig.16 shows that MxD decreases
(from 3.43 to 1.64) with the increase in the ratio of write length
and read length (0.25 to 4). Moreover, the decrease in MxD (from
1.74 to 1.64) is not comparatively significant when ratio is increased
from 2 to 4. The Fig.16(d) shows that MxD remains almost constant
(from 1.67 to 1.74) with increase in the product of write and read
lengths (from 1 to 16), on the condition that the write length is
at-least twice the read length. This suggests that the ratio of write
and read length, and their product can be used as knobs for trade-
offs between MEP energy-efficiency and Normal distribution of
MEP energy while keeping MxD constant. To illustrate this trade-
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Fig. 16: Product of mean MEP energy and discrepancy from Normal
distribution -vs- product and ratio of write length and read length, for 4000
grid points (200x200) with the write and read length between [1x,4x]
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Fig. 17: Product of write and read lengths -vs- (a) Mean MEP energy,
(b) 0.998 quantile, and (c) Discrepancy from Normal distribution, when
the write length is at-least twice the read length
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Fig. 18: Product of write and read lengths -vs- (a) Mean MEP energy,
(b) 0.998 quantile, and (c) Discrepancy from Normal distribution, when
the write length is less than twice the read length

off, Fig.17 shows that when the write length is at-least twice the
read length, then the designs with higher product of write and read
length show smaller discrepancy from Normal distribution at the cost
of higher MEP energy and its 0.998 Quantile. That is, for these
designs, increasing the product of the length up-sizing from 1 to 16,
decreases D0.998Q from 10.5x10−23J to 4x10−23J (62% decrease)
and increases the µlognormal from 56x10−23J to 88x10−23J (57%
increase). On the other hand, when the product of the the lengths is
smaller (with write length still at-least twice the read length) then
energy-efficiency increases at the cost of higher discrepancy from
Normal distribution. However, it is also seen in Fig.15 that the MEP
energy is higher for some designs with smaller product of lengths.
The plots in Fig.18 show that these designs with higher energy values
at lower product were only those designs with write length smaller
than the twice of read length. These designs exhibit larger spread in
the MEP energy among themselves. Consequently, no simple trade-
off mechanism between the MEP energy-efficiency and achieving
normally distributed MEP energy, could be found similar to product
of write and read lengths which is available when the write length
at-least twice the read length. It should also be noted, that for designs
with write-length/read-length >2x, the increase in the product of
the write and read lengths also increases the 0.998 quantile (from
91x10−23J to 107x10−23J, 17.5% increase). The relative difference
between the mean MEP energy and 0.998 quantile, is an estimate
of the coefficient-of-variation. That is, it provides an estimate of the
variance in the MEP energy distribution relative to its mean, similar to
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Fig. 19: Relative difference in percentage between 0.998 quantile and
µlognormal -vs- product of read and write lengths, when the write length
is at-least twice the read length

the 3σ/µ ratio used for Normally distributed data. Fig.19 shows that
this relative difference decreases from 62% to 22% with increase in
the product of write and read lengths upsizing from 1 to 16. Therefore,
using write and read lengths which have higher product, increases the
reliability of MEP energy (coefficient-of-variation decreases to 22%)
and also provides a more symmetric MEP energy distribution (62%
decrease in D0.998Q) using which it is easy to find the 0.998 quantile
using µ+3σ and 99.5 % confidence intervals using µ±3σ. However,
this comes at the cost of 57% increase in the mean MEP energy.

V. CONCLUSION

This paper investigates the minimum read energy operation of
2T and 3T1D gain cell in order to be candidates to substitute
SRAM bitcells in sub-threshold memories. Results show that read
MEP energy can be reduced by either increasing the length of write
transistor (> 26% decrease), or by providing write word-line boosting
during read (> 34% decrease), or using high-threshold voltage write
transistor (> 25% decrease). In presence of process variations, the
p-values from ANOVA show that up-sizing of read transistor width
for 2T and up-sizing of diode transistor for 3T1D are not statistically
significant factors influencing read MEP energy, while largest increase
in read MEP energy is caused by the upsizing of read transistor length
(> 215% increase). Moreover, the efficacy of using Log-Normal
distribution to fit the empirical MEP energy distribution using AD
statistic is also shown. Furthermore, it is shown that the product of
read and write length upsizing can be used as knob for trade-off
between reliable MEP energy operation or energy-efficient operation.
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[23] J. A. Rubio Sola, J. Figueras Pàmies, E. I. Vatajelu, and R. Canal Cor-
retger, “Process variability in sub-16nm bulk cmos technology,” 2012.

[24] H. Abdi and L. J. Williams, “Tukeys honestly significant difference
(hsd) test,” Encyclopedia of Research Design. Thousand Oaks, CA:
Sage, pp. 1–5, 2010.

[25] J. Kwong and A. P. Chandrakasan, “Variation-driven device sizing for
minimum energy sub-threshold circuits,” in Proceedings of the 2006
international symposium on Low power electronics and design. ACM,
2006, pp. 8–13.

[26] T. W. Anderson and D. A. Darling, “Asymptotic theory of certain”
goodness of fit” criteria based on stochastic processes,” The annals of
mathematical statistics, pp. 193–212, 1952.

[27] M. L. Delignette-Muller and C. Dutang, “fitdistrplus: An R package
for fitting distributions,” Journal of Statistical Software, vol. 64, no. 4,
pp. 1–34, 2015. [Online]. Available: http://www.jstatsoft.org/v64/i04/


