3,444 research outputs found

    A Novel Airborne Self-organising Architecture for 5G+ Networks

    Full text link
    Network Flying Platforms (NFPs) such as unmanned aerial vehicles, unmanned balloons or drones flying at low/medium/high altitude can be employed to enhance network coverage and capacity by deploying a swarm of flying platforms that implement novel radio resource management techniques. In this paper, we propose a novel layered architecture where NFPs, of various types and flying at low/medium/high layers in a swarm of flying platforms, are considered as an integrated part of the future cellular networks to inject additional capacity and expand the coverage for exceptional scenarios (sports events, concerts, etc.) and hard-to-reach areas (rural or sparsely populated areas). Successful roll-out of the proposed architecture depends on several factors including, but are not limited to: network optimisation for NFP placement and association, safety operations of NFP for network/equipment security, and reliability for NFP transport and control/signaling mechanisms. In this work, we formulate the optimum placement of NFP at a Lower Layer (LL) by exploiting the airborne Self-organising Network (SON) features. Our initial simulations show the NFP-LL can serve more User Equipment (UE)s using this placement technique.Comment: 5 pages, 2 figures, conference paper in IEEE VTC-Fall 2017, in Proceedings IEEE Vehicular Technology Conference (VTC-Fall 2017), Toronto, Canada, Sep. 201

    Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping

    Get PDF
    Acknowledgments We thank Johan Havelaar, Aeryon Labs Inc., AeronVironment Inc. and Aeronautics Inc. for kindly permitting the use of materials in Fig. 1.Peer reviewedPublisher PD

    UAV Swarm-Enabled Aerial CoMP: A Physical Layer Security Perspective

    Get PDF
    Unlike aerial base station enabled by a single unmanned aerial vehicle (UAV), aerial coordinated multiple points (CoMP) can be enabled by a UAV swarm. In this case, the management of multiple UAVs is important. This paper considers the power allocation strategy for a UAV swarm-enabled aerial network to enhance the physical layer security of the downlink transmission, where an eavesdropper moves following the trajectory of the swarm for better eavesdropping. Unlike existing works, we use only the large-scale channel state information (CSI) and maximize the secrecy throughput in a whole-trajectory-oriented manner. The overall transmission energy constraint on each UAV and the total transmission duration for all the legitimate users are considered. The non-convexity of the formulated problem is solved by using max-min optimization with iteration. Both the transmission power of desired signals and artificial noise (AN) are derived iteratively. Simulation results are presented to validate the effectiveness of our proposed power allocation algorithm and to show the advantage of aerial CoMP by using only the large-scale CSI

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Formation control of swarms of unmanned aerial vehicles

    Get PDF
    The objective of this thesis is to design a distributed formation control system for swarms of unmanned aerial vehicles which addresses the challenges of scalability, collision avoidance, failure recovery, energy efficiency, and control performance. The swarms are arranged in tightly/loosely coupled architectures, which are based on homogeneous nodes in a distributed network of leader-follower/leaderless structures. The model of each node in the swarm formation is based on the nonlinear/linear dynamic model of a quadcopter, i.e. an unmanned aerial vehicle. The goal is to design the formation control of swarms of unmanned aerial vehicles, which is divided into high- and low-level control. From the high-level control perspective, the main contribution is to propose continuous path planning which can quickly react to events. Setpoints are generated for the swarms of unmanned aerial vehicles considering the complex movement of a hierarchical formation, soft landing, and failure recovery. The hierarchical formation and soft landing are executed using a fixed formation. Reconfiguration of the formation after node failures is implemented using a shortest path algorithm, combinatorial algorithms, and a thin plate spline. Besides this, from the low-level control perspective, the main contribution is to manoeuvre the nodes smoothly. The tracking of setpoints and stabilisation of each node is handled by a nonlinear sliding mode control with proportional derivative control and a linear quadratic regulator with integral action. The proposed strategies are evaluated using simulations, and the obtained results are compared and analysed both qualitatively and quantitatively using different scenario-relevant metrics

    Communication and Control in Collaborative UAVs: Recent Advances and Future Trends

    Full text link
    The recent progress in unmanned aerial vehicles (UAV) technology has significantly advanced UAV-based applications for military, civil, and commercial domains. Nevertheless, the challenges of establishing high-speed communication links, flexible control strategies, and developing efficient collaborative decision-making algorithms for a swarm of UAVs limit their autonomy, robustness, and reliability. Thus, a growing focus has been witnessed on collaborative communication to allow a swarm of UAVs to coordinate and communicate autonomously for the cooperative completion of tasks in a short time with improved efficiency and reliability. This work presents a comprehensive review of collaborative communication in a multi-UAV system. We thoroughly discuss the characteristics of intelligent UAVs and their communication and control requirements for autonomous collaboration and coordination. Moreover, we review various UAV collaboration tasks, summarize the applications of UAV swarm networks for dense urban environments and present the use case scenarios to highlight the current developments of UAV-based applications in various domains. Finally, we identify several exciting future research direction that needs attention for advancing the research in collaborative UAVs
    corecore