211 research outputs found

    Power and Energy Optimized Approach towards Sustainable Mobile Ad-hoc Networks and IoT

    Get PDF
    Investigating how real-time applications in sectors like healthcare, agriculture, construction, and manufacturing can enhance their effectiveness and sustainability through the use of autonomous sensor technologies, green computing, and big data analytics is part of the work with sustainable approaches for optimising performance of networks. This authoritative guide exposes the drawbacks of conventional technology and provides techniques and tactics for addressing Quality of Service (QOS) issues and enhancing network performance. It brings together a broad team of subject-matter specialists. Several in-depth chapters cover topics like blockchain-assisted secure data sharing, intelligent management of ad hoc networks, smart 5G Internet of Things scenarios, and the use of artificial intelligence (AI), machine learning (ML), and learning techniques (DL) techniques in smart healthcare, smart factory, and smart agriculture

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    Energy Management in RFID-Sensor Networks: Taxonomy and Challenges

    Get PDF
    Ubiquitous Computing is foreseen to play an important role for data production and network connectivity in the coming decades. The Internet of Things (IoT) research which has the capability to encapsulate identification potential and sensing capabilities, strives towards the objective of developing seamless, interoperable and securely integrated systems which can be achieved by connecting the Internet with computing devices. This gives way for the evolution of wireless energy harvesting and power transmission using computing devices. Radio Frequency (RF) based Energy Management (EM) has become the backbone for providing energy to wireless integrated systems. The two main techniques for EM in RFID Sensor Networks (RSN) are Energy Harvesting (EH) and Energy Transfer (ET). These techniques enable the dynamic energy level maintenance and optimisation as well as ensuring reliable communication which adheres to the goal of increased network performance and lifetime. In this paper, we present an overview of RSN, its types of integration and relative applications. We then provide the state-of-the-art EM techniques and strategies for RSN from August 2009 till date, thereby reviewing the existing EH and ET mechanisms designed for RSN. The taxonomy on various challenges for EM in RSN has also been articulated for open research directives

    Trust-based energy efficient routing protocol for wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) consist of a number of distributed sensor nodes that are connected within a specified area. Generally, WSN is used for monitoring purposes and can be applied in many fields including health, environmental and habitat monitoring, weather forecasting, home automation, and in the military. Similar, to traditional wired networks, WSNs require security measures to ensure a trustworthy environment for communication. However, due to deployment scenarios nodes are exposed to physical capture and inclusion of malicious node led to internal network attacks hence providing the reliable delivery of data and trustworthy communication environment is a real challenge. Also, malicious nodes intentionally dropping data packets, spreading false reporting, and degrading the network performance. Trust based security solutions are regarded as a significant measure to improve the sensor network security, integrity, and identification of malicious nodes. Another extremely important issue for WSNs is energy conversation and efficiency, as energy sources and battery capacity are often limited, meaning that the implementation of efficient, reliable data delivery is an equally important consideration that is made more challenging due to the unpredictable behaviour of sensor nodes. Thus, this research aims to develop a trust and energy efficient routing protocol that ensures a trustworthy environment for communication and reliable delivery of data. Firstly, a Belief based Trust Evaluation Scheme (BTES) is proposed that identifies malicious nodes and maintains a trustworthy environment among sensor nodes while reducing the impact of false reporting. Secondly, a State based Energy Calculation Scheme (SECS) is proposed which periodically evaluates node energy levels, leading to increased network lifetime. Finally, as an integrated outcome of these two schemes, a Trust and Energy Efficient Path Selection (TEEPS) protocol has been proposed. The proposed protocol is benchmarked with A Trust-based Neighbour selection system using activation function (AF-TNS), and with A Novel Trust of dynamic optimization (Trust-Doe). The experimental results show that the proposed protocol performs better as compared to existing schemes in terms of throughput (by 40.14%), packet delivery ratio (by 28.91%), and end-to-end delay (by 41.86%). In conclusion, the proposed routing protocol able to identify malicious nodes provides a trustworthy environment and improves network energy efficiency and lifetime

    Performance Comparison Between VoLTE and non-VoLTE Voice Calls During Mobility in Commercial Deployment: A Drive Test-Based Analysis

    Full text link
    The optimization of network performance is vital for the delivery of services using standard cellular technologies for mobile communications. Call setup delay and User Equipment (UE) battery savings significantly influence network performance. Improving these factors is vital for ensuring optimal service delivery. In comparison to traditional circuit-switched voice calls, VoLTE (Voice over LTE) technology offers faster call setup durations and better battery-saving performance. To validate these claims, a drive test was carried out using the XCAL drive test tool to collect real-time network parameter details in VoLTE and non-VoLTE voice calls. The findings highlight the analysis of real-time network characteristics, such as the call setup delay calculation, battery-saving performance, and DRX mechanism. The study contributes to the understanding of network optimization strategies and provides insights for enhancing the quality of service (QoS) in mobile communication networks. Examining VoLTE and non-VoLTE operations, this research highlights the substantial energy savings obtained by VoLTE. Specifically, VoLTE saves approximately 60.76% of energy before the Service Request and approximately 38.97% of energy after the Service Request. Moreover, VoLTE to VoLTE calls have a 72.6% faster call setup delay than non-VoLTE-based LTE to LTE calls, because of fewer signaling messages required. Furthermore, as compared to non-VoLTE to non-VoLTE calls, VoLTE to non-VoLTE calls offer an 18.6% faster call setup delay. These results showcase the performance advantages of VoLTE and reinforce its potential for offering better services in wireless communication networks.Comment: Accepted for presentation and Publication on the IEEE 10th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2023

    An energy-efficient and deadline-aware workflow scheduling algorithm in the fog and cloud environment

    Get PDF
    peer reviewedThe Internet of Things (IoT) is constantly evolving. The variety of IoT applications has caused new demands to emerge on users’ part and competition between computing service providers. On the one hand, an IoT application may exhibit several important criteria, such as deadline and runtime simultaneously, and it is confronted with resource limitations and high energy consumption on the other hand. This has turned to adopting a computing environment and scheduling as a fundamental challenge. To resolve the issue, IoT applications are considered in this paper as a workflow composed of a series of interdependent tasks. The tasks in the same workflow (at the same level) are subject to priorities and deadlines for execution, making the problem far more complex and closer to the real world. In this paper, a hybrid Particle Swarm Optimization and Simulated Annealing algorithm (PSO–SA) is used for prioritizing tasks and improving fitness function. Our proposed method managed the task allocation and optimized energy consumption and makespan at the fog-cloud environment nodes. The simulation results indicated that the PSO–SA enhanced energy and makespan by 5% and 9% respectively on average compared with the baseline algorithm (IKH-EFT)

    Internet of Things Applications - From Research and Innovation to Market Deployment

    Get PDF
    The book aims to provide a broad overview of various topics of Internet of Things from the research, innovation and development priorities to enabling technologies, nanoelectronics, cyber physical systems, architecture, interoperability and industrial applications. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from technology to international cooperation and the global "state of play".The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level. Internet of Things is creating a revolutionary new paradigm, with opportunities in every industry from Health Care, Pharmaceuticals, Food and Beverage, Agriculture, Computer, Electronics Telecommunications, Automotive, Aeronautics, Transportation Energy and Retail to apply the massive potential of the IoT to achieving real-world solutions. The beneficiaries will include as well semiconductor companies, device and product companies, infrastructure software companies, application software companies, consulting companies, telecommunication and cloud service providers. IoT will create new revenues annually for these stakeholders, and potentially create substantial market share shakeups due to increased technology competition. The IoT will fuel technology innovation by creating the means for machines to communicate many different types of information with one another while contributing in the increased value of information created by the number of interconnections among things and the transformation of the processed information into knowledge shared into the Internet of Everything. The success of IoT depends strongly on enabling technology development, market acceptance and standardization, which provides interoperability, compatibility, reliability, and effective operations on a global scale. The connected devices are part of ecosystems connecting people, processes, data, and things which are communicating in the cloud using the increased storage and computing power and pushing for standardization of communication and metadata. In this context security, privacy, safety, trust have to be address by the product manufacturers through the life cycle of their products from design to the support processes. The IoT developments address the whole IoT spectrum - from devices at the edge to cloud and datacentres on the backend and everything in between, through ecosystems are created by industry, research and application stakeholders that enable real-world use cases to accelerate the Internet of Things and establish open interoperability standards and common architectures for IoT solutions. Enabling technologies such as nanoelectronics, sensors/actuators, cyber-physical systems, intelligent device management, smart gateways, telematics, smart network infrastructure, cloud computing and software technologies will create new products, new services, new interfaces by creating smart environments and smart spaces with applications ranging from Smart Cities, smart transport, buildings, energy, grid, to smart health and life. Technical topics discussed in the book include: • Introduction• Internet of Things Strategic Research and Innovation Agenda• Internet of Things in the industrial context: Time for deployment.• Integration of heterogeneous smart objects, applications and services• Evolution from device to semantic and business interoperability• Software define and virtualization of network resources• Innovation through interoperability and standardisation when everything is connected anytime at anyplace• Dynamic context-aware scalable and trust-based IoT Security, Privacy framework• Federated Cloud service management and the Internet of Things• Internet of Things Application
    corecore