7,372 research outputs found

    Distributional Analysis for Model Predictive Deferrable Load Control

    Get PDF
    Deferrable load control is essential for handling the uncertainties associated with the increasing penetration of renewable generation. Model predictive control has emerged as an effective approach for deferrable load control, and has received considerable attention. In particular, previous work has analyzed the average-case performance of model predictive deferrable load control. However, to this point, distributional analysis of model predictive deferrable load control has been elusive. In this paper, we prove strong concentration results on the distribution of the load variance obtained by model predictive deferrable load control. These concentration results highlight that the typical performance of model predictive deferrable load control is tightly concentrated around the average-case performance.Comment: 12 pages, technical report for CDC 201

    Bi-directional coordination of plug-in electric vehicles with economic model predictive control

    Get PDF
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. The emergence of plug-in electric vehicles (PEVs) is unveiling new opportunities to de-carbonise the vehicle parcs and promote sustainability in different parts of the globe. As battery technologies and PEV efficiency continue to improve, the use of electric cars as distributed energy resources is fast becoming a reality. While the distribution network operators (DNOs) strive to ensure grid balancing and reliability, the PEV owners primarily aim at maximising their economic benefits. However, given that the PEV batteries have limited capacities and the distribution network is constrained, smart techniques are required to coordinate the charging/discharging of the PEVs. Using the economic model predictive control (EMPC) technique, this paper proposes a decentralised optimisation algorithm for PEVs during the grid-To-vehicle (G2V) and vehicle-To-grid (V2G) operations. To capture the operational dynamics of the batteries, it considers the state-of-charge (SoC) at a given time as a discrete state space and investigates PEVs performance in V2G and G2V operations. In particular, this study exploits the variability in the energy tariff across different periods of the day to schedule V2G/G2V cycles using real data from the university's PEV infrastructure. The results show that by charging/discharging the vehicles during optimal time partitions, prosumers can take advantage of the price elasticity of supply to achieve net savings of about 63%

    Enhancing the efficiency of electricity utilization through home energy management systems within the smart grid framework

    Get PDF
    The concept behind smart grids is the aggregation of “intelligence” into the grid, whether through communication systems technologies that allow broadcast/data reception in real-time, or through monitoring and systems control in an autonomous way. With respect to the technological advancements, in recent years there has been a significant increment in devices and new strategies for the implementation of smart buildings/homes, due to the growing awareness of society in relation to environmental concerns and higher energy costs, so that energy efficiency improvements can provide real gains within modern society. In this perspective, the end-users are seen as active players with the ability to manage their energy resources, for example, microproduction units, domestic loads, electric vehicles and their participation in demand response events. This thesis is focused on identifying application areas where such technologies could bring benefits for their applicability, such as the case of wireless networks, considering the positive and negative points of each protocol available in the market. Moreover, this thesis provides an evaluation of dynamic prices of electricity and peak power, using as an example a system with electric vehicles and energy storage, supported by mixed-integer linear programming, within residential energy management. This thesis will also develop a power measuring prototype designed to process and determine the main electrical measurements and quantify the electrical load connected to a low voltage alternating current system. Finally, two cases studies are proposed regarding the application of model predictive control and thermal regulation for domestic applications with cooling requirements, allowing to minimize energy consumption, considering the restrictions of demand, load and acclimatization in the system

    Effectiveness of smart charging of electric vehicles under power limitations

    Get PDF
    This article investigates charging strategies for plug-in hybrid electric vehicles (PHEV) as part of the energy system. The objective was to increase the combined all-electric mileage (total distance driven using only the traction batteries in each PHEV) when the total charging power at each workplace is subject to severe limitations imposed by the energy system. In order to allocate this power optimally, different input variables, such as state-of-charge, battery size, travel distance, and parking time, were considered. The required vehicle mobility was generated using a novel agent-based model that describes the spatiotemporal movement of individual PHEVs. The results show that, in the case of Helsinki (Finland), smart control strategies could lead to an increase of over 5% in the all-electric mileage compared to a no-control strategy. With a high prediction error, or with a particularly small or large battery, the benefits of smart charging fade off. Smart PHEV charging strategies, when applied to the optimal allocation of limited charging power between the cars of a vehicle fleet, seem counterintuitively to provide only a modest increase in the all-electric mileage. A simple charging strategy based on allocating power to PHEVs equally could thus perform sufficiently well. This finding may be important for the future planning of smart grids as limiting the charging power of larger PHEV fleets will sometimes be necessary as a result of grid restrictions.Peer reviewe

    Electric Vehicle Battery Storage Concentric Intelligent Home Energy Management System Using Real Life Data Sets

    Get PDF
    To meet the world’s growing energy needs, photovoltaic (PV) and electric vehicle (EV) systems are gaining popularity. However, intermittent PV power supply, changing consumer load needs, and EV storage limits exacerbate network instability. A model predictive intelligent energy management system (MP-iEMS) integrated home area power network (HAPN) is being proposed to solve these challenges. It includes forecasts of PV generation and consumers’ load demand for various seasons of the year, as well as the constraints on EV storage and utility grid capacity. This paper presents a multi-timescale, cost-effective scheduling and control strategy of energy distribution in a HAPN. The scheduling stage of the MP-iEMS applies a receding horizon rule-based mixed integer expert system.To show the precise MP-iEMS capabilities, the suggested technique employs a case study of real-life annual data sets of home energy needs, EV driving patterns, and EV battery (dis)charging patterns. Annual comparison of unique assessment indices (i.e., penetration levels and utilization factors) of various energy sources is illustrated in the results. The MP-iEMS ensures users’ comfort and low energy costs (i.e., relative 13% cost reduction). However, a battery life-cycle degradation model calculates an annual decline in the storage capacity loss of up to 0.013%

    Optimal Scheduling of Home Energy Management System with Plug-in Electric Vehicles Using Model Predictive Control

    Get PDF
    abstract: With the growing penetration of plug-in electric vehicles (PEVs), the impact of the PEV charging brought to the utility grid draws more and more attention. This thesis focused on the optimization of a home energy management system (HEMS) with the presence of PEVs. For a household microgrid with photovoltaic (PV) panels and PEVs, a HEMS using model predictive control (MPC) is designed to achieve the optimal PEV charging. Soft electric loads and an energy storage system (ESS) are also considered in the optimization of PEV charging in the MPC framework. The MPC is solved through mixed-integer linear programming (MILP) by considering the relationship of energy flows in the optimization problem. Through the simulation results, the performance of optimization results under various electricity price plans is evaluated. The influences of PV capacities on the optimization results of electricity cost are also discussed. Furthermore, the hardware development of a microgrid prototype is also described in this thesis.Dissertation/ThesisMasters Thesis Engineering 201

    Energy Management System for Smart Homes:Modeling, Control, Performance and Profit Assessment

    Get PDF

    Energy Management Systems for Optimal Operation of Electrical Micro/Nanogrids

    Get PDF
    Energy management systems (EMSs) are nowadays considered one of the most relevant technical solutions for enhancing the efficiency, reliability, and economy of smart micro/nanogrids, both in terrestrial and vehicular applications. For this reason, the recent technical literature includes numerous technical contributions on EMSs for residential/commercial/vehicular micro/nanogrids that encompass renewable generators and battery storage systems (BSS) The volume “Energy Management Systems for Optimal Operation of Electrical Micro/Nanogrids”, was released as a Special Issue of the journal Energies, published by MDPI, with the aim of expanding the knowledge on EMSs for the optimal operation of electrical micro/nanogrids by presenting topical and high-quality research papers that address open issues in the identified technical field. The volume is a collection of seven research papers authored by research teams from several countries, where different hot topics are accurately explored. The reader will have the possibility to benefit from original scientific results concerning, in particular, the following key topics: distribution systems; smart home/building; battery energy storage; demand uncertainty; energy forecasting; model predictive control; real-time control, microgrid planning; and electrical vehicles

    Komponentenbasierte dynamische Modellierung von Energiesystemen und Energiemanagement-Strategien fĂĽr ein intelligentes Stromnetz im Heimbereich

    Get PDF
    The motivation of this work is to present an energy cost reduction concept in a home area power network (HAPN) with intelligent generation and flexible load demands. This study endeavors to address the energy management system (EMS) and layout-design challenges faced by HAPN through a systematic design approach. The growing demand for electricity has become a significant burden on traditional power networks, prompting power engineers to seek ways to improve their efficiency. One such solution is to integrate dispersed generation sources, such as photovoltaic (PV) and storage systems, with an appropriate control mechanism at the distribution level. In recent years, there has been a significant increase in interest in the installation of PV-Battery systems, due to their potential to reduce carbon emissions and lower energy costs. This research proposes an optimal economic power dispatch strategy using Model Predictive Control (MPC) to enhance the overall performance of HAPN. A hybrid AC/DC microgrid concept is proposed to address the control choices made by the appliance scheduling and hybrid switching approaches based on a linear programming optimization framework. The suggested optimization criteria improve consumer satisfaction, minimize grid disconnections, and lower overall energy costs by deploying inexpensive clean energy generation and control. Various examples from actual case study demonstrate the use of the established EMS and design methodology.Die Motivation dieser Arbeit besteht darin, ein Konzept zur Senkung der Energiekosten in einem Heimnetzwerk (HAPN) mit intelligenter Erzeugung und exiblen Lastanforderungen vorzustellen. Im Rahmen dieser Forschungsarbeit wird ein Entwurf für ein HAPN entwickelt, indem das Energiemanagementsystem (EMS) und der Entwurf des Layouts auf der Grundlage des Systemmodells und der betrieblichen Anforderungen gelöst werden. Die steigende Nachfrage nach Elektrizität ist für traditionelle Stromnetze kostspielig und infrastrukturintensiv. Daher konzentrieren sich Energietechniker darauf, die Effizienz der derzeitigen Netze zu erhöhen. Dies kann durch die Integration verteilter Erzeugungsanlagen (z. B. Photovoltaik (PV), Speicher) mit einem geeigneten Kontrollmechanismus für das Energiemanagement auf der Verteilungsseite erreicht werden. Darüber hinaus hat das Interesse an der Installation von PV-Batterie-basierten Systemen aufgrund der Reduzierung der CO2-Emissionen und der Senkung der Energiekosten erheblich zugenommen. Es wird eine optimale wirtschaftliche Strategie für den Energieeinsatz unter Verwendung einer modellprädiktiven Steuerung (MPC) entwickelt. Es wird zudem ein hybrides AC/DC-Microgrid-Konzept vorgeschlagen, um die Steuerungsentscheidungen, die von den Ansätzen der Geräteplanung und der hybriden Umschaltung getroffen werden, auf der Grundlage eines linearen Programmierungsoptimierungsrahmens zu berücksichtigen. Die vorgeschlagenen Optimierungskriterien verbessern die Zufriedenheit der Verbraucher, minimieren Netzabschaltungen und senken die Gesamtenergiekosten durch den Einsatz von kostengünstiger und sauberer Energieerzeugung. Verschiedene Beispiele aus einer Fallstudie demonstrieren den Einsatz des entwickelten EMS und der Entwurfsmethodik
    • …
    corecore