3,054 research outputs found

    Energy Efficient Sensor Scheduling with a Mobile Sink Node for the Target Tracking Application

    Get PDF
    Measurement losses adversely affect the performance of target tracking. The sensor network's life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node's path. First, we assume that the mobile sink node's position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods' performanc

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Parallel energy-efficient coverage optimization using WSN with Image Compression

    Get PDF
    Energy constraint is an important issue in wireless sensor networks. This paper proposes a distributed energy optimization method for target tracking applications. Sensor nodes are clustered by maximum entropy clustering. Then, the sensing field is divided for parallel sensor deployment optimization. For each cluster, the coverage and energy metrices are calculated by grid exclusion algorithm and Dijkstra’s algorithm, respectively. Cluster heads perform parallel particle swarm optimization to maximize the coverage metric and minimize the energy metric. Particle filter is improved by combing the radial basis function network, which constructs the process model. Thus, the target position is predicted by the improved particle filter. Dynamic awakening and optimal sensing scheme are then discussed in dynamic energy management mechanism. A group of sensor nodes which are located in the vicinity of the target will be awakened up and have the opportunity to report their data. The selection of sensor node is optimized considering sensing accuracy and energy consumption. Experimental results verify that energy efficiency of wireless sensor network is enhanced by parallel particle swarm optimization, dynamic awakening approach, and sensor node selection
    corecore