3,575 research outputs found

    Energy consistent framework for continuously evolving 3D crack propagation

    Get PDF
    This paper presents a formulation for brittle fracture in 3D elastic solids within the context of configurational mechanics. The local form of the first law of thermodynamics provides a condition for equilibrium of the crack front. The direction of the crack propagation is shown to be given by the direction of the configurational forces on the crack front that maximise the local dissipation. The evolving crack front is continuously resolved by the finite element mesh, without the need for face splitting or the use of enrichment techniques. A monolithic solution strategy is adopted, solving simultaneously for both the material displacements (i.e. crack extension) and the spatial displacements, is adopted. In order to trace the dissipative loading path, an arc-length procedure is developed that controls the incremental crack area growth. In order to maintain mesh quality, smoothing of the mesh is undertaken as a continuous process, together with face flipping, node merging and edge splitting where necessary. Hierarchical basis functions of arbitrary polynomial order are adopted to increase the order of approximation without the need to change the finite element mesh. Performance of the formulation is demonstrated by means of three representative numerical simulations, demonstrating both accuracy and robustness.Comment: 35 pages, 17 figure

    Recent Milestones in Unraveling the Full-Field Structure of Dynamic Shear Cracks and Fault Ruptures in Real-Time: From Photoelasticity to Ultrahigh-Speed Digital Image Correlation

    Get PDF
    The last few decades have seen great achievements in dynamic fracture mechanics. Yet, it was not possible to experimentally quantify the full-field behavior of dynamic fractures, until very recently. Here, we review our recent work on the full-field quantification of the temporal evolution of dynamic shear ruptures. Our newly developed approach based on digital image correlation combined with ultrahigh-speed photography has revolutionized the capabilities of measuring highly transient phenomena and enabled addressing key ques- tions of rupture dynamics. Recent milestones include the visualization of the complete displacement, particle velocity, strain, stress and strain rate fields near growing ruptures, capturing the evolution of dynamic friction during individual rupture growth, and the detailed study of rupture speed limits. For example, dynamic friction has been the big- gest unknown controlling how frictional ruptures develop but it has been impossible, until now, to measure dynamic friction during spontaneous rupture propagation and to understand its dependence on other quantities. Our recent measurements allow, by simul- taneously tracking tractions and sliding speeds on the rupturing interface, to disentangle its complex dependence on the slip, slip velocity, and on their history. In another application, we have uncovered new phenomena that could not be detected with previous methods, such as the formation of pressure shock fronts associated with “supersonic” propagation of shear ruptures in viscoelastic materials where the wave speeds are shown to depend strongly on the strain rate

    Strain-injection and crack-path field techniques for 3D crack-propagation modelling in quasi-brittle materials

    Get PDF
    This paper presents a finite element approach for modelling three-dimensional crack propagation in quasi-brittle materials, based on the strain injection and the crack-path field techniques. These numerical techniques were already tested and validated by static and dynamic simulations in 2D classical benchmarks [Dias et al., in: Monograph CIMNE No-134. International Center for Numerical Methods in Engineering, Barcelona, (2012); Oliver et al. in Comput Methods Appl Mech Eng 274:289–348, (2014); Lloberas-Valls et al. in Comput Methods Appl Mech Eng 308:499–534, (2016)] and, also, for modelling tensile crack propagation in real concrete structures, like concrete gravity dams [Dias et al. in Eng Fract Mech 154:288–310, (2016)]. The main advantages of the methodology are the low computational cost and the independence of the results on the size and orientation of the finite element mesh. These advantages were highlighted in previous works by the authors and motivate the present extension to 3D cases. The proposed methodology is implemented in the finite element framework using continuum constitutive models equipped with strain softening and consists, essentially, in injecting the elements candidate to capture the cracks with some goal oriented strain modes for improving the performance of the injected elements for simulating propagating displacement discontinuities. The goal-oriented strain modes are introduced by resorting to mixed formulations and to the Continuum Strong Discontinuity Approach (CSDA), while the crack position inside the finite elements is retrieved by resorting to the crack-path field technique. Representative numerical simulations in 3D benchmarks show that the advantages of the methodology already pointed out in 2D are kept in 3D scenariosPeer ReviewedPostprint (author's final draft

    Average crack-front velocity during subcritical fracture propagation in a heterogeneous medium

    Get PDF
    We study the average velocity of crack fronts during stable interfacial fracture experiments in a heterogeneous quasibrittle material under constant loading rates and during long relaxation tests. The transparency of the material (polymethylmethacrylate) allows continuous tracking of the front position and relation of its evolution to the energy release rate. Despite significant velocity fluctuations at local scales, we show that a model of independent thermally activated sites successfully reproduces the large-scale behavior of the crack front for several loading conditions

    Strain-injection and crack-path field techniques for 3D crack-propagation modelling in quasi-brittle materials

    Get PDF
    This paper presents a finite element approach for modelling three-dimensional crack propagation in quasi-brittle materials, based on the strain injection and the crack-path field techniques. These numerical techniques were already tested and validated by static and dynamic simulations in 2D classical benchmarks [Dias et al., in: Monograph CIMNE No-134. International Center for Numerical Methods in Engineering, Barcelona, (2012); Oliver et al. in Comput Methods Appl Mech Eng 274:289–348, (2014); Lloberas-Valls et al. in Comput Methods Appl Mech Eng 308:499–534, (2016)] and, also, for modelling tensile crack propagation in real concrete structures, like concrete gravity dams [Dias et al. in Eng Fract Mech 154:288–310, (2016)]. The main advantages of the methodology are the low computational cost and the independence of the results on the size and orientation of the finite element mesh. These advantages were highlighted in previous works by the authors and motivate the present extension to 3D cases. The proposed methodology is implemented in the finite element framework using continuum constitutive models equipped with strain softening and consists, essentially, in injecting the elements candidate to capture the cracks with some goal oriented strain modes for improving the performance of the injected elements for simulating propagating displacement discontinuities. The goal-oriented strain modes are introduced by resorting to mixed formulations and to the Continuum Strong Discontinuity Approach (CSDA), while the crack position inside the finite elements is retrieved by resorting to the crack-path field technique. Representative numerical simulations in 3D benchmarks show that the advantages of the methodology already pointed out in 2D are kept in 3D scenario

    Numerical investigation of bone adaptation to exercise and fracture in Thoroughbred racehorses

    Get PDF
    Third metacarpal bone (MC3) fracture has a massive welfare and economic impact on horse racing, representing 45% of all fatal lower limb fractures, which in themselves represent more than 80% of reasons for death or euthanasia on the UK racecourses. Most of these fractures occur due to the accumulation of tissue fatigue as a result of repetitive loading rather than a specific traumatic event. Despite considerable research in the field, including applying various diagnostic methods, it still remains a challenge to accurately predict the fracture risk and prevent this type of injury. The objective of this thesis is to develop computational tools to quantify bone adaptation and resistance to fracture, thereby providing the basis for a viable and robust solution. Recent advances in subject-specific finite element model generation, for example computed tomography imaging and efficient segmentation algorithms, have significantly improved the accuracy of finite element modelling. Numerical analysis techniques are widely used to enhance understanding of fracture in bones and provide better insight into relationships between load transfer and bone morphology. This thesis proposes a finite element based framework allowing for integrated simulation of bone remodelling under specific loading conditions, followed by the evaluation of its fracture resistance. Accurate representation of bone geometry and heterogeneous material properties are obtained from calibrated computed tomography scans.The material mapping between CT-scan data and discretised geometries for the finite element method is carried out by using Moving Least Squares approximation and L2-projection. Thus is then used for numerical investigations and assessment of density gradients at the common site of fracture. Bone is able to adapt its density to changes in external conditions. This property is one of the most important mechanisms for the development of resistance to fracture. Therefore, a finite element approach for simulating adaptive bone changes (also called bone remodelling) is proposed. The implemented method is based on a phenomenological model of the macroscopic behaviour of bone based on the thermodynamics of open systems. Numerical results showed that the proposed technique has the potential to accurately simulate the long-term bone response to specified training conditions and also improve possible treatment options for bone implants. Assessment of the fracture risk was conducted with crack propagation analysis. The potential of two different approaches was investigated: smeared phase-field and discrete configurational mechanics approach. The popular phase-field method represents a crack by a smooth damage variable leading to a phase-field approximation of the variational formulation for brittle fracture. A robust solution scheme was implemented using a monolithic solution scheme with arc-length control. In the configurational mechanics approach, the driving forces, and fracture energy release rate, are expressed in terms of nodal quantities, enabling a fully implicit formulation for modelling the evolving crack front. The approach was extended for the first time to capture the influence of heterogeneous density distribution. The outcomes of this study showed that discrete and smeared crack approximations are capable of predicting crack paths in three-dimensional heterogeneous bodies with comparable results. However, due to the necessity of using significantly finer meshes, phase-field was found to be less numerically efficient. Finally, the current state of the framework's development was assessed using numerical simulations for bone adaptation and subsequent fracture propagation, including analysis of an equine metacarpal bone. Numerical convergence was demonstrated for all examples, and the use of singularity elements proved to further improve the rate of convergence. It was shown that bone adaptation history and bone density distribution influence both fracture resistance and the resulting crack path. The promising results of this study offer a~novel framework to simulate changes in the bone structure in response to exercise and quantify the likelihood of a fracture
    • 

    corecore