177 research outputs found

    Cross-layer design and optimization of medium access control protocols for wlans

    Get PDF
    This thesis provides a contribution to the field of Medium Access Control (MAC) layer protocol design for wireless networks by proposing and evaluating mechanisms that enhance different aspects of the network performance. These enhancements are achieved through the exchange of information between different layers of the traditional protocol stack, a concept known as Cross-Layer (CL) design. The main thesis contributions are divided into two parts. The first part of the thesis introduces a novel MAC layer protocol named Distributed Queuing Collision Avoidance (DQCA). DQCA behaves as a reservation scheme that ensures collision-free data transmissions at the majority of the time and switches automatically to an Aloha-like random access mechanism when the traffic load is low. DQCA can be enriched by more advanced scheduling algorithms based on a CL dialogue between the MAC and other protocol layers, to provide higher throughput and Quality of Service (QoS) guarantees. The second part of the thesis explores a different challenge in MAC layer design, related to the ability of multiple antenna systems to offer point-to-multipoint communications. Some modifications to the recently approved IEEE 802.11n standard are proposed in order to handle simultaneous multiuser downlink transmissions. A number of multiuser MAC schemes that handle channel access and scheduling issues and provide mechanisms for feedback acquisition have been presented and evaluated. The obtained performance enhancements have been demonstrated with the help of both theoretical analysis and simulation obtained results

    A PERFORMANCE ANALYSIS OF IEEE 802.11ax NETWORKS

    Get PDF
    The paper is focused on the forthcoming IEEE 802.11ax standard and its influence on Wi-Fi networks performance. The most important features dedicated to improve transmission effectiveness are presented. Furthermore, the simulation results of a new transmission modes are described. The comparison with the legacy IEEE 802.11n/ac standards shows that even partial implementation of a new standard should bring significant throughput improvements

    A PERFORMANCE ANALYSIS OF IEEE 802.11ax NETWORKS

    Get PDF
    The paper is focused on the forthcoming IEEE 802.11ax standard and its influence on Wi-Fi networks performance. The most important features dedicated to improve transmission effectiveness are presented. Furthermore, the simulation results of a new transmission modes are described. The comparison with the legacy IEEE 802.11n/ac standards shows that even partial implementation of a new standard should bring significant throughput improvements

    A Survey on Multi-AP Coordination Approaches over Emerging WLANs: Future Directions and Open Challenges

    Full text link
    Recent advancements in wireless local area network (WLAN) technology include IEEE 802.11be and 802.11ay, often known as Wi-Fi 7 and WiGig, respectively. The goal of these developments is to provide Extremely High Throughput (EHT) and low latency to meet the demands of future applications like as 8K videos, augmented and virtual reality, the Internet of Things, telesurgery, and other developing technologies. IEEE 802.11be includes new features such as 320 MHz bandwidth, multi-link operation, Multi-user Multi-Input Multi-Output, orthogonal frequency-division multiple access, and Multiple-Access Point (multi-AP) coordination (MAP-Co) to achieve EHT. With the increase in the number of overlapping APs and inter-AP interference, researchers have focused on studying MAP-Co approaches for coordinated transmission in IEEE 802.11be, making MAP-Co a key feature of future WLANs. Moreover, similar issues may arise in EHF bands WLAN, particularly for standards beyond IEEE 802.11ay. This has prompted researchers to investigate the implementation of MAP-Co over future 802.11ay WLANs. Thus, in this article, we provide a comprehensive review of the state-of-the-art MAP-Co features and their shortcomings concerning emerging WLAN. Finally, we discuss several novel future directions and open challenges for MAP-Co.Comment: The reason for the replacement of the previous version of the paper is due to a change in the author's list. As a result, a new version has been created, which serves as the final draft version before acceptance. This updated version contains all the latest changes and improvements made to the pape

    A Review on OFDMA and MU-MIMO MAC Protocols for upcoming IEEE Standard 802.11ax

    Get PDF
    IEEE introduced a new standard IEEE 802.11ax for the next generation WLANs.As we know,the current throughput is very low because of the current Media Access Control(MAC) in present wireless area networks.So,the concept of Orthogonal Frequency Multiple Access(OFDMA) to facilitate multi user access is introduced.The main challenges of adopting OFDMA areoverhead reduction and synchronization.To meet these challenges this paper revised an OFDMA based OMAX protocol.And due to various various bandwidth consuming applications and devices today’s WLANs have become stressed and low at throughput.To handle this problem MU MIMO is used to improve the performance of WLANs.This paper surveys uplink/downlink mutli user MAC protocols for MIMO enabled devices.It also identifies the key requirements of MAC protocol design

    IEEE 802.11ax: challenges and requirements for future high efficiency wifi

    Get PDF
    The popularity of IEEE 802.11 based wireless local area networks (WLANs) has increased significantly in recent years because of their ability to provide increased mobility, flexibility, and ease of use, with reduced cost of installation and maintenance. This has resulted in massive WLAN deployment in geographically limited environments that encompass multiple overlapping basic service sets (OBSSs). In this article, we introduce IEEE 802.11ax, a new standard being developed by the IEEE 802.11 Working Group, which will enable efficient usage of spectrum along with an enhanced user experience. We expose advanced technological enhancements proposed to improve the efficiency within high density WLAN networks and explore the key challenges to the upcoming amendment.Peer ReviewedPostprint (author's final draft
    corecore