1,939 research outputs found

    Compressive Sensing with Low-Power Transfer and Accurate Reconstruction of EEG Signals

    Get PDF
    Tele-monitoring of EEG in WBAN is essential as EEG is the most powerful physiological parameters to diagnose any neurological disorder. Generally, EEG signal needs to record for longer periods which results in a large volume of data leading to huge storage and communication bandwidth requirements in WBAN. Moreover, WBAN sensor nodes are battery operated which consumes lots of energy. The aim of this research is, therefore, low power transmission of EEG signal over WBAN and its accurate reconstruction at the receiver to enable continuous online-monitoring of EEG and real time feedback to the patients from the medical experts. To reduce data rate and consequently reduce power consumption, compressive sensing (CS) may be employed prior to transmission. Nonetheless, for EEG signals, the accuracy of reconstruction of the signal with CS depends on a suitable dictionary in which the signal is sparse. As the EEG signal is not sparse in either time or frequency domain, identifying an appropriate dictionary is paramount. There are a plethora of choices for the dictionary to be used. Wavelet bases are of interest due to the availability of associated systems and methods. However, the attributes of wavelet bases that can lead to good quality of reconstruction are not well understood. For the first time in this study, it is demonstrated that in selecting wavelet dictionaries, the incoherence with the sensing matrix and the number of vanishing moments of the dictionary should be considered at the same time. In this research, a framework is proposed for the selection of an appropriate wavelet dictionary for EEG signal which is used in tandem with sparse binary matrix (SBM) as the sensing matrix and ST-SBL method as the reconstruction algorithm. Beylkin (highly incoherent with SBM and relatively high number of vanishing moments) is identified as the best dictionary to be used amongst the dictionaries are evaluated in this thesis. The power requirements for the proposed framework are also quantified using a power model. The outcomes will assist to realize the computational complexity and online implementation requirements of CS for transmitting EEG in WBAN. The proposed approach facilitates the energy savings budget well into the microwatts range, ensuring a significant savings of battery life and overall system’s power. The study is intended to create a strong base for the use of EEG in the high-accuracy and low-power based biomedical applications in WBAN

    Ensemble approach on enhanced compressed noise EEG data signal in wireless body area sensor network

    Get PDF
    The Wireless Body Area Sensor Network (WBASN) is used for communication among sensor nodes operating on or inside the human body in order to monitor vital body parameters and movements. One of the important applications of WBASN is patients’ healthcare monitoring of chronic diseases such as epileptic seizure. Normally, epileptic seizure data of the electroencephalograph (EEG) is captured and compressed in order to reduce its transmission time. However, at the same time, this contaminates the overall data and lowers classification accuracy. The current work also did not take into consideration that large size of collected EEG data. Consequently, EEG data is a bandwidth intensive. Hence, the main goal of this work is to design a unified compression and classification framework for delivery of EEG data in order to address its large size issue. EEG data is compressed in order to reduce its transmission time. However, at the same time, noise at the receiver side contaminates the overall data and lowers classification accuracy. Another goal is to reconstruct the compressed data and then recognize it. Therefore, a Noise Signal Combination (NSC) technique is proposed for the compression of the transmitted EEG data and enhancement of its classification accuracy at the receiving side in the presence of noise and incomplete data. The proposed framework combines compressive sensing and discrete cosine transform (DCT) in order to reduce the size of transmission data. Moreover, Gaussian noise model of the transmission channel is practically implemented to the framework. At the receiving side, the proposed NSC is designed based on weighted voting using four classification techniques. The accuracy of these techniques namely Artificial Neural Network, Naïve Bayes, k-Nearest Neighbour, and Support Victor Machine classifiers is fed to the proposed NSC. The experimental results showed that the proposed technique exceeds the conventional techniques by achieving the highest accuracy for noiseless and noisy data. Furthermore, the framework performs a significant role in reducing the size of data and classifying both noisy and noiseless data. The key contributions are the unified framework and proposed NSC, which improved accuracy of the noiseless and noisy EGG large data. The results have demonstrated the effectiveness of the proposed framework and provided several credible benefits including simplicity, and accuracy enhancement. Finally, the research improves clinical information about patients who not only suffer from epilepsy, but also neurological disorders, mental or physiological problems

    Dictionary selection for Compressed Sensing of EEG signals using sparse binary matrix and spatiotemporal sparse Bayesian learning

    Get PDF
    Online monitoring of electroencephalogram (EEG) signals is challenging due to the high volume of data and power requirements. Compressed sensing (CS) may be employed to address these issues. Compressed sensing using sparse binary matrix, owing to its low power features, and reconstruction/decompression using spatiotemporal sparse Bayesian learning have been shown to constitute a robust framework for fast, energy efficient and accurate multichannel bio-signal monitoring. EEG signal, however, does not show a strong temporal correlation. Therefore, the use of sparsifying dictionaries has been proposed to exploit the sparsity in a transformed domain instead. Assuming sparsification adds values, a challenge, therefore, in employing this CS framework for the EEG signal is to identify the suitable dictionary. Using real multichannel EEG data from 15 subjects, in this paper, we systematically evaluated the performance of the framework when using various wavelet bases while considering their key attributes of number of vanishing moments and coherence with sensing matrix. We identified Beylkin as the wavelet dictionary leading to the best performance. Using the same dataset, we then compared the performance of Beylkin with discrete cosine basis, often used in the literature, and the case of using no sparsifying dictionary. We further demonstrate that using dictionaries (Beylkin and DCT) may improve performance tangibly only for a high compression ratio (CR) of 80% and with smaller block sizes; as compared to when using no dictionaries

    In-Network Data Reduction Approach Based On Smart Sensing

    Get PDF
    The rapid advances in wireless communication and sensor technologies facilitate the development of viable mobile-Health applications that boost opportunity for ubiquitous real- time healthcare monitoring without constraining patients' activities. However, remote healthcare monitoring requires continuous sensing for different analog signals which results in generating large volumes of data that needs to be processed, recorded, and transmitted. Thus, developing efficient in-network data reduction techniques is substantial in such applications. In this paper, we propose an in-network approach for data reduction, which is based on fuzzy formal concept analysis. The goal is to reduce the amount of data that is transmitted, by keeping the minimal-representative data for each class of patients. Using such an approach, the sender can effectively reconfigure its transmission settings by varying the target precision level while maintaining the required application classification accuracy. Our results show the excellent performance of the proposed scheme in terms of data reduction gain and classification accuracy, and the advantages that it exhibits with respect to state-of-the-art techniques.Scopu

    Novel Processing and Transmission Techniques Leveraging Edge Computing for Smart Health Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore