16 research outputs found

    Novel Energy Aware Hierarchical Round Robin Schedule Cluster-Based (NEAHRC) Routing Protocol

    Get PDF
    Wireless sensor networks (WSNs) are developing as vital and prevalent ways of providing persistent computing environments for various applications. Unstable energy consumption is an essential problem in WSNs, categorised by multi-hop routing and a many-to-one traffic pattern. In an energy-aware routing approach, the protocols focus on minimizing the total energy consumption and maximizing the network lifetime. In this paper, we propose a novel energy aware hierarchical round robin schedule cluster-based (NEAHRC) routing protocol to improve the energy consumption of wireless sensor network and prolong its system lifetime. We also evaluate the proposed algorithm via simulations

    Delay Tolerant Energy Efficient protocol for Inter-BAN Communication in Mobile Body Area Networks

    Get PDF
    Body Area Networks (BANs) are used in a range of applications. In these networks the sensor nodes attached to human body collect data and send it to controller node which in turn sends to a Base Station (BS) located at a remote location. The controller nodes in a BAN can be replaced easily but when it comes to BANs moving in areas like a war it is hard to replace the batteries frequently. So we need to reduce energy requirement of the nodes to increase the network lifetime. Using mobile sensors is one way to reduce energy and controller nodes can send data to sink easily while performing inter-BAN communication where nodes need to act in a cooperative manner to send data to BS using multi-hop communication. In this paper, we have proposed a new clustering algorithm in which probability of a node to become a Cluster Head (CH) is decided on the basis of its geographical location and residual energy of the node. Simulations results show that the proposed protocol is better than the existing EDDEEC protocol in terms of delay, energy efficiency, reliability and network lifetime.

    High Performance Communication Framework for Mobile Sinks Wireless Sensor Networks

    Get PDF
    A wireless sensor networks typically consist of thousand of nodes and each node has limited power, processing and bandwidth resources. Harvesting advances in the past decade in microelectronics, sensing, wireless communications and networking, sensor networks technology is expected to have a significant impact on our lives in the twenty-first century. Proposed applications of sensor networks include environmental monitoring, natural disaster prediction and relief, homeland security, healthcare, manufacturing, transportation, and home appliances and entertainment. However, Communication is one of the major challenges in wireless sensor networks as it is the main source for energy depletion. Improved network lifetime is a fundamental challenge of wireless sensor networks. Many researchers have proposed using mobile sinks as one possible solution to improve the lifetime of wireless sensor networks. The reason is that the typical manyto- one communication traffic pattern in wireless sensor networks imposes a heavy forwarding load on the nodes close to the sinks. However, it also introduces many research challenges such as the high communication overhead for updating the dynamic routing paths to connect to mobile sinks and packet loss problems while transmitted messages to mobile sinks. Therefore, our goal is to design a robust and efficient routing framework for both non-geographic aware and geographic aware mobile sinks wireless sensor networks. In order to achieve this goal in non-geographic based mobile sinks wireless sensor networks, we proposed a spider-net zone routing protocol to improve network efficiency and lifetime. Our proposed routing protocol utilise spider web topology inspired by the way spiders hunt prey in their web to provide reliable and high performance data delivery to mobile sinks. For routing in geographic aware based mobile sinks wireless sensor networks, we proposed a fault-tolerant magnetic coordinate routing algorithm to allow these network sensors to take advantage of geographic knowledge to build a routing protocol. Our proposed routing algorithm incorporates a coordinated routing algorithm for grid based network topology to improve network performance. Our third contribution is a component level fault diagnosis scheme for wireless sensor networks. The advantage of this scheme, causal model fault diagnosis, is that it can "deeply understand" and express the relationship among failure behaviours and node system components through causal relations. The above contributions constitute a novel routing framework to address the routing challenges in mobile sinks wireless sensor networks, Our framework considers both geographic and non-geographic aware based sensor networks to achieve energy efficient, high performance and network reliability. We have analyzed the proposed protocols and schemes and evaluated their performances using analytical study and simulations. The evaluation was based on the most important metries in wireless sensor networks, such as: power consumption and average delay. The evaluation shows that our solution is more energy efficient, improves the network performance, and provides data reliability in mobile sinks wireless sensor networks

    Green and Secure Medium Access Control for Wireless Sensor Network

    Get PDF

    Energy Efficient Bandwidth Management in Wireless Sensor Network

    Get PDF

    A channel model and coding for vehicle to vehicle communication based on a developed V-SCME

    Get PDF
    Over the recent years, VANET communication has attracted a lot of attention due to its potential in facilitating the implementation of 'Intelligent Transport System'. Vehicular applications need to be completely tested before deploying them in the real world. In this context, VANET simulations would be preferred in order to evaluate and validate the proposed model, these simulations are considered inexpensive compared to the real world (hardware) tests. The development of a more realistic simulation environment for VANET is critical in ensuring high performance. Any environment required for simulating VANET, needs to be more realistic and include a precise representation of vehicle movements, as well as passing signals among different vehicles. In order to achieve efficient results that reflect the reality, a high computational power during the simulation is needed which consumes a lot of time. The existing simulation tools could not simulate the exact physical conditions of the real world, so results can be viewed as unsatisfactory when compared with real world experiments. This thesis describes two approaches to improve such vehicle to vehicle communication. The first one is based on the development of an already existing approach, the Spatial Channel Model Extended (SCME) for cellular communication which is a verified, validated and well-established communication channel model. The new developed model, is called Vehicular - Spatial Channel Model Extended (V-SCME) and can be utilised for Vehicle to Vehicle communication. V-SCME is a statistical channel model which was specifically developed and configured to satisfy the requirements of the highly dynamic network topology such as vehicle to vehicle communication. V-SCME provides a precise channel coefficients library for vehicle to vehicle communication for use by the research community, so as to reduce the overall simulation time. The second approach is to apply V-BLAST (MIMO) coding which can be implemented with vehicle to vehicle communication and improve its performance over the V-SCME. The V- SCME channel model with V-BLAST coding system was used to improve vehicle to vehicle physical layer performance, which is a novel contribution. Based on analysis and simulations, it was found that the developed channel model V-SCME is a good solution to satisfy the requirements of vehicle to vehicle communication, where it has considered a lot of parameters in order to obtain more realistic results compared with the real world tests. In addition, V-BLAST (MIMO) coding with the V-SCME has shown an improvement in the bit error rate. The obtained results were intensively compared with other types of MIMO coding

    Three transducers for one photodetector: essays for optical communications

    Get PDF
    Dissertation presented to obtain the PhD degree in Electrical and Computer Engineering - ElectronicsOptical processing devices based on a- SiC:H multilayer architectures are expected to become reconfigurable to perform WDM optoelectronic logic functions and provide as well complex photonic functions such as signal amplification and switching. This thesis, entitled ”Three Transducers for One Photodetector: essays for optical communications”, reports the main work areas to design, control, validate and evaluate the research of a voltage-controllable wavelength selective optical switching based on shifting between positive and negative electrically bias and a photodetector, which enables the filtering function with the detector itself and has the potential to be rapidly optically biasing tuned: System Architecture – In this work area it is defined the basic requirements of the device: light-to-dark sensitivity, colour recognition, selective optical and electrical output response, amplification and opto-electronic conversion to transmit, receive, and/or process intelligence(data).The output multiplexed signals should have a strong nonlinear dependence on the light absorption profile, i.e., on the incident light wavelength, bit rate and intensity under unbalanced light generation of carriers. Experimental Design – This test activities work area allows the evaluation of the results. Multiple monochromatic pulsed communication channels were transmitted together, each one with a specific bit sequence. The combined optical signal was analyzed by reading out, under different applied voltages and optical bias, the generated photocurrent across the device. Depending on the wavelength of the external background and irradiation side, it acts either as a short- or a long- pass band filter or as a band-stop filter Optoelectronic Algorithm Interface – To help improve our understanding of the output multiplexed signal, computer models of monolithic photodetectors are developed. Following control theoretic methods we derive state-space representation and an equivalent circuit optoelectronic simulator. We validate each model and calibrate the spectral gain model by background–probe experiments and truth tables lookup that perform 8-to-1 multiplexer (MUX) and 1-to-8 demultiplexer (DEMUX) functions. Applications – The purpose of this work area is to present a new optical logic architecture that offers considerable improvements in reconfigurability. Tunable WDM converters based on amorphous SiC multilayer photonic active filters are used to build blocks to perform standard digital system operations. The transducers combine the simultaneous demultiplexing operation with the photodetection and self amplification. They are optimized for provide the high-sensitivity needed for low-light applications, such as medicine, lighting, sensing and measurement, and manufacturing. The migration to next generation packet based networks can be much easier and smoother than previously thought, using the emerging a-Si solutions and its integration with plastic optical fiber. It will push the limits of functionality, cost/performance and integration level

    Measurement of Triple-Differential Z+Jet Cross Sections with the CMS Detector at 13 TeV and Modelling of Large-Scale Distributed Computing Systems

    Get PDF
    The achievable precision in the calculations of predictions for observables measured at the LHC experiments depends on the amount of invested computing power and the precision of input parameters that go into the calculation. Currently, no theory exists that can derive the input parameter values for perturbative calculations from first principles. Instead, they have to be derived from measurements in dedicated analyses that measure observables sensitive to the input parameters with high precision. Such an analysis that measures the production cross section of oppositely charged muon pairs with an invariant mass close to the mass of the Z\mathrm{Z} boson in association with jets in a phase space divided into bins of the transverse momentum of the dimuon system pTZp_T^\text{Z}, and two observables yy^* and yby_b created from the rapidities of the dimuon system and the jet with the highest momentum is presented. To achieve the highest statistical precision in this triple-differential measurement the full data recorded by the CMS experiment at a center-of-mass energy of s=13TeV\sqrt{s}=13\,\mathrm{TeV} in the years 2016 to 2018 is combined. The measured cross sections are compared to theoretical predictions approximating full NNLO accuracy in perturbative QCD. Deviations from these predictions are observed rendering further studies at full NNLO accuracy necessary. To obtain the measured results large amounts of data are processed and analysed on distributed computing infrastructures. Theoretical calculations pose similar computing demands. Consequently, substantial amounts of storage and processing resources are required by the LHC collaborations. These requirements are met in large parts by the resources of the WLCG, a complex federation of globally distributed computer centres. With the upgrade of the LHC and the experiments, in the HL-LHC era, the computing demands are expected to increase substantially. Therefore, the prevailing computing models need to be updated to cope with the unprecedented demands. For the design of future adaptions of the HEP workflow executions on infrastructures a simulation model is developed, and an implementation tested on infrastructure design candidates inspired by a proposal of the German HEP computing community. The presented study of these infrastructure candidates showcases the applicability of the simulation tool in the strategical development of a future computing infrastructure for HEP in the HL-LHC context

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore