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Abstract

Wireless networks are expected to provide unlimited connectivity to an increasing number of het-

erogeneous devices. Future wireless networks (sixth-generation (6G)) will accomplish this in

three-dimensional (3D) space by combining terrestrial and aerial networks. However, effective

resource optimization and standardization in future wireless networks are challenging because of

massive resource-constrained devices, diverse quality-of-service (QoS) requirements, and a high

density of heterogeneous devices. Recently, unmanned aerial vehicle (UAV)-assisted mobile edge

computing (MEC) networks are considered a potential candidate to provide effective and efficient

solutions for disaster management in terms of disaster monitoring, forecasting, in-time response,

and situation awareness. However, the limited size of end-user devices comes with the limitation

of battery lives and computational capacities. Therefore, offloading, energy consumption and com-

putational efficiency are significant challenges for uninterrupted communication in UAV-assisted

MEC networks. In this thesis, we consider a UAV-assisted MEC network with energy harvest-

ing (EH). To achieve this, we mathematically formulate a mixed integer non-linear programming

problem to maximize the computational efficiency of UAV-assisted MEC networks with EH under

disaster situations. A power splitting architecture splits the source power for communication and

EH. We jointly optimize user association, the transmission power of UE, task offloading time, and

UAV’s optimal location. To solve this optimization problem, we divide it into three stages. In the

first stage, we adopt k-means clustering to determine the optimal locations of the UAVs. In the

second stage, we determine user association. In the third stage, we determine the optimal power of

UE and offloading time using the optimal UAV location from the first stage and the user association

indicator from the second stage, followed by linearization and the use of interior-point method to

solve the resulting linear optimization problem. Simulation results for offloading, no-offloading,

offloading with EH, and no-offloading no-EH scenarios are presented with a varying number of

UAVs and UEs. The results show the proposed EH solution’s effectiveness in offloading scenar-

ios compared to no-offloading scenarios in terms of computational efficiency, bits computed, and

energy consumption.
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Chapter 1

Introduction

Disasters bring voluminous human casualties and property losses and severely affect the com-

munications infrastructure around the globe every year [1]. In 2021 alone, the emergency event

database recorded 432 disastrous events that affected 101.8 million people worldwide, causing

10,492 deaths and approximately $252.1 billion in economic losses [2]. However, the inevitably

long amount of time it takes to recover the original communications infrastructure is purely depen-

dent on the severity levels of disasters. In certain critical situations such as tsunamis, flooding, and

earthquakes, urgent deployment of communications infrastructure may save thousands of precious

lives. Recently unmanned aerial vehicles (UAVs) have been considered useful in every field of

life, such as public safety, energy, agriculture, remote sensing, disaster management, aerial deliv-

ery, surveillance, and communications [3]. European telecommunication standards institute (ETSI)

created a mobile edge computing (MEC) paradigm, in which computing services and capabilities

are implemented at the edge of the networks. The decentralized attribute of MEC can enable the

deployment of the edge node as per the requirement in disaster scenarios [4]. Thus, integrating

both technologies, such as UAV and MEC, can play a crucial role in leveraging the performance of

wireless networks. It has excellent potential for rapid deployment of communications infrastruc-

ture, which can be highly beneficial in emergencies, especially in disaster management [5].

UAV-assisted MEC networks can offer low cost, high applicability and rapid deployment to
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provide MEC computation services in disaster-struck regions. The users trapped in the affected

areas can offload their computational tasks to the UAV-mounted mobile edge nodes, which act as

base stations (BSs) on demand without any network infrastructure installation delays. Another

challenge is the limited battery power of user equipment (UE) and charging it in unprecedented

disaster situations. A potential solution to charge UE in such situations is by incorporating radio

frequency (RF) energy harvesting (EH) [6]. RF EH relies on electromagnetic waves transmitted

wirelessly by a power source and converted back to electrical energy at the receiver. Thus, UAV-

assisted MEC networks have the desired capabilities to support the industry and society needs of

future communications. For instance, Motlagh et al. in [7] solved the problem of computation of-

floading of video processing tasks by introducing a UAV-assisted MEC architecture for the Internet

of Things (IoT) services to achieve facial recognition based crowd surveillance. Similarly, Ahmed

et al. proposed a scheme for joint placement and user association of UAVs for IoT networks [8].

Sekander et al. investigated the potential of drones for fifth-generation (5G) and beyond cellular

networks and presented a multi-tier UAV-assisted cellular architecture for measuring the spectral

efficiency of downlink transmissions [9].

In [10], Huang et al. proposed an efficient EH scheduling scheme for EH empowered device-

to-device (D2D) relay networks. They formulated an optimization problem for energy scheduling

and proposed a two-stage directional water-filling algorithm to solve it. Similarly, in [11, 12]

Liu et al. proposed a hybrid architecture that combines the multihop D2D relay and UAVs to

extend the coverage of IoT devices, along with a resource allocation scheme for UAV-assisted

machine-to-machine (M2M) communications for disaster management. In [13], Bor-Yaliniz et

al. introduced a revenue maximization scheme for the cellular network using the placement of

UAV BSs. They formulated a mixed-integer nonlinear programming (MINLP) problem and solved

it using a heuristic algorithm. Similarly, in [14], the deployment of UAV-BS based scheme is

designed to investigate energy-efficient communication for mobile ad-hoc networks.

Computational offloading, energy limitation and computational efficiency are the main chal-

lenges of UAV-assisted MEC networks, particularly in disaster situations. In this thesis, we formu-
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late an MINLP optimization problem to maximize the computational efficiency of a UAV-assisted

MEC system in disaster situations. To achieve this objective, we jointly optimize user associ-

ation with the nearest UAV, transmission power of UE, offloading time, and optimal location of

UAV while adopting EH to replenish the power of energy-constrained UEs and maintain long-term

energy sustainability.

1.1 Motivation

Due to the resource-constrained design of UEs, they require assistance to offload computation

tasks. UAV-assisted MEC networks with EH are an efficient and effective solution to the of-

floading problem, particularly in disaster management in terms of monitoring, forecasting, in-time

response, and situation awareness. Although using UAVs provide better LoS communication com-

pared to terrestrial BSs, UAVs have limited computation capacity and battery life. It is still greater

than the computation capacity and battery life of the UEs offloading the computation tasks to the

UAV-assisted MEC node. Therefore, computational offloading, energy limitation and computa-

tional efficiency are the main challenges of UAV-assisted MEC networks, particularly in disaster

situations. This motivates the proposed three-stage scheme to maximize the computation efficiency

in UAV-assisted MEC networks with EH, where UEs are recharged using the downlink RF signal

to increase their battery lives and promote long-term energy sustainability.

This EH in UAV-assisted MEC networks applies to the access communication links to pro-

vide power transfer while providing network connectivity to ground users. This will particularly

help in disaster recovery scenarios, emergency relief, and battle-struck areas, where the terrestrial

infrastructure may be damaged or unavailable. Deployment of UAV-BS once the UAVs deter-

mine network gaps will particularly help users stay connected to the network and communicate

their needs to survive during unprecedented difficult times. Thus, to solve the problem of energy-

constrained devices connected to the UAV-assisted MEC network, this thesis proposes an MINLP

optimization problem to maximize the computational efficiency of the UAV-assisted MEC network
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with EH in a disaster situation.

Computation offloading, energy limitation and computation efficiency maximization problems

are considered in the MINLP problem. We solve them by jointly optimizing the UAV location for

maximum connections and offloading, UAV and UE associations for computation offloading, UE

energy consumption reduction through offloading computation tasks and EH, as well as time taken

to offload tasks from UE to UAV.

1.2 Preliminaries of Computation Efficiency in UAV-assisted

MEC Network with Energy Harvesting

This section will discuss components that build the computation efficiency maximization in a

UAV-assisted MEC network with EH. Some of the preliminaries include UAV-assisted wireless

networks, MEC networks and UAV-assisted MEC networks, computation offloading, computation

efficiency, energy efficiency and EH.

1.2.1 Mobile Edge Computing (MEC)

With the increase in high bandwidth and high reliability requirements in communication networks,

cloud computing and cloud servers have been adopted in both wireless and wired networks. How-

ever, some applications like vehicular ad-hoc networks (VANET) have high sensitivity to latency,

so cloud computing may not be sufficient for shorter real-time latency and improved reliability

requirements. Therefore, to bring the computing to servers installed and available at the network

edge instead of the remote cloud servers, MEC paradigm was formulated. The 3rd Generation

Partnership Project (3GPP), ETSI and other standardization bodies are defining the service, archi-

tecture and application programming interfaces (APIs) for MEC, while researchers are proposing

architectures and derivations to analyse the computational offloading to MEC servers [15].

MEC extends the cloud computing paradigm at the network edge, where resources can be re-

used and the network can be extended by varying geographical locations of edge nodes. MEC is
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not a standalone technology and can be looked at from a network or service perspective. From

a network perspective, due to the close proximity of MEC nodes, fewer hops are needed by data

packets, leading to reduced network congestion and latency, as well as increased reliability and

bandwidth with the increased resource availability. From a service perspective, the homogenous

technology stack empowers and implements data-centric architectures with service constraints.

MEC can be implemented from a network or service perspective, or a combination of both for

best results. Use of MEC is particularly beneficial for services and applications requiring ultra-low

latency, high bandwidth, service reliability and special privacy. Since load sitautions and network

configurations are predictable and pre-planned for static environments, significant performance

improvements can be seen. However, if UE move unpredictably and inter-MEC-zone movement

takes place, adjustments need to be made accordingly in higher layers of the Open Systems Inter-

connection (OSI) reference model, therefore impacting communication performance [16].

1.2.2 UAV-assisted wireless networks

Future wireless networks (sixth-generation (6G)) are anticipated to provide fast, reliable, and ef-

ficient connectivity to a growing number of heterogeneous devices. This can be accomplished

in three-dimensional (3D) space by integrating terrestrial and aerial networks. Deployment of

unmanned aerial vehicle base stations (UAV-BS) and relays can integrate terrestrial and aerial net-

works to provide massive connectivity in 3D space. In a UAV-BS, UAV acts as the BS to provide

network connectivity. UAVs can provide high mobility and increased flexibility and can be used

as a rapid remedy to temporary surges in user demand for connectivity, such as flash crowds or

disaster scenarios. Applications of 3D networks range from military to public operations, includ-

ing military surveillance, medical emergency, natural disasters, search and rescue, detection of

network coverage gaps and provision of temporary on-demand connectivity, delivering parcels,

relaying data packages, gathering sensor information, and in many other sectors [17–20]. With the

massive number of resource-constrained devices, diverse quality-of-service (QoS) requirements,

and a high density of heterogeneous devices, efficient resource management in future wireless net-
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works is becoming a challenge. Traditional resource management schemes cannot cope with the

complexities of these challenges, leading to the demand for UAV-assisted networks with energy

harvesting in such a resource-constrained environment [21].

Recently UAVs integrated with MEC are gaining popularity due to their flexible nature of ser-

vice provision [22]. Due to the energy constraint of UAVs, there are recent studies on energy

consumption reduction [23], energy harvesting [24], energy efficiency [25] and resource alloca-

tion [22], and computation efficiency [26] of UAV-assisted MEC systems. Due to the energy con-

straint of the user devices, there are studies on energy consumption reduction through computation

offloading to UAV-assisted MEC [27], and RF energy harvesting from UAV-assisted MEC [28].

Other topics of interest in the UAV-assisted MEC include trajectory optimization [29], service

QoS provision [30], user quality of experience [31], data secrecy [32] and latency [33].

1.2.3 Computation Offloading

Computation offloading is another key preliminary, as well as challenge to overcome in UAV-

assisted MEC networks. It is a key technology of MEC, where all or part of the computation

tasks for a UE are offloaded to the MEC server for computation. This in turn reduced the energy

consumption of the UE. On the other hand, since MEC server has far superior computing power

than a UE, the performance is enhanced too [34, 35].

There can be three possible computation offloading decisions, i.e. local execution, partial

offloading, and full offloading [36]. In the local execution, the computation tasks for the UE

are performed locally by the device itself. In partial offloading, some part of the computation

is performed locally, while the remaining tasks are migrated to the MEC server to be processed

there. In the full offloading case, all the computation tasks are migrated to the MEC server to be

processed there. Due to the superiority of the computation capacity of the MEC server, the task

computation takes less time than it takes at the UE. However, there is time and energy associated

with the transmission of unprocessed tasks to the MEC server and processed tasks back from the

MEC server. The main performance metrics for offloading include latency, energy consumption
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and the trade-off between the two, as attempting to reduce latency significantly increase energy

utilization, and vice-versa.

Computation offloading approaches can be examined as single-user or in a multi-user scenario.

In a single-user scenario, the offloading decision depends on the computing task queue’s length,

UE’s executing state and the transmission unit’s state. In a multi-user scenario, the offloading

decision is more complex, as the offloading decision of one user affects the performance of others.

Network bandwidth, MEC computing resources and the number of users also contribute to the

offloading decision [37].

1.2.4 Energy Harvesting

For high-computation, low-latency and energy-hungry applications, computation offloading in

MEC with EH are becoming increasingly popular [27]. While MEC supports energy and computation-

constrained UEs by processing their tasks [38]. Energy harvesting supports the operating capabil-

ities of the UE itself by overcoming the shortcoming of limited battery life [39]. By converting

the captured energy from various environmental sources such as microbial fuel cells [40], photo-

voltaic cells [41], piezoelectronics [42], thermal energy [43] and radio-frequency (RF) energy [44]

into electrical energy, the EH capabilities enhance the battery lives of energy-constrained UE de-

vices [39]. The energy management of this harvested energy is the main component in EH-based

wireless networks [27].

Since EH contributes to longer device battery life, it in turn supports prolonged operating ca-

pabilities. EH can reduce and potentially eliminate the need for batteries in user devices. Delgado

et al. recently proposed an optimal energy-aware task scheduling to achieve batteryless IoT de-

vices in [45], running on capacitors to store energy charged using EH. This also makes the devices

environmentally friendly, with cheap maintenance, easy recycling, and temperature variations and

recharging degradation resistance [45]. However, there is fluctuation and unpredictability in the

nature of EH process [46]. Environmental changes and inconsistencies also impact the character-

istics of EH process. Therefore, it is difficult to estimate EH in the complexities of the dynamic
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environment, especially if multiple MEC servers are involved [38].

Though EH over RF transmission is an efficient way for powering low-power wireless devices,

for instance, sensors and IoT devices. This is particularly beneficial due to the ability to transmit

power to multiple receivers simultaneously, even when the distance is more than several meters

away compared to near-field transmission in magnetic induction and resonance [47] [48]. How-

ever, the drawback of RF signals is the exponential attenuation of microwave energy based on the

propagation distance, leading to reduced energy transfer efficiency [49].

Research in energy efficient designs are either focussed on reducing energy usage through

design changes [50] or using RF signals as an energy harvesting source to improve energy ef-

ficiency [25]. Many studies used a linear EH model with the assumption that harvested energy

increases linearly with the increase in the input power of the received signals [51]. However, prac-

tically, the RF-based EH process has non-linear characteristics with non-linear power transfer and

non-linear energy harvesting [38] [46] [52]. Therefore, for practical implementation of EH, the

non-linear EH model should be considered [53].

Efficient energy management has its challenges due to the unpredictable EH and QoS require-

ments [54]. Interesting research was conducted by Zhang et al. for device-to-device EH as a

reward for offloading assistance [55]. Overall, increasing the energy efficiency of mobile devices

is becoming more and more important with increasing mobile usage and limited battery life, where

EH is a promising paradigm for green computing and communication [56].

1.2.5 Computation Efficiency

Apart from computation offloading and energy consumption, computation efficiency is a major

challenge in UAV-assisted MEC networks. Computation efficiency is derived from the energy ef-

ficiency of a system. Instead of the frequently used metric for efficiency of the system, i.e. either

energy efficiency or the data processed, a new metric called computation efficiency was defined

in [57]. Energy efficiency is still a popular metric in industry and academia for multi-hop systems

and heterogeneous networks. It can measure the reduction in energy consumed for a certain level
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of quality of service maintained. However, with the increasing number of energy and computation

capacity-constrained devices with computation-intensive and latency-sensitive tasks, computation

offloading to MEC servers has become increasingly important for delay-sensitive tasks while com-

munications throughput has become secondary. The combined efficiency of communication and

computation can be determined using the computation efficiency metric, which is the ratio of bits

computed vs the energy consumed to compute the data bits. This new metric, computation ef-

ficiency, measures the efficiency of the system in terms of bits computed per Joule for massive

computation requirements. Maximizing the computation efficiency, therefore, entails the maxi-

mization of computed bits as well as the minimization of energy consumed, while considering

local and offloaded computation [57].

Computation efficiency is now being widely used as a performance metric. In [58], Cang et

al. aim at maximizing the minimum computation efficiency of all users fairly. Resource allocation

strategies for partial and binary computation offloading are defined to maximize the computation

efficiency of wireless-powered MEC networks in [36]. Similarly, Huang et al. used computation

efficiency as the performance metric to better express the effectiveness of their proposed system

in [59].

1.3 Thesis Objective

The main objective of this thesis is to develop a scheme to maximize computational efficiency

for a UAV-assisted MEC network with EH in disaster scenarios. To maximize the computation

efficiency, we jointly optimize UAV location, user association, UE’s transmission power, and com-

putation tasks offloading time. This leads us to the formulation of an MINLP optimization prob-

lem. To solve the MINLP problem, we develop a three-stage scheme to maximize the computation

efficiency a of UAV-assisted MEC network with EH in disaster scenarios. Simulation results are

presented to test the effectiveness of the proposed scheme in terms of computational efficiency,

bits computed, and energy consumption with a varying number of UAVs and UEs.
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1.4 Thesis Contributions

The main contributions of this thesis can be summarized as follows:

• We formulate an MINLP optimization problem to maximize the computational efficiency

of the UAV-assisted MEC networks with EH for disaster situations, in which we jointly

optimize user association, transmission power of UE, offloading time, and UAV’s optimal

location.

• We propose a three-stage scheme to solve the optimization problem. In the first stage, we

adopt k-means clustering to determine the optimal locations of the UAV-BSs. In the second

stage, the user association decision is made based on the distance from the UAV and the

maximum available connections of the UAV. In the third stage, we divide the problem into

two sub-problems. First, we adopt linear approximation to linearize the MINLP problem;

then, we apply the interior point method (IPM) to solve the formulated linear optimization

problem to maximize the computation efficiency while optimizing transmission power and

offloading time.

• The effectiveness of the proposed scheme is evaluated based on simulation results obtained

in terms of computational efficiency, bits computed, and energy consumption for different

scenarios of offloading, no-offloading, offloading-EH, and no-offloading-EH with a varying

number of UAVs and UEs.

1.5 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 covers the state-of-the-art development

in computational efficiency, EH, and task offloading in UAV-assisted MEC networks and their

challenges. Chapter 3 discusses the system model adopted to formulate the MINLP optimization

problem in UAV-assisted MEC networks. Chapter 4 presents the proposed three-staged scheme
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to solve the optimization problem, followed by the simulation results and their analysis. Finally,

Chapter 5 concludes the thesis and presents the future research directives.
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Chapter 2

Background and Literature Review

In this chapter, we highlight some of the recent research and development trends, leading to the

formulation of our work on computation efficiency maximization of UAV-assisted MEC networks

with EH. Some areas of research include computational efficiency, user energy efficiency, energy

harvesting, partial and binary computational offloading, location optimization or a combination

of them in UAV-assisted MEC networks. In the summary section, we discuss how the proposed

work is different and adds value to the existing literature on challenges faced with computation

offloading, energy scarcity and computation efficiency in UAV-assisted MEC networks.

2.1 Related Work

2.1.1 Energy consumption and efficiency

There exists some work in different aspects of enhancing computational efficiency, EH, and task

offloading in UAV-assisted MEC networks. Few papers discuss one or a combination of these opti-

mization problems. For instance, in terms of energy consumption, Lin et al. proposed a two-stage

optimization scheme in [60] to minimize the transmission energy consumption and service latency

for a UAV-assisted MEC network. In the first stage, a non-cooperative offloading game problem

is formulated and solved via an online non-cooperative computation offloading scheme using mo-
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bile users’ individual rationality, long-term queue stability, and mobile users’ mutual interference

constraints. In the second stage, a UAV workload scheduling algorithm is presented to optimize

the provision of UAVs’ computational resources and minimize the UAVs’ energy consumption.

Similarly, in [61], Liu et al. formulated a non-convex optimization problem to minimize the to-

tal energy required for a UAV to jointly optimize the CPU frequencies, sensor devices’ offloading

amount, transmit power, and the UAV trajectory as constraints. They further used Taylor expansion

to convert their optimization problem into a convex optimization problem. However, in the pro-

posed scheme, with the increase in the number of idle sensor devices, the number of optimization

variables also increases, which causes a longer convergence time.

Li et al. presented an optimization problem to maximize the UAV energy efficiency. They pro-

posed energy-efficient resource allocation and trajectory schemes for UAV-assisted MEC networks

by considering UAV communication energy budget, UAV computation capacity, and mechanical

operation of the UAV constraints [25]. In [62], Manzoor et al. discussed an energy-efficient scheme

consisting of ruin-theory followed by a water-filling based scheme for a UAV-assisted cellular net-

work, with EH. The objective is to maximize data rate of enhanced mobile broadband (eMBB)

users, enhance the cellular network capacity and increase flight duration of UAVs while consider-

ing latency and reliability constraints of ultra-reliable and low-latency communication (URLLC)

applications. They jointly optimized user association, and power allocation for 5G. They dis-

cussed the energy sustainability, however, accounting for trajectory optimization of UAVs can

make the solution more realistic as a significant amount of energy is utilized in maneuvering the

UAVs. A multi-stage stochastic programming problem is formulated by Yang et al. to minimize

the UAV propulsion energy. This is solved in a semi-closed loop form by splitting EH, allocation of

computational resources (i.e., CPU frequencies and offloading times), and UAV trajectory control

into sub-problems, while considering battery causality and data queue stability constraints [63].

Further, the authors presented an online perturbed Lyapunov optimization-based offloading and

trajectory (PLOT) control algorithm to solve it as a deterministic optimization problem per time

slot.
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Resource scheduling to maximize the weighted global energy efficiency of a UAV-assisted

MEC system consisting of 2-D multi-lane platooning vehicles was discussed in [64]. The effect

of driving behaviour on ground-to-air communication and task offloading were taken into account.

The authors also considered user preference in energy consumption to determine optimal energy

utilization and maximize the global energy efficiency of the system. In [65], the authors formulated

a joint optimization problem based on customized price and power control for energy-efficient

wireless networks. The constraints included finding the right balance of uplink transmission power

based on the pricing model for the best possible channel gains and QoS in the limited bandwidth.

Using a generic net two-variable utility function, the S-modular theory is used to find a distributive

and iterative algorithm for a Nash equilibrium point. This energy-efficient solution leveraged the

price of service users were willing to pay for the maximum power they can transmit.

A summary of the discussions is given in Table 2.1. The table shows which papers adopted EH,

and a brief description of the research problem, objective, constraints, problem type and solution

approach of each paper. All the authors worked on improving the energy efficiency of the system.

This was either done by reducing the energy consumption of the UAVs [61] [64] by minimizing

UAV propulsion energy [63], increase flight duration [62], or adopting EH [61] [62] [63] or by in-

troducing computation offloading [25] [60] [61], reducing transmission energy consumption [60],

or introducing a price and power scheme for reduced power consumption and bandwidth alloca-

tion [65]. An interesting model with computation offloading to and EH from idle devices in the

system was proposed in [61].
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Table 2.1: Summary of Energy efficiency and consumption

related work.

Ref. EH Research

Problem

Objective Constraints Problem Type Solution

[25]

✗ UAV aerial

cloudlet col-

lects and

processes the

ground users’

offloaded tasks

Maximize

UAV energy

efficiency

Communication

and computa-

tion require-

ments and

resources

Non-convex

joint optimiza-

tion

Dinkelbach al-

gorithm, SCA.

[60]

✗ Energy-

efficient

computation

offloading for

UAV-assisted

MEC

Minimize

transmission

energy con-

sumption and

service latency

User rational-

ity, long term

queue stability,

mutual inter-

ference

Optimization

of UAV

computation

resource pro-

vision

Online non-

cooperative

computation

offloading

scheme;

workload

scheduling of

UAV
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[61]

✓ Wireless

energy trans-

mitter enabled

UAVs and

idle devices

provide energy

and computa-

tion offloading

services

Minimize the

total required

energy of UAV

Active com-

puting tasks,

informa-

tion and EH

causality;

UAV trajec-

tory

Non-convex Taylor ex-

pansion,

SCA-based

algorithm

[62]

✓ Ruin-based

energy-

efficiency

scheme for

UAV-assisted

cellular net-

work

Maximize data

rate of eMBB

users, increase

UAV flight du-

ration

Latency and

reliability

for URLLC

applications

Joint optimiza-

tion

Ruin theory,

water-filling

scheme.

[63]

✓ Offloading and

trajectory con-

trol in UAV-

enabled MEC

with EH UE

devices

Minimize

UAV propul-

sion energy

UAV op-

erational

constraints;

long-term data

queue stabil-

ity; Battery

causality of

EH devices

Multi-stage

stochastic

optimization

Online PLOT

control al-

gorithm;

semi-closed-

form solution

of per-slot

optimization

problem.
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[64]

✗ UAV assisted-

MEC system

with multi-

lane platoon-

ing vehicles

Maximize

weighted

global energy

efficiency

UAV energy

consumed,

quality of

service,

throughput

Non-convex

energy opti-

mization

Sequential

quadratic pro-

gramming.

[65]

✗ Custom price

and power

control in

multi-service

wireless net-

works

Maximization

of QoS utility

Price and

power, QoS

Joint optimiza-

tion of price

and power

S-modular the-

ory.

2.1.2 Latency and computation offloading

In [66], the authors formulated an optimization problem with the objective of maximizing the

latency fairness for UAV-assisted MEC systems by jointly considering the constraints of minimum

control link rate, total power, and ground user device’s battery power. In order to jointly optimize

the given parameters, the authors devised an iterative algorithm in which the location of the UAV

is determined using the guided pattern search algorithm, the altitude of the UAV by elevation

angle, and the UAV power is allocated by using the bisection method, respectively. Further, a deep

reinforcement-based method for solving the UAV-assisted computation offloading problem with a

cost-efficient offloading policy for dynamic UAV mobility patterns and UAV failure is presented

in [67]. The core objective of the optimization is to maximize the sum of rewards, improve energy

efficiency, and reduce the average processing time while satisfying the computation capacity, UAV

mobility, and UAV failures ratios constraints. Further, the authors proposed a distributed deep
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reinforcement learning-based method with cooperative exploring and prioritized experience replay

to solve the formulated optimization problem.

In [68], Wang et al. formulated a non-convex optimization problem for finding an optimal com-

putation offloading policy under an uncontrollable and dynamic UAV environment. The objective

is to minimize the processing delay by jointly considering the user scheduling, task offloading

ratio, UAV flight angle, and speed. Moreover, the authors derived a computation offloading algo-

rithm based on the deep deterministic policy gradient using reinforcement learning to satisfy the

aforementioned objective. In [69], Ye et al. worked on the allocation of optimal sub-bands and

power for message transmission in unicast and broadcast vehicle-to-vehicle (V2V) communica-

tions in a decentralized manner. There are stringent latency constraints for V2V communication

and the amount of vehicle-to-infrastructure (V2I) communication capacity and interference. The

authors proposed a deep reinforcement learning (RL)-based decentralized and automated resource

allocation method for this optimization problem. This led to little transmission overhead associ-

ated with local information and observations made by the decision-making agent of the V2V link

or vehicle. However, deep learning adds computational complexity to the implementation. Luckily

there are studies to reduce this computational complexity that can be considered with this proposed

approach.

A summary of the discussions is given in Table 2.2. The table shows that none of the papers

adopted EH, and provides a brief description of the research problem, objective, constraints, prob-

lem type and solution approach of each paper. All the authors worked on offloading computation

tasks except [69], where power and bandwidth were optimized for latency-sensitive V2V links.

Generally, reducing the communication latency [68] fairly [66], maximization of sum of reward

through a cost-efficient offloading policy [67], and the latency sensitivity of V2V links [69] are

summarized in the table.
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Table 2.2: Summary of Latency and Computation offloading

related work.

Ref. EH Research

Problem

Objective Constraints Problem Type Solution

[66]

✗ Resource

optimization

of randomly

distributed

ground users

and a UAV-

MEC

Maximize

the latency

fairness

Minimum con-

trol link rate

and power lim-

itations

Joint optimiza-

tion

Iterative algo-

rithm: guided

pattern search;

bisection

method

[67]

✗ UAV-assisted

MEC with

cost-efficient

offloading

policy

Maximize sum

of reward

Computation

capacity, dy-

namic UAV

mobility pat-

tern and UAV

failures

Joint optimiza-

tion

distributed

deep rein-

forcement

learning-based

method with

cooperative

exploring and

prioritized

experience

replay
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[68]

✗ Finding opti-

mal computa-

tion offloading

under an un-

controlled

dynamic envi-

ronment

Minimize the

processing

delay

User schedul-

ing, task of-

floading ratio,

UAV flight an-

gle and speed

Non-convex

joint optimiza-

tion

Computation

offloading

algorithm

based on the

deep deter-

ministic policy

gradient using

reinforcement

learning

[69]

✗ Decentralized

resource

allocation

of optimal

sub-band and

power levels

for transmis-

sion in unicast

and broadcast

V2V Commu-

nications

Minimize

interference of

V2V links to

V2I links

Latency con-

straints in

V2V links,

V2I capacity

and interfer-

ence threshold

in broadcast

Sub-band and

power opti-

mization

Deep RL

based resource

allocation

framework.

2.1.3 Energy harvesting

In [70], Liu et al. presented a UAV-connected and autonomous vehicles cooperation model for EH

in UAV-assisted MEC networks. An optimization problem is formulated to maximize the overall
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computational capacity by jointly optimizing communication and computation resources. In the

proposed successive convex approximation (SCA)-based joint communication and computation

resource scheduling optimization method, the cloudlet-mounted UAVs harvest energy from the

platooning vehicles and assist them with computational offloading while satisfying the energy,

time, communication, and computational resources constraints. In [71], Li et al. presented a UAV-

based wireless power transfer for the MEC networks to minimize the UAV’s transmission power

and developed a cooperative MEC scheme, in which a closer user assists the other users who are

away from the UAV. In [6], the mobile UAV acts as a wireless energy source as well as a mobile

fog server for the ground sensors. Xiong et al. jointly optimize UAV trajectory, task offloading,

and computing resource allocation for UAV-assisted wireless-empowered fog computing networks,

while considering non-linear EH, UAV velocity and sensor charging requirements’ constraints.

First-order Taylor expansion and a SCA theory-based iterative method were used to solve this

non-convex joint optimization problem with a piecewise non-linear EH model [6].

In [72], Khairy et al. presented WiFi broadcast charging in carrier sensing multiple access with

collision avoidance (CSMA/CA)-based IoT networks with a limitation of only charging, detecting

or active period at any given time due to the use of a single antenna. In [73], Lu et al. compared

power splitting and time switching architectures for RF EH performance in cellular networks.

They demonstrated how the power-splitting architecture generated better results than the time-

switching architecture regarding transmission outage probability, as the transmission outage led to

service disruptions. In both [72, 73], the challenges of service disruption faced could be solved

by the use of multiple antennas with designated communication or EH capabilities. Benkhelifa et

al. used stochastic geometry and queuing theory in [74] to develop a spatiotemporal mathematical

model of self-sustainability in IoT networks that recycle RF-energy in a downlink cellular network.

The two-dimensional (2D) discrete-time Markov chain model tracks the time evolution of battery

and data buffer of self-sustainable IoT devices. Simulation results showed that the network is

unsuccessful in sustaining itself, possibly due to energy scarcity, overwhelming interference, or

both. The spatiotemporal traffic intensity, cellular network density, and network self-sustainability
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are analyzed to quantify the required packet delay and buffer size in the design of IoT devices for

different network parameters. However, the authors used a single antenna where the assumption is

made that information transfer gets priority over EH.

Energy efficiency in point-cloud-based autonomous UAV navigation (ECONOMY) system is

investigated in [75] for the unknown environment. The problem is decomposed into UAV commu-

nication optimization and UAV trajectory and velocity optimization with a constraint on colliding

probability caused by point cloud uncertainties. The proposed scheme is based on the gradient

ascend, then deterministically exploiting convex sets’ tight-upper bound. The autonomous naviga-

tion scheme can be significant in search and rescue missions where dynamic obstacles are involved.

However, ambient charging through EH on top of the articulated energy-efficient autonomous nav-

igation in [75] can facilitate an uninterrupted mission. Joint optimization of communication sched-

ule and continuous autonomous maneuvering in UAV-assisted data collection is discussed in [20].

A deep deterministic policy gradient-based maneuver control (DDPG-MC) is proposed for learn-

ing in online maneuver control. Li et al. formulated the data capture schedule to reduce buffer

overflows at the sensors, which resulted in the dropping of newer data packets. A large number of

sensors or poor trajectory planning can cause data buffers at the sensors to overflow. The queu-

ing and buffer time at the sensors could be reduced by using multiple UAVs instead of one or

improving the UAV’s battery life through EH for continuous data collection.

A summary of the discussions is given in Table 2.3. The table shows that all the papers adopted

EH, and provides a brief description of the research problem, objective, constraints, problem type

and solution approach of each paper. All the authors worked on EH to maximize computation

efficiency [70] and throughput [72], minimize energy consumption [6] [71], analyze RF EH archi-

tectures [73] and recycle RF energy [74] for long term energy sustainability. Some papers account

for the non-linearity of EH process.
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Table 2.3: Summary of Energy Harvesting related work.

Ref. EH Research

Problem

Objective Constraints Problem Type Solution

[70]

✓ Cloudlet-

mounted

UAVs harvest

energy from

platooning ve-

hicles in return

for computing

services

Maximize

system-wide

computational

capacity

Energy, time,

communi-

cation and

computation

resources

Non-convex

joint optimiza-

tion

SCA-based

joint com-

munication

and computa-

tion resource

scheduling

optimization

method

[6]

✓ UAV-assisted

wireless

powered fog

computing

sensor net-

work for a

green com-

munication

system design

Minimize

UAVs energy

consumption

Nonlinear EH

model, UAV

velocity, sen-

sor charging

requirements

Non-convex

joint optimiza-

tion

SCA theory

based iterative

method
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[71]

✓ UAV-based

wireless power

transmission

in a collabo-

rative MEC

network,

closer user

assisting user

further away

from UAV

Minimize

UAV transmis-

sion power

Offloading and

local calcu-

lation delay,

offloading task

size

IoT device

power opti-

mization

UAV-based

wireless power

transmission

and cooper-

ative MEC

scheme.

[72]

✓ EH per-

formance

analysis of a

Wi-Fi based

IoT network

for commu-

nication and

energy transfer

Maximize

throughput;

ensure long-

term energy

sustainability

Battery life;

single antenna

Optimization Probability

theory and

statistical

geometry;

distributed

algorithm
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[73]

✓ Performance

analysis of

time and

power-

splitting

architectures

for self-

sustainable

communi-

cations with

general fading

channels over

cellular net-

works.

Analyze RF

EH architec-

tures

Interference Comparative

performance

analysis

Ginibre

model-based

stochastic

geometry

[74]

✓ Attempt to

self-sustain

IoT network

relying on EH

from downlink

cellular net-

work.

Recycle RF-

energy

Data buffer;

battery levels;

Multi-

objective

optimization

Stochastic

geometry and

queuing theory
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2.1.4 UAV-assisted Networks with trajectory planning and tethering

Detection of network coverage holes using UAVs and mitigating them through reinforcement learn-

ing using UAV-BS is studied in [17] while providing optimal wireless backhaul rates in a time and

resource-effective manner. With the main constraints of UAV coverage, capacity, position, and user

requirements to be met, the operators then decided how to mitigate the holes, making the solution

partially autonomous. Deployment of UAV-BSs autonomously can reduce human dependency as

proposed in [19], where authors discussed maximizing the user coverage proactively by deploying

autonomous UAV-BS to connect UE in cellular networks and minimize the cost of relay commu-

nication between UAVs. The challenge is to optimize with the trade-off between the maximum

coverage ratio and the communication cost. The authors proposed a distributed algorithm with UE

density function and communication graph to maximize coverage. Here, the autonomous UAV-BS

are deployed at a fixed altitude, assuming data transmission over different frequencies to minimize

the interference and reduce the complexity of the problem.

Aerial networks are also discussed in [76] with an objective to model and compare the cellular

coverage probability when using tethered UAVs (T-UAVs) versus traditional untethered UAVs (U-

UAVs) to assist in offloading network traffic of a densely populated area. Through stochastic

geometry-based analysis and a user association policy, it is determined that T-UAVs outperformed

traditional U-UAVs in terms of network coverage probability. However, T-UAVs are restricted to

a search space radius based on the tether length and ground station location, whereas the U-UAVs

are mobile. Therefore a combination of the two can overcome the challenges faced in each type,

providing uninterrupted coverage over a longer distance.

UAV flight paths optimization is investigated in [18] for autonomous multi-hop UAV commu-

nication networks to conserve time and energy. Data packets are prioritized by assigning weight

based on the destination, time remaining to live, same as delivery deadline, physical weight and

size, priority, the delivery deadline and energy utilization. Iranmanesh et al. proposed a delay-

tolerant networking (DTN)-based algorithm and heuristic weighted flight path planning (WFPP)

algorithm for the path optimization problem. Routing is done based on calculating the safe return
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of the UAV before battery exhaustion, a significant constraint along with the UAV’s weight-lifting

capacity. Better delivery efficiency could be achieved through intermittent charging stations or

wireless charging over RF communication channels. A resource and placement optimization for

multiple UAVs is proposed in [77] to maximize end-to-end throughput in the absence of terrestrial

infrastructure. A central tethered balloon (TB) determines the backhaul link association, and each

UAV is associated with one TB. EH over the RF link between UAVs and TB can make the solution

proposed in [77] sustainable for disaster scenarios.

In [78], Jung et al. proposed a combined use of convolutional neural networks, single-shot de-

tection and LoS algorithm to quickly and reliably navigate the autonomous UAV across the gates

in UAVs racing. The gates could be stationary or moving, and this navigation is performed indoors

in non-optimal lighting conditions. They successfully navigated through a nine-door track, demon-

strating its significance in search and rescue missions, where dynamic obstacles are involved.

In [79], the authors worked on the trajectory optimization of the mobile sensor for long-term en-

ergy sustainability in an autonomous wireless sensor network (WSN). The constraints include the

maximum distance between the static chargers and the mobile sensor as the radiated energy used

in EH fades over distance, and the mobile sensor’s battery capacity before it requires a recharge.

For this real-time trajectory optimization problem, the authors proposed modelling the movement

of the mobile sensor as a Markov’s Decision Process (MDP) and using deep Q-network (DQN)

where the mobile sensor learns the optimal position by tracking the received signals over time, i.e.,

combining neural networks with RL. The optimal trajectory to move to the best charging location

was determined and followed to enable long-term energy sustenance in WSN.

A summary of the discussed papers is given in Table 2.4. The table shows which papers adopted

EH, and provides a brief description of the research problem, objective, constraints, problem type

and solution approach of each paper. The authors either worked on trajectory planning of UAVs,

T-UAVs or other aerial-related work.
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Table 2.4: Summary of Trajectory Planning, T-UAV and

Aerial related work.

Ref. EH Research

Problem

Objective Constraints Problem Type Solution

[17]

✗ 3-D UAV-BS

placement

to mitigate

autonomously

detected cov-

erage holes.

Detect and

mitigate cover-

age holes

UAV coverage

capacity; posi-

tion.

Optimization Reinforcement

learning; hole

detecting UAV

[19]

✗ Autonomous

placement

of UAV-BS

in cellular

networks.

Maximize user

coverage and

minimize UAV

relaying cost.

UAV coverage

range; com-

munication

cost

Optimization

of coverage

and cost.

Distributed

algorithm with

UE density

function and

communica-

tion graph.

[18]

✗ Autonomous

UAV flight

path routing

based on mo-

bility.

Maximize

data transfer

and package

delivery

Energy bud-

get; length of

travel; package

weight

Path optimiza-

tion.

New DTN

based algo-

rithm; heuris-

tic WFPP

algorithm;

Travelling

salesman

problem

solver.
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[20]

✗ Aerial data

capture

scheduling

and UAV ma-

neuvering for

wireless sen-

sor networks.

Minimize data

loss

Buffer over-

flow; fading

airborne chan-

nels

Joint optimiza-

tion

DDPG-

MC; sensor

data capture

scheduling

[75]

✗ Energy-

efficient and

cloud-assisted

autonomous

UAV naviga-

tion in urban

environment.

Maximize

energy-

efficiency

Probabilistic;

collision-free

constraints

Non-convex

joint optimiza-

tion

ECONOMY;

including

suggest-

and-improve

framework,

gradient as-

cend

[77]

✗ Backhaul link

for UAV opti-

mized by TB,

determining

optimal UAV

transmit power

and UAV

placement

with reduced

complexity.

Maximize

end-to-end

throughput

Access and

backhaul UAV

associations

Non-convex;

Multi-

objective

optimization

Backhaul teth-

ered balloons;

Shrink and

realign process

based heuristic

algorithm;

benchmarks
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[76]

✗ Performance

analysis of

T-UAV with-

out resource

constraints of

U-UAV.

Analyze

T-UAV and U-

UAV-assisted

offloading;

maximize

signal-to-noise

ratio

Battery life;

wireless back-

haul link

capacity

Comparative

performance

analysis

Stochastic

geometry-

based analysis

(Joint proba-

bility density

function);

User associa-

tion policy

[78]

✗ Indoor au-

tonomous

drone navi-

gation with

dynamic rout-

ing

Maximize

gate detection

and minimize

collision

Non-optimal

lighting and

moving gates

Dynamic path

optimization

Convolution

neural net-

works; single-

shot detection

and LoS

guidance algo-

rithm.

[79]

✓ Trajectory

planning of

mobile sensor

for energy

sustainability

in WSN

Maximize

long-term

achievable

energy per slot

from two static

chargers

Radiated en-

ergy fading

over distance

and battery

capacity of

mobile sensors

Online trajec-

tory optimiza-

tion

MDP; new

DQN based on

RL and neural

networks.
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2.1.5 Computation efficiency

Zhou et al. discussed the resource allocation and computation efficiency for wireless empowered

MEC networks under partial computation offloading and binary computation offloading modes

in [36]. They compared the time division multiple access (TDMA) and non-orthogonal multiple

access (NOMA) schemes for offloading transmission with the non-linear EH model to maximize

the computation efficiency under the max-min fairness criterion by satisfying the minimum bits,

EH, and energy consumption constraints.

In [80], Xu et al. presented a computation efficient aerial-ground multi-server cooperation

system to maximize the weighted computation efficiency of the system. In this formulated non-

convex optimization problem, they jointly optimized user’s computation task allocation, time-slot

partitioning, transmit power allocation, transmission bandwidth allocation, UAV’s CPU frequency

allocation, and UAV’s trajectory control. They proposed an alternative computation efficiency

maximization algorithm using Dinkelbach’s method, the Lagrange duality, and the SCA concepts.

Similarly, in order to maximize the computational efficiency for multi-UAV assisted MEC net-

works with partial offloading, a non-convex optimization problem is formulated by jointly optimiz-

ing the user association, CPU cycle frequency allocation, power and spectrum resource allocation,

and the trajectory scheduling in [81]. Zhang et al. proposed a multi-loop iterative computation

efficiency maximization algorithm. They used the Dinkelbach method for computation efficiency

in the outer loop. Then a binary cut-and-branch method is adopted for optimizing user association,

followed by a primal-dual interior point method for optimization of resource allocation and UAV

trajectory scheduling in the inner loop. However, the performance gap between the baseline solu-

tion and the proposed scheme is quite small. Zhang et al. also presented a computation-efficient

UAV-enabled MEC system under partial computation offloading and formulated a non-convex op-

timization problem in [5]. A two-stage optimization solution based on the Lagrangian dual and

SCA methods is presented to solve the optimization problem by satisfying the maximum con-

sumed energy, user offloading time, CPU frequencies, user’s transmit power, UAV’s mobility, and

position constraints.
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A summary given in Table 2.5, shows the research problem, objective, constraints, problem

type and the solution proposed for computation efficiency related work. It also shows if EH was

adopted in the implementation.

Table 2.5: Summary of Computation Efficiency related

work.

Ref. EH Research

Problem

Objective Constraints Problem Type Solution

[80]

✗ Computation

efficient

aerial-ground

multi-server

cooperation

Maximize

weighted

computation

efficiency of

system

Communication

and computa-

tion require-

ments

Non-convex

joint optimiza-

tion

Dinkelbachâs

method, La-

grange duality

and SCA

[81]

✗ Resource

optimization

for multi-UAV

assisted MEC

with partial

offloading

Maximize

computational

efficiency of

the system

Power and

spectrum re-

sources

Non-convex

joint optimiza-

tion

Multi-loop

iterative

computation

efficiency

maximization

algorithm
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[5]

✗ Computation

efficient

system for

UAV-enabled

MEC un-

der partial

computation

offloading

Maximize the

computational

efficiency of

the system

Communication

and computa-

tion require-

ments and

resources

Non-convex

joint optimiza-

tion

Two-stage op-

timization: La-

grangian dual

method, then

SCA

[36]

✓ Wireless-

powered MEC

networks

with different

computation

offloading and

transmission

modes

Maximize

system’s

computation

efficiency

under max-

min fairness

criterion

Minimum bits,

EH causal con-

straint, energy

consumption

Non-convex

joint optimiza-

tion

Two iterative

algorithms and

two alternative

optimization

algorithms.

2.2 Summary

In summary given in Tables 2.1, 2.2, 2.3, 2.4, 2.5, the existing works are either in the domain

of computational efficiency, user energy efficiency, computational offloading or a combination

of them in UAV-assisted MEC networks. The authors in [76, 77] showed an interesting view on

using TB for backhaul link association. However, there is still a need to make the network self-

sustainable without being location-bound to access the power supply. Therefore, in this thesis, we

have considered computational efficiency maximization while jointly optimizing UAV location,
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user association, task offloading time, and transmission power of UE. We propose a three-stage

scheme and simulation results are presented to test the effectiveness of the proposed scheme in

terms of computational efficiency, bits computed, and energy consumption with a varying number

of UAVs and users.
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Chapter 3

Computational Efficiency Maximization in

UAV-Assisted MEC Network with Energy

Harvesting in Disaster Scenarios

By now we have established that the main challenges of UAV-assisted MEC Networks are compu-

tation offloading, energy scarcity of UE and computation efficiency. Our work focuses on offload-

ing and computation services, along with energy harvesting provided by UAV to UE. We assume

that UEs are resource-constrained devices and offload their computation tasks to UAVs. The UEs

perform EH by receiving the RF signals from UAV-BSs to perform their operations and offloading.

The UEs can either perform the computation tasks themselves or offload to UAVs. The decision

that n-th UE can offload computation task to m-th UAV can be represented as χnm which is 1 if

there is offloading and 0 otherwise. In an urban environment, there could be obstacles, therefore,

we used probabilistic LoS channel model.

In this chapter, we define the system model architecture and formulate a mixed integer non-

linear optimization problem to maximize the computation efficiency. Computation efficiency rep-

resents the ratio of computed bits vs the energy dissipated by UE, whether to compute the tasks

locally if there is no offloading or to offload the tasks to be computed by the UAV-BS in the
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UAV-assisted MEC network with EH. We jointly optimize user association, UE power utilized,

offloading time duration and UAV’s location. The formulated optimization problem is a mixed-

integer nonlinear programming problem due to the non-linearity and mixed-integer nature of the

objective function and some constraints, which are also defined in this chapter.

3.1 System Model and Problem Formulation

We consider a UAV-assisted MEC network architecture that consists of M number of UAV-BSs

and N number of UEs with EH in a disaster scenario as shown in Fig. 3.2. Due to lack of ground

communication infrastructure in such unprecedented scenarios, UAV-BS are a quick, flexible and

reliable solution to provide network connectivity [3]. We assume that the UEs are resource con-

strained devices and can offload their computational tasks to UAVs for computational efficiency.

The UEs also perform EH by receiving the RF signals from the UAV-BS. The received signal is

split into two components with the power splitting ratio, ρ. Therefore ρ amount of the signal is

used for EH with EH efficiency, η, and the remaining 1 − ρ is utilized for communication signal

processing. This can also be seen in Fig. 3.1.

The execution time is the total number of CPU cycles required to process any task divided by

the total utilized computational capacity Cn of the nth UE. We further assume that the UAV is

equipped with directional antenna where the antenna gain outside of the beam width of antenna

is approximately equal to zero [82]. The UAV mainly has three types of communication links: i)

UAV-to-ground link, ii) UAV-to-UAV link, and iii) UE-to-UAV link. We use the probabilistic line

of sight (LoS) channel model (pLOS) at elevation angle ϕm [83] given as follows:

pLOS =
1

1+aexp (−b[ϕm − a])
. (3.1)

where a and b are the channel parameters dependent on the environment. We have assumed block

fading channel model and TDMA model, in which the channel remains the same for each time

block of duration T . If the nth UE is offloading some data, the portion of time block T for mth
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Figure 3.1: Power-splitting architecture.

UAV is assigned to the nth UE, which is denoted by tmn.

The data rate at which the nth UE offloads tasks to the mth UAV is denoted by Rnm. Here Rnm

is calculated as follows:

Rnm = B log2

(
1 +

ζη(1− ρ)pmn

θ2m(h
2
m +D2

mn)

)
, ∀n ∈ N, m ∈ M. (3.2)

where B is the channel bandwidth, η is the EH efficiency. θm is the half power beam width of

antenna for the mth UAV. pmn is the transmission power for the nth UE associated with the mth

UAV and ζ is the positive coefficient calculated as follows:

ζ = g0G0/σ
2, (3.3)

where σ2 is the noise power, g0 is the channel power gain at reference distance 1m and G0 ≈

2.2846 [82]. hm is the height of the mth UAV and Dmn is the horizontal displacement between the
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Figure 3.2: UAV-assisted MEC network architecture with EH in a disaster scenario.

nth UE and the mth UAV and is calculated as follows:

Dmn =
√
(xm − xn)2 + (ym − yn)2, (3.4)

where xm and ym are the horizontal coordinates of the mth UAV and xn and yn are the horizontal

coordinates of the nth UE in a 3D Cartesian coordinate system. Here the coordinates of the nth UE

and the mth UAV are represented as (xn, yn, 0) and (xm, ym, hm), respectively. It is assumed that

the height of the nth UE is zero whereas hm denotes the height of UAV.

3.1.1 Problem Formulation

The objective of this thesis is to maximize the computational efficiency of UAV-assisted MEC

network with EH in a disaster scenario. We jointly optimize the user association, transmission

power of UE, offloading time, and UAV location while fulfilling the quality of service requirements

of the UAV-assisted MEC network. The decision that the nth UE offloads the computation tasks to
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the mth UAV can be represented as χnm which is 1 if there is offloading and 0 otherwise.

χnm =


1 if nth UE offloads task to mth UAV

0 otherwise.
(3.5)

We consider following constraints to formulate optimization problem for computational effi-

ciency maximization for UAV-assisted MEC networks.

C1: The nth UE can either perform task locally or can offload the task to only one UAV, such that

the computation of a given task can be done only once. This can be written as:

M∑
m=1

χnm ≤ 1, ∀n. (3.6)

C2: Only a limited number of UEs can be associated to each UAV as shown below:

N∑
n=1

χnm ≤ µmax
m ,∀m, (3.7)

where µmax
m represents the maximum number of UEs allowed to be associated with mth UAV.

C3: The total computational capacity required by the nth UE, represented by Cn, should be less

than or equal to the total available computational capacity of the nth UE, Cmax
n . This can be

mathematically represented as:

Cn ≤ (1− χnm)Cmax
n ,∀n. (3.8)

C4: Time required for offloading the tasks, tmn, is constrained by the TDMA block size T . This

can also be written as:

N∑
n=1

tmn ≤ T,∀m, (3.9)

tmn ≤ χnmT,∀m,n. (3.10)
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C5: The total number of bits computed locally and offloaded, combined, should be greater than

βn bits. This can be mathematically expressed as:

ρTCn

γn
+

M∑
m=1

χnmRnmtmn ≥ βn,∀n. (3.11)

where βn represents the minimum number of bits computed, γn represents cycles per bit for the

nth UE.

C6: The energy consumption of the nth UE is constrained by the maximum available energy (Eth).

This can be mathematically explained as:

ECir
n + αn(Cn)

ωT +
M∑

m=1

ζη(1− ρ)pmntmn ≤ Eth,∀n. (3.12)

where Eth represents the maximum available energy of the system, ECir
n is the total circuit energy

of the nth UE, ω is a positive coefficient, and αn is also a positive coefficient.

C7: The transmission power of the nth UE is constrained by the maximum available power, pmax
n ,

of the nth UE itself. This can be written as:

pmn ≤ χnmp
max
n ,∀m,n. (3.13)

C8: The mth UAV should be in the coverage range of nth UE for task offloading, as shown below:

χnmDmn ≤ hm tan θm,∀m,n. (3.14)

C9: The locations of both the nth UE and mth UAV should be in feasible range. This can be

written as:

xmin
m ≤ xm ≤ xmax

m ,∀m, (3.15)

ymin
m ≤ ym ≤ ymax

m ,∀m. (3.16)
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where xmin
m and xmax

m represent the minimum and maximum values for xm to be in the feasible

range, ymin
m and ymax

m represent the minimum and maximum values for ym to be in the feasible

range.

C10: The height of the mth UAV and half power beam width must also lie in the feasible range, as

given below:

hmin
m ≤ hm ≤ hmax

m ,∀m, (3.17)

θmin
m ≤ θm ≤ θmax

m ,∀m. (3.18)

where hmin
m and hmax

m represent the minimum and maximum values for hm to be in the feasible

range, θmin
m and θmax

m represent the minimum and maximum values for θm to be in the feasible

range.

Total number of bits computed can be written as the sum of bits computed locally by the UE

as well as the bits offloaded to the UAV-BS for computation offloading.

N∑
n=1

(
ρTCn

γn
+

M∑
m=1

χnmRnmtmn

)
, (3.19)

The total energy consumed can be written as the amount of energy consumed to power the UE,

the energy required to compute the task locally by UE, and the energy required to offload the task

to the UAV.

N∑
n=1

(
ECir

n + αn(Cn)
wT +

M∑
m=1

ζη(1− ρ)pmntmn

)
, (3.20)

The utility function, U , can be defined as the total bits computed per energy consumed to show
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computation efficiency:

U =

N∑
n=1

(
ρTCn

γn
+

M∑
m=1

χnmRnmtmn

)
N∑

n=1

(
ECir

n + αn(Cn)wT +
M∑

m=1

ζη(1− ρ)pmntmn

) (3.21)

The optimization problem to maximize the computation efficiency of UAV-assisted MEC net-

works with energy harvesting is given as:

max
χmn,ρ,pmn,tmn,xm,ym,hm

: U,

Subject to: C1− C10

χnm == {0, 1},∀m,n.

(3.22)

The formulated optimization problem is an MINLP problem. The formulation in (3.22) is

an MINLP optimization problem that belongs to the class of problems that is generally Non-

deterministic polynomial-time hard (NP-Hard) [84]. Thus, due to NP-Hard nature of the problem,

we cannot get its optimal solution in polynomial time. Therefore, a brute force search-based algo-

rithm for the optimization problem would enumerate all discrete decision variables. However, the

complexity of enumerating all discrete decision variables grows exponentially with the increase

in number of UAVs and UEs. Thus, we propose a three-stage scheme to solve the optimization

problem in (3.22).

3.2 Summary

In this chapter, we defined the system model architecture for a UAV-assisted MEC network with

EH. We formulated an MINLP optimization problem to maximize the computation efficiency of

the system, where computation efficiency represents the ratio of computed bits vs the energy dis-
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sipated by UE. We jointly optimize user association, UE power utilized, offloading time duration

and UAV’s location. The objective function and constraints considered are also explained in this

chapter.
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Chapter 4

Proposed Scheme and Simulation Results

The three-stage solution approach is explained in this chapter. Details of the simulations per-

formed and results obtained are then presented in terms of bits computed, energy consumed and

the computation efficiency, which is also referred to as the utility of the system.

4.1 Solution Approach

We propose a three-stage scheme to solve the MINLP optimization problem (3.22) as shown in

Fig. 4.1. In the first stage, we adopt k-means clustering to determine the optimal locations of the

UAV-BSs. In the second stage, the user association decision is made based on the distance from the

nearest UAV and maximum available connections of the UAV. In the third stage, with the known

realization of placement of UAVs and their associated UEs, we divide the remaining problem into

two sub-problems. First, we adopt linear approximation to linearize the MINLP problem, then we

apply the IPM to solve the formulated linear optimization problem to maximize the computational

efficiency while optimizing UE transmission power and offloading time.
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Figure 4.1: Proposed three-stage scheme.

4.1.1 UAV location determination

We consider the total number of N UEs and M UAVs as input of the proposed three-stage scheme.

In the first stage, the coordinates of mth UAV are determined with respect to their surrounding UEs.

Then all N UEs are randomly assigned location coordinates. Following that, they are divided into

M clusters using a k-means clustering algorithm. The k-means clustering algorithm is a classic

statistic algorithm for cluster formation, where the samples are divided into a certain number of

clusters based on their proximity. The solution generated by using this algorithm is guaranteed

to be locally optimum with respect to error compared with the entire sample size. There have

been many variations of it such as the k-means++ and the balanced k-means, which are less biased

but computationally intensive. The results from these derivative algorithms are also similar to the

classic k-means algorithm with less bias [85]. Therefore, we have used the k-means algorithm to

determine the cluster formation for UEs based on the number of UEs in each cluster. Following
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which, the optimal horizontal coordinates (xm, ym) of the mth UAV are determined based on the

being placed in the cluster centers. The height of the mth UAV, denoted as (hm), is determined

based on the obstacle heights in the algorithm in order to achieve LoS communication.

4.1.2 UE association decision

Once the UAVs’ optimal location coordinates (xm, ym, hm) are determined, the algorithm moves

into the second stage, where it makes the UE association decision. This stage is initialized by

inputting the maximum number of allowed connections for the mth UAV. In this stage, association

of each nth UE is determined with the mth UAV. This is subject to the proximity of the nth UE

from the mth UAV and the predefined maximum number of allowed connections for the mth UAV.

Thus, the distance matrix, D(m,n), is calculated for the distance between the nth UE and the mth

UAV. Based on the distance matrix D(m,n) for the nth UE, a connection is established with the

closest UAV and the binary variable χnm is set to be 1 considering the mth UAV has not reached its

maximum connections yet. This continues for the next nth UE to associate with the mth UAV until

the maximum number of connections for the mth UAV reaches its predefined maximum number

of allowed connections. Hence, for the remaining UEs whose connection is not established, the

binary association variable, χnm is set to be 0. Therefore, if the nth UE is in the mth UAV’s

range and the mth UAV has not reached its maximum connections yet, then χnm is set to 1 based

on the established association. If either the maximum number of associations for the mth UAV

are reached or the nth UE is not in range, χnm is set to 0 representing no established association

between the mth UAV and the nth UE.

4.1.3 Optimization when χnm = 0

If the number of maximum connections for a UAV is already reached, or if D(m,n) is not in

the feasible range, the association indicator, χnm is set to 0. Therefore, to establish the connec-

tion for the nth UE, the new optimal coordinates of the mth UAV are calculated, and denoted by

(x∗
m, y

∗
m, h

∗
m). In that case, the optimization problem becomes:
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max
χmn,pmn,tmn,x∗

m,y∗m,h∗
m

: U,

Subject to:

C1− C7 : from (3.22)

C8 : χnmD
∗
mn ≤ h∗

m tan θ∗m,∀m,n.

C9 : xmin
m ≤ x∗

m ≤ xmax
m , ∀m

ymin
m ≤ y∗m ≤ ymax

m ,∀m.

C10 : hmin
m ≤ h∗

m ≤ hmax
m ,∀m

θmin
m ≤ θ∗m ≤ θmax

m ,∀m.

(4.1)

where D(m,n) is given by:

D∗
mn =

√
(x∗

m − xn)2 + (y∗m − yn)2, (4.2)

and Rnm is given by:

Rnm = B log2

(
1 +

ζη(1− ρ)pmn

θ∗2m (h∗2
m +D∗2

mn)

)
, ∀n ∈ N, m ∈ M. (4.3)

4.1.4 Linearization and optimization through IPM when χnm = 1

Due to the non-linearity of the constraints the formulated optimization is an MINLP problem. At

this stage, we divide the problem into two sub-problems. In the first sub-problem, we use linear

approximation to linearize the MINLP into a mixed integer linear programming (MILP) problem.

The multi-tree outer approximation for convex MINLPs was originally proposed in [86]. There

have been few enhancements to it, including in [87] and [88]. The convex MINLP problem is

divided into two sub-problems. The first one is a mixed-integer linear relaxation of the original

convex MINLP, tightened with linear outer approximation cuts subsequently for the convex non-

47



linearities. The second sub-problem is a convex non-linear sub-problem resulting from fixing all

integer variables to the solution of the first sub-problem. With the correct assumptions, all feasible

integer solutions are visited once at most, and the algorithm terminates after a finite number of

iterations [89].

Subsequently, in the second sub-problem within the third stage of the optimization scheme

proposed, we use IPM to solve the MILP optimization problem. The problem is initialized with

a feasible value, and checked for convergence. If it converges under a certain tolerance level, we

conclude the search. However, if it is not under the tolerance level, the search direction needs

to be computed with the linearized barrier problem, using slack variables. The optimal value

is determined by decreasing the merit function for backtracking line search, and checking for

convergence under the tolerance level again.

4.1.5 Complexity of the proposed algorithm

The proposed three-stage algorithm comprises of k-means learning algorithm in the first stage to

form clusters and find optimal locations for M UAVs with respect to N UEs. The complexity

of this stage is determined by O(N2) [90], where N is the number of UEs. In the second stage

of the proposed algorithm, the user association is optimized, denoted by the association indica-

tor, χnm. The complexity of this stage is determined by O(MN), where M is the number of

UAVs and N is the number of UEs. In the third and last stage of the proposed algorithm, a linear

approximation is applied followed by IPM to maximize the objective function by jointly optimiz-

ing user transmission power, and offloading time duration. The complexity of this stage of the

algorithm is determined by O(N3.5 log(1/ϵ) with precision accuracy of ϵ [91]. So the total com-

plexity of the proposed algorithm becomes O(N2+MN +N3.5 log(1/ϵ), which can be written as

O(N3.5 log(1/ϵ).
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Table 4.1: Simulation parameters
Parameter Value
Number of UAVs, M 4-20
Number of UEs, N 20-300
TDMA time block T [82] 2 ms
System bandwidth B [82] 1 MHz
Offloading indicator, χnm 0 / 1
Positive coefficient, αn 10−2e9+1

Positive coefficient, a 9.61
Positive coefficient, b 0.16
Positive coefficient, ω 2
Noise power, σ2 -80 dBm/Hz
Maximum associations allowed with UAV m, µmax

m 15
Maximum computation capacity of UE n, Cmax

n 1GHz
Maximum available energy Eth of UE n 20 dBm
Constant circuit energy of UE n, ECir

n 0.00001 W
Minimum height of UAV m, hmin

m 10
Maximum height of UAV m, hmax

m 20
Minimum half power beam width, θmin

m π/6
Maximum half power beam width, θmax

m π/3
Half power beam width of antenna for UAV m, θm pi/6 - pi/3 rad
Horizontal distance between UAV m and UE n, Dmn ≤ 500m

4.2 Simulation Results

We simulate the proposed solution in MATLAB by considering the different scenarios of UAV-

assisted MEC networks with EH while varying the number of UAVs and UEs. The scenarios we

have first considered include a set of 4, 12, and 20 UAVs, then for each set of UAVs, we consider

100, 200, and 300 UEs. The scenarios are: for 4 UAVs we consider 100 UEs (scenario 1), 200 UEs

(scenario 2), and 300 UEs (scenario 3). Then, sets of scenarios 4, 5, and 6 as well as scenarios 7, 8,

and 9 follow the same number of UEs as scenarios 1, 2, and 3. However, scenarios 4, 5, and 6 have

12 UAVs and 7, 8, and 9 have 20 UAVs. The channel bandwidth considered is 1MHz, the noise

power is set to −80dBm/Hz and the range is set to 500m. The constraint on latency is 6ms and

the TDMA time block, T is set to 2ms. The minimum number of bits transmitted is set to 50. The

maximum computation power of a UAV is considered 1GHz and the maximum number of UEs

connected to a given UAV are 15. Detailed simulation parameters are given in Table 4.1.
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Fig. 4.2 shows the performance comparison in terms of utility, bits computed, and energy

consumption for different scenarios mentioned above. Within each scenario, we have four different

use cases in a disaster scenario, such that (i) no offloading nor EH, (ii) offloading but no EH, (iii)

offloading with EH, and (iv) no offloading with EH.

Bits computed

It can be observed from Fig 4.2 for all four use cases, that with the increase in the number of UEs

from 100 UEs in scenario 1 to 200 UEs in scenario 2, then to 300 UEs in scenario 3, there is an

increase in the number of bits computed. This is as expected, as there are more computation tasks

associated with the newly introduced UEs in each scenario. The same trend of increase in bits

computed is observed with the increase in the number of UEs from 100 UEs in scenario 4 to 200

UEs in scenario 5, then to 300 UEs in scenario 6, where the number of UAVs stays constant at 12

UAVs. Similarly for the increase from 100 UEs in scenario 7 to 200 UEs in scenario 8, then to 300

UEs in scenario 9, with the number of UAVs constant at 20 UAVs, a significant amount of increase

can be seen in offloading cases due to the added offloading assistance from UAVs, compared to the

increase in no offloading cases with a gradual increase in amount of bits computed locally.

When comparing scenarios 1, 4 and 7, the number of UEs remains constant at 100 UEs. How-

ever, number of UAVs increases from 4 UAVs in scenario 1 to 12 UAVs in scenario 4, and 20 UAVs

in scenario 7. From Fig. 4.2, it can be seen that the number of bits computed remains the same for

no offloading cases, as expected as the 100 UEs are processing the same amount of tasks as their

limited capacities allow. On the other hand, for the offloading cases, there is a significant increase

in the number of bits computed with offloading assistance from a greater number of UAVs in sce-

nario 4 with 12 UAVs compared to scenario 1 with 4 UAVs. Along the same lines, a significant

increase in bits computed can also be observed for scenario 7, with the number of UAVs increased

to 20 UAVs. Similarly, the pattern for bits computed is repeated for offloading and no offloading

cases for scenarios 2, 5 and 8 with the number of UEs constant at 200 UEs but UAVs increasing

from 4 UAVs to 12 UAVs and again for scenarios 3, 6 and 9 with the number of UEs constant
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at 300 UEs but UAVs increasing to a constant 12 UAVs. The computed bits for EH and no EH

cases remain the same within scenarios as energy harvesting does not impact task computation.

However, offloading cases compute a significantly larger number of bits within each scenario due

to the greater computation capacities of the UAVs the data is offloaded to.

Energy consumption

For the energy consumption based on the results shown in Fig. 4.2, there is a general trend of an

increase in the amount of energy consumed for all four use cases with an increase in number of

UEs. For scenarios 1, 2, and 3 with 4 UAVs, with the increase in the number of UEs from 100 UEs

in scenario 1 to 200 UEs in scenario 2, the number of powered devices nearly doubles, hence the

energy utilized nearly doubles for all four use cases. Then to 300 UEs in scenario 3, the number of

powered devices nearly triples compared to scenario 1, hence the energy utilized nearly triples too,

reflecting the amount of energy consumed to locally execute and offload a greater number of tasks

to UAVs. Similarly, a significant increase in energy consumption can be observed for scenarios 4,

5, and 6 with the same number of 12 UAVs but an increase in UEs from 100 UEs in scenario 4 to

200 UEs in scenario 5, then to 300 UEs in scenario 6, where the number of UAVs stays constant at

12 UAVs. Similarly, with the number of UAVs constant at 20 UAVs, the increase from 100 UEs in

scenario 7 to 200 UEs in scenario 8, then to 300 UEs in scenario 9 impacts the energy consumption

significantly for all four use cases.

Despite an increase in number of UAVs from 4 UAVs in scenario 1 to 12 UAVs in scenario

4, and 20 UAVs in scenario 7. It can be seen from Fig. 4.2 that since the number of UEs is

constant, the energy consumed remains the same for no offloading cases due to the same amount

of computation happening locally and no energy used for EH. The same applies to the increase in

UAVs for a constant number of UEs in scenarios 2, 5 and 8 at 200 UEs, and again in scenarios 3,

6 and 9 at 300 UEs for no offloading cases. However, for the offloading cases the energy utilized

is slightly higher for powering a larger number of UAVs in scenario 4 with 12 UAVs compared

to 4 UAVs in scenario 1 with no EH and a constant 100 UEs. Similarly, the energy utilized for
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Figure 4.2: Performance comparison of offloading and no-offloading scenarios with/without EH
in terms of i) utility, ii) number of bits computed, and iii) energy consumption.

offloading cases is slightly higher for powering a larger number of UAVs in scenario 7 with 20

UAVs compared to 12 UAVs in scenario 4 with no EH and a constant number of 200 UEs. The

same applies again to scenarios 3 with 4 UAVs, 6 with 12 UAVs and 9 with 20 UAVs with a

constant 300 UEs for offloading cases.

An interesting observation from Fig. 4.2 is that since the energy consumed for no offloading

no EH cases remains the same across scenarios 1, 4, and 7 with the same number of 100 UEs but

an increasing number of UAVs, the energy consumption for offloading with no EH to 4 UAVs in

scenario 1 is less than the no offloading case, for 12 UAVs in scenario 4 is about the same as the

no offloading case and for 20 UAVs in scenario 7, it is greater than the no offloading case due to

the increase in the number of offloaded tasks. The same applies to scenarios 2, 5 and 8 due to the
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increase in offloaded tasks to the increased number of UAVs, as well as to scenarios 3, 6 and 9 due

to the increase in offloaded tasks to the increased number of UAVs.

The cases with offloading and EH have a slightly greater increase in energy utilized compared

with the cases with offloading and no EH, due to the energy consumed to harvest the energy. It

may seem like EH consumes a greater amount of energy. However, the energy generated is far

greater. This phenomenon is evident from the no offloading and enabled EH cases, where the

energy consumed is far greater due to the consumption of the harvested energy in computing the

tasks locally. It remains the same across the increase in number of UAVs from 4 UAVs in scenario

1 to 12 UAVs in scenario 4 and 20 UAVs in scenario 7 due to no offloading. Similarly for the

increase in number of UAVs from 4 UAVs in scenario 2 to 12 UAVs in scenario 5 and 20 UAVs

in scenario 8. Then again for the increase in number of UAVs from 4 UAVs in scenario 3 to 12

UAVs in scenario 6 and 20 UAVs in scenario 9. However, the energy consumed increases with the

number of UEs from 100 UEs in scenarios 1, 4 and 7 to 200 UEs in scenarios 2, 5 and 8, and again

with the increase in UEs to 300 UEs in scenarios 3, 6 and 9 because of the increased number of

tasks requiring computation for the increased number of UEs.

Computation efficiency (utility)

The net computation efficiency, referred to as utility in Fig. 4.2 is calculated by the ratio of bits

computed to the energy consumed. For no offloading cases across all 9 scenarios, the bits com-

puted locally gradually increased with increments of 100 UEs in scenarios 1, 2 and 3, then again

in scenarios 4, 5 and 6, and again in scenarios 7, 8 and 9. The same gradual increase applied to the

amount of energy consumed to compute the tasks of 100 UEs in scenarios 1, 2 and 3, 200 UEs in

scenarios 4, 5 and 6, and 300 UEs in scenarios 7, 8 and 9. Upon calculating the computation effi-

ciency, since the energy consumed was directly proportional to the bits computed with everything

performed locally, the computation efficiency came out to be the same across all 9 scenarios in no

offloading cases.

For the offloading cases, the utility decreases with the increase in the number of UEs from 100
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UEs in scenario 1 to 200 UEs in scenario 2, and again to 300 UEs in scenario 3 due to the increased

number of tasks to be computed, requiring an increased amount of energy to offload and compute

the tasks for the same number of UAVs that the tasks can be offloaded to. Similarly, for scenarios

4 with 100 UEs, 5 with 200 UEs and 6 with 300 UEs, even though the utility is significantly higher

with the increased number of UAVs to 12 UAVs due to the closer proximity of the UAVs leading

to less energy consumed to offload the tasks to with a greater number of tasks offloaded, the same

decrease in utility applies to scenarios 4, 5 and 6 as the number of tasks to be offloaded increases

in each scenario with the increased number of UEs. The same applies to scenarios 7 with 100 UEs,

8 with 200 UEs and 9 with 300 UEs. The utility decreases as the number of tasks to be offloaded

increases in each scenario with the increased number of UEs. However, the utility is significantly

higher with the increased number of UAVs to 20 UAVs due to the closer proximity of the UAVs

leading to less energy consumed to offload the tasks to, but more tasks offloaded. For offloading

cases with EH, more energy is required to harvest the energy for the same amount of bits to be

computed when offloading without EH, leading to a slight decrease in computation efficiency of

offloading cases with EH compared to offloading cases without EH. However, the energy harvested

is far greater than the energy consumed to harvest it.

In the comparative analysis, we achieve better computational efficiency (utility) results during

offloading compared to no offloading cases. We also achieve a greater number of bits computed

when offloading than without offloading. However, the energy consumed is greater when offload-

ing, as it involves sending and receiving data related to UAVs’ computational tasks. In the EH

cases, the bits transmitted remain the same as without EH cases. However, net utility is slightly

less in EH cases as some level of computation is required for enabling EH. The energy utilized in

EH cases is slightly greater to enable EH. However, the energy generated is significantly greater.

It can be seen from the results that the most inefficient case in terms of energy is when there is no

offloading nor EH. The overall computational efficiency, i.e., maximization of bits computed and

minimization of energy utilized, is significantly greater for scenarios with offloading compared to

scenarios without offloading.
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Figure 4.3: Impact analysis of offloading scenario with EH in comparison with only offloading.
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Figure 4.4: Performance analysis in terms of bits computed for offloading and no-offloading sce-
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Figure 4.5: Performance analysis in terms of energy consumed for offloading and no-offloading
scenarios with a varying number of UAVs.

Fig. 4.3 shows the percentage increase or decrease for offloading with EH compared to offload-

ing without EH in terms of net utility, bits computed, and energy consumption. As the number of

UAVs increases, the utility gap reduces, demonstrating the increase in energy harvested and the

increase in bits computed. Since the number of bits computed is similar with and without offload-

ing, it can be noted that despite the increase in energy consumption for offloading scenarios with

less number of UAVs, the overall percentage increase in energy consumption is reduced with the

increase in the number of UAVs in scenarios with EH.

Since we observed the superiority of EH over no EH cases, we now evaluate the performance

for offloading and no offloading cases with EH. For Figs. 4.4, 4.5 and 4.6, we have considered

offloading and no offloading scenarios with EH in the cases of 5, 10 and 15 UAVs catering for 20,

30, 40, 50 and 60 UEs. Fig. 4.4 presents the performance analysis in terms of bits computed for

offloading and no-offloading scenarios with EH for a varying number of UEs and UAVs. Similar to

Fig. 4.4, Fig. 4.5 shows the performance analysis for offloading and no offloading cases with EH
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Figure 4.6: Performance analysis in terms of utility for offloading and no-offloading scenarios with
a varying number of UAVs.

for a varying number of UAVs and UEs in terms of energy consumed. Similarly, Fig. 4.6 shows

the performance comparison in terms of utility for offloading and no-offloading scenarios with EH

for a varying number of UAVs and UEs.

It is clear from Fig. 4.4 that better performance is achieved in terms of bits computed for

offloading than in no-offloading cases. The results show that for no offloading scenarios, the total

number of bits computed gradually increases with the increase in the number of UEs from 20 UEs

to 60 UEs as task computation is performed locally by each UE. The overlap for the three no-

offloading scenarios also implies that increasing the number of UAVs has no impact on the number

of bits computed in the scenarios without offloading, as the computation tasks are still locally

performed by UEs. On the contrary, for offloading cases, the number of bits computed does not

necessarily increase with the increase in the number of UEs as discussed previously, it can also

decrease. This could be due to the widespread UEs and UAVs leading to D(m,n) not being in

feasible range for offloading, or the maximum number of associations being reached for UAVs so
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UEs are unable to associate nor offload computation tasks. Therefore capping the maximum bits

computed by certain UEs. An increase in the number of UAVs from 5 UAVs to 10 UAVs, and from

10 UAVs to 15 UAVs leads to UAVs being more readily available in 3-D space. Hence, provide

more offloading opportunities for the UEs. Therefore, a greater number of computation tasks are

performed by UAV leading to a higher number of total bits computed.

Similar to Fig. 4.4, it is evident from results in Fig. 4.5 that for cases without offloading, the

energy consumed for local task computation gradually increases with the increase in the number

of UEs from 20 UEs to 60 UEs. However, regardless of the increase in the number of UAVs,

the energy consumed during no-offloading cases remains the same as all computation is locally

performed by the UEs. This is why the increase in number of UEs directly impacts the energy

consumed in no-offloading cases. However, for the offloading cases, the increase in number of

UAVs and UEs both impact the energy consumption. The increase in energy consumption with

an increase in the number of UAVs from 5 UAVs to 10 UAVs, and from 10 UAVs to 15 UAVs for

a fixed number of UEs is caused by energy dissipated while offloading tasks from UEs to UAVs,

since a greater number of UAVs provides with a greater opportunity to offload tasks. The increase

in energy consumption with an increase in number of UEs from 20 UEs to 60 UEs for a fixed

number of UAVs is caused by the operational energy of UEs as well as the increased number of

tasks to be computed with a greater number of UEs. The rate of increase in energy consumed is

consistent for the increase in the number of UEs from 30 UEs to 60 UEs for offloading scenarios

with 10 UAVs and 15 UAVs. However, the offloading scenarios with 5 UAVs have a steep incline

from 20 UEs to 30 UEs, then a lesser increase from 30 UEs to 40 UEs and 40 UEs to 50 UEs. This

is likely due to the maximum number of associations being reached for the UAVs, leading to no

offloading and local computation for some UEs, while the rest continue to offload tasks to UAVs.

The overall energy consumption for offloading cases is greater than the energy consumption for

cases without offloading as some energy is utilized to facilitate offloading.

Since the utility is measured by the ratio between bits computed and energy consumed, it can

be observed form Fig. 4.6, that the utility or computation efficiency increases with an increase in
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bits computed as well as a decrease in energy consumed. In no offloading cases, since both the

energy consumed and bits computed consistently increase with the increase in number of UEs from

20 UEs to 60 UEs, the utility remains the same. However, in the offloading scenarios, an increase

in utility can be observed with an increase in number of UAVs from 5 UAVs to 10 UAVs, and

from 10 UAVs to 15 UAVs as task offloading and bits computed increase significantly with a slight

increase in energy consumed to facilitate the offloading. A trend of decreasing utility with the

increase in number of UEs from 20 UEs to 60 UEs can be observed for the 10 UAVs and 15 UAVs

scenarios with offloading, as expected, as even though the bits computed and energy consumed

both increased, the number of bits computed did not increase as much as the increase in amount

of energy dissipated. Moreover, the UAVs can only assist a certain maximum number of UEs.

Therefore, the UEs computing tasks locally have a limited computation capacity, leading to less

bits computed while circuit energy utilized for UAVs and UEs operation gradually increases with

the number of UAVs and UEs. However, despite the decrease in utility with an increase in UEs,

the overall utility increases significantly in offloading cases, compared to no offloading cases, and

in 15 UAVs scenario compared to 10 UAVs scenario as well as in 10 UAVs scenario copmared to

the 5 UAVs scenario. An anomaly in utility’s overall decreasing trend for 5 UAVs can be seen at

30 UEs and 60 UEs in Fig. 4.6. Since utility is calculated by the ratio of bits computed to energy

consumed, the peaks in Fig. 4.6 are a result of peaks formed in Fig. 4.4 where bits computed can

potentially be higher due to the spread of UEs being such that most UEs are able to offload tasks

to UAVs.

4.3 Summary

In this chapter, we discussed the solution approach, followed by a discussion on the results obtained

from the simulations performed. To solve the MINLP problem at hand, we devise a three-stage

solution. In the first stage, we optimize UAV location. In the second stage, we determine the user

association. In the third stage, we divide the problem into two sub-problems, where we linearize
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the MINLP, followed by using the interior-point method to solve the MILP problem and optimize

the UE energy consumption and offloading time. To summarize the findings, bits computed in-

creased with the aid of UAVs, as the processing tasks at UE can be offloaded to accommodate for

more tasks. The energy consumed increased with the operation of UAVs. However, the energy

harvested is significantly greater. This leads to the overall significant increase in utility for cases

where computation tasks were offloaded to UAVs, compared to cases with local computation at

UEs.
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

In this thesis, we formulated an MINLP problem for UAV-assisted MEC networks with EH. The

proposed work focused on access communication in disaster scenarios, where due to a lack of

communication resources, UAV-BS are deployed to assist UEs with the network connection and

computation task offloading. To simplify and solve the MINLP at hand, we formulate a three-stage

optimization algorithm to maximize the computational efficiency of the system while jointly opti-

mizing user association, transmission power of UE, offloading time, and UAV’s optimal location.

We find optimal UAV location in the first stage based on k-means clustering. In the second stage,

we determine the UE association variable for offloading. In the third stage, we divide the remain-

ing problem into two sub-problems for transmission power and offloading time optimization by

linearization and using the IPM. Simulation results are presented to compare offloading with no-

offloading scenarios with and without EH. The impact of increasing the number of UAVs and UEs

is also analysed in terms of bits computed, energy consumption and computational efficiency of

the system. It is evident from the results that EH scenarios provide better computational efficiency.

This is because, despite the increase in energy consumed to harvest energy, the energy generated

is far greater. It is also noted that the bits computed, and therefore computational efficiency of the
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system is far greater in offloading cases. This is because the limited computation capacity of the

UEs is compensated by the greater capacity of the UAV-assisted MEC network. We can further

improve the formulation by incorporating the use of any idle UEs in the near vicinity to offload

computation tasks in case the UE is unable to associate with the nearest UAV for offloading.

5.2 Future Research Directions

We conclude the following open research issues and future research directions based on the pre-

sented study and its analysis.

Possible future research directions for UAV-assisted MEC networks with EH are:

• Using k-means clustering generates a sub-optimal solution for the considered optimization

problem. Therefore, we can incorporate genetic algorithms or reinforcement learning instead

of k-means clustering to further improve the discussed solution approach.

• With the anticipated increase in complexity of future communication networks, an ever-

evolving solution is the application of machine learning (ML) to various aspects of wireless

communications, ranging from signal detection, resource allocation, channel estimation, pre-

diction and channel compression, channel encoding and decoding, end-to-end communica-

tion and standardization. Using this phenomenon can further enhance the efficiency and

futuristically self-sustain the UAV-assisted MEC networks with EH.

• We have assumed that a control center is deploying UAVs to avoid collisions. Furthermore,

due to the high mobility of UAV-BS, the optimal location for wireless access and backhaul

links needs to be readjusted over time. The computational offloading to UAV-BS, trajectory

design for optimal positioning and resource allocation in a swarm of UAVs with a shift from

centralized optimization to distributed optimization can be a direction for future works [92].

• A linear EH model is considered in the current research. Therefore, we can consider non-

linear EH model to address the non-linear nature of the EH process.
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• Another futuristic directive is battery-less massive access. Currently, we rely on UAV-BS

having a small battery and supporting EH. Removing the battery of UEs altogether and

relying on EH entirely [45] through THz frequencies for direction or intelligent, reflective

surface technology [93] [94] for transmission or relaying, actively or passively, in battery-

less devices is an exciting direction for future networks.

• In UAV-assisted MEC networks with EH, we focus on air-to-ground communication to

enhance the coverage and connectivity in the presented framework. To accommodate the

various QoS requirements based on the type of service provided, further investigation can

be performed on integration with satellite communication to automate and self-sustain the

space-air-ground integrated networks.

• Reliability and characterization of an aerial communication channel through channel mea-

surement and modelling is a significant milestone for secure and stable transmission in

highly dynamic heterogeneous networks such as UAV-assisted MEC networks with EH.

Similarly, the cost-effective and commercially available emerging cloud robotics platforms

are readily being used to provide mobile communication services to flash crowds and other

applications. Therefore, integrating UAV-assisted MEC networks with EH and robotics can

address interference and mobility management issues.
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