528 research outputs found

    Adaptive Resource Allocation Algorithms For Data And Energy Integrated Networks Supporting Internet of Things

    Get PDF
    According to the forecast, there are around 2.1 billion IoT devices connected to the network by 2022. The rapidly increased IoT devices bring enormous pressure to the energy management work as most of them are battery-powered gadgets. What’s more, in some specific scenarios, the IoT nodes are fitted in some extreme environment. For example, a large-scale IoT pressure sensor system is deployed underneath the floor to detect people moving across the floor. A density-viscosity sensor is deployed inside the fermenting vat to discriminate variations in density and viscosity for monitoring the wine fermentation. A strain distribution wireless sensor for detecting the crack formation of the bridge is deployed underneath the bridge and attached near the welded part of the steel. It is difficult for people to have an access to the extreme environment. Hence, the energy management work, namely, replacing batteries for the rapidly increased IoT sensors in the extreme environment brings more challenges. In order to reduce the frequency of changing batteries, the thesis proposes a self-management Data and Energy Integrated Network (DEIN) system, which designs a stable and controllable ambient RF resource to charge the battery-less IoT wireless devices. It embraces an adaptive energy management mechanism for automatically maintaining the energy level of the battery-less IoT wireless devices, which always keeps the devices within a workable voltage range that is from 2.9 to 4.0 volts. Based on the DEIN system, RF energy transmission is achieved by transmitting the designed packets with enhanced transmission power. However, it partly occupies the bandwidth which was only used for wireless information transmission. Hence, a scheduling cycle mechanism is proposed in the thesis for organizing the RF energy and wireless information transmission in separate time slots. In addition, a bandwidth allocation algorithm is proposed to minimize the bandwidth for RF energy transmission in order to maximize the throughput of wireless information. To harvest the RF energy, the RF-to-DC energy conversion is essential at the receiver side. According to the existing technologies, the hardware design of the RF-to-DC energy converter is normally realized by the voltage rectifier which is structured by multiple Schottky diodes and capacitors. Research proves that a maximum of 84% RF-to-DC conversion efficiency is obtained by comparing a variety of different wireless band for transmitting RF energy. Furthermore, there is energy loss in the air during transmitting the RF energy to the receiver. Moreover, the circuital loss happens when the harvested energy is utilized by electronic components. Hence, how to improve the efficiency of RF energy utilization is considered in the thesis. According to the scenario proposed in the thesis, the harvested energy is mainly consumed for uplink transmission. a resource allocation algorithm is proposed to minimize the system’s energy consumption per bit of uplink data. It works out the optimal transmission power for RF energy as well as the bandwidth allocated for RF energy and wireless information transmission. Referring to the existing RF energy transmission and harvesting application on the market, the Powercast uses the supercapacitor to preserve the harvested RF energy. Due to the lack of self-control energy management mechanism for the embedded sensor, the harvested energy is consumed quickly, and the system has to keep transmitting RF energy. Existing jobs have proposed energy-saving methods for IoT wireless devices such as how to put them in sleep mode and how to reduce transmission power. However,they are not adaptive, and that would be an issue for a practical application. In the thesis, an energy-saving algorithm is designed to adaptively manage the transmission power of the device for uplink data transmission. The algorithm balances the trade-off between the transmission power and the packet loss rate. It finds the optimal transmission power to minimize the average energy cost for uplink data transmission, which saves the harvested energy to reduce the frequency of RF energy transmission to free more bandwidth for wireless information

    Computational efficiency maximization for UAV-assisted MEC network with energy harvesting in disaster scenarios

    Get PDF
    Wireless networks are expected to provide unlimited connectivity to an increasing number of heterogeneous devices. Future wireless networks (sixth-generation (6G)) will accomplish this in three-dimensional (3D) space by combining terrestrial and aerial networks. However, effective resource optimization and standardization in future wireless networks are challenging because of massive resource-constrained devices, diverse quality-of-service (QoS) requirements, and a high density of heterogeneous devices. Recently, unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) networks are considered a potential candidate to provide effective and efficient solutions for disaster management in terms of disaster monitoring, forecasting, in-time response, and situation awareness. However, the limited size of end-user devices comes with the limitation of battery lives and computational capacities. Therefore, offloading, energy consumption and computational efficiency are significant challenges for uninterrupted communication in UAV-assisted MEC networks. In this thesis, we consider a UAV-assisted MEC network with energy harvesting (EH). To achieve this, we mathematically formulate a mixed integer non-linear programming problem to maximize the computational efficiency of UAV-assisted MEC networks with EH under disaster situations. A power splitting architecture splits the source power for communication and EH. We jointly optimize user association, the transmission power of UE, task offloading time, and UAV’s optimal location. To solve this optimization problem, we divide it into three stages. In the first stage, we adopt k-means clustering to determine the optimal locations of the UAVs. In the second stage, we determine user association. In the third stage, we determine the optimal power of UE and offloading time using the optimal UAV location from the first stage and the user association indicator from the second stage, followed by linearization and the use of interior-point method to solve the resulting linear optimization problem. Simulation results for offloading, no-offloading, offloading with EH, and no-offloading no-EH scenarios are presented with a varying number of UAVs and UEs. The results show the proposed EH solution’s effectiveness in offloading scenarios compared to no-offloading scenarios in terms of computational efficiency, bits computed, and energy consumptio

    Design and implementation of an uplink connection for a light-based IoT node

    Get PDF
    Abstract. In the wake of soaring demand for shrinking radio frequency (RF) spectrum, light-fidelity (LiFi) has been heralded as a solution to accommodate resources for future communication networks. Infrared (IR) and visible light communication (VLC) are meant to be used within LiFi because of numerous advantages. By combining the paradigm of internet of things (IoT) along with LiFi, light-based IoT (LIoT) emerges as a potential enabler of future 6G networks. With tremendous number of interconnected devices, LIoT nodes need to be able to receive and transmit data while being energy autonomous. One of the most promising clean energy sources comes from both natural and artificial light. In addition to providing illumination and energy, light can also be utilized as a robust information carrier. In order to provide bidirectional connectivity to LIoT node, both downlink and uplink have to be taken into consideration. Whereas downlink relies on visible light as a carrier, uplink approach can be engineered freely within specific requirements. With this in mind, this master’s thesis explores possible solutions for providing uplink connectivity. After analysis of possible solutions, the LIoT proof-of-concept was designed, implemented and validated. By incorporating printed solar cell, dedicated energy harvesting unit, power-optimised microcontroller unit (MCU) and light intensity sensor the LIoT node is able to autonomously transmit data using IR

    Traffic offloading in future, heterogeneous mobile networks

    Get PDF
    The rise of third-party content providers and the introduction of numerous applications has been driving the growth of mobile data traffic in the past few years. In order to tackle this challenge, Mobile Network Operators (MNOs) aim to increase their networks' capacity by expanding their infrastructure, deploying more Base Stations (BSs). Particularly, the creation of Heterogeneous Networks (HetNets) and the application of traffic offloading through the dense deployment of low-power BSs, the small cells (SCs), is one promising solution to address the aforementioned explosive data traffic increase. Due to their financial implementation requirements, which could not be met by the MNOs, the emergence of third parties that deploy small cell networks creates new business opportunities. Thus, the investigation of frameworks that facilitate the implementation of outsourced traffic offloading, the collaboration and the transactions among MNOs and third-party small cell owners, as well as the provision of participation incentives for all stakeholders is essential for the deployment of the necessary new infrastructure and capacity expansion. The aforementioned emergence of third-party content providers and their applications not only drives the increase in mobile data traffic, but also create new Quality of Service (QoS) as well as Quality of Experience (QoE) requirements that the MNOs need to guarantee for the satisfaction of their subscribers. Moreover, even though the MNOs accommodate this traffic, they do not get any monetary compensation or subsidization for the required capacity expansion. On the contrary, their revenues reduce continuously. To that end, it is necessary to research and design network and economic functionalities adapted to the new requirements, such as QoE-aware Radio Resource Management and Dynamic Pricing (DP) strategies, which both guarantee the subscriber satisfaction and maximization the MNO profit (to compensate the diminished MNOs' revenues and the increasing deployment investment). Following a thorough investigation of the state-of-the-art, a set of research directions were identified. This dissertation consists of contributions on network sharing and outsourced traffic offloading for the capacity enhancement of MNO networks, and the design of network and economic functions for the sustainable deployment and use of the densely constructed HetNets. The contributions of this thesis are divided into two main parts, as described in the following. The first part of the thesis introduces an innovative approach on outsourced traffic offloading, where we present a framework for the Multi-Operator Radio Access Network (MORAN) sharing. The proposed framework is based on an auction scheme used by a monopolistic Small Cell Operator (SCO), through which he leases his SC infrastructure to MNOs. As the lack of information on the future offered load and the auction strategies creates uncertainty for the MNOs, we designed a learning mechanism that assists the MNOs in their bid-placing decisions. Our simulations show that our proposal almost maximizes the social welfare, satisfying the involved stakeholders and providing them with participation incentives. The second part of the thesis researches the use of network and economic functions for MNO profit maximization, while guaranteeing the users' satisfaction. Particularly, we designed a model that accommodates a plethora of services with various QoS and QoE requirements, as well as diverse pricing, that is, various service prices and different charging schemes. In this model, we proposed QoE-aware user association, resource allocation and joint resource allocation and dynamic pricing algorithms, which exploit the QoE-awareness and the network's economic aspects, such as the profit. Our simulations have shown that our proposals gain substantial more profit compared to traditional and state-of-the-art solutions, while providing a similar or even better network performance.El aumento de los proveedores de contenido de terceros y la introducción de numerosas aplicaciones ha impulsado el crecimiento del tráfico de datos en redes móviles en los últimos años. Para hacer frente a este desafío, los operadores de redes móviles (Mobile Network Operators, MNOs) apuntan a aumentar la capacidad de sus redes mediante la expansión de su infraestructura y el despliegue de más estaciones base (BS). Particularmente, la creación de Redes Heterogéneas (Heterogenous Networks, HetNets) y la aplicación de descarga de tráfico a través del despliegue denso de BSs de baja potencia, las células pequeñas (small cells, SCs), es una solución prometedora para abordar el aumento del tráfico de datos explosivos antes mencionado. Debido a sus requisitos de implementación financiera, que los MNO no pudieron cumplir, la aparición de terceros que implementan redes de células pequeñas crea nuevas oportunidades comerciales. Por lo tanto, la investigación de marcos que faciliten la implementación de la descarga tercerizada de tráfico, la colaboración y las transacciones entre MNOs y terceros propietarios de células pequeñas, así como la provisión de incentivos de participación para todas las partes interesadas esencial para el despliegue de la nueva infraestructura necesaria y la expansión de la capacidad. La aparición antes mencionada de proveedores de contenido de terceros y sus aplicaciones no solo impulsa el aumento del tráfico de datos móviles, sino también crea nuevos requisitos de calidad de servicio (Quality of Service, QoS) y calidad de la experiencia (Quality of Experience, QoE) que los operadores de redes móviles deben garantizar para la satisfacción de sus suscriptores. Además, a pesar de que los operadores de redes móviles adaptan este tráfico, no obtienen ninguna compensación monetaria o subsidio por la expansión de capacidad requerida. Por el contrario, sus ingresos se reducen continuamente. Para ello, es necesario investigar y diseñar funcionalidades económicas y de red adaptadas a los nuevos requisitos, tales como las estrategias QoE-conscientes de gestión de recursos de radio y de precios dinámicos (Dynamic Pricing, DP), que garantizan la satisfacción del abonado y la maximización de la ganancia de operador móvil (para compensar los ingresos de los MNOs disminuidos y la creciente inversión de implementación). Después de una investigación exhaustiva del estado del arte, se identificaron un conjunto de direcciones de investigación. Esta disertación consiste en contribuciones sobre el uso compartido de redes y la descarga tercerizada de tráfico para la mejora de la capacidad de redes MNO, y el diseño de funciones económicas y de red para el despliegue y uso sostenible de las HetNets densamente construidas. Las contribuciones de esta tesis se dividen en dos partes principales, como se describe a continuación. La primera parte de la tesis presenta un enfoque innovador sobre la descarga subcontratada de tráfico, en el que presentamos un marco para el uso compartido de la red de acceso de radio de múltiples operadores (Multi-Operator RAN, MORAN). El marco propuesto se basa en un esquema de subasta utilizado por un operador monopólico de celda pequeña (Small Cell Operator, SCO), a través del cual arrienda su infraestructura SC a MNOs. Como la falta de información sobre la futura carga de red y las estrategias de subasta creaban incertidumbre para los MNO, diseñamos un mecanismo de aprendizaje que asiste a los MNO en sus decisiones de colocación de pujas. Nuestras simulaciones muestran que nuestra propuesta casi maximiza el bienestar social, satisfaciendo a las partes interesadas involucradas y proporcionándoles incentivos de participación. La segunda parte de la tesis investiga el uso de las funciones económicas y de red para la maximización de los beneficios de los MNOs, al tiempo que garantiza la satisfacción de los usuarios. Particularmente, diseñamos un modelo que acomoda una gran cantidad de servicios con diversos requisitos de QoS y QoE, tanto como diversos precios, es decir, varios precios de servicio y diferentes esquemas de cobro. En este modelo, propusimos algoritmos QoE-conscientes para asociación de usuarios, asignación de recursos y conjunta asignación de recursos y de fijación dinámica de precios, que explotan la conciencia de QoE y los aspectos económicos de la red, como la ganancia. Nuestras simulaciones han demostrado que nuestras propuestas obtienen un beneficio sustancial en comparación con las soluciones tradicionales y del estado del arte, a la vez que proporcionan un rendimiento de red similar o incluso mejor.Postprint (published version

    Multiple Access in Aerial Networks: From Orthogonal and Non-Orthogonal to Rate-Splitting

    Get PDF
    Recently, interest on the utilization of unmanned aerial vehicles (UAVs) has aroused. Specifically, UAVs can be used in cellular networks as aerial users for delivery, surveillance, rescue search, or as an aerial base station (aBS) for communication with ground users in remote uncovered areas or in dense environments requiring prompt high capacity. Aiming to satisfy the high requirements of wireless aerial networks, several multiple access techniques have been investigated. In particular, space-division multiple access(SDMA) and power-domain non-orthogonal multiple access (NOMA) present promising multiplexing gains for aerial downlink and uplink. Nevertheless, these gains are limited as they depend on the conditions of the environment. Hence, a generalized scheme has been recently proposed, called rate-splitting multiple access (RSMA), which is capable of achieving better spectral efficiency gains compared to SDMA and NOMA. In this paper, we present a comprehensive survey of key multiple access technologies adopted for aerial networks, where aBSs are deployed to serve ground users. Since there have been only sporadic results reported on the use of RSMA in aerial systems, we aim to extend the discussion on this topic by modelling and analyzing the weighted sum-rate performance of a two-user downlink network served by an RSMA-based aBS. Finally, related open issues and future research directions are exposed.Comment: 16 pages, 6 figures, submitted to IEEE Journa

    Architecture design for disaster resilient management network using D2D technology

    Get PDF
    Huge damages from natural disasters, such as earthquakes, floods, landslide, tsunamis, have been reported in recent years, claiming many lives, rendering millions homeless and causing huge financial losses worldwide. The lack of effective communication between the public rescue/safety agencies, rescue teams, first responders and trapped survivors/victims makes the situation even worse. Factors like dysfunctional communication networks, limited communications capacity, limited resources/services, data transformation and effective evaluation, energy, and power deficiency cause unnecessary hindrance in rescue and recovery services during a disaster. The new wireless communication technologies are needed to enhance life-saving capabilities and rescue services. In general, in order to improve societal resilience towards natural catastrophes and develop effective communication infrastructure, innovative approaches need to be initiated to provide improved quality, better connectivity in the events of natural and human disasters. In this thesis, a disaster resilient network architecture is proposed and analysed using multi-hop communications, clustering, energy harvesting, throughput optimization, reliability enhancement, adaptive selection, and low latency communications. It also examines the importance of mode selection, power management, frequency and time resource allocation to realize the promises of Long-term Evolution (LTE) Device to Device (D2D) communication. In particular, to support resilient and energy efficient communication in disaster-affected areas. This research is examined by thorough and vigorous simulations and validated through mathematical modelling. Overall, the impact of this research is twofold: i) it provides new technologies for effective inter- and intra-agency coordination system during a disaster event by establishing a stronger and resilient communication; and ii) It offers a potential solution for stakeholders such as governments, rescue teams, and general public with new informed information on how to establish effective policies to cope with challenges before, during and after the disaster events

    Resource Allocation and Service Management in Next Generation 5G Wireless Networks

    Get PDF
    The accelerated evolution towards next generation networks is expected to dramatically increase mobile data traffic, posing challenging requirements for future radio cellular communications. User connections are multiplying, whilst data hungry content is dominating wireless services putting significant pressure on network's available spectrum. Ensuring energy-efficient and low latency transmissions, while maintaining advanced Quality of Service (QoS) and high standards of user experience are of profound importance in order to address diversifying user prerequisites and ensure superior and sustainable network performance. At the same time, the rise of 5G networks and the Internet of Things (IoT) evolution is transforming wireless infrastructure towards enhanced heterogeneity, multi-tier architectures and standards, as well as new disruptive telecommunication technologies. The above developments require a rethinking of how wireless networks are designed and operate, in conjunction with the need to understand more holistically how users interact with the network and with each other. In this dissertation, we tackle the problem of efficient resource allocation and service management in various network topologies under a user-centric approach. In the direction of ad-hoc and self-organizing networks where the decision making process lies at the user level, we develop a novel and generic enough framework capable of solving a wide array of problems with regards to resource distribution in an adaptable and multi-disciplinary manner. Aiming at maximizing user satisfaction and also achieve high performance - low power resource utilization, the theory of network utility maximization is adopted, with the examined problems being formulated as non-cooperative games. The considered games are solved via the principles of Game Theory and Optimization, while iterative and low complexity algorithms establish their convergence to steady operational outcomes, i.e., Nash Equilibrium points. This thesis consists a meaningful contribution to the current state of the art research in the field of wireless network optimization, by allowing users to control multiple degrees of freedom with regards to their transmission, considering mobile customers and their strategies as the key elements for the amelioration of network's performance, while also adopting novel technologies in the resource management problems. First, multi-variable resource allocation problems are studied for multi-tier architectures with the use of femtocells, addressing the topic of efficient power and/or rate control, while also the topic is examined in Visible Light Communication (VLC) networks under various access technologies. Next, the problem of customized resource pricing is considered as a separate and bounded resource to be optimized under distinct scenarios, which expresses users' willingness to pay instead of being commonly implemented by a central administrator in the form of penalties. The investigation is further expanded by examining the case of service provider selection in competitive telecommunication markets which aim to increase their market share by applying different pricing policies, while the users model the selection process by behaving as learning automata under a Machine Learning framework. Additionally, the problem of resource allocation is examined for heterogeneous services where users are enabled to dynamically pick the modules needed for their transmission based on their preferences, via the concept of Service Bundling. Moreover, in this thesis we examine the correlation of users' energy requirements with their transmission needs, by allowing the adaptive energy harvesting to reflect the consumed power in the subsequent information transmission in Wireless Powered Communication Networks (WPCNs). Furthermore, in this thesis a fresh perspective with respect to resource allocation is provided assuming real life conditions, by modeling user behavior under Prospect Theory. Subjectivity in decisions of users is introduced in situations of high uncertainty in a more pragmatic manner compared to the literature, where they behave as blind utility maximizers. In addition, network spectrum is considered as a fragile resource which might collapse if over-exploited under the principles of the Tragedy of the Commons, allowing hence users to sense risk and redefine their strategies accordingly. The above framework is applied in different cases where users have to select between a safe and a common pool of resources (CPR) i.e., licensed and unlicensed bands, different access technologies, etc., while also the impact of pricing in protecting resource fragility is studied. Additionally, the above resource allocation problems are expanded in Public Safety Networks (PSNs) assisted by Unmanned Aerial Vehicles (UAVs), while also aspects related to network security against malign user behaviors are examined. Finally, all the above problems are thoroughly evaluated and tested via a series of arithmetic simulations with regards to the main characteristics of their operation, as well as against other approaches from the literature. In each case, important performance gains are identified with respect to the overall energy savings and increased spectrum utilization, while also the advantages of the proposed framework are mirrored in the improvement of the satisfaction and the superior Quality of Service of each user within the network. Lastly, the flexibility and scalability of this work allow for interesting applications in other domains related to resource allocation in wireless networks and beyond
    corecore