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Abstract   
 
Online monitoring of electroencephalogram (EEG) signals is challenging due to the high volume of data and power 
requirements. Compressed sensing (CS) may be employed to address these issues. Compressed sensing using sparse binary 
matrix, owing to its low power features, and reconstruction/decompression using spatiotemporal sparse Bayesian learning have 
been shown to constitute a robust framework for fast, energy efficient and accurate multichannel bio-signal monitoring. EEG 
signal, however, does not show a strong temporal correlation. Therefore, the use of sparsifying dictionaries has been proposed 
to exploit the sparsity in a transformed domain instead. Assuming sparsification adds values, a challenge, therefore, in 
employing this CS framework for the EEG signal is to identify the suitable dictionary. Using real multichannel EEG data from 
15 subjects, in this paper, we systematically evaluated the performance of the framework when using various wavelet bases 
while considering their key attributes of number of vanishing moments and coherence with sensing matrix. We identified 
Beylkin as the wavelet dictionary leading to the best performance. Using the same dataset, we then compared the performance 
of Beylkin with discrete cosine basis, often used in the literature, and the case of using no sparsifying dictionary.  We further 
demonstrate that using dictionaries (Beylkin and Discrete Cosine Transform (DCT)) may improve performance tangibly only 
for a high compression ratio (CR) of 80% and with smaller block sizes; as compared to when using no dictionaries. 
 
Keywords: compressed sensing, dictionary, discrete wavelet transform (DWT), electroencephalogram (EEG), signal 
reconstruction, vanishing moments 
 
____________________________________________________________________________________________________

1. Introduction  
 
     The dynamic nature of biomedical signals such as 
electroencephalographic (EEG) and electrocorticographic 
(ECoG) traces results in a wide variation in normal and 
pathologic features in different individuals. The use of 
manually extracted features for prediction of pathological 
events is impractical with a large volume of data even for a 
small number of electrodes, leading to large processing 
delays. Thus, automated feature extraction and signal 
processing methods are necessary for real time and clinically 
useful implementation in such applications. The real-time 
processing can be facilitated using cloud computing, Internet 

of Things (IoT) and deep learning, to effectively monitor and 
predict seizures using EEG signal [1], which requires high 
data volume transmission of the acquired bio-signals. In 
addition, remote online monitoring and diagnosis using EEG 
signals can reduce patient’s frequency of visits to hospitals 
[2]-[5]. 
     Energy consumption and high volume of data are major 
constraints in transmission of EEG signal due to limited 
battery life and processing capability of sensor nodes. Recent 
efforts aiming to increase battery life focus on reducing the 
power of transmission and data rate with compressed sensing 
(CS) [6], [7]. As CS can lead to significant computational 
savings for on-chip implementation with relatively low 
sampling rates, recently, it has been viewed with 

Page 1 of 8 AUTHOR SUBMITTED MANUSCRIPT - BPEX-102003.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt

mailto:a.demosthenous@ucl.ac.uk
mailto:a.demosthenous@ucl.ac.uk


IOP Publishing Journal Title 

Journal XX (XXXX) XXXXXX https://doi.org/XXXX/XXXX 
 

2 
 

considerable interest as a viable technique for the 
transmission of large data volumes and high data rate signals 
[5]. In CS data is projected into a compressed format non-
adaptively upon acquisition using a sensing matrix, which 
differs from conventional compression techniques where 
data is acquired then compressed and indices are stored. 

A requirement of conventional CS is that the signal must 
be sparse in the domain where it is compressed [7].  EEG 
signal, however, is not sparse in time or the frequency 
domains [5]. A challenge, therefore, in employing 
conventional CS for the EEG signal is to identify the domain 
known as the dictionary in which the EEG signal is 
sufficiently sparse.  This leads to another sufficient 
requirement for CS which is the incoherence between the 
dictionary and the sensing basis matrix i.e., the level of 
dissimilarity between the two. For an accurate reconstruction 
of the original signal, the dictionary and sensing matrix must 
be highly incoherent. For EEG signals, the accuracy of 
reconstruction of the signal with CS depends on a suitable 
dictionary that is maximally incoherent with the sensing 
basis [8].  Various dictionaries have been developed and 
investigated to enable sparse representation. These include 
Gabor transforms (GT), discrete wavelet transforms (DWT), 
spline and discrete cosine transforms (DCT) [5], [9]. Results 
in these techniques indicate accurate reconstructions with 
less error; however, the specific features that make these 
appropriate or suitable dictionaries, has not been investigated 
or explained. Selecting a specific DWT for a given 
application to ensure an accurate reconstruction of the 
compressed signal is challenging.  In most applications 
(other than  EEG with CS), a key feature employed in 
selection of a DWT is the number of vanishing moments, 
which determines its ability to represent complex signals 
efficiently or more sparsely.  According to the Strang-Fix 
condition (as a special case) the approximation order of a 
DWT increases with the number of vanishing moments up to 
the smoothness index (Hölder regularity) of the 
approximated signal [10]. That is, the sparseness of the 
wavelet-transformed signal is in general higher for longer 
wavelets. An equal number of vanishing moments for the 
DWT can also be viewed as all doing ‘similar amounts of 
work’ [11]. 

For reconstruction, Block Sparse Bayesian Learning 
(BSBL) may be employed to exploit the block sparsity of 
bio-signals. Current motivations in employing CS include 
low hardware complexity with optimization algorithms, and 
novel BSBL approaches to reduce latency. 
The authors in [5] propose a novel method to use the BSBL 
framework to compress/reconstruct non-sparse raw FECG 
recordings. Experimental results show that the framework 
can reconstruct the raw recordings with higher quality as 
compared to other BSBL and CS DWT based methods.  The 
authors in [8] depart from previous CS based approaches and 
formulate signal recovery from under-sampled 
measurements as a matrix completion problem. In [9] the 

authors compare and detail performance of various 
dictionaries for CS in EEG and ECG signals in order to come 
up with an optimal dictionary and its suitability for 
deployment in embedded hardware. However, the authors do 
not reflect in prior analysis of dictionary properties such as 
incoherency and vanishing moments for the choice of the 
dictionaries.  A novel BSBL approach is given in [12] and 
the DCT is employed for increasing sparsity with the results 
presented for both ECG and EEG signals but does not relate 
to the choice of selecting the DCT [12]. In [13] an 
explanation in terms incoherency is given for choice of 
dictionary followed by an optimization algorithm that lead 
the optimal selection of the dictionary, based on a pre-
selected class of dictionaries. The work detailed in [14] is on 
hardware implementation, no novel properties of the 
dictionaries are discussed. Other variations of BSBL include 
the spatiotemporal sparse Bayesian learning (STSBL) that 
exploits signal correlation [15]. The work in [15] offers a 
novel computational improvement over the BSBL methods 
and is not aimed at highlighting the attributes of DWTs for 
an optimal dictionary choice. The approach in [16] compares 
the accuracy of reconstruction for various dictionaries. It 
does not mention the choice or selection of wavelet in terms 
of the properties of incoherence and vanishing moments.   

In this paper, we primarily aim to evaluate the usefulness 
of using sparsifying dictionary with a sparse binary matrix 
(SBM) used as a sensing matrix for CS of multichannel EEG 
while STSBL is used for reconstruction\decompression. In 
doing so we arrive at following novel contributions not 
reported in earlier literature: 

We first investigate various DWT bases while considering 
their key attributes of incoherence with SBM, an important 
feature in basic CS methods, together with vanishing 
moments of DWT dictionaries, a defining feature of wavelet 
functions. Our results indicate that both features should be 
looked at the same time in selection of the dictionary; 

We, also, provide clear evidence that Beylkin (highly 
incoherent with SBM and with relatively high number of 
vanishing moments) leads to the best performance amongst 
DWT dictionaries evaluated in this paper. 

We then compare the performance of the framework while 
implementing Beylkin as the sparsifying matrix with the case 
of using DCT and using no dictionary at all for various 
compression ratios (CR) and block sizes. It is shown that in 
terms of reconstruction time and accuracy using sparsifying 
dictionary provides added value in this framework, but only 
for specific levels of compression and under specific 
settings. 
The paper will be useful for finalizing a framework for online 
EEG monitoring systems with CS that includes dictionary 
selection, CRs, block sizes and reconstruction time.  

A brief introduction to the theory of CS and STSBL 
algorithm is shown in Section 2. Materials and methods are 
presented in Section 3, followed by the associated results in 
Section 4, discussions in Section 5 and concluding remarks in 
Section 6. 
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2. Theory  
2.1. CS , BSBL and STSBL 

In this section, after briefly explaining the basic CS theory 
irrespective of block sparsity, key formulations regarding 
BSBL and its modifications leading to STSBL for CS will be 
discussed.   
In CS, a signal of length N, denoted by 𝐱 ∈ ℝ𝑁×1, is linearly 
compressed by a sensing matrix denoted by 𝚽 ∈ ℝ𝑀×𝑁, to 
yield 𝑦 (noting M < N, hence the word compressed, where N 
could be the number of samples corresponding to Nyquist 
rate), which is the measured signal and is given by:  

𝐲 = 𝚽𝐱 + 𝐯, (1) 
 
where v is vector representing compression error or CS 
system noise. x also may contain noise and may be 
represented as 𝐱 = 𝐮 + 𝐧, where u is the clean signal and n 
is the signal noise and, subsequently, it is trivial to show: 

𝐲 = 𝚽𝐮 + 𝐰, (2) 
where 𝐰 = 𝚽𝐧 [17].                                          
Under certain conditions, described later in this section, this 
ill-conditioned problem may be solved and signal x may be 
reconstructed. A key concept in CS is the sparsity of x, 
defined as having only a few non-zero elements. Even if x is 
not sparse, one may represent it in a suitable domain in which 
it exhibits sparsity. This domain may be represented by a 
dictionary matrix, denoted by 𝚿 ∈ ℝ𝑁×𝑁. Thus, x can be 
represented as:  
                                     𝐱 = 𝚿𝐳                         (3) 
where z contains the coefficients of x in 𝚿 domain. Assume 
x is K-sparse in this domain (i.e., z has only K<N non-zero 
elements; in practice z may contain K relatively large 
elements whilst the rest may be ignored, in which case the 
signal is compressible in this domain). Ignoring v, from (1) 
and (3) we have: 
                                  𝐲 = 𝚽𝚿𝐳 = 𝚯𝐳                                (4) 
Therefore, for reconstructing the original signal, CS 
algorithms need to reconstruct z first using y and 𝚯; 
subsequently, the original signal x can be reconstructed at the 
receiver end. 
For successful reconstruction, 𝚯 should follow a condition 
referred to as restricted isometry property (RIP). RIP may be 
achieved with high probability if sensing matrix is random 
[7]. A condition related to RIP is the incoherence that 
denotes rows of 𝚽, {𝝓𝑘}, and columns of 𝚿, {𝝍𝑗} should not 
be correlated. It is noted that M should be sufficiently large. 
Coherence (µ) is quantified as shown in (5). 

μ(𝚽, 𝚿) = √N max
1≤k,j≤N

|〈𝝓k, 𝝍𝑗〉|, (5) 

A smaller 𝜇 indicates a lower level of similarity between the 
elements of the two bases, i.e., 𝚽 and 𝚿 are highly 
incoherent. The value of 𝜇 is between 1 and √𝑁 [7]. The 
reconstruction performance of CS depends on the level of 
incoherence between 𝚽 and 𝚿  [8].  
The choice of 𝚽 is mostly directed towards minimal power 
usage in the hardware in this application and SBM often used 

since it consumes very low power [5], [18]. This is because 
SBM has very few of its entries as ones and most the entries 
are zeros [5]. This reduces the complexity and power 
requirements as it simplifies the hardware implementation, 
which is crucial to design of low-power and efficient 
transmitters. 
       The original N datapoints may then be reconstructed 
from M measurements in CS framework using methods such 
as basis pursuit with L1 norm minimization [7], which relies 
on sparsity; thus, as EEG is not sparse in time domain or 
frequency domain [8], it would be essential to find a suitable 
𝚿 for sparsity while ensuring that it is maximally incoherent 
with the selected 𝚽 [19]. BSBL based methods, which are of 
interest in this paper, exploit the block sparsity of signal. A 
block structured signal x may be represented as in (6) where 
𝑔 blocks are shown. 

                 𝐱 = [x1, … , xd1
 , … ,  xdg−1+1, … , xdg

]𝑇                   (6) 
For a block sparse signal, only 𝐾 ≪ 𝑔 blocks are non-zero. If 
the signal is not block sparse in the original domain, by 
transforming it into a domain in which it is sparse, block 
sparsity may ensue. Assuming the EEG signal, for instance, is 
transformed using a dictionary in which it is sparse or 
compressible, the coefficients vectors form a concatenation of 
a number of blocks, only a few of them are non-zero or 
relatively large blocks and the rest of them are all zeros or 
negligible. 
        The bound optimization method, BSBL-BO, can be 
employed that assumes the vector it operates on consists of 
some non-overlapping blocks. The block size can be chosen 
arbitrarily when using a sparsifying dictionary, and it is not 
necessary that the block partition of the signal has a clear block 
structure [5], [20]. Although BSBL-BO is employed 
successfully for reconstructing single channel EEG signals, 
for multichannel signals, signal reconstruction is channel by 
channel which is time consuming. This increases latency and 
is not suitable for on-line health monitoring applications. 
BSBL-BO exploits only the intra-channel correlation of the 
signal instead of exploiting the inter-channel correlation of the 
signals from different channels.  For exploiting both the intra-
channel and inter-channel correlation of the signals, a STSBL 
method has been proposed in [15]. STSBL reconstructs 
multichannel EEG signals simultaneously. This exploit 
temporal correlation in each channel signal and additionally 
also the spatial correlation among signals of different 
channels. Thereby its computational complexity does not 
increase with the number of channels [15]. 
 
2.2 Wavelet dictionaries 
    The number of vanishing moments is related to the order, 
decay rate and smoothness of wavelets. A continuous 
wavelet (CW), 𝜑, has p vanishing moments when: 
                          ∫ 𝑡𝑘𝜑(𝑡)𝑑𝑡 = 0, for 0 ≤ 𝑘 ≤ 𝑝              (7) 
and for the DWT with filter coefficients h 
                          ∑ 𝑘𝑛ℎ(𝑘) = 0𝑘 , for n = 0, 1, ...,1-p.        (8) 
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The number of vanishing moments is the differentiability or 
a measure of the smoothness of functions. DWT has two 
functions, called scaling functions and wavelet functions, 
which are associated with low pass and highpass filters, 
respectively. The decomposition of the signal into different 
frequency bands is obtained by successive highpass and 
lowpass filtering of the time domain signal. The DWT has p 
vanishing moments if and only if the wavelet function can 
generate polynomials up to degree p-1. The "vanishing" part 
means that the wavelet coefficients are zero for polynomials 
of degree at most p-1. A higher value of p implies that the 
wavelet filter is able to filter out high frequency components 
of the signal accurately from any of the low-frequency or 
long-term data variations. This accordingly leads to an 
accurate reconstruction of the signal. CWs and DWTs with a 
higher value of p can represent more complex functions.          
      A higher p also increases sparsity of a large class of signals 
being represented by the DWTs. In most cases, the DWT name 
is suffixed by its order n. The Daubechies-n and Symlet-n 
DWTs both have p = n vanishing moments. The number of 
filter coefficients nc for the DWTs is 2p. Their difference lies 
wherein Symlet filters are as symmetrical as possible as 
compared to the Daubechies filters which are highly 
asymmetrical. The Coiflet-n DWT has p = 2n vanishing 
moments with nc = 6n. The Battle-Lemarie also known as 
Battle-n DWT generates spline orthogonal wavelet filters, 
where n is the degree of spline. The Battle-n DWTs have p = 
n + 1. The Battle-n have infinite support but with an 
exponential decay, and filter coefficients below 10-4 are 
neglected in this paper, giving nc = 12 and 21 for Battle-1 and 
Battle-3, respectively. The Beylkin is optimised for placement 
of additional zeros close to half the sampling frequency to for 
obtaining higher attenuation of high-frequency components 
for the scaling filter and close to DC for attenuation of the low-
frequency components. It has fixed number of filter 
coefficients nc=18 and although it has three zeros at z = -1 and 
1, it has p~9. The Vaidyanathan DWT is optimised for speech 
coding with nc=24 with additional zeros close to high 

frequency and DC for the scaling and wavelet filters. It offers 
accurate reconstruction of the decomposed signal just as in 
case of other DWTs including Beylkin but does not satisfy any 
moment condition. The Haar DWT is least complex to 
implement as it has nc = 2, has one zero at z = -1 and 1 for the 
scaling and wavelet function indicating p = 1. 
 
3. Materials and Methods 
 
3.1 Incoherence of SBM with wavelet dictionaries 
    As the first step, the number of non-zero entries of the SBM 
that would lead to a moderate incoherence for all the wavelet 
dictionaries to be used was identified by calculating the 
coherence of randomly generated SBM with each dictionary 
for a varying number of non-zero entries. The fifteen DWT 
basis considered are Daubechies-3, Daubechies-4, 
Daubechies-8, Daubechies-10, Symmlet-10, Vaidyanathan, 
Coiflet-1, Coiflet-2, Coiflet-3, Coiflet-4, Coiflet-5, Harr, 
Battle-1, Battle-3 and Beylkin of size 256×256 as the 𝛹 
matrix. The outcome is shown in Fig.  1. Subsequently, the 
number of nonzero entries selected was 30. 
 
3.2 Reconstruction using wavelet dictionaries 
 The simulations were undertaken in Matlab®2017a on EEG 
data of 15 subjects involving 10 epileptic and 5 non-epileptic 
datasets from the Temple University Hospital EEG data 
corpus [21] with 23 channels containing EEG data selected 
sampled at 250 samples per second. The signal amplitude 
typically ranges from about 1 𝜇V to 100 𝜇V and frequency 
ranges between 1 Hz - 100 Hz as shown in the fast Fourier 
spectra of normalised aggregate signal shown in Fig.  2. To 
from the spectra shown in Fig.  2, data points of all 23 
channels at a given time was summed up to demonstrate the 
spectra of all channels at the same time. The signals exhibit 
non-linear, uncorrelated properties and random nature. In 
processing EEG data in this paper, we considered 256 
samples as an epoch. This led to 117 epochs for each subject. 
The block size used was set to 24 similar to [5]. 

 
Fig. 1 Coherence between Φ and Ψ. 

 

 
Fig. 2 Frequency spectra of aggregate EEG signal for all subjects. 
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The reconstruction quality of EEG signals using different 
DWT dictionary (Daubechies-3, -4, -8, -10, Symlet-10, 
Vaidyanathan, Coiflet-1, -2, -3, -4, -5, Harr, Battle-1, Battle-
3, Beylkin) were compared here using two performance 
indicators. One is the normalised means square error 
(NMSE), defined as 
                                    ‖𝑥 − 𝑥‖2

2/‖𝑥‖2
2                         (9) 

where �̂� is the estimate of the original signal x. The second 
is the Structural Similarity index (SSIM), which measures 
the similarity between the reconstructed signal and the 
original signal [6]. Higher value of SSIM indicates the better 
reconstruction. When the reconstructed signal and the 
original signal are same, SSIM =1. To compare the 
performance of the dictionaries in the first instance a 50% 
CR defined as (𝑁−𝑀

𝑁
) × 100. 

The median of NMSE and SSIM for all the epochs associated 
with a subject was calculated as the measure of center due to 
the skewed distribution of values across the 117 epochs. The 
mean and standard deviation of the center were subsequently 
calculated across the 15 subjects. 
 
3.3 Beylkin, DCT and no dictionary 

      As will be demonstrated in Section IV-A the best 
performance may be associated to Beylkin dictionary amongst 
DWT dictionaries assessed in the paper. The performance was 
compared with DCT dictionary as well as the case of using no 
sparsifying dictionary for different CR values ranging from 
50% - 90% and different block sizes (16, 32 and 64) in terms 
of NMSE, SSIM and reconstruction time. Furthermore, the 
effect of number of non-zero elements in SBM on the 
performance of the framework when using no dictionary was 
evaluated. 
 
4. Results 
4.1 Reconstruction using wavelet dictionaries 
     Fig. 3 and 4 show NMSE and SSIM (bar indicating the 
mean and error bar showing the standard deviation) of the 
reconstructed signal (CR=50%) for all the subjects and for all 
the 15 DWT dictionaries. Both the NMSE and SSIM  indicate 
a superior performance by Beylkin. Fig. 5 shows the scatter 
plot of coherence versus vanishing moments for all the 
dictionaries and indicate the correlation these features have (µ 
and p) with the reconstruction performance (mean of NMSE). 
The results indicate that while those dictionaries that tend to 
have both high incoherence and vanishing moments tend to 

 
Fig. 3 NMSE for the multichannel EEG signal reconstruction. 

 

 
Fig. 4 SSIM for the multichannel EEG signal reconstruction. 

 

 
Fig. 5 Demonstrating the relationship between coherence and vanishing moments for the 15 DWT dictionaries studied here. Also, the correlations 
between vanishing moment and coherence with reconstruction performance for all the dictionaries are shown. 
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perform better. These show that presumably the effect of 
coherence is more significant when comparing Beylkin with 
Symlet or Coiflet. That is, Beylkin has higher incoherence 
with SBM but lower number of vanishing moments compared 
to these two but the overall performance associated with 
Beylkin is better. 
 
4.2 Beylkin, DCT and no dictionary 
      Fig. 6 shows an example of aggregate EEG signals 
(original and reconstructed upon using different CRs) 
associated with using Beylkin and DCT as the dictionaries 
and using no dictionary at all when block size is set to 64. It 
is noted that the reconstruction quality as qualitatively 
evaluated, based on this figure, appears to be the same for all 
three cases. 

 
Fig. 6 Examples of normalised aggregate EEG signal (addition of all 23 channels at a given time) of the original and reconstructed for different values 
of CR for Beylkin, discrete cosine and the case of using no discrete dictionary for block size equal to 64. Blue traces show the original while the green 
traces are the reconstructed. 

 

 
Fig. 7  NMSE, SSIM and reconstruction times as a function of CR when using Beylkin, DCT and no dictionary for different block sizes (16, 32 and 64). As 
before, data points show the mean and error bars show the standard deviation across 15 subjects. 

 

 
Fig, 8 Comparing the effect of changing the number of non-zero 
elements (2 and 30) in SBM when using no sparsifying dictionary. 
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Fig. 7 shows NMSE, SSIM and reconstruction time for the 
three cases of using Beylkin, DCT and no dictionary for 
various CRs and different block sizes. Larger block size 
appears to lead to higher errors in reconstruction for Beylkin 
and DCT for CR<90% while when no dictionary is used 
changing block size does not affect the outcome. For block 
size of 64, the reconstruction time demonstrates a degree of 
nonlinearity with respect to CR. Fig. 8 compares the effect of 
changing the number of non-zero elements (2 and 30) in SBM 
when using no sparsifying dictionary. It is clear that NMSE 
and SSIM are not affected by the number of non-zero elements 
in SBM in this case. 

5. Discussion 
       
       In recent years, CS has gained considerable attention as 
a key enabler for transfer of large data rate and volume 
signals over a sensor network, primarily driven by emerging 
technologies such as the IoT. The choice of the DWT is 
normally based on its ability to represent complex signals 
given by the number of vanishing moments. A higher 
number of vanishing moments increases sparsity of a large 
class of signals being represented by the DWTs. However, 
incoherence with the sensing matrix also needs to be 
considered that can affect the quality of reconstructed signal. 
A high level of incoherence with the sensing matrix is 
required for accurate reconstruction of the EEG signal with 
minimal error. The Debaucchies DWT is widely employed 
for most applications as it has high number of vanishing 
moments. While Debaucchies-10 has an equal number of 
vanishing moments to Beylkin, Symlet-10 and Coiflet-5, it 
has one of the least incoherence levels with the sensing 
matrix. The Debaucchies-10 DWT produces a lower quality 
of reconstructed signal with higher errors and lower accuracy 
in comparison. Although a high number of vanishing 
moments may indicate an increase in sparsity of a large class 
of signals, incoherence of the DWT with the sensing matrix 
antecedence the former for accurate reconstruction of the 
EEG signal. To reduce the complexity of implementation 
among those having similar values of incoherence and 
vanishing moments, dictionaries with lower number of filter 
coefficients can be implemented to minimize the order of 
complexity with a view to reduce the power requirements in 
EEG data transmission.  
       An interesting demonstration in this paper is that 
Beylkin and DCT lead to a similar performance quality 
(DCT only slightly better). Furthermore, using dictionary 
only offers tangible improvement for CR=80% and smaller 
block sizes. At CR=90% the error levels and dissimilarity are 
high to a level that all the plots converge irrespective of using 
dictionary or not and the block size. Looking at the example 
data in Fig. 6, at higher CR levels more high frequency 
content is lost. Therefore, while NMSE and SSIM gave 
stringent figures to compare different cases, this comparison 
cannot necessarily be extended to evaluating clinical 
outcome. Some applications may only be interested in low 

frequency events, in which case CR>80% may lead to 
acceptable outcome. 

6. Conclusion 

      In this study we proposed a framework for the selection 
of DWT dictionary used in tandem with SBM as the sensing 
matrix and STSBL method as the reconstruction algorithm. 
It was demonstrated that in selecting the dictionary its 
incoherence with the sensing matrix as well as its number of 
vanishing moments should be considered at the same time. 
Amongst the DWT dictionaries we studied, Beylkin led to 
the best performance. This indicates that incoherence 
presumably has a slightly stronger impact on the outcome 
based on the methods used in this paper. It was shown in 
comparing Beylkin, DCT and using no dictionary at all that 
using dictionary only leads to improved performance for 
CR=80% and for smaller block sizes.  Further work could be 
directed at identifying the exact clinical implications based 
on specific pathologies. In addition, there have been efforts 
to develop data-driven schemes for learning the best 
sparsifying dictionaries as well as using Deep Neural 
Network (DNN) for reconstructing the compressed signals 
[22]-[25]. Considering these methods for further 
benchmarking could be a promising direction for future 
research. 
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