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ABSTRACT 

 

With the growing penetration of plug-in electric vehicles (PEVs), the impact of the 

PEV charging brought to the utility grid draws more and more attention. This thesis focused 

on the optimization of a home energy management system (HEMS) with the presence of 

PEVs. For a household microgrid with photovoltaic (PV) panels and PEVs, a HEMS using 

model predictive control (MPC) is designed to achieve the optimal PEV charging. Soft 

electric loads and an energy storage system (ESS) are also considered in the optimization 

of PEV charging in the MPC framework. The MPC is solved through mixed-integer linear 

programming (MILP) by considering the relationship of energy flows in the optimization 

problem. Through the simulation results, the performance of optimization results under 

various electricity price plans is evaluated. The influences of PV capacities on the 

optimization results of electricity cost are also discussed. Furthermore, the hardware 

development of a microgrid prototype is also described in this thesis.  
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CHAPTER 1. INTRODUCTION 

1.1 Background and Motivation 

 

Along with the growing penetration of plug-in electric vehicles (PEVs) in the 

automobile market, including both plug-in hybrid electric vehicles and pure electric 

vehicles, the adoption and implementation of PEV charging from the utility grid initiates 

some new challenges. For example, the loads for charging a PEV with a charging power 

of 19kW at 80A and 240V, which is known as the AC level 2 charging standard, can be 

almost 20 times of that for supporting a typical North American home [1]. Furthermore, 

for places where multiple PEVs and relatively close charging schedules are involved, like 

PEV charging station in a parking lot, the problem of load imbalance could be severe and 

thus affect the distribution grid [2]. Therefore, the PEV charging strategy or smart charging 

needs to be systematically explored. Another motivation for studying this topic is that we 

would like to find a way to calculate an optimal solution on energy management strategy 

for the users.  

1.2 Problem Statement 

 

To address problems brought by PEV charging, different studies were conducted on 

different levels: smart grid oriented, aggregator oriented, and customer oriented [3]. 

Different methods have different optimization goals and control access, based on different 

scales of the controlled systems. Smart grid oriented PEV charging focuses on the control 

of power system on a large scale, especially on the stability and reliability of a smart grid. 

For example, voltage regulation and frequency regulation, as well as load flattening. In 

studies on smart grid oriented PEV charging, the economic benefits are usually not 
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considered as an optimization goal. Aggregator oriented is a perspective between the power 

system and single users. The aggregator can be local public facilities like parking lots or 

residential areas. It can be regarded as a local utility grid that is a piece of the large power 

grid, and connect it with the customer. The aggregator is responsible for the stability and 

reliability of the electricity, and also has the concern of economic benefits. Customer 

oriented control represents the users’ interest, which is mainly cost minimization.  

There are many scenarios that include PEV charging, and each has a different 

requirement. Thus, different system structures are designed. For example, for a parking lot 

for workplaces capable of PEV charging, the charging time often happens in the daytime. 

Thus the design of using PV generation without ESS is often proposed [4] [5]. The ESS is 

not needed because the charging curve matches the power generation curve of PV, which 

all reach its maximum at mid-day. Furthermore, the type of PEV charger varies, mainly 

can be divided into two types: DC charger and AC charger. DC charger means the charger 

is connected to DC bus, this type of design usually appears in charging infrastructures with 

large scales [6] [7], DC charger supports fast charging which is convenient for such 

scenarios. AC charger, however, often has less maximum available power for PEV 

charging, is used more in places where a DC bus is not present, especially in the household 

scenario.  

In this study, a customer-oriented PEV charging optimization problem is discussed. 

Specifically, if the problem of PEV charging for every single node in a microgrid, namely 

a single household, is addressed and solved, it will also benefit the regional power grid. 

One promising method to reduce potentially negative influences on the utility grid with the 
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PEV charging is to introduce renewable energy sources in the household microgrid. Among 

various renewable energy sources, photovoltaic (PV) panel module is one of the widely 

appropriate choices for the advantages of reduced purchase cost, environmental impact, 

and maintenance [4].  

For most household applications, the pattern of load requirements typically does not 

match the generation curve of PV panels. Thus, more flexibility and capability to utilize 

and manage the generated energy is preferred.  An energy storage system (ESS), like an 

industrial battery, is usually introduced in a household microgrid together with a home 

energy management system (HEMS) for this purpose. In some studies [1] [8] [9], batteries 

in PEVs were regarded as ESS with the function of vehicle-to-load (V2L) or vehicle-to-

grid (V2G). However, for household applications, using PEV as ESS has several 

disadvantages. First, by allowing the battery of PEV charge energy back to the utility grid, 

the charger is required to be bi-directional, which is not yet fully developed in the market 

 

Figure 1. EMS diagram of a household microgrid with PEV. 
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and adds cost for initial investment. Second, if the vehicle is taken out of the household, 

the ESS is no longer available. When that occurs, the HEMS has no energy storage to 

utilize. Furthermore, if energy is drawn from the PEV before the PEV is driven out, it might 

leave the user with a less charged car.  Third, enabling V2G or V2L means a more frequent 

and intensive use of EV battery, which degrades the battery health thus the longevity of the 

battery life will be shorter than expected. Whether V2G and V2L could bring economic 

benefits or not was not easy to justify considering PEV battery degradation effects [10]. 

Instead, adding an extra set of batteries as ESS designed explicitly for the energy storage 

purpose is a traditional and more reasonable solution. Thus, extra batteries are applied as 

the ESS in this study. Figure 1 shows a typical household microgrid with PV power 

generation, ESS, and PEV. 

1.3 Literature Review 

 

When selecing the system structure, there are several considerations that need to be 

explored. One of them is to decide whether the charger of PEV should be connected to the 

DC side or the AC side. In literature, some studies addressed their research based on PEV 

charging themes with DC chargers. One [11] gave a review on PEV charging using PV 

power systems, which matched with the case defined in our study in many ways, except 

the scenario that is one with the main energy source being PV panels. Another study [12] 

demonstrated a similar configuration, which dedicated itself to the setup of charging 

stations for commercial buildings. Moreover, [13] used the same type of arrangement in 

the charging system of a parking garage designed for workplaces. To sum up, in real 
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applications, PEV charger connecting to DC side is suitable for the snenario of a parking 

lot with multiple PEV chargers.  

In the meantime, for a scenario of household charging, an AC charger is often used. A 

typical PEV-grid charging system for individual household themes, as well as for most of 

the public PEV charging applications, is to implement AC PEV chargers [14]. It is capable 

of slow/normal and semi-fast/medium PEV charging, with a relatively low initial 

installation cost compared to DC fast charging stations [15]. To make the study more 

focused, a main scenario need to be decided. Because Level 2 charging, which requires a 

240 V AC outlet, is typically described as the primary method for both private and public 

facilities [16], it is preferred that the PEV charger is connected to AC side. 

Studies about microgrids include different models. Some studies focused on relatively 

large scale systems or power grids including three phase loads. Thus,  it is reasonable to 

model the AC grid three-phased. Some studies focused more on power electronics, then 

the power electronic converters must be modeled. For this study, we are focusing on the 

energy management and its control strategy. Thus, from the control point of view, the 

energy flow of the system is the priority concern, and that is the reason the system is 

described as shown in Figure 1. 

Different methods were explored for HEMS considering different microgrid 

architecture and optimization strategies. In [17], a rule-based control for HEMS with ESS 

was proposed. Since no optimization was involved, neither energy consumption nor cost 

minimization could be achieved.  Although the minimization of load variances was 

discussed [1] [18], more literature was focused on energy cost optimization for a household 

microgrid. Different algorithms were applied to solve various mathematical optimization 
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problems, such as quadratic programming (QP) [1][18], stochastic dynamic programming 

(SDP) [19], and mixed-integer programming (MIP) [8][20][21][22]. In [20], mixed-integer 

linear programming (MILP) was used for HEMS optimization, with an additional feature 

of power factor maximization. In [21], the optimization was completed using a MILP 

solver and a heuristic technique separately. However, except [11], all aforementioned 

studies ignored the fact that the predicted values such as PV generation, load requirements 

might not equal to the actual value. Furthermore, the models of system dynamics might not 

be accurate enough. In [23], a modified stochastic predicted band was proposed to model 

uncertainties in the optimization problem. However, both [23] and [19] tried to model the 

uncertainty, but not compensate errors in the control.  

There is also a growing trend for home appliances to pursue the concept of smart home 

or home automation. In other words, more control accesses are available to some of the 

load requirements. In [9], a concept of “soft load” was introduced. A soft load means that 

one load requirement has flexible scheduling and can be shifted from one period to another 

(e.g., washing machine and dryer). Although PEV’s load requirement also falls into this 

category and can be regarded as a kind of soft loads, PEV loads might be unavailable if 

they are not at home. While flexible home loads are always available for charging. Thus, 

in this thesis, the term of the soft load is considered only for reschedulable household loads. 

As a control method capable of handling constrained optimization problems, model 

predictive control (MPC) has been widely applied in various industrial applications, 

including power systems [8] [22] [24]. By integrating a receding horizon prediction, the 

measured values can be updated at each control step. As a result, the deviations of the 

actual energy production and load profile from forecasted values could be compensated 
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[24]. In [22], MPC was used in HEMS to compensate the uncertainty of predicted values. 

However, the focus was mainly on HEMS without ESS and PEVs. In [8], MPC was used 

in a HEMS with PEV, which assumed the PEV battery as the only ESS. Thus, the 

complexity of the scheduling problem was reduced because there was only one control 

variable. As discussed before, the PEV battery is not an optimal selection as an ESS. 

1.4 Objectives 

 

A HEMS using MPC for a practical and reasonable microgrid configuration, shown in 

Figure 1, is explored in this paper. The system has both DC and AC buses linked together 

using a bi-directional DC-AC converter. PV modules and battery packs are all connected 

to the DC bus with a DC-DC converter. AC bus is connected to both the grid and the loads, 

and the loads include both household loads and EV charging loads.  

Moreover, with the trend of the smart home, users are given more control access to the 

home appliances. Thus we can also schedule some of the household load. The soft load is 

also considered and integrated into the MPC framework in this paper. Thus, there are 

multiple control variables, including the charging and discharging of the ESS, the charging 

of PEV as well as soft load scheduling. With the proposed MPC structure, it will be easy 

to compare different price plans, including consumer only or prosumer choices, and decide 

which plan gives the optimal result. In the simulation, different strategies of system 

operations based on different utility price plans are compared. To the authors ’  best 

knowledge, this is the first study that focuses on HEMS, with the presence of ESS, PEV, 

and electric soft loads using MPC for optimal scheduling in a household microgrid. 
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This thesis is mainly expanded from my submitted conference paper [25], the paper 

includes a large part of my work as a graduate student under the guidance of Prof. Yan 

Chen. Another part of my work relates to the development of the microgrid prototype, 

which is described in Chapter 4. 

The remaining part of this thesis is organized as follows. In Chapter 2, modeling of 

systems in the household microgrid is introduced. In Chapter 3, the hardware prototype is 

introduced. Chapter 4 described the model predictive control theory. In Chapter 5, the 

problem formulation of HEMS and the MILP algorithm used to solve the MPC is discussed 

and investigated. Chapter 6 provides the simulation parameters and results, together with 

explanations and discussions. The conclusions are made in Chapter 7.   
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CHAPTER 2. OVERVIEW OF MODELS 

 

The system, shown in Figure 1, consists of several components, whose model will be 

introduced part by part in this chapter. These model include equality and inequality 

relationships representing physical nature of these components. All the models of system 

components are combined together as constraints for the optimization problem. The 

objective function and the corresponding reformulations will be shown in the next chapter. 

2.1 Notations 

 

A prediction term represented in the form of 𝑣𝑎𝑙𝑢𝑒(𝑘|𝑡) means the value predicted for 

step 𝑘 at time 𝑡.  

Symbol Description 

Power parameters/variables 

𝑃𝑔𝑟𝑖𝑑(𝑘|𝑡) The power flow (in W) goes into/sell to the utility grid (< 0) or 

comes from/by from the utility grid (> 0). 

�̃�𝑔𝑒𝑛(𝑘|𝑡) 
Predicted value: the energy generated (in W) by PV panels. 

�̃�𝑙𝑜𝑎𝑑(𝑘|𝑡) Predicted value: the un-schedulable load requirement (in W) for 

HEMS. 

�̃�𝑒𝑣𝑐𝑜𝑛𝑗(𝑘|𝑡) Predicted value: the consumed energy (in W) of  jth PEV when 

driving.   

𝑝𝑒𝑣𝑗(𝑘|𝑡) Charging power (in W) of the PEV. 

𝑝𝑒𝑠𝑠(𝑘|𝑡) Charging/discharging power (in W) of the ESS. 

𝑝𝑠𝑙𝑜𝑎𝑑(𝑘|𝑡) Power for soft load requirements. 

Pgrid_min Lower bound of power flow 𝑃𝑔𝑟𝑖𝑑(𝑘|𝑡). 

Pgrid_max 
Upper bound of power flow 𝑃𝑔𝑟𝑖𝑑(𝑘|𝑡). 

Jmax Upper bound of total electricity consumption in the household. 
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Jsload Upper bound of total soft load consumption in the household, an 

integer multiple of 𝑝𝑠𝑙𝑜𝑎𝑑. 

Pev_char Upper bound for charging power of PEV (> 0). 

Pess_char Upper bound for charging power of ESS (> 0). 

Pess_dis 
Upper bound for discharging power of ESS (< 0). 

Psload_dis 
Fixed number of power rating for soft load requirements. 

Battery parameters/variables 

𝑏𝑒𝑣𝑗(𝑘) Battery charge (in Wh) of the jth PEV at time k. 

𝑏𝑒𝑠𝑠(𝑘) Battery charge (in Wh) of the ESS at time k 

Bevj_init Initial value of 𝑏𝑒𝑣𝑗. 

Bevj_min Lower bound of 𝑏𝑒𝑣𝑗. 

Bevj_max Upper bound of 𝑏𝑒𝑣𝑗. 

Bess_init Initial value of 𝑏𝑒𝑠𝑠. 

Bess_min Lower bound of 𝑏𝑒𝑠𝑠. 

Bess_max Upper bound of 𝑏𝑒𝑠𝑠. 

Indicating variables 

ηev_char PEV charging coefficient. 

ηess_char ESS charging coefficient. 

ηess_dis ESS discharging coefficient. 

�̃�𝑗(𝑘|𝑗) Predicted value: whether jth PEV is connected to HEMS  (= 0) or 

not  (= 1). 

𝑝𝑟𝑖𝑐𝑒+(𝑡) Electricity purchase rate (> 0).   

𝑝𝑟𝑖𝑐𝑒−(𝑡) Electricity sell rate (> 0).   

M Total number of PEVs 
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N Horizon length of MPC 

T Total iteration steps 

2.2 Prediction Models 

 

System dynamics in the formulation of MPC have characteristics of evolving in a 

receding horizon. The finite horizon of future states with a fixed length is continually 

shifted for optimization from one-time step to the next. Thus, the predicted values, together 

with pricing variables, have to be formatted to fit into the receding horizon control.  

The predicted values mainly consist of three parts: PV generation  

�̃�𝑔𝑒𝑛(𝑘|𝑡) , home load forecasting  �̃�𝑙𝑜𝑎𝑑(𝑘|𝑡)  and PEV states forecasting �̃�𝑒𝑣𝑐𝑜𝑛𝑗(𝑘|𝑡) , 

�̃�𝑗(𝑘|𝑡). These are all day-ahead predictions and are updated in every iteration step along 

with the receding horizon of MPC.  All predictions could be obtained through probability 

distribution models using historical data [26].  

For PV generation, different forecasting method can be applied. However, in cases 

where historical data can be accessed, a probabilistic model can be easily built using those 

statistical data via methods like Markov model [9] or autoregressive integrated moving 

average models (ARIMA) [27]. Household loads represent load requirement (except PEV 

charging requirement) in the home application, which can be described as schedulable and 

un-schedulable loads. The former, also called soft loads, is a type of load requirements that 

have flexible scheduling and can be shifted from one period to another (e.g., washing 

machine and dryer). In this study, the soft load is regarded as a control variable. The un-

schedulable load could be predicted by an autoregressive model [8].  The leaving and 

arriving time of PEV could also be predicted using a semi-Markov model [8]. Moreover, 
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the predicted travel length and consumed power of PEV could also be predicted. To 

increase the credibility of the predicted values, the accuracy of the prediction can be 

increased by using improved models, larger historical data sets, or giving the user access 

to determine their next day usage in prior. 

2.3 Power Balancing Models 

 

The balance of the power in the household microgrid is represented from (1) to (4): 

𝑃𝑔𝑟𝑖𝑑(𝑘|𝑡) = 𝑃𝑙𝑜𝑎𝑑(𝑘|𝑡) + 𝑃𝑔𝑒𝑛(𝑘|𝑡) + ∑ 𝑝𝑒𝑣𝑗(𝑘|𝑡)

𝑀

𝑗=1

+ 𝑝𝑒𝑠𝑠(𝑘|𝑡) + 𝑝𝑠𝑙𝑜𝑎𝑑(𝑘|𝑡) , 

(1) 

Pgrid_min ≤ 𝑃𝑔𝑟𝑖𝑑(𝑘|𝑡) ≤ Pgrid_max , (2) 

∑ 𝑃𝑔𝑟𝑖𝑑(𝑘|𝑡)∆t ≤ Jmax

𝑡+𝑇−1

𝑘=𝑡

 , (3) 

∑ 𝑃𝑠𝑙𝑜𝑎𝑑(𝑘|𝑡)∆t = Jsload .

𝑡+(Jsload/Psload_dis)−1

𝑘=𝑡

 (4) 

Equation (1) represents that the power flow in/out of the utility grid equals to the sum 

of consumed fixed load power, generated power, PEV charging power, ESS 

charging/discharging power and soft load power consumption. The power flow in/out of 

the utility grid is constrained in (2). The total power usage of the household microgrid in a 

day is limited in (3). The constraint for the soft loads is described in (4). The soft load 

considered in this paper follows the definition of soft load Type B [9], in which the 

requirement has to be satisfied before the end of the simulation (usually a 24-hour period) 

and cannot be stopped once it is started until the requirements are fulfilled. The relationship 

between the power variables and coefficients are referred in Figure 1. 
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2.4 PEV and ESS Models 

 

The model of PEV is described from (5) to (9). 

𝑏𝑒𝑣𝑗(𝑘 + 1|𝑡) = 𝑏𝑒𝑣𝑗(𝑘|𝑡) + [1 − �̃�𝑗(𝑘|𝑗)]𝜂𝑒𝑣_𝑐ℎ𝑎𝑟𝑝𝑒𝑣𝑗(𝑘|𝑡)∆𝑡

− �̃�𝑗(𝑘|𝑗)�̃�𝑒𝑣𝑐𝑜𝑛𝑗(𝑘|𝑡)∆𝑡 , 

(5) 

0 ≤ 𝑃𝑒𝑣𝑗(𝑘|𝑡) ≤ Pev_char , (6) 

Bevj_min ≤ 𝑏𝑒𝑣𝑗(𝑘) ≤ Bevj_max , (7) 

𝑃𝑒𝑣𝑗(𝑘|𝑡)�̃�𝑗(𝑘|𝑗) = 0 , (8) 

𝑏𝑒𝑣𝑗(𝑇) = Bevjinit
 . (9) 

Equation (5) stands for the state of charge (SOC) dynamics of PEV battery, while 

[1 − �̃�𝑗(𝑘|𝑡)]ηev_char𝑝𝑒𝑣𝑗(𝑘|𝑡)∆t represents the change of SOC when connected to the 

household microgrid. �̃�𝑗(𝑘|𝑡)�̃�𝑒𝑣𝑐𝑜𝑛𝑗(𝑘|𝑡)∆t represents the change of SOC when the PEV 

is disconnected to the household microgrid. Although different factors can affect the 

battery’s SOC and bring some randomness, such as route choices and traffic situations, 

only vehicle driving distance is considered in this paper for simplicity. The charging power 

and SOC are limited in (6) and (7), respectively. The condition that 𝑝𝑒𝑣𝑗 has an output only 

when PEV is connected to the HEMS is represented in (8). At the end of the simulation, 

the SOC of PEV is determined to be kept the same as the initial value in (9), which 

guarantees the usage of next day.  

The model of ESS in the household microgrid, which is an industrial battery pack, is 

shown from (10) to (14). 
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𝑏𝑒𝑠𝑠(𝑘 + 1|𝑡) = 𝑏𝑒𝑠𝑠(𝑘|𝑡) + 𝐸(𝑘)𝑝𝑒𝑠𝑠(𝑘|𝑡)∆t , (10) 

where 𝐸(𝑘) = {
ŋ𝑒𝑠𝑠_𝑐ℎ𝑎𝑟 if 𝑝𝑒𝑠𝑠(𝑘|𝑗) ≥ 0

ŋ𝑒𝑠𝑠_𝑑𝑖𝑠    if 𝑝𝑒𝑠𝑠(𝑘|𝑗) < 0
 ,  

Pess_dis ≤ 𝑃𝑒𝑠𝑠(𝑘|𝑡) ≤ Pess_char , (11) 

Bess_min ≤ 𝑏𝑒𝑠𝑠(𝑘|𝑡) ≤ Bess_max , (12) 

𝑃𝑙𝑜𝑎𝑑(𝑘|𝑡) + 𝑃𝑠𝑙𝑜𝑎𝑑(𝑘|𝑡) + 𝑃𝑒𝑠𝑠(𝑘|𝑡) ≥ 0 , (13) 

𝑏𝑒𝑠𝑠(𝑇) = Bess_init . (14) 

Equation (10) stands for the dynamic of ESS battery SOC. The charging power and 

the battery SOC are limited in (11) and (12), respectively. (13) prevents the ESS from 

selling the power to the utility grid. At the end of the simulation, the SOC of ESS has to 

be kept the same as the initial value, as described in (14). 
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CHAPTER 3. A PROTOTYPE OF MICROGRID 

3.1 Development of Microgrid Prototype 

 

In the study of the microgrid, the importance of experiments other than software 

simulation has been noticed. With a developed prototype, the proposed control theories 

and algorithms can be verified. In this part, a prototype microgrid, which intends to 

physically represent the target microgrid that is studied, has been developed.   

To accurately represent the household microgrid, considering the specific 

characteristics, a downscaled microgrid prototype is preferred. Specific requirements of 

the prototype are listed: 

1. The prototype needs to be a downscaled representation of the real microgrid, 

the voltage (RMS value) of the AC bus needs to be lower than 110V.  

2. From the system design shown in Figure 1, a central controller is needed. The 

inverter and all the DC-DC converters need to be controlled by the central 

controller. 

3. Since the system is designed to be grid-connected, a transformer is needed for 

connecting the low-voltage prototype AC bus to the 110V utility grid. 

4. Photovoltaic panel modules and battery storage as ESS are needed. 

5. A variable representation of home load and PEV loads need to be present. 
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Based on the requirements, a development board named Solar Explorer Kit (Part 

Number: TMDSSOLARPEXPKIT), produced by Texas Instruments [28] was selected as 

the main component of the microgrid hardware prototype. It integrates multiple parts that 

fit the microgrid system design. This board uses TMS320F28035 ControlCARD 

microcontroller [29] as the central controller. It has a built-in PV emulator and an ambient 

light sensor that mimics the PV generation so that the experiment can be completed indoor 

without the physical PV modules. The board has a DC-DC boost converter for Maximum 

Power Point Tracking (MPPT) technique. Furthermore, a DC-DC SEPIC converter for 

battery charging is present. The development board also has a single-phase DC-AC inverter 

that can be used for the grid-connected mode. The macro blocks of the Solar Explorer Kit 

 
Figure 2. Macro Block on Solar Explorer Kit. 
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is shown in Figure 2. In addition to all the converters and the inverter, the board has 

interfaces for connection of the external components, such as a real PV panel.  

Based on the development board, other parts for the prototype microgrid are also 

integrated. Other than the built-in PV emulator, a 50W PV Panel module is used for a 

physical representation of PV generation. Moreover, an external battery pack is added to 

represent the ESS. Since the prototype is a scaled-down system, it cannot connect to the 

utility grid directly, thus a variable transformer is used for utility grid connection. The 

transformer is connected to the utility grid, and the other side of the transformer is 

connected to the AC side of the built-in inverter on the development board. To measure the 

currents, two AC current sensors are utilized, and an Arduino Uno microcontroller [30] is 

used to monitor the sensor outputs. The prototype is shown in Figure 3.   

3.2 Demonstrations of two experiments 

 

In this section, two experiments are demonstrated using the microgrid prototype. The 

first experiment represents a scenario where the HEMS is grid-connected with PV 

 
Figure 3. Prototype of the microgrid. 
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generation, and no battery is present. The second experiment represents a scenario where 

the HEMS with PV generation is in island mode. The battery is charged in the daytime, 

and the load requirements representing street lamps are satisfied at night using energy from 

the battery. The software for control programming is Code Composer Studio provided by 

Texas Instruments.  

The first demonstration is a grid-connected inverter system with photovoltaic modules. 

The experiment procedure is introduced in the manual [31] provided by Texas Instruments. 

The system diagram is shown in Figure 4. The system is connected to the utility grid, while 

PV is presented as a renewable energy source.  

A DC-DC converter is connected to the PV output for MPPT. With a given fixed 

environmental condition, the PV modules only give the maximum output under a specific 

voltage/current. The control goal for the DC-DC converter is to make sure that the PV side 

has a voltage that ensures the PV’s maximum power output. The algorithm to find the 

optimal voltage/current is called MPPT.  

A DC-AC inverter is connected to the DC-DC to link the AC bus and DC bus. A 

variable AC-AC transformer is connected to the 110V utility grid.  

 

The experimental results of the first demonstration is shown in Figure 5. In the 

experiment, a 12 ohms resistor is used as the AC load and the voltage of DC bus is regulated 

 
Figure 4. System Diagram of Grid-Connected Mode. 
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to 30 Volts. From the “experiment” plots in Figure 5, we can see that around 40 seconds, 

the output power of PV reaches its maximum, and the voltage of DC bus reaches its desired 

value. The reason that the MPPT function starts around 40 seconds is that during this time, 

the voltage of AC is gradually increasing, and finally reaches 12 RMS volts. The logic of 

the control is when the voltage of AC reaches 12 RMS Volts, the control system considers 

the AC voltage normal. Then the system checks if the voltage of PV panel is greater than 

3V. If yes, the MPPT algorithm kicks in. The “simulationavg” plots are the flat lines in 

Figure 5, and it’s from the simulation of the prototype system using MATLAB/Simulink, 

where average models of power electronics parts are being used. For average models that 

are used in various calculations and simulations, the transient responses are omitted and 

the models only focu on the steady state response. The “simulation” plots are the dashed 

line in Figure 5, and it’s from the simulation of the prototype system using PLECS, a 

professional software for power electronics’ design and simulation. In these plots, the 

system dynamics are considered. However, both “simulationavg” and “simulation” plots 

started simulation with the 12V AC voltage and MPPT initiated, whereas in real experiment, 

to protect the equipment, the AC voltage was being gradually increased. That’s the reason 

why the “experiment” plots are displaying patterns different from the other two sets of plots. 
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Figure 5. System Diagram of Grid-Connected Mode. 



 21  

In Figure 7, the energy flow diagram of the first experiment under various irradiance 

levels is shown. The energy flow pattern varies along with the changes in irradiance levels. 

The irradiance level is a variable that can be adjusted in the PV emulator of the 

development board. The dash line 𝐼𝑠𝑜𝑙𝑎𝑟 represents the RMS value of AC current from 

 
Figure 6. Relationship of Igrid and Isolar 

 

 
Figure 7. Energy Flow Diagram 
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the PV side, and the solid line 𝐼𝑔𝑟𝑖𝑑 represents the RMS value of AC current from the 

utility grid side. Both the currents are measured through current sensors. The load 

representing the system AC load is placed as shown in Figure 6. Since the current sensors 

only give a RMS values, the direction of the currents is mainly analyzed. Before 70th second, 

the irradiance level is not abundant, which means both the 𝐼𝑠𝑜𝑙𝑎𝑟 and 𝐼𝑔𝑟𝑖𝑑 have to satisfy 

the load requirement together. After 70th second, the irradiance level is abundant for 

producing enough power to satisfy the load requirement, and the irradiance level grows 

afterwards. Energy flows with respect to different irradiance levels are shown in Figure 6. 

 

The second demonstration is a PV street lighting system. The experiment process is 

introduced in the manual provided by Texas Instruments [32]. The system diagram is 

shown in Figure 8. In this experiment, the system operates in island mode. The system 

utilizes PV as a renewable energy source, while the external battery is connected to the 

system storing the energy generated by PV in the daytime. At nighttime where the lighting 

system should be working, the external battery releases the energy to power the street light. 

The DC-DC converter used for MPPT in Figure 4 is now used as a DC-DC boost converter, 

while a DC-DC SEPIC converter is used for MPPT and battery charging purpose.  

 
Figure 8. Diagram of PV Street Lighting System. 
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Since the characteristic of the street-light system does not quite fit the target system in 

this study, with a comprehensive understanding of the control logic, this demonstration has 

not been put into practice.  

3.3 Software for Microgrid Prototype 

 

The C2000 Controller utilizes two software applications. The first software is 

controlSUITE [33], which includes demo programs along with supporting documents for 

all C2000 microcontrollers, the other software is Code Composer Studio (CCS) 

Integrated Development Environment (IDE) [34] developed by Texas Instruments for 

code programming and compiling, shown in  

Figure 9. The languages used for the controller are C++ and Assembly language. For 

Arduino microcontroller, Arduino IDE is utilized to get the current sensor read value. 

 

 

 
Figure 9. Interface of Code Composer Studio. 
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3.4 Future development for Microgrid prototype 

 

With the aforementioned two demonstrations: grid-tied inverter system and PV battery 

lighting system, the future work will be to integrate these two system configurations into 

one architecture, which means the system is connected to the utility grid while has the 

ability to charge the battery, shown in Figure 10. By doing this, a physical representation 

of the grid-connected HEMS with the presence of PV and ESS will be constructed. 

 

 

 

 

 

  

 
Figure 10. Diagram of Integrated System. 
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CHAPTER 4. MODEL PREDICTIVE CONTROL 

 

As a widely implemented control strategy, model predictive control (MPC) is briefly 

introduced in this chapter. A detailed description of MPC can be found in reference [35].  

4.1 Introduction of control systems 

 

The basic concept of control systems is introduced as follows. The block diagram of a 

closed loop control system can be shown in Figure 11. 

The input variables represent the control inputs, and the measured output variables are 

used for feedback control. The system model can be either linear or nonlinear. Typically, 

the models for dynamic systems cannot adequately represent the real physical systems due 

to model uncertainties and/or disturbances, which are undesirable. The control objectives 

are defined in a way that the controlled outputs will track the given reference signals, and 

the tracking performance along with the closed-loop stability is guaranteed. 

 

 

 

Figure 11. Diagram of Control System 
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4.2 Introduction of MPC 

 

MPC can be used as a control method for dynamic optimization problems. In MPC, 

both the control efforts and the responses of system states in the future are predicted. MPC 

has been widely implemented in various industrial applications. The basic idea of MPC is 

to predict future control inputs and state responses within regulated time intervals. MPC 

has the ability to control multiple variables, which makes it applicable in many industrial 

scenarios. Furthermore, by implementing various types of solvers for optimization 

problems, MPC is capable of dealing with different constraints representing the physical 

problems and limitations, which are considered in the problem-solving process of 

optimization. Given a long enough samplig time in MPC, the problem could be solved in 

real-time, and the receding horizon mechanism ensures the control performance. Thus, in 

some scenarios and textbooks, MPC is also called Receding Horizon Control (RHC). 

The history of MPC can be traced back to early 1960’s, where MPC was developed 

and a linear quadratic regulator (LQR) was designed. Then, through different 

improvements, many advanced MPC methods were proposed, such as Model Predictive 

Heuristic Control (MPHC), Dynamic Matrix Control (DMC) and Quadratic Dynamic 

Matrix Control (QDMC). Modern MPC can be regarded as the 4th generation of MPC 

which was developed in late 1995. A more detailed description of the MPC history is 

shown in [36]. 

4.3 Concept of MPC 

Different from traditional control methods, MPC has a characteristic of finite horizon 

control. In traditional optimization methods, control system tends to run for a period 
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sufficiently long enough to guarantee that the optimized results are accurate. For this 

process, infinite horizon control is required. Different from the infinite horizon control, the 

basic concept of MPC is described as follows. 

MPC obtains optimal control results at the current time, with a predefined time horizon. 

For example, if the current time is time 𝑘, then the calculated optimal control results with 

the fixed horizon are in time [𝑘, 𝑘 + 𝑁], 𝑁 is called the prediction horizon. After obtaining 

the optimization results, only the first control effort at time 𝑘 will be used as a current 

control input. This procedure will repeat at the next time step 𝑘 + 1. Namely, the calculated 

optimal controls are in time [𝑘 + 1, 𝑘 + 𝑁 + 1] and the first control result for this step is 

at time 𝑘 + 1. Thus, the time period of the optimal control results is moved from time 

[𝑘, 𝑘 + 𝑁] to time [𝑘 + 1, 𝑘 + 𝑁 + 1]. The horizon length remains the same while the 

horizon itself moves, or “recedes” for the length of one time step. In this way, the term 

“receding horizon” is explained. MPC has been widely used in the process industry area as 

an alternative algorithm compared with the conventional PID control, which is short for 

proportional integrate derivative control. Different from PID control, which does not need 

a model (but an error) of a system, MPC is a model-based control and a system model is 

always required. 

4.4 Advantages of MPC 

 

MPC has drawn substantial interests in both academia and industry field, and it is 

proven to be a successful control theory that can be applied in various process controls. 

Several advantages of MPC [35] are listed below.  
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• MPC has the capability to be applied to a broad class of systems. Since MPC 

optimizes the problem over the finite horizon instead of infinite, systems such 

as nonlinear systems or time-delayed systems are all compatible with MPC. 

• MPC provides a reliable approach for closed-loop control. Typically, numerical 

optimization methods are applied as open-loop controls. However, due to the 

repeated, feedback characteristics of MPC where only the first control is 

implemented, the closed-loop control can be guaranteed. 

• The capability of handling constraints. For problems with constraints, MPC can 

be implemented with various types of mathematical programming methods, 

such as linear and nonlinear programming. These programming methods are 

able to handle the constraints of the optimization problems. 

• MPC gives a good tracking performance. Theoretically, infinite horizon control 

that includes all future reference signals can provide the ideal tracking. 

However, in real application, the infinite horizon is hard to achieve. On the 

other hand, some control methods use “no horizon”. In industry, PID is widely 

used, which is a control method that only takes the current reference, even with 

future reference available. Finite horizon provides a practical way of balancing 

the infinite horizon control and “current-reference-only” control. With an 

appropriate finite horizon length determined, MPC provides acceptable 

tracking performance. 

• MPC can deal with parameter changes in the system. In the infinite horizon 

control, if the system parameter changes, the control cannot be adjusted because 

it will only be calculated once at the beginning. However, for MPC, it is 
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repeatedly calculated, and thus it can be easily adjusted for any parameter 

changes. In other words, MPC can be used for time-varying systems. 

Due to the advantages stated above, MPC is widely used in industrial applications, 

where there are constraints for inputs and system states. Generally, some conventional 

control methods can meet the control requirements under constraints. However, they tend 

to be not the optimal operation, but behaves conservatively to guarantee the constraint 

requirements. MPC provides a more optimized solution. Morever, with the development 

of advanced computational power, real-time implementation of MPC for some small 

sampling time systems becomes more and more achievable.  

4.5 Predictive control strategy 

 

The system dynamic model is shown as: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) , 

where 𝑥(𝑘) and 𝑢(𝑘) are model states and control inputs, respectively, and they are all 

vectors containing states of future 𝑁 steps. The inputs and model states has the form of 

following: 

𝑥(𝑘) =  [

𝑥(𝑘 + 1|𝑘)
𝑥(𝑘 + 2|𝑘)

⋮
𝑥(𝑘 + 𝑁|𝑘)

] , 𝑢(𝑘) =  [

𝑢(𝑘|𝑘)
𝑢(𝑘 + 1|𝑘)

⋮
𝑢(𝑘 + 𝑁 − 1|𝑘)

] . 

Given initial state 𝑥(𝑘|𝑘) and given 𝑢(𝑘), the future states can be evolved as, 

𝑥(𝑘 + 1|𝑘) = 𝐴𝑥(𝑘|𝑘) + 𝐵𝑢(𝑘|𝑘), in gerenal, 

𝑥(𝑘 + 𝑖 + 1|𝑘) = 𝐴𝑥(𝑘 + 𝑖|𝑘) + 𝐵𝑢(𝑘 + 𝑖|𝑘),  𝑖 = 0,1 … 
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The receding horizon strategy means that the length of the horizon 𝑁 remains the 

same within each control step. In the optimization problem with MPC, if the current time 

is 𝑘, at this time, the optimized inputs 𝑢(𝑘|𝑘) to 𝑢(𝑘 + 𝑁 − 1|𝑘) are calculated, and the 

control input of current time 𝑘 is determined by the first optimized result 𝑢(𝑘|𝑘). Then, it 

goes on to the time 𝑘 + 1. At this time, the optimized inputs 𝑢(𝑘 + 1|𝑘 + 1) to 𝑢(𝑘 +

𝑁|𝑘 + 1) are calculated, and the control input of current time 𝑘 + 1 is determined by the 

first optimized result 𝑢(𝑘 + 1|𝑘 + 1). This control strategy goes on until the iteration 

stops. Since the fixed horizon is moving with the control time step, this charateristic is 

known as receding horizon strategy.  

 
Figure 12. The receding horizon strategy from [35]. 
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Figure 12 shows clearly that the horizon length remains the same with the horizon 

itself receding along with the time proceeds, and for each control step, the first optimized 

control input is applied. 

There is no guarantee that the receding horizon mechanism of MPC can achieve an 

optimal solution. However, by evaluating MPC with infinite horizon prediction, this 

concern is addressed. The cost function for infinite horizon control could be defined as 

below: 

𝐽(𝑘) = ∑ (||𝑥(𝑘 + 𝑖|𝑘)||
𝑄

2
+ ||𝑢(𝑘 + 𝑖|𝑘)||

𝑅

2
) .

∞

𝑖=0

 

To make sure that in MPC, the cost minimization problem can be represented using 

finite variables, a transformation called dual-mode prediction is shown as: 

𝑢(𝑘 + 𝑖|𝑘) = {
optimization variables          𝑖 = 0,1, … , 𝑁 − 1

𝐾𝑥(𝑘 + 𝑖|𝑘)                             𝑖 = 𝑁, 𝑁 + 1, …  

   (mode 1)

   (mode 2)
 , 

here 𝑁 is the length of the prediction horizon. Mode 1 represents the variables in finite 

horizon and mode 2 defines the remaining infinite variables. With dual modes, 𝐽(𝑘) can be 

represented as: 

𝐽(𝑘) = ∑(||𝑥(𝑘 + 𝑖|𝑘)||
𝑄

2
+ ||𝑢(𝑘 + 𝑖|𝑘)||

𝑅

2
)

𝑁−1

𝑖=0

+ ||𝑥(𝑘 + 𝑁|𝑘)||
�̅�

2
 . 

By choosing a proper terminal weighting matrix �̅�, the cost under infinite horizon can 

be accounted in  𝐽(𝑘) under assumptions in mode 2. By rewritting to this form, only finite 

optimization variables are needed for infinite horizon evaluation by choosing proper �̅�.  

In this study, we will not consider the terminal weighting term ||𝑥(𝑘 + 𝑁|𝑘)||
�̅�

2
, 

because for the problem that is discussed in this thesis, the prediction horizon is defined 
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for a fixed time. The infinite horizon prediction cannot be achieved due to the 

characteristics of the microgrid system, where only limited information about the future 

will be known for users. The information includes variables, such as future load 

requirements and the vehicle status, which in reality, are predicted from history data. Future 

data with infinite horizon cannot be accurately predicted from the history, and thus make 

the effort of achieving an optimal solution with infinite prediction horizon impossible and 

unnessasary. Also, in this thesis, a linear prediction plant model will be used, and the cost 

𝐽(𝑘) can be represented as a quadratic function of the inputs only, without the presence of 

system states, which will be illustrated in the next chapter. 
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CHAPTER 5. PROBLEM FORMULATION 

 

In this chapter, Mixed-integer-linear-programming (MILP) structure is introduced. Due 

to the nonlinear nature of the desired problem, it can not be directly formulated into MILP, 

the method reformulating the problem to fit the MILP is described.  

5.1 MILP Structure 

 

Mixed-integer-linear-programming is a mathematical optimization algorithm that 

allows some part of the inputs to be integers.  A MILP algorithm is formulated as follows: 

min
𝑥

𝑐𝑇𝑥 subject to {

𝑥(intcon) are integers 
𝐴 ∙ 𝑥 ≤ 𝑏

𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞
𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

, (15) 

where 𝑐 , 𝑥 , intcon, 𝑙𝑏, 𝑢𝑏, 𝑏 and 𝑏𝑒𝑞 are vectors, and 𝐴 and 𝐴𝑒𝑞  are matrixes. For an 

optimization problem, min
𝑥

𝑐𝑇𝑥 denotes the minimum value of 𝑐𝑇𝑥, for the optimum value 

of variables chosen among their regions. Aside from the objective function, constrains are 

often involved representing limits of the control inputs or system states due to different 

characteristics of the specific problem that is being solved. 

5.2 Problem Reformulation 

 

The optimization goal of the HEMS is to minimize user’s cost of electric power. The 

problem is formulated in an MPC configuration solved by MILP algorithm, which has the 

capability to handle the binary variables representing decision variables.  

The objective function is written as (16): 
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min 𝐽 = ∑ 𝑅(𝑘)𝑃𝑔𝑟𝑖𝑑(𝑘|𝑡)

𝑡+𝑇−1

𝑘=𝑡

∆t + ∆𝐷 , (16) 

where  𝑅(𝑘) = {
𝑝𝑟𝑖𝑐𝑒 +(𝑘)    if 𝑝𝑔𝑟𝑖𝑑(𝑘|𝑡) ≥ 0

𝑝𝑟𝑖𝑐𝑒 −(𝑘)    if 𝑝𝑔𝑟𝑖𝑑(𝑘|𝑡) < 0
, and 

∆𝐷 = αess ∑ 𝐷𝑒𝑠𝑠(𝑘|𝑡) + αev ∑ ∑ 𝐷𝑒𝑣𝑗(𝑘|𝑡)

𝑀

𝑗=1

𝑡+𝑇−1

𝑘=𝑡

𝑡+𝑇−1

𝑘=𝑡

 . 

In (16),  ∆𝐷  is a penalty term limiting the sudden change of both 𝑝𝑒𝑠𝑠  and 𝑝𝑒𝑣𝑗 . 

αess and αev are penalty weightings. 𝐷𝑒𝑠𝑠 and 𝐷𝑒𝑣𝑗 can be regarded as a control input with 

constraints shown from (17) to (20): 

𝐷𝑒𝑠𝑠(𝑘|𝑡) ≥ 𝑝𝑒𝑠𝑠(𝑘|𝑡) − 𝑝𝑒𝑠𝑠(𝑘 − 1|𝑡) , (17) 

−𝐷𝑒𝑠𝑠(𝑘|𝑡) ≤ 𝑝𝑒𝑠𝑠(𝑘|𝑡) − 𝑝𝑒𝑠𝑠(𝑘 − 1|𝑡) , (18) 

𝐷𝑒𝑣𝑗(𝑘|𝑡) ≥ 𝑝𝑒𝑣𝑗(𝑘|𝑡) − 𝑝𝑒𝑣𝑗(𝑘 − 1|𝑡) , (19) 

−𝐷𝑒𝑣𝑗(𝑘|𝑡) ≤ 𝑝𝑒𝑣𝑗(𝑘|𝑡) − 𝑝𝑒𝑣𝑗(𝑘 − 1|𝑡) . (20) 

Equations (10) and (16) are not linear, because the value of 𝐸(𝑘)  and 𝑅(𝑘)  are 

determined by logic and thus cannot be directly implemented in MILP algorithm. As a 

result, some reformulation needs to be done. 

The methodology to transfer the problem into MILP framework, by using the method 

in [37], is described below. 

In many applications, the model of the system includes parts that need logic 

determination. For the specific problem that this paper is trying to solve, the model includes 

𝐸 and 𝑅(𝑘), the value of which depends on whether 𝑝𝑒𝑠𝑠(𝑘|𝑡) or 𝑝𝑔𝑟𝑖𝑑(𝑘|𝑡) is positive or 

negative, respectively. To address this characteristic, logical variable 𝛿 ∈ {0,1} is 
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introduced, the value of this binary integer variable represents the logical determination, 

and can be implemented into MILP framework. Thus, we have: 

{
[𝛿𝐸(𝑘|𝑡) = 1] ↔ [𝑝𝑒𝑠𝑠(𝑘|𝑡) ≥ 0]

[𝛿𝐸(𝑘|𝑡) = 0] ↔ [𝑝𝑒𝑠𝑠(𝑘|𝑡) < 0]
 , 

(21) 

{
[𝛿𝑅(𝑘|𝑡) = 1] ↔ [𝑝𝑔𝑟𝑖𝑑(𝑘|𝑡) ≥ 0]

[𝛿𝑅(𝑘|𝑡) = 0] ↔ [𝑝𝑔𝑟𝑖𝑑(𝑘|𝑡) < 0]
 . 

(22) 

Logical variables representing the logic determination on the value of variable 𝐸(𝑘) 

and variable 𝑅(𝑘) : 𝛿𝐸(𝑘|𝑡) ∈ {0,1} , 𝛿𝑅(𝑘|𝑡) ∈ {0,1} , and the auxiliary variables 

{
𝑧𝐸(𝑘|𝑡) = 𝛿𝐸(𝑘|𝑡)𝑝𝑒𝑠𝑠(𝑘|𝑡)  

𝑧𝑅(𝑘|𝑡) = 𝛿𝑅(𝑘|𝑡)𝑝𝑔𝑟𝑖𝑑(𝑘|𝑡)
 are introduced. Thus, (10) is rewritten as equations from 

(23) to (29): 

𝑏𝑒𝑠𝑠(𝑘 + 1|𝑡) = 𝑏𝑒𝑠𝑠(𝑘|𝑡) + [(η𝑒𝑠𝑠_𝑐ℎ𝑎𝑟

− η𝑒𝑠𝑠_𝑑𝑖𝑠)𝑧𝐸(𝑘|𝑡)+η𝑒𝑠𝑠_𝑑𝑖𝑠𝑝𝑒𝑠𝑠(𝑘|𝑡)]∆t , 
(23) 

𝑧𝐸(𝑘|𝑡) ≤ 𝛿𝐸(𝑘|𝑡)𝑃𝑒𝑠𝑠_𝑐ℎ𝑎𝑟 , (24) 

𝑧𝐸(𝑘|𝑡) > 𝛿𝐸(𝑘|𝑡)𝑃𝑒𝑠𝑠_𝑑𝑖𝑠 , (25) 

𝑧𝐸(𝑘|𝑡) ≤ 𝑝𝑒𝑠𝑠(𝑘|𝑡) − 𝑃𝑒𝑠𝑠_𝑑𝑖𝑠[1 − 𝛿𝐸(𝑘|𝑡)] , (26) 

𝑧𝐸(𝑘|𝑡) > 𝑝𝑒𝑠𝑠(𝑘|𝑡) − 𝑃𝑒𝑠𝑠_𝑐ℎ𝑎𝑟[1 − 𝛿𝐸(𝑘|𝑡)] , (27) 

𝑝𝑒𝑠𝑠(𝑘|𝑡) ≤ 𝑃𝑒𝑠𝑠_𝑐ℎ𝑎𝑟[1 − 𝛿𝐸(𝑘|𝑡)] , (28) 

𝑝𝑒𝑠𝑠(𝑘|𝑡) > (𝑃𝑒𝑠𝑠_𝑑𝑖𝑠 + 휀)𝛿𝐸(𝑘|𝑡) − 휀 , (29) 

where (23) is a linear representation of equation (10), 𝑧𝐸(𝑘|𝑡) = 𝛿𝐸(𝑘|𝑡)𝑝𝑒𝑠𝑠(𝑘|𝑡) holds if 

inequalities constraints from (24) to (27) are satisfied, whereas 𝛿𝐸(𝑘|𝑡) =

{
1    if 𝑝𝑒𝑠𝑠(𝑘|𝑡) ≥ 0

0    if 𝑝𝑒𝑠𝑠(𝑘|𝑡) < 0
 holds if constraint (28) and (29) are satisfied.  

Likewise,  (16) can also be rewritten as (30) to (36):  
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min 𝐽 = ∑ [

𝑡+𝑇−1

𝑘=𝑡

(𝑝𝑟𝑖𝑐𝑒 +(𝑘) − 𝑝𝑟𝑖𝑐𝑒 −(𝑘))𝑧𝑅

+ 𝑝𝑟𝑖𝑐𝑒 −(𝑘)𝑃𝑔𝑟𝑖𝑑(𝑘|𝑡)]∆t + ∆𝐷 , 

(30) 

𝑧𝑅(𝑘|𝑡) ≤ 𝛿𝑅(𝑘|𝑡)Pgrid_max , (31) 

𝑧𝑅(𝑘|𝑡) > 𝛿𝑅(𝑘|𝑡)Pgrid_min , (32) 

𝑧𝑅(𝑘|𝑡) ≤ 𝑝𝑔𝑟𝑖𝑑(𝑘|𝑡) − Pgrid_min[1 − 𝛿𝑅(𝑘|𝑡)] , (33) 

𝑧𝑅(𝑘|𝑡) > 𝑝𝑔𝑟𝑖𝑑(𝑘|𝑡) − Pgrid_max[1 − 𝛿𝑅(𝑘|𝑡)] , (34) 

𝑝𝑔𝑟𝑖𝑑(𝑘|𝑡) ≤ Pgrid_max[1 − 𝛿𝑅(𝑘|𝑡)] , (35) 

𝑝𝑔𝑟𝑖𝑑(𝑘|𝑡) > (Pgrid_min + 휀)𝛿𝑅(𝑘|𝑡) − 휀 , (36) 

where (30) is a linear representation of equation (16),  𝑧𝑅(𝑘|𝑡) = 𝛿𝑅(𝑘|𝑡)𝑝𝑔𝑟𝑖𝑑(𝑘|𝑡) holds 

if inequalities constraints from (31) to (34) are satisfied, whereas 𝛿𝑅(𝑘|𝑡) =

{
1    if 𝑝𝑔𝑟𝑖𝑑(𝑘|𝑡) ≥ 0

0    if 𝑝𝑔𝑟𝑖𝑑(𝑘|𝑡) < 0
 holds if constraint (35) and (36) are satisfied. 

Through transformation described above, the optimization problem can be constructed 

in the form of MILP algorithm. More specifically, the objective function for the MILP 

optimization is (30), the constraints are from (1) to (9), (11) to (14), and (17) to (36). 

5.3 System Control Structure and Programming Realization 

 

The system control structure, designed as a MPC controller, is described in Figure 13. 

The iteration starts with Prediction machine, where the value needed for constraints 

calculation is predicted (for prediction value) and processed (for price variables). Next, 

with the initial conditions defined, the constraints matrixes and vectors for MILP 

optimization (𝐴, 𝐴𝑒𝑞, 𝑏, 𝑏𝑒𝑞, 𝑙𝑏, 𝑢𝑏) are calculated. With the objective function defined, 
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MILP optimization will be done and optimized results of the next N steps for current 

iteration will be given. Using 𝑝𝑒𝑠𝑠 and 𝑝𝑒𝑣𝑗, the SOC of PEV and ESS are 𝑏𝑒𝑣𝑗 and 𝑏𝑒𝑠𝑠 

are calculated using dynamic battery models of PEV and ESS. For this step, in real 

applications, 𝑏𝑒𝑣𝑗 and 𝑏𝑒𝑠𝑠 can be measured and sent to the system, instead of esimation 

where errors are inevitable. Thus, the error between estimation using the battery model and 

real battery states can be compensated, which is one of the main strengths of MPC in this 

application.  These values are then saved and will be sent to Constraints calculation in the 

next iteration. The next iteration starts over from pridiction machine, until the iteration 

number reaches the preset maximum value.  

 
Figure 13. MPC control framework 
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MPC has the characteristic to optimize the objective function in consideration of 

constraints and system dynamics, over a prediction horizon. Moreover, forecast profiles 

and measurements uncertainties can be updated in a receding horizon fashion, thus the 

forecast uncertainties can be handled by the receding horizon strategy [18], the error caused 

by system dynamic model can also be compensated.  

Next, some detailed information about the programming realization will be discussed. 

From the description of the system modeling and control from previous parts of this article, 

the control input 𝑢  within one time step can be described as a 11 × 1 vector 𝑢 =

(𝑃𝑔𝑟𝑖𝑑 𝛿𝐸  𝛿𝑅 𝑧𝐸  𝑧𝑅 𝑃𝑒𝑣𝑗 𝑃𝑒𝑠𝑠 𝐷𝑒𝑣𝑗  𝐷𝑒𝑠𝑠 𝐼𝑛𝑖𝑡𝑠 𝑂𝑛𝑠)
𝑇
, 𝐼𝑛𝑖𝑡𝑠 is a binary variable denoting the 

starting time of the soft load (when started, 𝐼𝑛𝑖𝑡𝑠 equals to 1). The soft load requirements 

need to be fully satisfied once started, and no break in the middle is allowed. Thus, for one 

set of soft load, there is only one starting time, and correspondingly, 𝐼𝑛𝑖𝑡𝑠 = 1  only 

appears once in one simulation. 𝑂𝑛𝑠 is also a binary variable indicating the time when the 

soft load requirement is being fulfilled (equals to 1). Thus, 𝑃𝑠𝑙𝑜𝑎𝑑 =  𝑂𝑛𝑠 ∙ Psload_dis. From 

(15), the integer variables are defined as a representation of 𝑥(intcon). Therefore, for a 

11 × 1 vector 𝑢 = (𝑃𝑔𝑟𝑖𝑑 𝛿𝐸  𝛿𝑅 𝑧𝐸  𝑧𝑅 𝑃𝑒𝑣𝑗 𝑃𝑒𝑠𝑠 𝐷𝑒𝑣𝑗  𝐷𝑒𝑠𝑠 𝐼𝑛𝑖𝑡𝑠 𝑂𝑛𝑠)
𝑇

where the 2nd, 3rd, 

10th and 11th element are binary variables, intcon = [2,3,10,11]. Furthermore, lb and ub 

are vectors used for storing the lower and upper limits of each variable. For MPC with a 

finite horizon 𝑁, the vector 𝑢 needs to be applicable for all N control steps. As a result, in 

MPC for this system, the control input is a 𝑁 ∙ 11 × 1 vector, and intcon, lb and ub all 

need to be modified correspondingly with respect to 𝑁 . 
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The prediction machine generates all predicted values. At time 𝑡, the predicted values 

from (𝑡|𝑡) to (𝑡 + 𝑁|𝑡) are given. In this thesis, since the focus of the study is on the 

control algorithm, instead of the prediction methods, the prediction variables are pre-

defined in the simulation. However, in real applications, the prediction methods and 

algorithms can be implemented into the prediction machine. Furthermore, due to the 

principle of MPC, the time-variant utility price is updated using the same form as predicted 

values, which is from (𝑡|𝑡) to (𝑡 + 𝑁|𝑡). This structure can be used for implementation of 

dynamic pricing strategy [19].  

After the predicted values are given, the constraint matrixes 𝐴, 𝐴𝑒𝑞, 𝑏 and 𝑏𝑒𝑞 in (15) 

can be determined. The constraints contain the information about the limitation of the 

physical system, as well as the system dynamics. There are two types of constrain 

representations, one type is equality constraints expressed by 𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞  while the 

other is inequality constraints expressed by 𝐴 ∙ 𝑥 ≤ 𝑏 . Note that when constructing 

constraint matrixes,  if the constraint does not contain system dynamics, the constrain is 

only related to variables in the current time step. For example, in (13): 𝑃𝑙𝑜𝑎𝑑(𝑘|𝑡) +

𝑃𝑠𝑙𝑜𝑎𝑑(𝑘|𝑡) + 𝑃𝑒𝑠𝑠(𝑘|𝑡) ≥ 0 , first it is transferred into −𝑃𝑠𝑙𝑜𝑎𝑑(𝑘|𝑡) − 𝑃𝑒𝑠𝑠(𝑘|𝑡) ≤

𝑃𝑙𝑜𝑎𝑑(𝑘|𝑡), then the matrix 𝐴 can be constructed. This constraint is related to control inputs 

𝑃𝑠𝑙𝑜𝑎𝑑(𝑘|𝑡) and 𝑃𝑒𝑠𝑠(𝑘|𝑡). The psudo code for this contraint is shown as:  

, 

where i stands for the time from present (i=1) to the horizon-time-step future (i=N). As 

stated before, the control input is a 𝑁 ∙ 11 × 1 vector, thus A(21*i-16,11*i-5) = -1 stands 

For i=1:N 

A(21*i-16,11*i-5) = -1 

  A(21*i-16,11*i-0) = -1 

  b(21*i-16) =�̃�𝑙𝑜𝑎𝑑(𝑡 + 𝑖 − 1|𝑡) 
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for constraint number  21*i-16, for control input 11*i-5, which corresponds to 

𝑃𝑒𝑠𝑠(𝑡 + 𝑖 − 1|𝑡) for every i within [1,N]. Similarly, A(21*i-16,11*i-0) = -1 stands for 

constraint number 21*i-16, for control input 11*i-0, which corresponds to 

𝑃𝑠𝑙𝑜𝑎𝑑(𝑡 + 𝑖 − 1|𝑡) for every i within [1,N].  b(21*i-16) represents 𝑃𝑙𝑜𝑎𝑑(𝑡 + 𝑖 − 1|𝑡). 

Note that for constraints (4), (9), (14), certain requirements need to be fulfilled before 

the end of simulation. Since the horizon keeps receding, in the programming, the ending 

time for finishing the task needs to move forward along with the receding of the horizon to 

make sure that at the end of simulation, the requirements are met. For example, in (9): 

 𝑏𝑒𝑣𝑗(𝑇) = Bevj_init, if the simulation time is 24 hours and horizon length is 24 hours, with 

an half-hour time step, so in total 48 time-step horizon. At the start of simulation, the 

constraint should be programmed as: 𝑏𝑒𝑣𝑗(48) = Bevj_init. Then, at the next time step of 

simulation, the constraint should be programmed as: 𝑏𝑒𝑣𝑗(47) = Bevj_init, and so on. At 

the last time step, it should be 𝑏𝑒𝑣𝑗(1) = Bevj_init.  

Another type of constraint relates to system dynamics. For example, in (7): Bevj_min ≤

𝑏𝑒𝑣𝑗(𝑘) ≤ Bevj_max , since 𝑏𝑒𝑣𝑗(𝑘|𝑡)  is system dynamic shown in (5):  𝑏𝑒𝑣𝑗(𝑘 + 1|𝑡) =

𝑏𝑒𝑣𝑗(𝑘|𝑡) + [1 − �̃�𝑗(𝑘|𝑗)]𝜂𝑒𝑣_𝑐ℎ𝑎𝑟𝑝𝑒𝑣𝑗(𝑘|𝑡)∆𝑡 − �̃�𝑗(𝑘|𝑗)�̃�𝑒𝑣𝑐𝑜𝑛𝑗(𝑘|𝑡)∆𝑡 , which means 

that the current state relates to history states. Thus, when constructing constrains for system 

dynamics, historical states need to be considered. For (7), the constraints for 𝑏𝑒𝑣𝑗(𝑘|𝑡) are 

first converted to 
−𝑏𝑒𝑣𝑗(𝑘|𝑡)≤−Bevj_min

𝑏𝑒𝑣𝑗(𝑘|𝑡)≤Bevj_max
, then based on (5), the psudo code is: 
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, 

where i stands for the time from present (i=1) to the horizon-time-step future (i=N). Since 

all the N steps are calculated in one-time simulation, the dynamic state 𝑏𝑒𝑣𝑗 in each time 

step (𝑡 + 𝑖 − 1|𝑡)  𝑖 = 1 … 𝑁 is related to all previous states starting from the time step 

when i=1. A(21*i - 15, 12*j - 6) stands for constraint number  21*i-15, for control input 

12*j-6, which corresponds to 𝑃𝑒𝑣𝑗(𝑡 + 𝑗 − 1|𝑡) for every j within [1,i]. Constraint number  

21*i-15 represents −𝑏𝑒𝑣𝑗(𝑘|𝑡) ≤ −Bevj_min, while constraint number 21*i-14 represents 

𝑏𝑒𝑣𝑗(𝑘|𝑡) ≤ Bevj_max. It can be seen that along with the growth of i, the constraints 21*i – 

15 and 21*i– 14 are involved with more and more elements because the larger i brings the 

more j candidates. These elements represent the relationship between current state and past 

states. 

 

 

 

For i=1:N 

j = 1; 

while j <= i  

            Consbev(j) =  - �̃�𝑗(𝑡 + 𝑗 − 1|𝑡) ∙ �̃�𝑒𝑣𝑐𝑜𝑛𝑗(𝑘|𝑡) 

Parb_pev(j) = (1- �̃�𝑗(𝑡 + 𝑗 − 1|𝑡))∙ ∆t ∙ ηev_char 

  

            A(21*i - 15, 12*j - 6) = -Parb_pev(j) 

b(21*i - 15) = b(21*i - 15) + Consbev(j); 

  

A(21*i - 14, 12*j - 6) = Parb_pev(j); 

b(21*i - 14) = b(21*i - 14) - Consbev(j); 

      

j = j+1; 

 end 

b(21*i - 15) = b(21*i - 15) - Bevmin + bkev; 

b(21*i - 14) = b(21*i - 14) + Bevmax - bkev; 
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CHAPTER 6. SIMULATION RESULTS AND DISCUSSIONS 

 

 Simulation Setup 

 

The simulation describes a typical household microgrid, where 6kW PV panel modules, 

3kWh capacity ESS, and PEV battery are present. In the simulation, PV generation 

forecasting data for every half hour is from [17]. Hourly consumption data are obtained 

from [38] for a typical household in the US and then transferred into half-hour data by 

linear interpolation, which will be used as load prediction. The PV generation and load 

curve are shown in Figure 14.  The PEV state estimation data is defined to match the 

designed scenes. Some parameters used are listed in Table I.  

 
Figure 14. PV Generation & Load Requirement. 

 

TABLE I 

PARAMETER USED IN SIMULATION 

Term Value Term Value 

Bevj_init 70000 Wh Bess_init 15000 Wh 

Bevj_max 90000 Wh Bess_max 27000 Wh 

Bevj_min 30000 Wh Bess_min 3000 Wh 

ηev_char 0.99 ŋ𝑒𝑠𝑠_𝑐ℎ𝑎𝑟 0.99 

αess, αev 0.01 ŋ𝑒𝑠𝑠_𝑑𝑖𝑠 1.01 
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The simulation duration is a 24-hour period, with a sampling time of 30 min. The 

starting/ending time for simulation is set to be at the 05:00 am of the day. Both states of 

charges in ESS and PEV are required to be equal to the initial values. Although the PEV 

can be theoretically charged at the last minute of the predicted usage time, the PEV should 

be charged at an earlier time considering that the prediction might not always be accurate. 

The vehicle was assumed to be a Tesla Model S P100D [39].  Based on the datasheet, for 

45 mph speed with 90 degrees environment temperature, the vehicle can drive 455 miles. 

With calculation, the vehicle consumes power at 9900 Watt/hour. A commercial software 

CPLEX for Matlab Toolbox was used for solving the MILP optimization problem.  

In the simulation, a typical workday scene is simulated. The scenario is chosen for a 

day between May and September, which matches the “summer peak time” set by South 

River Project Corp. (SRP). The PEV leaves home for work at 08:30 and arrives home at 

16:30. From 8:30 to 9:00 and from 16:00 to 16:30, the user drives the PEV at 45 mph. For 

the rest of the time away from home, the vehicle remains idle. The soft load is chosen to 

be a 400-Watt washing machine. The requirement is 400 Wh and the duration is one hour, 

which needs two time periods to fulfill the requirement. The deadline for the soft load is 

set to be at the end of the iteration. 

6.2 Different Cases 

 

In this part, three cases will be studied. For all cases, the assumptions described above 

hold. The results are shown in Figure 15.  
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Figure 15. Power Flow & SOC for Case1, 2 and 3 respectively. 
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In Case I, no optimization is applied for PEV charging. In other words, PEV will start 

charging instantly once it is back home and being connected to the microgrid. However, 

the ESS is operating optimally. The price plan is based on SRP “Electric Vehicle Price 

Plan” [40]. In this case, selling the electricity to the utility grid is prohibited, which means 

the excess power flows either to ESS or directly to the load requirement. For soft load, all 

three cases have the same strategy, because the starting time is the lowest electricity price 

period. The final cost for Case I during one day is 13.79 dollars. Note that for soft loads, 

all three cases have the same scheduling patterns. The reason is that although the price plan 

varies, they all have the same kind of settings on the peak/valley periods. Thus, starting 

time of the soft load for three cases are always the starting time of the lowest electricity 

price period.  

In Case II, the optimization is used in both PEV charging and ESS. The price plan is 

the same as Case I, and the function of selling electricity back to the utility grid is also not 

activated. In Figure 15, from “PEV SOC” and “PEV POWER FLOW (W),” it is shown 

that the charging time of PEV in Case II is chosen at a later time than in Case I, for less   

charging cost. The final cost for Case II during one day is 7.74 dollars, 43.9% lower than  

the instant charging strategy in Case I.  

In Case III, SRP customer generation price plan [41] is used. This is the price plan 

option for SRP customers who consider selling their excess energy to the utility grid. The  

electricity price is the lowest among all price plans. However, the plan has a massive 

penalty for buying electricity at on-peak hours (1-8 p.m.). In Figure 15, from “power 

from/to grid,” it is shown that the value of power goes below zero in the middle of the day, 

which matches the pattern of PV generation. The final cost for Case III during one day is 
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4.22 dollars, 69.4% lower than the instant charging strategy in Case I. Note that this cost 

reduction is based on the result that no energy is purchased from the utility grid during on-

peak hours. Based on the price plan, the minimum penalty for every excess 1 kW purchased 

during on-peak hours is 9.59 dollars, and it can be even higher for more purchased energy. 

Adding the 1 kW penalty, the cost becomes 13.81 dollars, higher than Case I. Thus, for this 

price plan, amount of energy purchased during on-peak hours strongly affects uses’ 

economic benefit. It can be readily seen that if there is not enough energy production 

capability, it is preferred to choose the “Electric Vehicle Price Plan” for more stable 

performance in achieving the optimal goal of cost reduction.  

For comparisons, besides 6 kW PV generation, two other costs for 3 kW and 9 kW PV 

module are also shown in Table II and Figure 16. From the table, the costs among different 

generation capabilities display in a nearly-linear relationship. The user needs to balance the 

economic benefit, initial investment cost, and other aspects of maintenance cost and 

available rooftop area, to decide on how many generations capability a household needs. 

Note that for Case III, simulations with different generation capabilities pay no penalties. 

If the user prefers Case III, which is customer generation price plan, further consideration 

is needed when the penalty is within consideration for cases where extra energy has to be 

purchased from the utility grid during on-peak hours. 
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TABLE II 

COST CALCULATION (DOLLAR) 

 3 kW 6 kW 9 kW 

Case I 17.71 13.80 10.84 

Case II 11.32 7.74 5.41 

Case III 5.90 4.22 2.53 

 

 

 
Figure 16. Cost for Case1 to 3 under different PV capacities. 
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CHAPTER 7. CONCLUSIONS 

 

A household energy management strategy has been studied in this paper. An 

optimization method for PEV charging and strategy for HEMS with ESS and the soft load 

is considered, using the MPC method. Through comparisons of simulation results for 

different settings and price plans, the effectiveness of the optimization control is verified. 

Suggestions are given for user’s economical benefits based on the simulation results. 

Further study can be made on 1) verification of the MPC capability for compensating 

estimation errors by conducting related experiments in a prototype microgrid; 2) methods 

to further smoothen the charging power. 
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