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Abstract

The rise of third-party content providers and the introduction of numerous applications

has been driving the growth of mobile data traffic in the past few years. In order to

tackle this challenge, Mobile Network Operators (MNOs) aim to increase their networks’

capacity by expanding their infrastructure, deploying more Base Stations (BSs). Partic-

ularly, the creation of Heterogeneous Networks (HetNets) and the application of traffic

offloading through the dense deployment of low-power BSs, the small cells (SCs), is one

promising solution to address the aforementioned explosive data traffic increase.

Due to their financial implementation requirements, which could not be met by the

MNOs, the emergence of third parties that deploy small cell networks creates new busi-

ness opportunities. Thus, the investigation of frameworks that facilitate the implementa-

tion of outsourced traffic offloading, the collaboration and the transactions among MNOs

and third-party small cell owners, as well as the provision of participation incentives for

all stakeholders is essential for the deployment of the necessary new infrastructure and

capacity expansion.

The aforementioned emergence of third-party content providers and their applications

not only drives the increase in mobile data traffic, but also create new Quality of Service

(QoS) as well as Quality of Experience (QoE) requirements that the MNOs need to

guarantee for the satisfaction of their subscribers. Moreover, even though the MNOs

accommodate this traffic, they do not get any monetary compensation or subsidization

for the required capacity expansion. On the contrary, their revenues reduce continuously.

To that end, it is necessary to research and design network and economic functionalities

adapted to the new requirements, such as QoE-aware Radio Resource Management and

Dynamic Pricing (DP) strategies, which both guarantee the subscriber satisfaction and

maximization the MNO profit (to compensate the diminished MNOs’ revenues and the

increasing deployment investment).

Following a thorough investigation of the state-of-the-art, a set of research directions

were identified. This dissertation consists of contributions on network sharing and out-

sourced traffic offloading for the capacity enhancement of MNO networks, and the design
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of network and economic functions for the sustainable deployment and use of the densely

constructed HetNets. The contributions of this thesis are divided into two main parts,

as described in the following.

The first part of the thesis introduces an innovative approach on outsourced traffic

offloading, where we present a framework for the Multi-Operator Radio Access Network

(MORAN) sharing. The proposed framework is based on an auction scheme used by a

monopolistic Small Cell Operator (SCO), through which it leases its SC infrastructure to

MNOs. As the lack of information on the future offered load and the auction strategies

creates uncertainty for the MNOs, we designed a learning mechanism that assists the

MNOs in their bid-placing decisions. Our simulations show that our proposal almost

maximizes the social welfare, satisfying the involved stakeholders and providing them

with participation incentives.

The second part of the thesis researches the use of network and economic functions

for MNO profit maximization, while guaranteeing the users’ satisfaction. Particularly,

we designed a model that accommodates a plethora of services with various QoS and

QoE requirements, as well as diverse pricing, that is, various service prices and different

charging schemes. In this model, we proposed QoE-aware user association, resource al-

location and joint resource allocation and dynamic pricing algorithms, which exploit the

QoE-awareness and the network’s economic aspects, such as the profit. Our simulations

have shown that our proposals gain substantial more profit compared to traditional and

state-of-the-art solutions, while providing a similar or even better network performance.



Resumen

El aumento de los proveedores de contenido de terceros y la introducción de numerosas

aplicaciones ha impulsado el crecimiento del tráfico de datos en redes móviles en los

últimos años. Para hacer frente a este desaf́ıo, los operadores de redes móviles (Mobile

Network Operators, MNOs) apuntan a aumentar la capacidad de sus redes mediante

la expansión de su infraestructura y el despliegue de más estaciones base (BS). Partic-

ularmente, la creación de Redes Heterogéneas (Heterogenous Networks, HetNets) y la

aplicación de descarga de tráfico a través del despliegue denso de BSs de baja potencia,

las células pequeñas (small cells, SCs), es una solución prometedora para abordar el

aumento del tráfico de datos explosivos antes mencionado.

Debido a sus requisitos de implementación financiera, que los MNO no pudieron cumplir,

la aparición de terceros que implementan redes de células pequeñas crea nuevas opor-

tunidades comerciales. Por lo tanto, la investigación de marcos que faciliten la imple-

mentación de la descarga tercerizada de tráfico, la colaboración y las transacciones entre

MNOs y terceros propietarios de células pequeñas, aśı como la provisión de incentivos

de participación para todas las partes interesadas esencial para el despliegue de la nueva

infraestructura necesaria y la expansión de la capacidad.

La aparición antes mencionada de proveedores de contenido de terceros y sus aplica-

ciones no solo impulsa el aumento del tráfico de datos móviles, sino también crea nuevos

requisitos de calidad de servicio (Quality of Service, QoS) y calidad de la experiencia

(Quality of Experience, QoE) que los operadores de redes móviles deben garantizar para

la satisfacción de sus suscriptores. Además, a pesar de que los operadores de redes

móviles adaptan este tráfico, no obtienen ninguna compensación monetaria o subsidio

por la expansión de capacidad requerida. Por el contrario, sus ingresos se reducen con-

tinuamente. Para ello, es necesario investigar y diseñar funcionalidades económicas y

de red adaptadas a los nuevos requisitos, tales como las estrategias QoE-conscientes

de gestión de recursos de radio y de precios dinámicos (Dynamic Pricing, DP), que

garantizan la satisfacción del abonado y la maximización de la ganancia de operador
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móvil (para compensar los ingresos de los MNOs disminuidos y la creciente inversión de

implementación).

Después de una investigación exhaustiva del estado del arte, se identificaron un conjunto

de direcciones de investigación. Esta disertación consiste en contribuciones sobre el uso

compartido de redes y la descarga tercerizada de tráfico para la mejora de la capacidad

de redes MNO, y el diseño de funciones económicas y de red para el despliegue y uso

sostenible de las HetNets densamente construidas. Las contribuciones de esta tesis se

dividen en dos partes principales, como se describe a continuación.

La primera parte de la tesis presenta un enfoque innovador sobre la descarga subcon-

tratada de tráfico, en el que presentamos un marco para el uso compartido de la red

de acceso de radio de múltiples operadores (Multi-Operator RAN, MORAN). El marco

propuesto se basa en un esquema de subasta utilizado por un operador monopólico de

celda pequeña (Small Cell Operator, SCO), a través del cual arrienda su infraestructura

SC a MNOs. Como la falta de información sobre la futura carga de red y las estrategias de

subasta creaban incertidumbre para los MNO, diseñamos un mecanismo de aprendizaje

que asiste a los MNO en sus decisiones de colocación de pujas. Nuestras simulaciones

muestran que nuestra propuesta casi maximiza el bienestar social, satisfaciendo a las

partes interesadas involucradas y proporcionándoles incentivos de participación.

La segunda parte de la tesis investiga el uso de las funciones económicas y de red para

la maximización de los beneficios de los MNOs, al tiempo que garantiza la satisfacción

de los usuarios. Particularmente, diseñamos un modelo que acomoda una gran cantidad

de servicios con diversos requisitos de QoS y QoE, tanto como diversos precios, es decir,

varios precios de servicio y diferentes esquemas de cobro. En este modelo, propusimos al-

goritmos QoE-conscientes para asociación de usuarios, asignación de recursos y conjunta

asignación de recursos y de fijación dinámica de precios, que explotan la conciencia de

QoE y los aspectos económicos de la red, como la ganancia. Nuestras simulaciones han

demostrado que nuestras propuestas obtienen un beneficio sustancial en comparación

con las soluciones tradicionales y del estado del arte, a la vez que proporcionan un

rendimiento de red similar o incluso mejor.
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Chapter 1

Introduction

This chapter presents the context of the addressed problems, the motivation behind our

proposals, and the structure of the thesis. This chapter is organized as follows. Section

1.1 presents the motivation of the thesis, whereas Section 1.2 describes the structure of

the thesis. Finally, we present our contributions in Section 1.3.

1.1 Motivation

Since the launch of the second generation mobile networks (2G), the telecommunica-

tions industry has been developing with rapid rates. 2G popularized the use of mobile

phones, and widened the mobile telephony market from a limited market in the business

sector to the general market and the typical consumer. With the introduction of the

third generation (3G), the mobile users became accustomed to the use of data services.

Moreover, 3G along with the first appearance of smartphones (i.e. iOS and android

devices) allowed the extensive use of mobile applications, paving the way for the fourth

generation (4G), with the general consumer using services for every aspect of her daily

life (e.g. business, recreation, socialization etc.). The emergence of numerous mobile

applications along with their wide use have created an increasing trend in the mobile

data demand. This growth in traffic load has been following an exponential increase

over the last few years, which is expected to continue in the future. Particularly, the

average monthly data consumption is expected to reach 49 exabytes by 2021 according

to Cisco [2]. As a result, the telecommunications industry along with the academia have

been researching ways to address this challenge, and increase the network capacity.

One of the most promising solutions is the densification of the existing networks with

the deployment of numerous low-power base stations (BSs), also known as small cells

1
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(SCs). The small cells can be deployed in areas where the typical high-power, macrocell

BS cannot serve the entire offered load, creating Heterogeneous Networks (HetNets). In

this case, the traffic is offloaded from the macrocell to the small cells, allowing the dense

reuse of the spectrum, and hence increasing the network capacity. However, despite its

potential, the ubiquitous deployment of small cells requires high Capital Expenditure

(CAPEX). Therefore, a single Mobile Network Operator (MNO) may not be able to

make such investments, which also pose high financial risks.

The answer to the financial issues of traffic offloading came through a different trend of

telecommunications research, Network Virtualization (NV). NV abstracts the physical

infrastructure and radio resources and isolates them to virtual resources, allowing for

their splitting among multiple MNOs. Therefore, NV facilitates the sharing of network

infrastructure, as well as spectrum by multiple MNOs [3]. As a result, a number of

different Radio Access Network (RAN), spectrum sharing scenarios and use cases have

been introduced by telecommunication standardization bodies such as the third gen-

eration partnership project (3GPP), regulatory organizations (e.g. ITU-T), as well as

third-party organizations (e.g. Small Cell Forum). This in turn enabled the MNOs to

cooperate and form agreements for sharing each others’ infrastructure, or form joint

ventures for the joint infrastructure deployment and operation.

The possibilities provided by NV helped independent third parties to emerge and en-

ter the telecommunications market as neutral hosts that lease network infrastructure.

These neutral hosts, also known as Small Cell Operators (SCOs), can be authorities of

highly-populated metropolitan areas, or owners of large venues that deploy small cell in-

frastructure and lease it to MNOs [4, 5], treating it as an additional revenue source. This

outsourcing of small cell deployment and traffic offloading helps the MNOs to distribute

the necessary CAPEX among several SCOs (i.e. different SCOs in different locations).

It is true that this CAPEX reduction is translated into an increase in the MNOs’ Opera-

tional Expenditure (OPEX) through the price paid to lease the small cell infrastructure.

However, this model poses lower financial risk compared to the ubiquitous small cell

deployment, and at the same time allows the MNOs to increase their network capacity

in a dynamic way, that is, at the locations and the time periods where and when it is

needed.

Despite the capacity and economic benefits that outsourced traffic offloading offers, there

are new challenges that need to be addressed, since this business model was recently

created and adopted.

• There is still a lack of frameworks that cover the whole range of traffic offloading
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markets. Particularly, traffic offloading agreements may vary from simple arrange-

ments between a single small cell owner and its MNO, to detailed, long-term agree-

ments among multiple MNOs and neutral hosts, who own hundreds of small cells

as mentioned above. In such competitive markets, there is always the possibility

that the stakeholders show undesirable market behaviour. Therefore, the proposed

frameworks should also take into account the competition among MNOs or SCOs,

to provide fairness to all participants in the offloading market, and prevent un-

ethical and illegal practices (e.g. collusion in auctions, market manipulation etc.),

while promoting healthy competition that benefits both the stakeholders and the

consumers.

• Economic incentives must be provided for both the MNOs and the SCOs. As

the SCOs undertake the deployment of the small cell networks and its financing,

they need appropriate economic incentives. This in turn requires leasing strategies

(e.g. leasing schemes, duration of leasing periods, pricing schemes etc.) that

guarantee a significant Return on Investment (ROI1). Regarding the MNOs, even

though traffic offloading can boost substantially their networks’ performance and

improve the user experience, it should not be expensive. That is, an MNO would

be interested in investing in traffic offloading only if it provided him with either a

low-cost alternative for serving its traffic or an increase in profit due to the growth

in the served load. Thus, the proposed traffic offloading frameworks should also

guarantee long-term sustainability of the traffic offloading markets, and provide

the stakeholders with economic incentives.

• The MNOs need guidelines and strategies for the wide adoption of outsourced

traffic offloading. In the near future, traffic offloading will be required ubiquitously.

This means that an MNO must have access to numerous small cell networks in

different sites. And as mentioned earlier, even though the MNO does not pay

the small cell CAPEX, it covers the small cell OPEX, which on a large scale

can prove to be a significant expense. Therefore, an MNO must plan cautiously

where, when and how much to pay for traffic offloading outsourcing, taking into

account the expected traffic demand, the competition, technical limitations of

the small cell network (e.g. maximum number of supported tenants, backhaul

capacity, number of small cells per site etc.), the offloading cost, and finally the

potential profit. Therefore, it is imperative to propose mechanisms that assist the

MNOs in adopting beneficial offloading strategies, while taking into account the

aforementioned parameters and conditions.

1ROI is defined as the benefit of an investment relative to the investment’s cost[6].
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Taking the above challenges into consideration, we can formulate the traffic offloading

problem. The main issue is how traffic offloading frameworks should be designed in order

to guarantee legality and fairness, and provide incentives for its adoption by stakeholders.

Then, within such a framework we need to answer where, when and how much an

MNO should invest on traffic offloading, in order to have both technical and financial

gains. Similarly, an SCO needs to know how extensive its small cell deployment should

be, and which pricing schemes and price levels are best to incentivize MNOs lease its

infrastructure, in order to recoup its investment.

As it will be shown in Chapter 2.3.1, there is a multitude of works that study variations

of the traffic offloading problem, which propose their own frameworks for the traffic

offloading market, as well as MNO and/or SCO strategies on leasing small cell infras-

tructure. In most of these works we encounter the assumption that the SCOs own not

only small cell infrastructure, but also licensed spectrum. Hence, in these scenarios the

MNOs solely need to come to an agreement with the SCO for the offloaded traffic vol-

ume, the offloading duration and the corresponding price. However, as licensed spectrum

can be acquired only through national auctions, their license fees can raise to billions of

euros [7]. Since the typical, incumbent MNO offers nation-wide services, it gains enough

revenue to recoup its infrastructure CAPEX and OPEX, as well as the licence fee dur-

ing the license’s duration (e.g. 20 years for UK’s 4G auction [8]). Conversely, a typical

SCO’s service is offered in small geographical areas, which in turn limits its maximum

revenue. To that end, it is not safe to assume that a local SCO can acquire a spectrum

license, and get a significant Return on Investment through a small cell network.

In the first contribution of this thesis, we study and propose a solution for the traffic

offloading problem. In our case, we focus our study on a sharing scheme different from the

literature’s trend, with regard to the spectrum used in the shared RAN. Specifically, we

examine the Multi-Operator RAN (MORAN) sharing configuration [1], whose business

model is known as Small Cell as a Service (SCaaS) [9]. SCaaS concerns the provision

of solely small cell infrastructure to a group of MNOs, which is usually deployed by an

SCO. The main difference with the sharing models in the literature is in the fact that

with MORAN the transceiver and radio frequency (TRX/RF) elements (i.e. schedulers,

licensed bandwidth etc.) are not shared. Hence, MORAN allows each MNO to apply

its own policy on the Quality of Service (QoS) the users receive. This means that

even though the MNOs’ spectrum is used at a shared RAN, they still retain exclusive

rights on its usage. Therefore, in a MORAN sharing arrangement there is a need for a

mutual Service Level Agreement (SLA) between the MNO and the SCO for the use of

the spectrum, for instance, the spectrum manager leasing arrangement or the de facto

leasing arrangement [10]. In this scenario, we propose a framework for the organization

of the small cell resource allocation among the leasing MNOs, and the corresponding
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transactions. Furthermore, we propose a novel mechanism that assists the MNOs in

their decision making, in order to achieve their network and economic objectives within

a competitive market, and under the uncertainty that the dynamic variations of the

traffic load, along with the opponent MNOs’ actions incur.

After solving the traffic offloading problem, an MNO has at its disposal additional

small cell infrastructure, which can be used to provide better service to its subscribers

and improve its own economic gains. Consequently, the solution of the traffic offloading

problem leads us to a new area of study, which examines how an MNO can use efficiently

and profitably its HetNet. The MNO network’s performance and financial gains depend

highly on how network and economic functionalities are designed and applied. Therefore,

in order to identify the appropriate network and economic functions, and design them

so that they guarantee subscriber satisfaction and raise the MNO profit, we first need

to identify the challenges that need to be addressed.

• The aforementioned raise in mobile data demand has been greatly impacted by

the rise of over-the-top (OTT) content providers, and the dissemination of their

content through numerous applications for mobile devices. These applications are

described by various QoS requirements, which along with the use of multiple de-

vices per user [11] increase the heterogeneity of the traffic demand. The burden

on the networks is further increased by the introduction of Quality of Experience

(QoE) requirements for the aforementioned services and applications. The provi-

sion of seamless connectivity and QoE-aware services to their users is essential for

the MNOs, as QoE is one of the key elements that has been attracting the interest

of telecommunication stakeholders the past few years [12], and a key design factor

for the future 5G networks [13].

• This emergence of OTT applications and the corresponding traffic increase have

caused a drop in the MNOs’ revenues [14–16]. This revenue decrease finds its roots

in the gradual replacement of the MNOs’ voice and messaging services (i.e. their

main source of revenue from the middle 1990s until the late 2000s) by their OTT

counterparts (e.g. Skype, Whatsapp etc.). Furthermore, the MNOs’ data service

prices (i.e. price per down/uploaded GB) have been decreasing over the years due

to the introduction of new technologies (i.e. migration from 2G to 3G and lately

to 4G), along with the market competition. Additionally, the content providers

only reap the benefits of using the MNO infrastructure without cost, as they do

not subsidize either the infrastructure deployment or its operation.
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Therefore, the MNOs face a two-fold challenge: meet a multitude of different QoS and

QoE requirements due to the existence of numerous, distinctive services and applica-

tions, and increase their revenues in an effort to maximize their profit. As previously

mentioned, the initial and fundamental step for improving the service quality is the

capacity growth of the MNO networks through densification with small cells. However,

given a particular HetNet deployment it is important to recognize the parameters that

provide satisfactory service to the subscribers, and in turn high profit to the MNO. With

regard to the user experience, it has been proven that the relation between QoS and QoE

has a non-linear nature [17]. This means that small degradations in the received QoS

can impact significantly the users’ perception of QoE. Moreover, the users’ perception is

influenced by other factors, which can be either technical such as the device characteris-

tics [18], or non-technical such as the service price [19]. Under these circumstances, and

in order to address the MNOs’ two-fold challenge, it is essential to design both network

and economic functionalities adapted to these new requirements, as mentioned previ-

ously. For instance, functions such as QoE-aware Radio Resource Management (RRM)

and user association strategies, as well as smart and dynamic pricing schemes can be

used to affect both technical and economic parameters in a network. By doing so, an

MNO can offer high service quality to its subscribers, while increasing its profit.

As it will be shown in Chapter 2.3.2, the majority of works on RRM and cell selection

place the focus on the provision of high QoS/QoE and other network related parameters

(e.g. power allocation, spectral and/or energy efficiency, fairness etc.). However, they do

not take into account the impact of their proposals on the MNOs’ financial parameters.

With regard to the economic functions an MNO can use to affect both its network

and economic aspects, the literature has placed its focus on smart, dynamic pricing.

In particular, the proposals on pricing schemes have been used in order to influence

the users and steer the traffic demand from the peak to the off-peak traffic hours and

locations. Nevertheless, even though these proposals result in reducing congestion, they

cannot affect the network performance during unavoidable congestion periods.

In the second contribution of this thesis, we focus on RAN (i.e. user association and

resource allocation) and economic (i.e. pricing) functions. Contrary to the literature,

our proposals on these network and economic functions take into account a multitude of

parameters that increase the traffic heterogeneity, as well as diverse pricing, and always

aim to benefit both the user satisfaction and the MNO financial gains.



Chapter 1. Introduction 7

1.2 Thesis Structure

The scope of this Ph.D dissertation is the design of novel schemes for improving the

performance of current and future HetNets. At the same time, we address the financial

challenges from an operator’s point of view, given the competition in the telecommuni-

cations market along with the ever increasing data traffic demands, and requirements

in service quality. The proposed solutions enable the sustainable densification of Het-

Nets, as well as their profitable operation. Particularly, this thesis is based on two

research directions, as it can be seen in Fig. 1.1: 1) the study of the telecommunications

stakeholders’s strategies when they compete or collaborate in order to strike benefi-

cial arrangements in small cell infrastructure sharing scenarios for traffic offloading; 2)

the study of network and economic functions (i.e. user association, resource allocation,

and pricing) in HetNets aiming for a service provision that satisfies the subscribers and

maximizes the MNO profit.

The remaining part of the thesis includes four chapters. Chapter 2 consists of two

main parts that provide background information on network sharing, and a literature

review respectively. Specifically, the information on network sharing concerns a vari-

ety of scenarios and use cases defined by 3GPP, and subsequently network architecture

configurations for their implementation. With regard to the literature review, it is di-

vided in three parts. Initially, we present works that solve the traffic offloading problem,

that is, scenarios where multiple MNOs or SCOs compete to maximize their utility (e.g.

cost reduction, revenue maximization etc.) by buying or selling small cell resources.

Subsequently, we survey works on user association and resource allocation,where the

objectives vary between improvement of the network performance, and increase of the

MNOs’ economic gains. In the same vein, we finalize the literature review with a presen-

tation of various works on dynamic, smart pricing, which is used as a means to address

network congestion, better the service provision, and guarantee financial gains for the

MNOs.

The contributions of this thesis are presented in the next two chapters. Specifically,

both study areas of our contributions examine the techno-economical aspects of traffic

offloading, however from a different perspective. Initially, we examine the impact of

competition among MNOs, when they share small cell network infrastructure. Subse-

quently, we analyse ways to improve the MNO profit as well as the user satisfaction

through intelligent management and pricing of the acquired small cell resources.

Particularly, Chapter 3 investigates the traffic offloading problem under the SCaaS ap-

proach. The main contributions in Chapter 3 are the proposal of an analytical, realistic

model for SCaaS that includes and combines the technological constraints and economic
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Figure 1.1: Thesis Structure

objectives of each stakeholder. We further propose an auction scheme for the efficient

allocation of the small cell resources and the optimization of the stakeholders’ economic

gains. To that end, we provide a learning mechanism that assists the MNOs with their

auction strategies, in realistic conditions with lack of information on future traffic load,

and the strategies of the competing MNOs.

Chapter 4 is dedicated to the study of network (i.e. user association, resource allocation)

and economic (i.e. pricing) functions, and the proposal of the corresponding QoE-

aware algorithms for the maximization of the MNO profit, while guaranteeing high

user satisfaction. Chapter 4’s main contributions are three QoE-aware, greedy, heuristic

algorithms in a scenario with various services and numerous QoS/QoE requirements. We

further take into account diverse pricing, that is, a range of service prices for different

pricing schemes. In this scenario, we propose a user association algorithm for dual-

band 5G HetNets (i.e. microwave macrocells overlaid with millimetre wave small cells),

aiming to maximize the MNO profit. Subsequently, we propose a resource allocation

and a joint resource allocation and dynamic pricing algorithm that maximize the MNO

profit within a HetNet, while taking into account constraints on the fairness, and the

overall user satisfaction. Finally, Chapter 5 provides conclusions for the works presented

in the previous chapters, and discusses potential issues for future research.



Chapter 1. Introduction 9

1.3 Research Contributions

The presented in this dissertation ideas have been published in various scientific journals

and conferences. In the following, we list our publications according to their respective

contribution, and the corresponding chapter in this thesis.

The publication list consists of:

[J]: 2 journal papers.

[C]: 3 conference papers.

Chapter 3 is based on 1 conference and 1 journal paper.

[C1 ] P. Trakas, F. Adelantado, and C. Verikoukis, “A novel learning mechanism for

traffic offloading with small cell as a service,” in IEEE International Conference

on Communications (ICC), pp. 6893-6898, June 2015.

URL: https://ieeexplore.ieee.org/document/7249424

[J1 ] P. Trakas, F. Adelantado, and C. Verikoukis, “Network and Financial Aspects of

Traffic Offloading with Small Cell as a Service,” IEEE Transactions on Wireless

Communications, vol. 17, no. 11, pp. 7744-7758, Nov. 2018.

URL: https://ieeexplore.ieee.org/document/8470260

Chapter 4 is based on 2 conference and 1 journal paper.

[C2 ] P. Trakas, F. Adelantado, N. Zorba, and C. Verikoukis, “A quality of experience-

aware association algorithm for 5G heterogeneous networks,” in IEEE Interna-

tional Conference on Communications (ICC), May 2017.

URL: https://ieeexplore.ieee.org/document/7996869

[C3 ] P. Trakas, F. Adelantado, N. Zorba, and C. Verikoukis, “A QoE-aware joint

resource allocation and dynamic pricing algorithm for heterogeneous networks,” in

IEEE Global Communications Conference (GLOBECOM), Dec. 2017

URL: https://ieeexplore.ieee.org/document/8254131

[J2 ] P. Trakas, F. Adelantado, and C. Verikoukis, “QoE-aware resource allocation for

profit maximization under user satisfaction guarantees in HetNets with differenti-

ated services,” to appear in IEEE Systems Journal.

URL: https://ieeexplore.ieee.org/document/8521660



Chapter 2

Background and State-of-the-Art

2.1 Introduction

The continuous demand for new services and the increasing mobile data consumption

has been driving the research carried out by both the industry and the academia for

advancing telecommunications technologies. This research has resulted in the worldwide

adoption of LTE-A, and 5G in the near future, always focusing on network throughput,

delay and fairness, aiming for better QoS and QoE. However, in order to adopt new

technologies, fund further advancements, and offer satisfactory service to the users, it is

important to assure the long-term sustainability of the deployed networks.

To this end, research for sustainable capacity growth has been carried out based on

small cell network densification, RAN sharing, and the corresponding transactions be-

tween telecommunication stakeholders. Similarly, little attention has been also given

to the impact of network functions (e.g. resource allocation) on the networks’ financial

aspects. Finally, economic functions such as pricing have been researched for influencing

the traffic demand, and hence improving the service provision. This chapter presents

information on RAN sharing scenarios, use cases, and architectures as well as a review

of state-of-the-art works on small cell sharing. Subsequently, we complete our literature

review with works on RAN functions (i.e. user association and resource allocation), and

dynamic, smart pricing in order to show the effect they can have on network performance

and MNO financial parameters.

The chapter is organized as follows. Section 2.2 lists the scenarios, uses cases and archi-

tectures of RAN sharing proposed by 3GPP and other organizations such as the small

cell forum. Section 2.3 provides the literature review and is divided in two parts, accord-

ing to our contributions. The first part is dedicated on works that examine variations of

10
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the traffic offloading problem and the interactions among stakeholders. The second part

presents works on the efficient use of HetNet resources, and particularly focuses on user

association, resource allocation, and dynamic, smart pricing. Section 2.4 describes open

issues and challenges that have not yet been addressed by the research works presented

in the literature review. Finally, Section 2.5 concludes the chapter.

2.2 Mobile Network Architectures and Network Sharing

In this section, we present network sharing scenarios and use cases as defined by 3GPP

[20], along with the corresponding architectures proposed by 3GPP [21], as well as other

organizations such as the small cell forum [1]. Initially, let us introduce the actors and

their roles in network sharing, as defined by 3GPP [20].

In a network scenario, 3GPP defines two main types of actors: the Hosting RAN

Provider, and the Participating Operator. The Hosting RAN Provider owns network

infrastructure, which it shares with or leases to one or more Participating Operators.

The Hosting RAN Provider has primary operational access to licensed spectrum, which

is part of the sharing agreement. However, the Hosting RAN Provider does not nec-

essarily need to own licensed spectrum. Therefore, it can be solely an infrastructure

provider, who manages the shared network utilizing spectrum provided by the Partic-

ipating Operators (as agreed upon an SLA [10]). It should be noted that the Hosting

RAN Provider is a notion that can be implemented as outsourcing, joint ventures, or

leasing agreements for operating, owning the RAN infrastructure or managing the shar-

ing agreements. Thus, when we consider scenarios of small cell network sharing for

traffic offloading, the neutral host or SCO (as introduced in Chapter 1) has the role of

the Hosting RAN Provider.

Regarding the Participating Operator, it is an entity that makes an agreement with the

Hosting RAN Provider in order to serve its users with the shared network, which can

be used concurrently by more Participating Operators. Under the sharing agreement,

the Participating Operator can use a portion of the aforementioned licensed spectrum

(or its own spectrum) in order to serve its users, and specifically under its own control

in order to set its own service policies (e.g. the resource allocation and scheduling for

QoS/QoE provision).

2.2.1 Network sharing scenarios and use cases

In this section, we present various network sharing scenarios and use cases defined by

3GPP [20].
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Operator BOperator X
Operator A

Operator X establishes the following leasing rates in order to 
maximize predictable revenue flow:

• A base rate for a committed % of dedicated shared RAN capacity
• 2x the base rate for a % of dedicated shared RAN capacity for a month
• 3x the base rate for a % of dedicated shared RAN capacity for a week
• 5x the base rate for first come first served access to remaining RAN capacity

Figure 2.1: Example of leasing rates for Operator X’s (i.e. the Hosting RAN Provider)
Shared RAN in a Maximizing RAN sharing revenue scenario

Maximizing RAN sharing revenue

The efficient use of the network for the subscriber satisfaction, and the revenue max-

imization are two goals that all operators share. Nevertheless, in a network sharing

scenario a trade-off may arise between these two objectives. The trade-off depends on

parameters such as the offered load, and others regarding the sharing agreements, such

as the number of the participating operators, the details of their demands (e.g. whether

the demand is static or dynamic, the duration and the volume of resources etc.), and

the sharing’s economic parameters (e.g. additional service costs, and sharing prices/rev-

enue). To this end, this use case proposes a variety of rates imposed by the Hosting RAN

Provider on the Participating Operators, which depend on the period of time described

by the sharing agreement. Hence, a basic rate can be charged for a permanent portion

of dedicated shared RAN capacity, whereas the rate can be increased as the agreement’s

duration decreases (e.g. to months, weeks, on-demand agreements etc.), as illustrated

in the example in Fig. 2.1. By doing so, the Hosting RAN Provider offers a flexibility

in the sharing agreements, accommodating the Participating Operators different needs,

while guaranteeing high revenues.

Asymmetric RAN Resource Allocation

This use case refers to Joint Ventures, which are created by two Participating Operators,

with the purpose to build, operate and maintain the hosting RAN. The “assymetry” in

this use case refers to the difference in the investment level the Participating Operators

have in the shared RAN (e.g. 60% of investment is done by one operator, and 60% of
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Operator BJVOperator A

JV CAPEX Percentage

Percentage of JV’s resources

Operator A Operator B

Figure 2.2: Asymmetric RAN resource allocation in the Joint Venture SC network of
two operators

resources are dedicated for him), as shown in Fig. 2.2. Thus, during a peak-traffic hour

the allocation and scheduling of the shared resources for the two operators is proportional

to their respectful investment level. It should be noted that the sharing in this use case

considers only the RAN and not the core network infrastructure.

Dynamic RAN Sharing Enhancements & On-demand Automated Capacity

Brokering

In these two use cases, the Participating Operators’ capacity requirements may vary dur-

ing different time periods of the day or the week. Therefore, the Participating Operator

demands a set of capacity allocations in a shared RAN for different time periods in the

near future according to the expected traffic load, or on an on-demand basis for short-

term additional capacity. These use cases mainly refer to Participating Operators, who

already own RAN infrastructure but need additional capacity during high traffic time

periods to serve their subscribers. With such flexibility, the Hosting RAN provider can

manage its shared RAN in order to optimize the network performance and the financial

gains. On the other hand, the Participating operators can optimize their subscribers’

service by leasing the shared infrastructure according to the patterns of their traffic load,

or guarantee the service quality during sudden traffic surges.

Typical examples for the application of both use cases involve the concentration of large

crowds in small geographical areas, such as sports stadiums or open-air events (e.g. music

concerts etc.), which are organized well in advance, and the operators have accurate

estimates on the additional capacity they will need to serve properly their users. Such

real-life example is the deployment of small cell infrastructure at the Mestalla stadium
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During a 2-hour long event:
• Operator A leased 40% of 

the SC resources
• Operator B leased 30% 

of the SC resources
• Operator C leased 30% 

of the SC resources

Figure 2.3: Leasing of small cell resources for an event in a sports stadium
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Figure 2.4: Three main approaches to network sharing (designed according to Fig.
4-2 in [1])

in Valencia by the collaboration of Telefonica and Nokia [5] (visual representation in

Fig. 2.3). Thanks to the multi-tenancy capabilities of the installed infrastructure, the

small cell capacity can be shared among multiple Participating Operators.

2.2.2 Network sharing architecture configurations

In this section we present the network sharing architecture configurations that can realize

the network sharing use cases mentioned in the previous section. Three main approaches

have won the attention of the telecommunications industry for application in LTE-A

networks1. 3GPP has proposed the Multiple Operator Core Network (MOCN), and

Gateway Core Network (GWCN) [21], whereas the Multiple Operator RAN (MORAN)

is a non-3GPP configuration [1]. All three approaches are illustrated in Fig. 2.4 to

1These configurations can be also used as guidelines for future 5G network RAN sharing scenarios.



Chapter 2. Background and State-of-the-Art 15

facilitate their comprehension and highlight their differences. We consider the example

where the Hosting RAN provider is labelled as ‘Operator X’, and the Participating

Operators as ‘Operator A’ and ‘Operator B’. As it can observed, in the case of MOCN

the sharing operators can share all the architecture elements along with the spectrum,

excluding the core networks. With GWCN, the operators also share elements at the

core network level.

With regard to the spectrum shared in MOCN and GWCN, it must be provided by a

typical MNO, owner of licensed spectrum. This MNO would be one of the Participating

Operators, who also acts as the Hosting RAN provider (operator ‘X’). This means that

MOCN and GWCN entail the ownership of spectrum by the Hosting RAN provider,

which however is not required in the definition provided by 3GPP, as noted previously.

Additionally, such a sharing configuration requires not only an infrastructure, but also

a spectrum sharing agreement, which may not be always desirable by the MNOs (e.g.

due to MNO competition). Moreover, a requirement for shared spectrum limits the

possibilities for third-party, independent infrastructure owners from acting as Hosting

RAN providers, due to the high spectrum license fees as explained in Chapter 1 [7]. In

turn, this limits the general deployment of small cell networks, which is imperative for the

increase of the network capacity through traffic offloading, and one of the requirements

for future 5G networks.

These issues can be overcome with the use of the MORAN configuration. In MORAN,

the MNOs share the backhaul connection and the BS hardware, except for the TRX/RF

aspects, and their spectrum [1]. This means that MORAN is a configuration more flexi-

ble than the 3GPP approaches, as it enables the MNOs to have a higher level of control

over the cell-specific radio parameters and radio resource management. Furthermore,

they are free to employ their own service policies, such as service differentiation, and

the provision of particular QoS/QoE levels. Moreover, the Hosting RAN provider does

not need to acquire licensed spectrum, since the spectrum used for the operation of the

shared RAN must be provided by the MNOs themselves. As a result, MORAN allows

the emergence of third-party infrastructure owners, and the wide adoption of the SCaaS

business model.

In order to better show the applicability of MORAN, in the following we provide two

real-world examples that can be described as SCaaS (technically MORAN) use cases.

The first example is the small cell network deployed in Los Angeles (USA) [4], where

Phillips and the city Council have installed 4G LTE small cells in street light poles.

The infrastructure, with Ericsson’s technology, has been initially designed to provide

IoT services, but it will be upgraded in the future to allow the MNOs to lease the

infrastructure to deliver broadband connectivity.
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The second example has been deployed in Mestalla Stadium, located in Valencia (Spain)

[5]. In this case, the owner of the stadium deployed an SC network in cooperation with

Telefonica, the largest MNO in Spain. The goal is to improve the visitors’ mobile

experience. Telefonica installed Flexi Zone small cells, nodes produced by Nokia and

implementing MORAN [22], which allow not only Telefonica to deliver the service, but

other MNOs to share the RAN. This deployment does not only address the broadband

delivery but it also becomes a new source of revenue for the stadium owner. In both of

these use cases, the small cell network owners can use as guidelines network sharing use

cases described in Section 2.2.1 or in [20].

Furthermore, the third-party MORAN business model has been attracting new compa-

nies, who want to establish themselves as neutral hosts in the cellular network market.

For instance, back in October 2014, Analysis Mason pointed out in [23] that towercos

(independent tower companies, owners of mobile network passive infrastructure) were

showing interest to enter the active RAN sharing market as neutral hosts. Such a tow-

erco is Cellnex, which has been acquiring both macrocell and small cell sites, as well as

infrastructure in fast rhythms over the years. Recent examples have been the acquisi-

tion of CommsCon, which manages telephony and data coverage at emblematic sites in

Italy with the use of small cells [24], as well as the most recent agreements being the

acquisition of 3000 new sites in France by Bouygues Telecom [25], and the incorporation

of 2239 sites in Switzerland through a consortium acquisition of Swiss Towers AG [26].

2.3 State-of-the-Art

This section showcases a variety of approaches over a multitude of scenarios and use

cases of the traffic offloading problem, as well as the use of network and economic

functions for the improvement of the network performance and the MNO’s economic

benefits. Specifically, Section 2.3.1 describes the state-of-the-art regarding the solution

of the traffic offloading problem, whereas Section 2.3.2 shows works on user association

and resource allocation. Finally, Section 2.3.3 includes works on smart dynamic pricing.

2.3.1 Traffic Offloading

In the context of traffic offloading, several proposals have appeared in the literature.

Furthermore, most of these studies have addressed the traffic offloading problem with

a game theoretical approach, mainly modelling it with auction schemes [27–36]. This

widely adopted game theoretical approach can explained by the fact that game theory

enables the modelling of strategic interaction between two or more actors in situations
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with strict rules and results, as in the traffic offloading scenarios described in the follow-

ing.

A combinatorial auction scheme for the solution of the traffic offloading problem with

WiFi Access Points (APs) is proposed in [27]. The authors design a reverse auction,

where the MNO conducts the auction, and the AP owners bid to sell their unused

WiFi capacity. In order to ascertain the AP owners’ individual rationality and truth-

fulness, the authors introduce a novel payment rule, which is based on the well-known

Vickrey-Clarke-Groves (VCG) scheme, and moreover accounts for the trade-off between

the offloading cost and the gains in customer service. In order to tackle the high com-

plexity of the optimal solution of the problem, the authors propose a low-complexity

greedy algorithm, capable to solve the offloading problem in polynomial time even for

large network use cases.

A double auction scheme among multiple MNOs and multiple third-party WiFi or fem-

tocell access point owners, managed by an independent broker, is proposed in [28]. The

MNOs place their bids in order to show their capacity demands, whereas the AP owners

bid to set their capacity pricing. The broker guarantees truthfulness in bidding, hence

maximizing the market’s efficiency while maintaining its profit. The authors solve the

double auction’s Social Welfare Maximization (SWM) problem, and propose a low com-

plexity, iterative, double auction mechanism, which manages to converge to the optimal

solution. Moreover, the mechanism incentivizes participation, guarantees truthfulness

and offers confidentiality, as the stakeholders do not need to disclose their utility func-

tions to the broker.

An auction-based incentive framework for leasing on-demand bandwidth resources (re-

ferred to as iDEAL) is presented in [29]. In iDEAL, the offloading problem is formulated

with the use of a reverse auction. In this auction, the MNO acts as the auctioneer and

buyer. The bidders are third-party owners of WiFi hotspots, who bid to sell their unused

capacity to the MNO. iDEAL takes into account the MNO’s traffic spatial variations,

conducting auctions in multiple geographical areas, and creating competition among the

AP owners. By doing so, the MNO achieves substantial savings, by minimizing its service

cost. Furthermore, iDEAL generates incentives to the third parties to sell the capacity,

guarantees truthfulness in their bidding, and guards against collusion among them. Fi-

nally, iDEAL’s performance and efficiency is evaluated with the use of simulations on

real cellular network traces.

A multiple reserve price based auction mechanism, named EasyBid, is proposed in [30].

As in [29], the MNO is the auctioneer, and the femtocell owners are the sellers and

bidders. The authors assume that the femtocell owners make imprecise estimations of

their own valuations, and introduce the perceived valuation concept. In this scenario,
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Easybid’s objective is to find a multi-reserve price based solution that maximizes the

MNO’s utility. Finally, heuristic algorithms are used in order to conduct truthful auc-

tions between an MNO and femtocell owners, taking into account the fact that the sellers

have knowledge of their perceived valuations, which however could differ from the actual

ones.

In a similar way, a VCG auction-based incentive framework for accessing selfish fem-

tocells is studied in [31]. In it, the authors create a framework to incentivize femtocell

owners to provide service to macrocell users, subscribers of a particular MNO. Particu-

larly, the framework aims to maximize the system efficiency, and it is formulated with

two auction schemes. A multi-unit reverse auction is conducted for a single macro-

cell user scenario, whereas a double auction scheme is conducted for multiple macrocell

users. In both auction schemes, the MNO is the auctioneer, the femtocell owners are

the bidders, and truthfulness is guaranteed for the placed bids.

An auction-based marketplace that assists MNOs to rent unused capacity from residen-

tial users, owners of WiFi or femtocell access points, is proposed in [32]. In this work,

the authors design the marketplace as reverse, combinatorial auction, where the MNO

is the auctioneer and the residential users are the bidders and sellers. The use of this

auction scheme forces the sellers to bid truthfully, hence avoiding market manipulation.

The MNO needs to solve the allocation of the resources available in the auction, which

the authors formulate as an MNO cost minimization problem. However, due to the

high complexity of the problem’s solution (i.e. NP-hard), the authors further propose a

greedy algorithm, which solves the allocation problem in polynomial time, even for large

network instances, while guaranteeing the bidders’ truthfulness.

In [33], the authors study the design of incentive mechanisms for third-party data of-

floading, taking into account a budget constraint for the Cellular Service Provider (CSP).

In this paper, a CSP owns macrocellular infrastructure over a geographical area, which

is divided into several smaller regions. The CSP aims to maximize the achieved ca-

pacity gain through offloading traffic to third party resource owners, while taking into

consideration fairness in terms of QoS in the different regions. In order to achieve both

objectives, the CSP runs a single-price2, reverse auction with third-party resource own-

ers (i.e. the bidders/sellers) in order to increase its network’s capacity by leasing out the

bidders’ small cells. The authors propose two efficient competitive auction mechanisms,

which do not depend on the knowledge or estimates of the future traffic, while taking

2Single or uniform-price refers to auctions where all the winning bidders pay the same price per unit
of the auctioned good[37].
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into account the CSP’s limited budget. Both mechanisms are proved to be non-budget-

deficit, individually rational, incentive compatible, and have a theoretical lower bound

regarding their capacity gain.

Two game-theoretical proposals on the opportunistic offloading of Vehicular Users’ (VU)

data traffic through carrier WiFi (operated by the MNO) are proposed in [34]. The two

proposals take into consideration the VUs’ satisfaction, the offloading performance, as

well as the MNO’s revenue. The first proposal is an auction game-based offloading

mechanism (AGO), whereas the second proposal is congestion game-based offloading

mechanism (CGO). When AGO is employed, the MNO conducts auctions for selling

WiFi access opportunities to VUs (i.e. the bidders). The authors designed the AGO

mechanism according to the single-object ascending clock auction, which is proved to be

truthful and individually rational. The AGO’s use leads to social welfare’s maximization,

improvements in the offloading performance and MNO revenue. On the other hand it

results in low VU utility along with fairness issues among VUs, due to the high offloading

prices, and the possibility to WiFi access only by winning bidders. When CGO is used,

all the VUs can access the carrier WiFi. Moreover, a VU makes offloading decisions after

considering other VUs’ actions, and its own utility maximization. The employment of

the CGO mechanism leads to improvements in the offloading performance, and better

VU utility and VU fairness compared to the AGO mechanism. For both mechanisms,

the VUs are provided with a method for predicting the potential capacity gains from

WiFi offloading, and its cost, in order to improve their decisions.

A trading marketplace for the leasing of WiFi capacity by a single MNO is proposed

in [35]. The marketplace is modelled as a combinatorial reverse auction conducted by

the MNO, and where third-party, WiFi AP owners bid their available capacity and its

corresponding price. The allocation problem of the traffic to be offloaded is formulated

as a combinatorial reverse auction, where the MNO’s subscribers are covered partially.

The authors propose a VCG-based payment rule, which secures the bidders’ individual

rationality and truthfulness, in order to avoid the manipulation of the market. The

problem is solved both optimally and with the use of three greedy algorithms. The greedy

algorithms are shown to preserve the individual rationality and truthfulness properties,

along with their capability of solving the problem in polynomial time, even for large

network instances.

A combinatorial auction framework for joint traffic offloading and BS switching off is

proposed in [36]. The authors use traffic offloading as a means for the MNOs to decrease

both the operation cost and the energy consumption, by switching off their macrocell BSs

and serving their traffic through third party small cells. The proposed scheme consists

of three steps. Initially, the MNOs estimate the future load and place multiple bids per
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small cell in order to lease enough capacity to serve a portion of the expected maximum

offered load. The rationale behind this bidding strategy is to avoid leasing unnecessary

capacity, with the risk of not serving all of the MNO traffic. Subsequently, the third

party decides on the capacity allocation and the pricing of the small cell resources.

Finally, the MNOs decide on whether they will switch off their BSs according the auction

result. The framework is modelled with a multi-objective optimization function, where

the objectives are the maximization of the third party’s profit, the maximization of the

MNOs’ added profits, and the minimization of the energy consumption.

A cost-sharing framework between two MNOs for the lease of an SCO’s small cell in-

frastructure is proposed in [38]. In [38], traffic offloading outsourcing is used by MNOs

to avoid the investment of small cell infrastructure, and the raise in total energy con-

sumption of their networks. The authors propose a novel cost-sharing policy, which

divides fairly the different expenses between the MNOs, by taking into account accurate

estimates of the small cell leasing cost. In order to guarantee the accuracy of their cost

assessments, the authors provide a realistic network-cost model. This model’s variable

expenses depend highly on the network’s energy consumption, whose precise estimation

is ensured by accurate forecasts of the expected traffic load.

Traffic offloading through a third party, with WiFi or femtocell APs, using non-cooperative

game theory is considered in [39]. The authors use a two-stage multi-leader multi-follower

game, called data offloading game (DOFF), where the BSs offer prices to the APs, and

the latter decide the offloading volume. The authors solve the social welfare maxi-

mization problem, and examine the market behaviour with a game theoretical analysis.

Particularly, they characterize the Nash Equilibrium for two typical market scenarios: a

perfect competition market, and a monopoly market, and examine the impact they have

on traffic volume and the corresponding leasing price.

A distributed market pricing framework, where mobile data flows are offloaded to APs,

is proposed in [40]. The problem is formulated with a multi-leader multi-follower Stack-

elberg game, where the leaders are service providers and the followers are consumers

within the aforementioned framework. With regard to the APs, the authors consider

the cases where their offloading capacity is limited and unlimited. Their analysis leads

to the establishment of the existences and uniqueness of the Stackelberg equilibrium in

both cases, and a closed form is provided for the unlimited capacity case. Moreover, a

distributed pricing algorithm is proposed for the convergence to an equilibrium, which

is shown to be approximating the social optimum.

A refunding framework for offloading MNO macrocell traffic to small cell holders’ (SHs)

networks with limited capacity is proposed in [41]. The problem is formulated with a

two-stage refunding-admission game, where the MNO is the leader, and the SHs are the



Chapter 2. Background and State-of-the-Art 21

followers. In the first stage, the MNO maximizes its revenue, whereas in the second

stage the SHs make decisions between offloading roaming macrocell users and receiving

a refund, and satisfying their own requirements on QoS. The MNO’s and SHs’ decisions

take into account constraints on the transmission power, interference, the Signal-to-

Interference-plus-Noise-Ratio (SINR), and the small cells’ backhaul capacity. The au-

thors propose two refunding schemes: access-based refunding when the service provides

guaranteed QoS, and usage-based refunding when the SH offers best-effort service.

An economic framework for traffic offloading to privately owned femtocells is described

in [42]. The femtocells can be accessed by an MNO’s public users through a hybrid access

mode, and profit sharing is used to motivate the femtocell owners to offload traffic. A

two-stage sequential game is modeled for revenue distribution, resource allocation, and

service selection. Particularly, in the first stage the MNO decides on the revenue ratio

that will be distributed among the participating femtocells. Next, in the second stage the

femtocells determine the volume of resources that will be reserved for their subscribers’

and the MNO’s users. At the same time, the users (both fetmocell subscribers and

public users) decide on their service, that is, whether to connect to the macrocell or a

femtocell.

Similarly, in [43] the authors propose an ACcess Permission (ACP) transaction frame-

work, which enables an MNO to buy ACP from multiple Femtocell Service Providers

(FSPs). This framework provides also incentives to the FSPs in order to lease their

available resources. The FSPs determine if and at which locations they will lease their

resources, and competition among them arises when their infrastructure covers the same

geographical area. Given the MNO’s traffic uncertainty, and in order for the FSPs to

yield the best strategies, the authors propose an adaptive strategy updating algorithm,

based on an online learning process, known as the non-stochastic multi-armed bandit

problem. It is further proven that the algorithm strategies’ and the optimal strategies

that provide the maximum payoff, yield a particular maximum payoff gap.

The data offloading problem is studied for the first time with the use of an one-to-many

bargaining model in [44]. The scenario is modeled as a monopoly, where one MNO

bargains with third party access point owners (APOs) for offloading its traffic. The

bargaining is designed and analysed both in a sequential and a concurrent manner, and

the Nash Bargaining Solution is provided for both bargaining protocols. The authors

discover the APO benefits from bargaining in earlier steps (sequential bargaining), and

the APO losses when the bargaining is conducted concurrently. Finally, the authors

investigate the impact that APO grouping has on the bargaining solution.

In [45], although the scenario is similar, the situation differs, since all of the service

providers’ subscribers also play a major role in the dynamic selection of their service
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provider. A hierarchical dynamic game framework models the interactive decisions, and

an evolutionary game describes the subscriber’s service selection. As for the transactions

between the MNO and the SSP, they are modeled with a Stackelberg differential game.

The problem of traffic offloading through a third-party WiFi AP from the MNO’s per-

spective is examined in [46]. The MNO aims to maximize its revenue when Successive

Interference Cancellation (SIC) is applied to the system. The problem is solved with

both a centralized approach and a threshold-based distributed offloading scheme, show-

ing the SIC benefits on the MNO’s revenue.

After reviewing the works presented in this section, we observe that in all works the

SCOs provide not only infrastructure, but also spectrum resources. This means that

the SCOs are actual service providers, who can have subscribers’ of their own, and

their business model can be completely independent from the typical MNOs. Thus,

out of the three network sharing architecture configurations described in Section 2.2.2,

the literature review considers only the MOCN or the GWCN configurations. As a

result, the outsourced traffic offloading problem has not been addressed for the MORAN

configuration, or the SCaaS business model, which we have described in Section 1.1.

Except for the lack of works on MORAN, we have also observed that the literature is

mostly focused on the economic aspects of traffic offloading. Particularly, these works

solely focus on the way the stakeholders interact with each other (e.g. auctions, bargain-

ing etc.) in order to fulfil a particular objective (e.g. cost minimization, social welfare

maximization etc.) and how it impacts their economic parameters. However, these

works fail to address the technological aspects of traffic offloading and their connection

with the financial aspects. For instance, we have not seen how the spectrum use in

different tiers (i.e. orthogonal or co-channel), the limitations in backhaul or the small

cell cluster density may impact the system throughput and the end users, and how the

stakeholders act in different use cases. As the stakeholders’ actions determine the net-

work performance and with the economic gains or losses, it is interesting to examine the

strategies they will adopt for different use cases described by technological parameters.

2.3.2 User Association and Resource Allocation

In this Section we outline proposals for the use of the user association and resource

allocation network functions for the improvement of network performance. Particularly,

we have not only included works that use these network functions as the tool to improve

the network performance. As our research focuses on the use of network functions for

both the provision of satisfactory service and the economic sustainability of the network

(i.e. MNO profit maximization), we further include the included relevant works that
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introduce an economic objective or constraint, which show us that this approach has

not been thoroughly examined by the research community.

User Association

A proactive method for the solution of the user-cell association problem in small cell

(SC) networks is proposed in [47]. In [47], the authors use the users’ context regarding

their data demands on specific applications in order to improve the decisions on cell

selection. Particularly, they make use of past information on the service of users in order

to make predictions for the users’ QoE -in the Mean Opinion Score (MOS) scale- through

collaborative filtering techniques. A cost function is defined for each user as the relative

error between the actual and the predicted QoE. Then, the user association problem

is formulated as the minimization of the sum of all the cost functions in the system.

In order to tackle the high complexity of the problem (NP-hard), the authors design

a matching game with externalities, and solve it with a low complexity decentralized

algorithm, which always converges to stable matching, and achieves lower bandwidth

utilization compared to conventional cell selection techniques.

The authors in [48] propose a UE context-aware approach for associating users to small

cell base stations, aiming to improve the users’ QoS. Particularly, the UE context taken

into consideration refers to the application that is active at a specific time, and its QoS

requirements (i.e. data rate, delay and packet error rate), as well as the UE’s hardware

type (i.e. smartphone, tablet and laptop). Specifically, the hardware type is used to

prioritize one application over the others (e.g. a video streaming application has the

highest priority for a laptop, but not for a smartphone). Subsequently, the above QoS

metrics and the UE’s hardware priority are used to define each user’s utility function.

Then, the user association problem is formulated as the maximization of the sum of the

users’ utilities with the use of a matching game with externalities. In order to avoid the

high complexity of the problem’s optimal solution, the authors propose a decentralised

algorithm where each UE and BS create a preference list for each other, leading to

stable matchings in low number of iterations, and better QoS performance compared to

traditional user association algorithms.

The user association problem in an SC network operating in the 60-GHz band is studied

in [49]. The authors’ objective is the minimization of the maximum resource utilization

in the system. The formulated resource minimization problem is a combinatorial, non-

convex problem and NP-hard. The problem is reformulated based on the Lagrangian

duality theory and solved with a distributed association algorithm, with a projected sub-

gradient method. The proposed algorithm is time efficient and converges asymptotically



Chapter 2. Background and State-of-the-Art 24

to the optimal values, utilizing substantially less resources compared to conventional

association algorithms.

The problem of re-associating users within a network of WiFi access points under cost-

migration3 constraints is studied in [50]. In [50], the authors aim to improve the band-

width utilization and the user experience in the system, by migrating some users’ service

to new APs after an initial AP selection. The problem is formulated as the maximiza-

tion of the minimum user throughput with the constraint of maintaining the migration

cost under a particular value. The problem is solved by a dual-stage approximation

algorithm named CACA (Cost-constrained Association Control Algorithm). In the first

stage, the algorithm solves the sub-problem of user removal from the initial user asso-

ciation, whereas in the second stage it solves the problem of associating these users to

new APs.

The problem of user-cell association and the service scheduling in a two-tier network is

studied in [51]. The paper’s objective is the minimization of the load served among all

the BSs in the system, which is formulated as the minimization of the service time of all

the users’ requests. This problem is reformulated and solved optimally by a sequential

fixing algorithm, which however has a high complexity. To this end, the authors propose

three near-optimal approximation algorithms; a rounding, a greedy and a randomized

approximation algorithm, for which they calculate the complexity and the upper bounds

for the maximum expected service time. Finally, the service scheduling is handled by a

greedy algorithm, which is shown to minimize the expected waiting time.

The joint cell selection and resource allocation problem in a video transmitting wireless

heterogeneous network is studied in [52]. The authors in [52] design a multi-objective

optimization framework, aiming to maximize the users’ QoE, and minimize the power

and bandwidth consumption. The authors solve optimally the multi-objective problem

and find the Pareto optimal solutions by using a weighted Tchebycheff approach, and a

dual decomposition technique, revealing the tradeoffs between the design objectives.

So far, the reviewed works have network-related objectives (e.g. improvement of re-

source utilization). In the following, we present studies which not only focus on network

performance improvement, but also on economic objectives. Particularly, the majority

of these works follow a greener-network approach, aiming at cost reduction through

proposals on energy efficiency.

The user association problem for energy cost minimization in heterogeneous networks

with wireless backhauls is studied in [53]. In this system, the macrocell BS has an

optical fiber backhaul to the core network, whereas the small cell BSs employ a wireless

3In [50], the migration cost is defined as the number of migrated users.
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backhaul solution through the macrocell, using multi-hop in a tree topology. Both BS

types receive power both from the main power grid and from renewable resources. The

authors formulate the joint user association and green energy allocation as an energy

cost minimization problem. In order to avoid the optimal’s solution high complexity

they propose a four stage solution, with the use of four low complexity algorithms;

an algorithm to estimate the necessary energy consumption, a green energy allocation

algorithm, a user association algorithm, and a green energy reallocation algorithm for

increasing the efficiency of the green energy consumption.

The joint user association and sub-channel power allocation problem is studied in [54],

for the cost-effective interference coordination in dense HetNets. In [54], the authors also

take into consideration the user generated traffic, which may result in the switching-off

of small cell BSs with low offered loads for a greater cost-efficiency. The aforementioned

problem is formulated as the maximization of the difference between the aggregate util-

ities (functions of the BS total rate) of all the BSs in the system minus the total BS

cost. The initial convex optimization problem is reformulated to its Lagrangian dual

problem, which is solved by the proposed subgradient search algorithm.

The joint switching-off and user association problem in HetNets consisting of cellular

macrocells and WiFi APs is studied in [55]. The authors aim to minimize the HetNet’s

total cost, and formulate the problem as the minimization of a function that balances

the HetNet’s energy consumption and the revenue of its cellular network assets. The

problem then is divided into a user association and a BS switching-off sub-problems. For

the user association problem, the authors provide an optimal association policy, which

depends on the energy efficiency and revenue. Since the BS switching-off problem cannot

be solved in polynomial time, they provide two low-complexity heuristic algorithms; one

switches off the BS that generates the highest cost gain when turned off, whereas the

other algorithm switches off the BS with the most users served by other APs, within its

coverage area.

The authors in [56] study jointly the cell selection and antenna allocation problem in

5G massive Multiple Input Multiple Output (MIMO) networks. In this work, the users

have different QoS requirements, and compete among themselves in order to be associ-

ated to the BS that maximizes their rate-based utility. Similarly, the BSs can modify

the allocation of their antennas to different users in order to maximize their revenue.

The problems of cell selection and antenna allocation are formulated as subgames of

a hierarchical evolutionary game framework. In order to achieve an equilibrium, the

authors propose two algorithms; one for the deterministic version of the evolutionary

game, which is based on replicator dynamics, and one for the stochastic version, which

is based on a Markov chain.
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Resource Allocation

The joint subcarrier and power allocation problem for multiuser orthogonal frequency

division multiple access (OFDMA) systems is studied in [57]. The authors follow a

user-centric approach for improving the quality perceived by the users, by taking into

consideration application-layer parameters and subjective human perception (i.e. MOS)

in the resource management. The problem is formulated as the maximization of the min-

imum MOS (max-min MOS). For its solution, two user-oriented algorithms are proposed.

The first algorithm solves suboptimally the max-min MOS problem, guaranteeing that

all users share the same QoE. On the contrary, the second algorithm uses a QoE-aware

approach and provides the trade-off between the appropriate QoE level and the system

spectral efficiency.

Similarly, the joint resource and power allocation problem is studied in [58] for the opti-

mization of the QoE in wireless networks. Particularly, the authors aim to maximize the

minimum MOS in the system, with a constraint on the minimum number of users that

should receive this satisfaction level. In order to solve this problem, the authors propose

a heuristic QoE-aware resource and power allocation algorithm that satisfies the afore-

mentioned requirement, improving the fairness in the system compared to algorithms

that aim to straightforward QoE maximization.

The problem of proportional fair scheduling in multi-cell OFDMA networks for QoE

maximization is addressed in [59]. A concave utility function for QoE provision is used

to achieve global optimality. This utility function is based on the MOS model in order

to consider application-specific characteristics. The authors formulate the problem as

the maximization of the sum user utility, which they solve with the use of opportunistic

gradient scheduling.

The multiple-service, class-based bearer-level resource scheduling problem in congested

LTE networks is studied in [60] and [61]. In both works, the authors formulate the

scheduling of LTE resources to service bearers as a multi-objective optimization prob-

lem, aiming at the maximization of the throughput, fairness provision among the users,

and QoS guarantee by minimizing the loss and delay. In [60], the optimization problem

is mapped to a Proportional Fair Knapsack problem with minimal manipulation. Due to

its NP-hardness, the authors reformulate the problem by simplifying the objective func-

tions with Gaussian weights, which is then solved by the proposed heuristic algorithm.

In [61], the problem is solved with the use of a two-level Fair-QoS Broker algorithm.

The algorithm’s higher level provides per-class fairness for all service classes with the
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application of a game theoretic model. The lower level of the algorithm allocates re-

sources optimally for improving the QoS and the throughput, using a greedy-knapsack

algorithm.

The issue of QoE-based coordinated resource allocation in the downlink of SC clusters

with transport network constraints is addressed in [62]. The authors aim to maximize

the aggregate user QoE, which they formulate as a convex maximization problem. The

optimal solution of the problem is provided by forming the Lagrangian dual and employ-

ing the subgradient projection method. In order for the authors to provide a practical

solution to the problem (i.e. discrete number of physical resource blocks to be assigned

per user, instead of the real number provided by the optimal solution), they design a

low-complexity heuristic algorithm, which uses the marginal QoE as the metric for the

allocation decisions.

The problem of joint QoE and energy aware load management, power allocation, and

channel allocation in small cell networks is addressed in [63]. The paper’s objective is

the maximization of the aggregate utility of the users in the system, which is a function

of their perceived QoE minus part of the operational and energy cost of the small cell

serving them. In order to solve this NP-hard, combinatorial problem, the authors divide

it into two sub-problems addressed with an iterative manner. Specifically, one problem

for the optimization of the power allocation and load management, while the other game

optimizes the channel allocation. Furthermore, they propose a two-dimensional-action

extended weakly acyclic game in order to solve the two problems optimally and in a

distributed way. The solution of the problems is achieved through the use of two types

of best response algorithms, which are considered to be executed with the assistance of

virtual agents acting in the cloud.

The problem of achieving proportional fair energy efficiency (PFEE) with resource man-

agement in energy harvesting-based wireless networks is studied in [64]. Due to the com-

plexity of the maximization of the PFEE problem, the authors convert it to a tractable

form through Lagrangian relaxation. For the solution of the converted version, they pro-

pose a sub-optimal, PFEE, resource allocation algorithm based on a block coordinate

descent method, which determines the subchannel and power allocation.

The issue of optimizing the the spectral and energy efficiency, as well as delay per-

formances using dynamic resource allocation for delay-sensitive traffic in cloud-RANs

(C-RANs) is addressed in [65]. In detail, the authors design a hybrid coordinated mul-

tipoint transmission (H-CoMP) scheme for the downlink in C-RANs, and analyse the

relation between the fronthaul consumption and cooperation gain. The formulation of

the queue-aware power and resource allocation of the delay sensitive traffic is done with
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an infinite horizon Markov decision process. A low complexity stochastic gradient al-

gorithm is proposed for the solution of the problem, which manages to address future

traffic uncertainty due to imperfect channel state information.

The joint optimization of QoE and power allocation in multi-cell mobile networks is

researched in [66]. The problem is formulated as the maximization of the aggregate BS

utility, which is defined as the product of the users’ QoE (associated to a BS), divided

by the BS’s power consumption. The use of this novel utility function aims at the fair

maximization of the user QoE, while minimizing the power consumption. Due to the

non-convexity and the integer programming nature of the problem, the authors solve

the two subproblems of subchannel and power allocation separately. The two problems

are solved with the proposed two-step iterative optimization method, which is based on

Lagrangian functions.

As mentioned previously, the majority of works on resource allocation and scheduling

focus solely on the provision of high QoS/QoE or other technical aspects (e.g. power

allocation, fairness etc.), as the studies shown up to this point. In the following, we

review works on resource allocation or scheduling, which taking into account the impact

of their proposals on economic aspects.

The problem of packet scheduling for fair QoS provisioning, while guaranteeing high

revenues for the operator of a wireless network is studied in [67]. To this end, the

authors propose a packet scheduling scheme that maximizes the utility of users who

are described by different services, priority classes for each service, and various QoS

requirements, while minimizing the network operator’s revenue loss.

The problem of fair resource allocation for the maximization of the MNO revenue is

addressed in [68]. In [68], the users may renegotiate with the MNO regarding their

service level in terms of QoS requirements. Moreover, when the available bandwidth does

not suffice for the satisfaction of all the user demands, the users compete among them

for the limited bandwidth resources in an auction scheme conducted by the MNO. This

auction-based resource allocation scheme is formulated as a multi-objective optimization

problem, which maximizes the Jain’s fairness index, the bandwidth resource utilization,

and the MNO’s revenue.

A method for the simultaneous resource allocation in both licensed and unlicensed bands

in the small cells of a HetNet is proposed in [69]. The concurrent resource allocation

in both bands for the small cell users is designed as an optimization problem, which

has constraints on the interference imposed on macrocell-served users by the small cell-

served users. In order to achieve fairness among the small cell-served users, the authors

set a constraint that demands the satisfaction of the small cell users’ minimum rate
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requirements. The optimization problem is solved twice; the authors first maximize the

users’ sum rate, and then the MNO revenue. Both solutions present similar results, as the

MNO revenue maximization for usage-based pricing services demands the maximization

of the users’ rate.

The problem of profit maximization for a broadcasting MNO through resource alloca-

tion is studied in [70]. Particularly, the MNO broadcasts a set of video contents (e.g.

tv channels) to different users groups. Each user has her own utility function, which

is defined as the perceived QoE minus the charge for the service. In this scenario, the

authors aim to maximize the MNO profit, with QoE constraints for the users. In order

to do so, they introduce a marginal-based principle for the maximization of the profit

with resource allocation. This marginal profit principle is then used in a resource alloca-

tion algorithm, which determines the rates of the broadcast contents, by making profit

maximizing decisions.

The trade-off between service provider profit and user utility maximization in OFDM

resource allocation wireless systems with multiple service classes is researched in [71].

In [71], the authors aim to strike a balance between the two conflicting objectives for

both the time and frequency division multiplexing. In order to achieve their objective,

they solve the multi-objective problem using Lagrangian relaxation, and find the Pareto-

efficient policies that satisfy best both the service provider and the users.

The problem of cost-effective resource allocation in mobile networks that employ cloud-

RAN and mobile cloud computing is addressed in [72]. In this scenario, the mobile

cloud’s role is the computation of the users’ tasks, which are then forwarded to the users

through the C-RAN. The problem is formulated as the minimization of the MNO’s

cost, which is a function of the user rate, and the computation capability of the virtual

machine serving the corresponding user, while satisfying the user, mobile cloud, and

fronthaul constraints. This non-convex problem is converted to its equivalent weighted

minimum mean square error problem, which is then solved by an iterative algorithm.

As we can observe in this section, the majority of works on user association, resource

allocation and scheduling in the context of 4G and 5G networks focus mainly on the

provision of high QoS/QoE and other network aspects (e.g. power allocation, fairness

etc.). However, these works fail to take into account the impact of their proposals on

the financial aspects of the MNOs (e.g. cost, revenue etc.). As we are entering into

the 5G era, and the MNOs need to serve satisfactorily their subscribers and generate

large revenues (for the compensation of their infrastructure investments), it is important

to analyse the connection between QoS/QoE provision policies and MNO economic

parameters, and contribute with proposals that address both the network and economic

objectives.
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2.3.3 Dynamic, Smart Pricing

In this section, we present works that make use of dynamic smart pricing as a mean to

improve not only the MNOs’ revenues, but also the subscriber satisfaction. As shown

next, most dynamic pricing schemes in the literature are based on time or location de-

pendent pricing, which aim to steer the traffic demand from peak to off-peak traffic

hours and areas [73–78]. In [74], the authors explore charging schemes to be used in

time-dependent pricing for the maximization of an Internet Service Provider (ISP) in

a monopoly market. In this market, the users decide whether they will use a particu-

lar wireless data service for a specific time period, depending on their valuation of the

service, and the service’s price, which is determined dynamically by the ISP. The charg-

ing schemes under study are the usage-based, the flat-rate, and the cap with meter4

schemes. In order to examine the profitability of each scheme, the authors design a

two-stage Stackelberg game (the ISP is the leader) for all of the charging schemes, and

obtain each game’s equilibrium with the use of backward induction.

The problem of traffic steering utilizing time dependent adaptive pricing (TDAP) with

threshold policies is addressed in [75]. In [75], an ISP offers mobile internet services,

charging its subscribers with a K-class cap with meter scheme. This means that the ISP

offers various applications with K distinct classes, each of them defined by a particular

monthly data capacity threshold, user rate, and price. In order to apply TDAP, the ISP

divides a 24-hour day in timeslots, and counts the volume of traffic served within each

timeslot. Subsequently, the ISP determines next day’s charging rate of each timeslot in

order to incentivize the users use their applications during off-peak traffic hours. The

charging is determined according to two policies; the Multiple Threshold Policy (MTP)

and the Linear Threshold Policy (LTP). In both cases, the charging increases with the

usage. In MTP there is a discrete and limited number of thresholds, whereas in LTP, the

charging is determined by a linear function, hence there can be infinite charging values.

The authors in [76] demonstrate the importance of location for improving the efficiency of

time dependent pricing. Particularly, after conducting a large-scale trace-driven analysis

they discovered that a single TDP scheme cannot be applied in every urban area, since

they are described by different traffic patterns (e.g. business and residential districts).

In order to address the spatial heterogeneity of the data traffic, they propose applying

TDP separately at each BS, based on the corresponding traffic pattern, and name this

scheme Location Dependent Pricing (LDP).

4The cap with meter scheme refers to the typical mobile data plans, where a user enjoys a flat rate
charging for an upper limit of data volume. When this data limit is surpassed, the user is charged
according to their data consumption.
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The authors in [77] steer the traffic demand through a novel TDP scheme in order to

achieve greener mobile networks and subscriber satisfaction. In order to achieve their

goal, they propose the integration of all the parameters that constitute a telecommuni-

cations bill, such as QoS, application, and time dependent dynamic pricing factors into a

single charging metric, the eBit. The eBit has a single monetary price per unit, however

different applications and QoS levels correspond to a different number of eBits per data

units. By employing eBit with usage-based pricing, the authors expect that the users

will perceive a more satisfactory service, since their responsible service consumption will

eliminate congestion, increase the QoS, and the charging fees will correspond to their

actual consumption. For the successful adoption of eBit, the authors propose the regular

information of the subscribers, so that they can understand their current charging, as

well as their current bill at any particular point of consumption.

The increase of MNO revenue, along with improvements in the resource utilization

efficiency, and the user satisfaction through time-dependent pricing is addressed in [78].

In [78], the time-dependent pricing scheme is implemented with reverse pricing. This

means that the users disclose their willingness to pay for a particular service by reporting

through bidding the desired volume of data for a particular price. If a placed bid is above

a specific threshold, which is set secretly by the MNO, the users can be served. In order to

achieve the aforementioned objectives, and avoid the manipulation of prices through false

reporting, the authors formulate the reverse pricing scheme with a four-stage Stackelberg

game. In the first stage, the MNO sets a revenue maximizing, initial unit data price,

based on predictions for the traffic demand. In the following stage, the users announce

their data demands according to the initial unit price, and indirectly their willingness

to pay. Subsequently, the MNO determines the resource recommendation rule, and the

hidden bid-acceptance threshold. Finally, the users that can be served decide whether

or not they will receive the service for the price they had placed a bid.

The problem of revenue maximization in time-varying multi-hop wireless networks is

addressed in [79]. In the system described in [79], multiple flows associated to users share

the resources of the network. Each flow has a particular rate requirement, whereas the

delay depends on the service level requested by the user, which determines the flow’s

priority (in terms of delay), and its price. Moreover, each user has a utility, which

depends on both the flow’s rate and delay, but also on the flow’s price. This means that

even though a flow’s rate and priority may be high, the corresponding high price may

affect the user’s experience, and indirectly her service requests. The authors formulate

a revenue maximization problem with constraints on the network stability, and the QoS

requirements of the flows. For the solution of the problem, a quality-aware dynamic

price (QADP) algorithm is proposed. QADP is an online policy, which dynamically
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adapts weights on each flow, sets a price on them, and finally determines the scheduling

that maximizes the revenue under the aforementioned requirements.

Up to this point, we have seen that dynamic pricing is mainly used as a tool to motivate

the users change their data consumption habits, in order to avoid network congestion.

However, such approaches do not provide solutions for high customer satisfaction during

inevitable congestion periods. In the following, we present works where the service

provider adopts a dynamic pricing scheme, which is used to address the trade-off between

user satisfaction and revenue maximization during congestion.

The issue of a single MNO’s revenue maximization through utility-based dynamic pricing

is studied in [80]. The initial objective of this paper is the maximization of both the

system utility (i.e. the aggregate user utility), and the MNO’s revenue. However, as

there is a trade-off between the two objectives, the authors propose a scheme that adapts

the resource allocation and pricing to the point that it maintains a near-optimal MNO

revenue, while inflicting an acceptable low degradation of the system utility compared

to its maximum possible.

The authors in [81] study the revenue maximization problem of a cloud provider through

a joint virtual machine (VM) scheduling and pricing approach. The authors introduce

the notion of partial utility, which is defined as a client’s willingness to pay when receiving

a specific degradation in the service quality. By using partial utility, a cloud provider can

redistribute VM resources from a low-class, low-charge client request to a different client

request, which will maximize the provider’s revenue. However, this service degradation

does not affect the former client, as long as an appropriate discount is offered, which is

determined based on her willingness to pay.

Taking into consideration the presented works, we observe that they consider dynamic

pricing as the means to steer the traffic demand and direct it from peak to off-peak

traffic hours and locations, in an effort to minimize congestion periods. That is, dynamic

pricing is used as a tool to motivate the users to change their data consumption habits,

thus avoiding network congestion. However, there is a lack of works that examine real-

time dynamic pricing schemes that are applied during inevitable congestion periods in

mobile networks in order to improve the subscriber satisfaction, in a manner similar to

the proposal in [81] for cloud computing services.

2.4 Open Issues and Challenges

As shown in the previous sections, extensive research has been conducted over the years

in outsourced traffic offloading, and a plethora of schemes for network and economic
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functions have been proposed. Even though the contribution is considerable, there

are still issues that have not been addressed and approaches that have not yet been

implemented.

Regarding the literature of outsourced traffic offloading, we have already mentioned that

there is a lack of works on the MORAN sharing approach, and the corresponding SCaaS

business model. As it is a business model that has already been applied [4, 5, 24–26], and

is one of the cornerstones for the densification of networks in the 5G era, it is imperative

that research should be conducted, contributing with a plethora of approaches for its

efficient implementation in real-life scenarios. Our contribution on outsourced traffic

offloading for the SCaaS business model is provided in Chapter 3.

As for the research done on user association and resource allocation, the majority of

studies is done towards the improvement of specific network parameters (e.g. QoE,

fairness, energy efficiency etc.). Only a small part of the research community has studied

the economic impact of their proposals on network functions, and the connection between

network and economic parameters has not been thoroughly investigated. We present our

contributions on user association and resource allocation in Chapter 4.

Similarly, the majority of works on smart dynamic pricing focus on the approach of

traffic steering for the avoidance of congestion. On the other hand, the connection

of pricing to the customer satisfaction and the possibility of exploiting this connection

through pricing schemes during congestion with real-time schemes has not been properly

addressed. Our contribution on dynamic pricing is presented in Chapter 4.

Taking the above into consideration, we understand that there is a wide area to be

researched regarding the connection between the technological and financial aspects of

mobile networks. From the strategies MNOs use for traffic offloading transactions, to

the use of network and economic functions for both the customer satisfaction, and the

financial sustainability of the network.

2.5 Concluding Remarks

In this chapter we have presented background information and the literature review,

which are the basis of our contributions described in the following chapters. Initially,

we present various network sharing scenarios and use cases, as well as network sharing

architecture configurations. This background information are the foundation for the

study of all the traffic offloading scenarios and use cases presented in this chapter’s

literature review, as well as our own contribution on outsourced traffic offloading with

SCaaS.
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Subsequently, we provide the state-of-the-art on outsourced traffic offloading, which even

though has been studied by a plethora of researchers, its main focus has been placed on

the financial aspects of the subject. To that end, our contribution on traffic offloading

deals both with its financial and technological aspects, and especially the connections

between them.

The second part of the literature review presents the use of network (i.e. user association

and resource allocation) and economic (i.e. dynamic pricing) functions for improved

network performance and financial output. As the majority of proposals on network

functions examine solely their impact on the network performance, our contributions on

both user association and resource allocation address both the network and economic

objectives of an MNO, as well as analyse their relations. Regarding dynamic pricing,

the state-of-the-art mainly treats it as a traffic steering tool in order to avoid network

congestion and thus guarantee satisfying service provision. Due to the lack of works that

use dynamic pricing in real-time, we propose a scheme that applies it during congestion

periods and improves the user satisfaction. Finally, we summarize the open issues and

challenges regarding traffic offloading, user association, resource allocation and dynamic

pricing.



Chapter 3

Network and Financial aspects of

traffic offloading

3.1 Introduction

The expected exponential increase in mobile data traffic during the next few years [2]

burdens the MNOs with maintaining a sustainable capacity growth for meeting these

new demands. This need for capacity growth can be satisfied with the deployment of

new infrastructure, and particularly with the densification of the RAN with small cells.

Particularly, the use of small cell infrastructure can be used for mobile data offloading,

and is considered as one of the most promising solutions to the aforementioned problem.

However, the ubiquitous deployment of small cell infrastructure by a single MNO can

pose a high financial risk, as explained in the previous chapters. To that end, the

MNOs tend to outsource their traffic offloading needs to independent third parties.

These third parties, also known as Small Cell Operators (SCOs), are owners of small

cell infrastructure, which they lease to MNOs when and where their network needs a

capacity boost.

In order for outsourced traffic offloading to be established as a common practice in the

telecommunications market, both sides (MNOs and SCOs) need to be provided with

appropriate incentives. SCOs need to price their small cell infrastructure accordingly

so that they can recoup their investment, and make a profit. On the other hand, the

MNOs need to offload their traffic with a reasonable cost, which will maintain their

profitability and hence justify outsourced traffic offloading over own deployment of small

cell networks. Therefore, the traffic offloading problem is solved when the following

35
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questions are answered. When, where, for how long and for how much money should an

MNO request a traffic offloading service.

Apart from the description and formulation of the traffic offloading problem, there are

also implementation issues. As shown in Section 2.3.1, the literature has focused on

use cases where the SCO not only owns infrastructure, but also spectrum with which it

serves the MNOs’ users. This means that these use cases consider either the MOCN or

GWCN network sharing architecture configurations, which we have described in Section

2.2.2. These two configurations may be plausible in scenarios where the Hosting RAN

provider is an MNO. However, it is quite improbable for them to be adopted by an

SCO due to the high cost the acquirement of licensed spectrum imposes, as explained in

Section 1.1. Consequently, this requirement would impede the wide adoption of traffic

offloading, as third parties would not be able to enter this market and alleviate the small

cell deployment cost from the MNOs.

In order to provide a more realistic approach for the traffic offloading problem, we have

studied the business model of the MORAN sharing configuration, also known as small

cell as a service (SCaaS). With MORAN, the Hosting RAN provider (i.e. the SCO),

offers access only to the backhaul and BS hardware, except for the TRX/RF aspects

and their spectrum. Hence, the MNOs can plan the use of their spectrum resources at

the leased infrastructure, and employ their own Radio Resource Management policies.

Additionally, an SCO can offer SCaaS by simply deploying small cell and backhaul

infrastructure, without the need for own spectrum license and core network.

The use of the MNOs’ spectrum by an SCO may seem radical, considering the impor-

tance and value of this asset. As mentioned previously, MORAN allows MNOs to choose

the service policy at the SCO infrastructure and also broadcast their public land mobile

network (PLMN) identities [1]. That is, an SCaaS agreement makes the leased small

cells to appear as part of the MNOs’ networks, with the difference of being operated by

a neutral host. Moreover, the above are guaranteed with legal means, that is, with the

use of binding contracts in the form of Service Level Agreements [10].

This chapter examines the case where a monopolistic SCO offers SCaaS to multiple

MNOs, hence addressing the scenarios with a single SCO in the area under study (e.g.

stadiums, airports, shopping malls etc.) [82, 83]. Particularly, this chapter investigates

the interaction of the capacity needs and the economic constraints of the stakeholders,

and aims to gain insight into techno-economic implications of the SCaaS paradigm.

We analyse the MNOs’ auction strategies, and their impact on the system, and then

propose a novel learning mechanism for improving the MNOs’ bidding strategies. The

main contributions of this chapter are summarized in the following:
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Figure 3.1: (a) System Model and (b) Spectrum Allocation for the two channel
deployments

• We propose a realistic analytical model for traffic offloading under the SCaaS ap-

proach, considering multiple small cell clusters, while including both the technolog-

ical constraints (e.g. bandwidth availability, backhaul capacity) and the financial

goals of each stakeholder.

• The SCaaS model can be implemented under two spectrum deployment use cases:

i) the dedicated spectrum deployment, and ii) the co-channel deployment. This

work shows the profit-capacity trade-off for each use case and proposes the math-

ematical framework to define the capacity limits of SCaaS in each use case.

• As the stakeholders’ profit and the total system capacity depend highly on i)

the deployment density (i.e. density of deployed eNBs and small cells), ii) the

competition level among MNOs (i.e. the capacity needs of each MNO), iii) the SCO

backhaul capacity, iv) the reuse or not of the spectrum bands, and v) each actor’s

cost function, the presented results offer useful insights to select the adequate

values of the parameters involved in the SCaaS approach.

• The proposed auction scheme relies on the perfect knowledge of the MNOs’ fu-

ture loads. As each MNO is not aware of its future load and the future load

of the contending MNOs (due to future uncertainty, as well as privacy of sensi-

tive information), we provide a mathematical framework based on a new learning

mechanism to overcome the lack of reliable information.

The rest of the chapter is organized as follows. Section 3.2 describes the system model,

and Section 3.3 states the stakeholders’ objectives. Section 3.4 describes the auction

scheme, the Social Welfare Maximization problem, and the learning mechanism devised

to estimate the key variables in the absence of relevant knowledge. Numerical results

and analysis are presented in Section 3.5. Section 3.6 discusses the applicability of our

model in real-world scenarios and section 3.7 concludes the chapter.
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3.2 System Model

The aim of this chapter is to study traffic offloading for the SCaaS business model,

and gain insight into its techno-economic trade-offs. The scenario is characterized by

multiple non-overlapping hotspot areas served by multiple MNOs and where a third

party has deployed a number of SC clusters. As the hotspot areas are geographically

limited, each MNO covers the hotspot areas with a single eNB1, as shown in Fig. 3.1a.

Therefore, the system model is constituted by one eNB per MNO and NC SCO clusters

(one in each hotspot area). The set of eNBs is denoted by N = {1, 2, . . . , N} and the

MNO owner of eNB i ∈ N is denoted by MNOi. The set of SCO clusters is denoted

by NC = {1, 2, . . . , NC}, where an SC cluster l ∈ NC consists of Nscl small cells, and

is connected to the internet or to the core network through a backhaul network with

a capacity CBHl
(in Mbps). CBHl

is therefore the capacity of the link between the

SC cluster l and the core network/internet, and it is upper bounded by the backhaul

technology, such as a wireless millimetre-wave link or an optical fibre connection [84].

We assume a frequency reuse factor 1 for the SC tier. Although in Fig. 3.1a eNBs

from different MNOs are not co-sited, the subsequent analysis can be also used for RAN

sharing scenarios (i.e. when multiple MNOs share a single eNB), as it only assumes

that the average spectral efficiency of the diverse eNBs is the same. The notation used

henceforth is summarized in Table 3.1.

Each BS is characterized by the spectral efficiency, defined as the transmission rate

achievable per bandwidth unit, and the available bandwidth. For a given MNOi, the

available licensed bandwidth is denoted by Bi (in MHz) and the spectral efficiency

SEi (in Mbps/Hz) can be approximated by SEi = E[log2(1 + SINRik)], where E[·]
is the mathematical expectation and SINRik is the Signal-to-Interfernece-plus-Noise

ratio of a user k served by MNOi. For an SC cluster l, the spectral efficiency is defined

analogously and denoted by SEscl . In turn, the maximum bandwidth supported by each

SC cluster is denoted by Bsc and it is limited either by the technology’s specifications

or by the deployed hardware’s capabilities. Based on these definitions, the capacity of

MNOi, defined as the maximum throughput that can be served by MNOi, is given

by Ci = BiSEi. As for the capacity of the SC cluster l, it is given by NsclBscSEscl .

Note that, whereas the traffic served by MNOi is limited by its capacity Ci, the traffic

served by the SC cluster l is limited either by CBHl
or by the SC cluster capacity, i.e.

min{CBHl
, NsclBscSEscl}.

1This study is focused on a single macrocell sector, hence all hotspot areas are considered to be
located in the geographical area of a macrocell sector. However, the results can be extrapolated to a
larger area that consists of multiple macrocell sectors.
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Table 3.1: MNO and SCO Notation

Notation Description

N Set of eNBs
NC Set of SC clusters
Nscl Number of small cells in SC cluster l
CBHl

Backhaul capacity in SC cluster l
Bi eNB i’s available bandwidth
SEi eNB i’s expected spectral efficiency
Ci eNB i’s maximum capacity without offloading
Bsc Maximum bandwidth supported by all SC clusters
SEscl SC cluster l’s expected spectral efficiency
Li MNOi’s offered load
Lhi MNOi’s offered load in all SC clusters
Lhil MNOi’s offered load in SC cluster l
Lni MNOi’s offered load outside of SC clusters
T Set of a 24-hour day equal-period timeframes
xi MNOi’s transferred bandwidth vector
xil MNOi’s transferred bandwidth at SC cluster l
Xi MNOi’s total transferred bandwidth percentage
Lmci Load served by eNB i
Lsci MNOi’s load served by all SC clusters
Lscil MNOi’s load served by SC cluster l
LTi MNOi’s total served load or throughput
D,C Dedicated spectrum, Co-channel deployment superindexes
Θi Throughput difference between co-channel and dedicated spectrum deployment
Pi MNOi’s profit
bi MNOi’s bid vector
bil MNOi’s bid at SC cluster l
Ri MNOi’s revenue
CLi MNOi’s load cost
ai, di MNOi’s cost shaping parameters
Psc SCO’s total profit
Pscl SCO’s profit at SC cluster l
CLscl SCO’s cost at SC cluster l
ascl , dscl SCO’s cost shaping parameters
Pminscl

SCO’s minimum profit for SC cluster l
z SC capacity pricing factor

bminil MNOi’s reserve price for SC cluster l
a Forecast value of any parameter a

Let us define the offered load of MNOi as Li (in Mbps). This offered load can be

divided into two components: the offered load generated within each hotspot (Lhil with

Lhi =
∑

l∈NC Lhil) and the offered load generated elsewhere (Lni), i.e. Li = Lhi + Lni .

Each of these components can vary in time and space. During time periods where Lhi

is low, the need for capacity provided by the SCO declines. Conversely, high hotspot

loads result in a raising interest for the usage of the SCO infrastructure. Hereafter,

the day is divided into a set T = {1, 2, . . . , T} of equal timeframes, during which the
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load is considered constant. It is nonetheless worth noting that, even though the load

in a timeframe t ∈ T is not necessarily the same every day, it follows a daily pattern.

Even though the real-time offered load and user SE do not remain constant during a

timeframe, their instantaneous variations from their average (i.e. Li, SEi and SEscl)

can be disregarded when considering a timeframe’s offloading decision [29].

As it will be shown in Section 3.4, an MNOi needs to estimate both Lhi and the

corresponding bandwidth resources transferred to the SC clusters (henceforth denoted

as xi), for serving its load as well as its profit maximizing objective. To that end, and

since it is not possible to know beforehand the actual spectral efficiency of each user

roaming the system, we use SEi and SEscl . However, this assumption introduces some

limitations. Particularly, as a user roams a small cell, her spectral efficiency will be at

times either higher or lower than SEscl , leading to lower or higher requirement of xi

respectively. In case of higher xi requirements, it is possible that part of Lhi will not

be served. This in turn can further lead to MNO revenue and profit loss as it will be

shown in Section 3.3.2.

Regarding the provided SC capacity, it is true that it should reflect the MNOs’ demand.

However, increasing the capacity requires the further instalment of SC and backhaul

infrastructure. Such deployments and the corresponding SC capacity pricing for the

recoup of their investment are always part of a long-term business plan. Hence, since our

system model examines SCaaS on a day-to-day basis and short timeframes according

to the traffic’s trends (e.g. hours), the study of additional SC infrastructure and its

corresponding pricing are out of the scope of this contribution.

3.3 Stakeholders’ Network and Financial Objectives

MNOs have a two-fold objective. First, they must guarantee the users’ QoS. Second, the

network must be managed so as to maximize their economic profit. On the other hand,

the SCO aims to repay the deployment investment and generate profit. In the following,

the analyses of the MNO throughput, and the stakeholders’ profit are detailed.

3.3.1 MNO Throughput

In this work, we consider that the QoS of an MNOi’s users is guaranteed by serving the

offered load. In other words, the users receive satisfactory service when LTi = Li, where

LTi (in Mbps) is the total load served2 by MNOi (through the own eNB and the SCO

2Henceforth, we will use the terms total served load and throughput interchangeably.
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leased capacity). LTi is divided into the load served through the MNOi infrastructure,

Lmci , and the load served through the SCO, Lsci =
∑

l∈NC L
sc
il . Therefore, LTi = Lmci +Lsci .

Since the SCO uses the MNOs’ bandwidth for the RAN operation of the SC tier, we

define the transferred bandwidth percentage vector for MNOi to all NC SC clusters as

xi , (xil : ∀l ∈ NC), xil ∈ [0, 1], and the total transferred bandwidth percentage of

MNOi is Xi = max
l∈NC

(xil). The transferred bandwidth percentages of all MNOs are given

by matrix x = (xi : ∀i ∈ N ). Hence, an MNOi provides xilBi of its bandwidth at each

SC cluster l. Thus, the MNOi will be allowed to offload a maximum load through the

SCO equal to Lsci =
∑

l∈NC NsclxilBiSEscl (in Mbps).

Since the SCaaS approach requires the transfer3 of licensed bandwidth from the MNO to

the SCO, the way in which the transfer is conducted will impact the system performance.

Specifically, the deployment of HetNets presents two use cases regarding the SC tier

spectrum band deployment: the dedicated spectrum deployment and the co-channel

deployment. The former (dedicated spectrum) is characterized by the orthogonal use

of spectrum in the SCO and the MNO. Thus, an MNOi that transfers a band XiBi

to the SCO only uses the non-transferred spectrum band (i.e. (1−Xi)Bi) at the eNB.

Conversely, in the latter (co-channel deployment) the spectrum is partially reused by

the two tiers, and the eNB makes use of the whole band Bi regardless of the transferred

spectrum to the SC tier, XiBi. These differences are outlined in Fig. 3.1b. In the

sequel, superindexes D and C differentiate the dedicated spectrum deployment and the

co-channel deployment parameters, respectively.

According to interesting studies, the achieved throughput depends on the use case (co-

channel and dedicated spectrum), and the key parameter that differentiates them is the

spectral efficiency of the SCO infrastructure, SEsc, which is higher for the dedicated

spectrum use case than for the co-channel use case (SEDsc > SECsc) [85]. Thus, for a

given offloaded load Lscil , the bandwidth required by the SCO in the dedicated spectrum

case is smaller than the bandwidth required in the co-channel case, xDilBi < xCilBi. This

fact causes differences in the maximum total served load.

Proposition 3.1 (Dedicated spectrum deployment throughput). Given an MNOi that

transfers xD
i Bi MHz to the SCO, the throughput in a dedicated spectrum deployment is

expressed as

LDTi (xD
i ) = LDmci (XD

i ) + LDsci (xD
i ) (3.1)

= (1−XD
i )BiSE

D
i +

∑
l∈NC

Nsclx
D
ilBiSE

D
scl

3As detailed in Section 1.1, the transfer of bandwidth is defined as a Service Level Agreement (SLA)
between the legal licensee (the MNO) and the lessee (the SCO) by which the latter is allowed to use
part of the spectrum of the former.
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where SEDi is the average spectral efficiency of MNOi in dedicated spectrum bands

xDil ≤
Lhil

NsclBiSE
D
scl

= xDmaxil , ∀l ∈ NC (3.2)

Proof. Lhi can be served completely by the SCO or jointly served between the SCO

and MNOi. If the offered load in the hotspot is completely served by the SCO, the

transferred bandwidth reaches its maximum and it holds that Lhil = Nsclx
D
ilBiSE

D
scl

.

Therefore, xDil ≤
Lhil

Nscl
BiSED

scl

.

Proposition 3.2 (Co-channel deployment throughput). Given an MNOi that transfers

xC
i Bi MHz to the SCO, the total load served in a co-channel deployment is expressed as

LCTi (xC
i ) = LCmci (XC

i ) + LCsci (xC
i ) (3.3)

= [XC
i SE

C
i + (1−XC

i )SEDi ]Bi +
∑
l∈NC

Nsclx
C
ilBiSE

C
scl

where SECi is the average spectral efficiency of MNOi in co-channel bands, and

xCil ≤
Lhil

NsclBiSE
C
scl

= xCmaxil , ∀l ∈ NC (3.4)

Proof. In a co-channel deployment, the bandwidth transferred from MNOi to the SCO

is simultaneously shared by MNOi with average spectral efficiency SECi and by the

SCO with spectral efficiency SECsc. The rest of the bandwidth (i.e. (1 − XC
i )Bi) is

exclusively used by MNOi with spectral efficiency SEDi . The proof of limits of xCil is

analogous to the one of Proposition 3.1.

As already observed, the spectral efficiency determines the capacity of the MNO and

the offloading capacity. In turn, it depends a great deal on aspects such as the number

of small cells, location or bandwidth allocation, thereby impacting on the MNO’s served

traffic, by limiting or increasing the achievable maximum throughput. Therefore, the

maximum served load is achieved with the co-channel deployment in some scenarios, and

with dedicated spectrum deployment in some others. The selection of each deployment

depends on the ratio between spectral efficiencies.

Proposition 3.3 (Spectrum deployment selection). Given an MNOi with Li and an

SCO, if ∃xCi ,xDi ∈ (0, 1] such that LCsci = LDsci , then it holds LCTi > LDTi if (1−δi)XC
i <

XD
i , where δi =

SEC
i

SED
i

, with δi ∈ (0, 1). It holds LDTi > LCTi otherwise.

Proof. Let us define the difference between the load served in a co-channel scenario (LCTi )

and the load served in a dedicated spectrum deployment (LDTi ) as Θi = LCTi − LDTi .
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The co-channel deployment will achieve higher served load if Θi > 0. By using (3.1) and

(3.3),

Θi(x
C
i ,x

D
i ) = [(XD

i − (1− δi)XC
i )SEDi +

∑
l∈NC

SEDsclNscl(δsclx
C
il − xDil )]Bi (3.5)

where δscl =
SEC

scl

SED
scl

∈ (0, 1). Expression (3.5) can be easily written as Θi = Θmc
i + Θsc

i ,

where Θmc
i = LCmci − LDmci and Θsc

i = LCsci − LDsci . Since Proposition 3.3 assumes

Θsc
i = 0, then Θi > 0 is equivalent to Θmc

i > 0. Therefore, (1− δi)XC
i < XD

i is obtained

by arranging Θmc
i > 0.

According to the results in [85], SEi is expected to be slightly higher for the dedicated

spectrum deployment (i.e. δi < 1 but δi → 1). Hence, when traffic is offloaded, (1 −
δi)X

C
i < XD

i is valid for a wide range of xCil and xDil . Results on these dependencies are

shown in Section 3.5.

3.3.2 MNO Profit

As mentioned earlier in this section, the MNOs’ objectives are twofold, since they em-

brace both financial and capacity aspects. Specifically, MNOi aims at maximizing the

profit (Pi), defined as the revenue minus the expenses, while guaranteeing the QoS. It

should be noted that in order to offload its traffic, each MNOi partakes in auctions

conducted by the SCO for each SC cluster, at the beginning of each timeframe. In the

auctions, each MNOi bids an amount of money bi , (bil : ∀l ∈ NC), bil ∈ R+ to use the

SCO infrastructure. Then, the SCO distributes the SC capacity to the MNOs according

to the placed bids. Hence, the profit can be written as

Pi(xi, bi) = RiL
T
i (xi)− CLi(Xi)−

∑
l∈NC

bil [e], (3.6)

where Ri is the revenue per throughput unit (e/Mbps), and CLi is the load cost. CLi

includes variable costs such as energy cost, maintenance cost etc. As shown in (3.6),

MNOi’s profit (Pi) is not only tightly coupled with LTi but also with the load cost

(CLi). The load cost has been widely modeled in the literature with the use of convex

functions [28, 29, 39, 44, 86]. The use of a convex function is suitable for describing the

network congestion cost as well as the effect of subscriber churn. Particularly, during

peak traffic periods the load cost increases rapidly, depicting the economic consequences
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of congestion. Hence, let us assume that CLi is also convex, and can be expressed as

CLi(Xi) =
ai(L

mc
i (Xi))

2

Ci + di − Lmci (Xi)
, Lmci ∈ [0, Ci], (3.7)

where Ci (in Mbps) is the maximum capacity of MNOi without offloading, factor ai

defines the rate with which the cost increases (in e /Mbps), and di (in Mbps) moves the

asymptotic discontinuity of the cost function to Li = Ci+di. Note that when the MNOi

network operates at its maximum capacity (Ci = BiSE
D
i ), the load cost is high but not

infinite. Therefore, di > 0. These parameters are used to adjust the cost function of the

economic entity.

3.3.3 SCO Profit

The SCO aims to recoup both its investment and operational cost, and generate profit

Psc, by leasing out large volumes of SC capacity at high prices. The profit is defined as

the sum of the profits of each SC cluster l, Pscl , which in turn is given by the difference

of the MNOs’ bids deducting the load cost, denoted as CLscl . Hence, the profit can be

written as

Psc =
∑
l∈NC

Pscl =
∑
l∈NC

(∑
i∈N

bil − CLscl

)
[e]. (3.8)

Due to the differences in the structure of the MNO network and the SCO network, as well

as their operation and maintenance, each financial entity is characterized by a different

OPEX, and therefore a different cost. Despite the difference of the magnitude of MNO

and SCO OPEX, these two economic entities offer the same type of service. In this

sense, network congestion impacts in a similar manner the SCO’s finances. Therefore,

the SC cluster l’s load cost can be also described as a convex function

CLscl =
asclL

2
scl

CBHl
+ dscl − Lscl

, Lscl ∈ [0, CBHl
]. (3.9)

where Lscl =
∑

i L
sc
il is the total load served by SC cluster l, and ascl and dscl are the

characteristic parameters of CLscl . To ensure its objective, the SCO sets a minimum

profit for each SC cluster l, Pminscl
(in e ), below which the SCO will not accept the bids

and therefore there will not be offloading. The minimum profit is defined as a portion of

the SC cluster’s cost and determined by a profit factor z > 1, as shown in Proposition

3.4.

Proposition 3.4 (Minimmum SCO revenue and profit). An SCO that receives the bids

from a set N of MNOs and imposes a minimum profit margin over SC cluster l’s total

cost,
∑

i∈N bil ≥ z(CLscl) with z > 1, must receive a minimum revenue for SC cluster l
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equal to ∑
i∈N

bil ≥ z
asclL

2
scl

CBHl
+ dscl − Lscl

. (3.10)

or alternatively, a minimum profit expressed as Pminscl
= (z − 1)CLscl.

Proof. Pminscl
is found by substituting (3.9) and (3.10) in Pscl =

∑
i∈N

bil − CLscl .

Hence, the SCO determines the SC clusters’ pricing and the corresponding minimum

profit by adjusting the value of the profit factor z.

3.4 The Auction

The distribution of the existing resources, i.e. the available spectrum and the cost of

using the SCO infrastructure, are the response to two main objectives: firstly, the QoS

guaranty (the capacity objective), and secondly high profit generation (the economic

objectives of both the MSPs and the SCO). In this scenario, the auction is the mechanism

by which the interaction of these competing objectives results in incentives for all the

involved parties.

3.4.1 The Auction Mechanism

An auction is a trading process for goods or services, where potential buyers bid money

in order to decide the buyer(s), the price of the good, and its distribution. In any

auction there are three aspects that must be defined: the auctioneer (i.e. the auction-

conducting party), the bidders (i.e. the buying parties) and the good to be auctioned.

In the scenario under study, the SC clusters’ capacity is the auctioned good, the SCO

plays the role of the auctioneer, and the MNOs are the bidders. At the beginning of

each timeframe t, the SCO conducts an individual auction for each SC cluster l ∈ NC ,
during which each MNOi places a bid bil. Given the set of bids for an SC cluster l,

the SCO distributes Lscl in a proportionally fair manner [87], and informs the MNOs

about the actual volume of leased capacity Lscil , i ∈ N . The proportional fair allocation

rule charges all bidders with the same price per SC capacity ratio, and hence there is no

possibility for overcharging. Hence, the MSPs have a fair chance to serve more traffic

(i.e. network incentive) and gain profit (i.e. economic incentive). Furthermore, we

assume that the auction is a sealed-bid auction. This type of auctions are characterized

by the simultaneous submission of bids, so that none of the bidders know the bids of the

other bidders.
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Definition 3.5 (Proportional fair capacity allocation). If a given set of MNOs, N , place

a set of bids, bjl with j ∈ N , l ∈ NC , for the total load served by SC cluster l (Lscl), the

maximum load that a specific MNOi, with i ∈ N , can offload to the SC cluster is given

by

Lscil =
bil

bil +
∑

j∈N\{i} bjl
Lscl , (3.11)

where Lscl is found by solving
∑

i∈N bil = zCLscl(Lscl).

3.4.2 Conducting the auction

3.4.2.1 Social Welfare

In this section we address the traffic offloading problem as a Social Welfare Maximization

(SWM) problem. The SW is defined as the aggregate payoff of all the MNOs and the

SCO. The maximization takes into account the availability of MNOs’ resources, as well

as technical constraints imposed by the SC cluster deployment. Hence, by replacing

(3.1) and (3.7) in (3.6), and (3.9) in (3.8) the SWM problem for the dedicated spectrum

deployment4 is formulated as

max
x

P (x) =
∑
i∈N

Pi(xi) + Psc (3.12)

=
∑
i∈N

[Ri

(1−XD
i )BiSE

D
i +

∑
l∈NC

Nsclx
D
ilBiSE

D
scl


− ai[(1−XD

i )BiSE
D
i ]2

Ci + di − (1−XD
i )BiSEDi

]−
∑
l∈NC

(
asclL

2
scl

CBHl
+ dscl − Lscl

)
s.t. 0 ≤ xil ≤ xmaxil ≤ 1, i ∈ N , l ∈ NC , (3.12a)

Bsc ≥
∑
i∈N

xilBi, i ∈ N , l ∈ NC , (3.12b)

CBHl
≥
∑
i∈N

Lscil , i ∈ N , l ∈ NC . (3.12c)

The optimization problem in (3.12) maximizes the aggregate profit of all the stakeholders

constrained by the availability of resources to be transferred from MNOi∈N to the SCO

(3.12a), the technological limits of the small cells (3.12b), and the backhaul capacity

(3.12c). Constraints (3.12b) and (3.12c) limit the capacity of the SCO infrastructure,

and consequently results in a competition among MNOs. Likewise, it is worth noting

that bids are cancelled out in (3.12), since bi∈N is a cost for MNOi but in turn it is a

revenue for the SCO. This is the reason why bids are not explicitly included in (3.12),

4The SWM problem formulation for the co-channel deployment is derived in the same manner by
replacing (3.3) in (3.6).
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although they are implicitly included in Psc, since there is a minimum SCO profit (or

a minimum SCO revenue) to create an incentive for offloading according to Proposition

3.4. Moreover, the bids and the auction are connected with the SWM problem through

the allocation of the SC capacity Lscl (as described in Definition 3.5). Lscl and the bids

determine the SC capacity allocation, and in turn the MNO throughput. That is, the

solution of (3.12) determines the bids and the transferred bandwidth percentage matrix

x. However, as it can be observed in (3.12) this solution depends on both network

(i.e. SEi, Bi, SEscl , Nscl , CBHl
) and economic (i.e. Ri, ai, di, z etc.) parameters of the

stakeholders.

Next, we define the reserve price by combining (3.9), (3.10) and (3.11) in (3.8).

Definition 3.6 (Reserve price). The reserve price is the minimum price bil that MNOi

has to pay in order to lease Lscil SC capacity of cluster l, and is written as

bminil = z
asclL

sc
il Lscl

CBHl
+ dscl − Lscl

. (3.13)

All MNOs are interested in bidding the reserve price to maximize their profit, which

can be calculated with (3.13) if all information is available to all MNOs. That is, if

we consider that the MNOs have complete information over their own future load, the

auction, the SCO and the competing MNOs’ parameters, then they will be able to place

bids equal to the reserve price, thereby avoiding increasing their bids and ending up

with the same or less or even more but unnecessary leased SC capacity.

3.4.2.2 Learning mechanism

In realistic competitive SCaaS scenarios, MNOs cannot have the information to bid the

reserve prices (bil, l ∈ NC). Since the auctions are conducted at the beginning of the

timeframe, MNOi cannot know its own load. In addition, the bids and the load of the

competing MNOs are not public (i.e., bj and Lj , for j ∈ N \{i}, are unknown to MNOi).

Given that, MNOi must estimate the load in the hotspots (Lhil), the load outside the

hotspots (Lni) and the aggregate bids of the opponents (
∑

j∈N\{i} bjl, l ∈ NC , henceforth

denoted by bjl 6=i for simplicity) to properly select each bil. It should be noted that each

MNO needs to estimate the aggregate bid and not each competing MNO’s bid separately,

thanks to the definition of the proportional fair capacity allocation mechanism in (3.11).

Hence, the more accurate the estimations are, the better the auction results are. In the

following, the estimates for MNOi’s offered load and the opponents’ bids are denoted as

Li and bjl 6=i, respectively. Analogously to the SWM problem stated in (3.12), the maxi-

mization of the profit remains as the objective. However, in a competitive environment
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with limited available information, each MNOi formulates the problem as

max
xi

Pi(xi|bjl 6=i) = RiL
T
i (xi)− CLi(Xi)−

∑
l∈NC

bil(xil|bjl 6=i) (3.14)

s.t. 0 ≤ xil ≤ xmaxil ≤ 1, l ∈ NC , (3.14a)

Bscl ≥
∑
i∈N

xilBi, l ∈ NC , (3.14b)

CBHl
≥
∑
i∈N

Lscil , l ∈ NC . (3.14c)

where bil(xil|bjl 6=i) denotes the bid selection of MNOi after estimating bjl 6=i. The solu-

tion to (3.14) is also the reserve price, though important parameters such as Lsc have

to be derived previously.

Proposition 3.7 (Minimum bid selection). Given an MNOi with a targeted offloaded

load Lscil , l ∈ NC, and assuming that both the SCO capacity allocation policy (3.11)

and the structure of the SCO cost and profit functions (3.10) or (3.13) are known, the

minimum winning bid for SC cluster l is achieved by solving λlb
3
il +φlb

2
il + ξlbil +ωl = 0,

where λl = Lscil − CBHl
+ dscl; ξl = b2jl 6=iL

sc
il ; ωl = zascl(L

sc
il )2b2jl 6=i; φl = (zasclL

sc
il +

2bjl 6=i)L
sc
il − (CBHl

+ dscl)bjl 6=i.

Proof. The expression is obtained by combining (3.11) and (3.13) and rearranging the

result.

The solution to Proposition 3.7 provides the minimum bids bil for all SC clusters to

offload Lscil (i.e. bminil ). Since estimates are used instead of actual values, the solution

stated in Proposition 3.7 is bil(xil|bjl 6=i), l ∈ NC . For accurate estimations, bil(xil|bjl 6=i) ≈
bminil .

The learning mechanism described in the sequel is designed to accurately estimate the

load and bjl 6=i at an SC cluster l. The bid selection is run at every timeframe by each

MNO. Our proposed learning mechanism consists of three components: a forecasting

method to predict the offered load (Li and Lhi), and two methods to estimate bjl 6=i (a

reinforcement learning algorithm along with an adaptive search range scheme).

Traffic Forecasting

In order to forecast the MNOs’ traffic loads Li and Lhi , the well-known and computation-

ally efficient Holt-Winters (HW) method [88] is used. Also known as Triple Exponential

Smoothing, it takes into account the level, trend and seasonal changes in the observed

dataset. There are two HW models according to the type of the seasonality (described
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as the periodic repetition in time-series data), known as multiplicative and additive sea-

sonal models. The former refers to a proportional change in the values of the time series

from season to season, whereas the latter refers to a particular absolute change. In our

case, the multiplicative model is used to capture the random, small, seasonal variations

of the traffic pattern.

Definition 3.8 (Holt-Winters method [88]). At timeframe t ∈ T , let us define the

forecast offered load for timeframe (t+m) ∈ T , with m ∈ N>0, as Lt+m. According to

HW method, Lt+m is calculated as Lt+m = (St+mvt)It−T+m, where St is a (smoothed)

estimation of the level (i.e. a local average of the dataset), vt is an estimation of the linear

trend (slope) of the time series, It denotes the seasonal component (i.e. the expectation

for a specific timeframe based on its past season values), and T = |T | is the number of

daily timeframes (season length).

St = α
Lt
It−T

+ (1− α)(St−1 + vt−1)

vt = β(St − St−1) + (1− β)vt−1

It = γ
Lt
St

+ (1− γ)It−T

with three smoothing factors α, β, γ ∈ [0, 1] that show the dependence on the past values

of the time series. Initialization values are St =
∑T

t=1
Lt
T , vt = 0, It = Lt

St
, t = 1...T.

As the auction is carried out at every timeframe, m = 1.

Opponents’ bids estimation

Let us define a continuous set containing the actual value of the aggregate bids of the

contending MNOs for SC cluster l, Abjl6=i
= [bminjl 6=i, b

max
jl 6=i ], with bminjl 6=i ≤ bjl 6=i ≤ bmaxjl 6=i .

The learning algorithm devised to estimate the opponents’ bids must be able to find

out bjl 6=i in Abjl 6=i
. Nevertheless, using a continuous set is shown inefficient in these

scenarios, since the convergence requires thousands of iterations [89]. Let us then define

the uniform discretization of Abjl6=i
as the discrete set of K elements A′bjl 6=i

= { 1
K−1(K−

k)bminjl 6=i+(k−1)bmaxjl 6=i}k=1...K , and the probability of each element of A′bjl 6=i
at timeframe t

of day n as pkl(t, n), for k = 1 . . .K. Note that the opponents’ bids are linked with their

capacity needs, which in turn are related to the previous timeframes’ needs, and follow a

daily pattern. Therefore, pkl(t, n) is correlated both with pkl(t−1, n) and pkl(t, n−1). In

the following, a modification of the reinforcement learning algorithm Exp3 (described in

[90]) is presented in Algorithm 1. The application of Exp3 and the modification shown

hereafter to the discrete set A′bjl 6=i
turns the selection of each bjl 6=i into a non-stochastic

multi-armed bandit problem, where each bjl 6=i ∈ A′bjl6=i
is regarded as one arm.
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Algorithm 1 is designed to continuously update pkl(t, n), which is initialized for each SC

cluster l at day n0 as pkl(t, n0) = 1
K for k = 1 . . .K and t = 1 . . . T . Later, for every

t ∈ T and n > n0, pkl(t, n) is updated based on the accuracy of the estimation. Although

Algorithm 1 is aimed to estimate bjl 6=i, the actual value of bjl 6=i is not available to MNOi

even after the auction. Hence, the accuracy of bjl 6=i must be controlled indirectly through

an alternative variable, such as Lscil . We define the relative difference of estimated and

actual Lscil at timeframe t of day n as

∆Lscil (t, n) =
Lscil (t, n)− Lscil (t, n)

Lscil (t, n)
(3.15)

where Lscil (t, n) and Lscil (t, n) are the estimated and the actual offloaded load at timeframe

t of day n, respectively. If bjl 6=i is accurate, then ∆Lscil (t, n)→ 0; otherwise, ∆Lscil (t, n) 9
0. Based on the accuracy of the estimation, pkl(t, n) will be updated through a reward

defined as follows: for a given estimate bjl 6=i = 1
K−1(K−k)bminjl 6=i+(k−1)bmaxjl 6=i (i.e. equal

to the kth element of A′bjl6=i
) the reward for an accurate estimation at timeframe t of day

n, referred to as rkl(t, n) ∈ [0, 1], must be close to 1. Conversely, if bjl 6=i is not accurate,

then rkl(t, n) should be smaller than 1. In the same vein, if ∆Lscil (t, n) is similar to

∆Lscil (t, n − ν), with ν ∈ N>0, the reward should be high since load and bids present a

strong daily pattern. Thus, we define the reward as

rkl(t, n) =


(

1−
∣∣∣∣ ∆Lsc

il
µ∆Lsc

il

∣∣∣∣)
+

if µ∆Lsc
il
< µHW and σ∆Lsc

il
< σHW

(1− 2 |∆Lscil |)+ otherwise

(3.16)

where µ∆Lsc
il

and σ∆Lsc
il

are the mean and the standard deviation of ∆Lscil , µHW and σHW

are the respective thresholds, and (x)+ = max(0, x). Accordingly, given an estimate

bjl 6=i equal to the k∗th element of A′bjl 6=i
at timeframe t of day n, the updated set of

probabilities is given by

pkl(t, n+ 1) =


pkl(t,n) exp

(
ηl

rkl(t,n)

Kpkl(t,n)

)
pkl(t,n) exp

(
ηl

rkl(t,n)

Kpkl(t,n)

)
+
∑

wl6=kl pwl(t,n)
if k = k∗

pkl(t,n)

pk∗l(t,n) exp
(
ηl

rk∗l(t,n)

Kpk∗l(t,n)

)
+
∑

wl6=k∗l pwl(t,n)
otherwise

(3.17)

where ηl ∈ (0, 1] is the learning speed. Note that each timeframe is evaluated once per

day. That is, one day corresponds to one iteration of the learning mechanism.

Search Range Scheme

In order for Algorithm 1 to work, A′bjl 6=i
must contain bjl 6=i. Hence, if the actual aggregate

bid does not lie in the initial estimate of the action set, the algorithm will not be able
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Algorithm 1: Estimation of opponent’s auction strategy at SC cluster l ∈ NC
1: For a given timeframe t ∈ T
2: Initialization:
3:

4: if (n = n0) then
5: pkl(t, n) = 1

K , for k = 1 . . .K
6: Determine Abjl6=i

and A′bjl6=i

7: end if
8: Estimation:
9: Forecast Lscil according to the traffic forecasting algorithm (Section 3.4.2.2)

10: Select randomly k∗ based on pkl(t, n), for k = 1 . . .K
11: bjl 6=i = 1

K−1(K − k∗)bminjl 6=i + (k∗ − 1)bmaxjl 6=i
12: Auction:
13: Run the auction
14: Update of probabilities:
15: Calculate ∆Lscil and rkl(t, n), for k = 1 . . .K, according to (3.15) and (3.16)
16: Calculate pkl(t, n+ 1) based on (3.17)

to predict it. Then again, even if the initial estimate is correct, the algorithm will

not be able to follow any changes of bjl 6=i outside the predefined range. Therefore,

an extension of the variable parameter space scheme described in [89] is used. The

aim of this scheme is to center the probability distribution obtained by Algorithm 1 by

expanding and reducing Abjl6=i
(and consequently, the associated discretized A′bjl 6=i

). The

distribution is centered in order to assure that bjl 6=i falls within A′bjl 6=i
, and to improve

the mechanism’s convergence speed. There are two pairs of important parameters in

the search range scheme, which are the expansion (εrl) and the reduction (ρrl) rates,

defined as the speed with which the range is expanded/reduced, and the expansion (εcl)

and reduction (ρcl) coefficients. A low expansion/reduction rate/coefficient (i.e. low

εrl , ρrl , εcl and ρcl values) could enable the search range scheme to follow rapid bjl 6=i

variations. Conversely, big expansion/reduction rates/coefficients (i.e. high εrl , ρrl , εcl

and ρcl values) might impede the convergence of the algorithm. Let us first define the

conditions used by the search range scheme:

[C1]: b25
jl 6=i < b

25−εcl
jl 6=i and b75

jl 6=i > b
75+εcl
jl 6=i

[C2]: b25
jl 6=i > (bmaxjl 6=i + bminjl 6=i)/2

[C3]: b25
jl 6=i = b75

jl 6=i

[C4]: pkl(t, n) = 1/K for k = 1 . . .K

[C5]: µ∆Lsc
il
> µSRl

and ∆Lscil (t, n) < ∆LSRl

[C6]: b25
jl 6=i > b

25+ρcl
jl 6=i and b75

jl 6=i < b
75−ρcl
jl 6=i
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where µSRl
and ∆LSRl

are minimum and maximum thresholds, and bpjl 6=i is the pth

percentile of bjl 6=i. Initially, the algorithm presented in [89] only defines conditions C1

and C6. However, conditions C2-C5 have been proposed to cope with the described

scenario. Condition C2 is used when the distribution’s mode is at bmaxjl 6=i . The same

applies to C3, but for the lower endpoint bminjl 6=i. Condition C4 is used when the algorithm

is in a stalemate due to the actual bid being far from Abjl6=i
, so that rkl(t, n) = 0. Finally,

C5 is examined only when none of the rest is satisfied. It is applied when the mechanism

is in a stalemate and does not place Abjl6=i
close to the real bid. Based on conditions

C1-C6, the action set Abjl6=i
is updated as,

bminjl 6=i =


bminjl 6=i + (−1)nχn(ψminn − bminjl 6=i) if Cn with n = {1, 2, 3, 4, 6}
ψminn bjl 6=i if Cn with n = 5

bminjl 6=i otherwise

(3.18)

bmaxjl 6=i =


bmaxjl 6=i + χn(bmaxjl 6=i − ψmaxn ) if Cn with n = {1, 2, 4}
bmaxjl 6=i − χn(bmaxjl 6=i − ψmaxn ) if Cn with n = {3, 6}
ψmaxn bjl 6=i if Cn with n = 5

bmaxjl 6=i otherwise

(3.19)

where χn = εrl for n = [1, 4]; χ6 = ρrl ; ψ
min
n = b25

jl 6=i for n = {1, 2, 6}; ψminn = bmaxjl 6=i

for n = {3, 4}; ψmin5 = 0.9; ψmaxn = b75
jl 6=i for n = {1, 2, 6}; ψmaxn = bminjl 6=i for n = {3, 4};

ψmax5 = 1.1. Given that probabilities pkl(t, n) are only calculated for the discrete set

A′bjl 6=i
, these probabilities are updated through interpolation/extrapolation after the

reduction/expansion of A′bjl 6=i
. The proposed algorithms, both the opponents’ bids es-

timation and range search, may adapt three main parameters: the learning speed, the

expansion rate and the reduction rate. In particular, if µ∆Lsc
il

is high, the algorithm

should be able to accurately estimate bjl 6=i faster. Accordingly, two additional condi-

tions are defined:

[C7]: µ∆Lsc
il
> µH&S1

[C8]: µ∆Lsc
il
< µH&S2 and σ∆Lsc

il
< σH&S

where µH&S1 , µH&S2 and σH&S are mean and deviation thresholds. An update mecha-

nism is proposed based on C7 and C8 as ηl = ηl + 0.1, εrl = 1.2εrl , ρrl = 1.2ρrl for C7,

and ηl = ηl − 0.1, εrl = 0.5εrl , ρrl = 0.9ρrl for C8. The specific values of the update

mechanism have been obtained through simulations. The complexity of the learning

algorithm is the number of elements in A′bjl6=i
(i.e. K) multiplied by the number of

timeframes T . Hence, the computational complexity of the mechanism is O(dcnvTK),

where dcnv denotes the number of days until convergence.
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Table 3.2: MNO Network-Financial Parameters

MNO

Bandwidth (Bi) 20 MHz

Sector Spect. Eff. (SEDi ,SECi ) see Table 3.4

Revenue per 1-h timeframe (Ri) 3.375 e /Mbps

Cost shaping factor (ai) 0.189 e /Mbps [91]

Cost shaping constant (di) 10 Mbps [91]

Hotspot offered load (Lhi) 0.6 Li

Table 3.3: SCO Network-Financial Parameters

SCO

Number of SC clusters (NC) 2

Number of SCs per cluster (Nscl) { (4,4),(4,5),(5,5),(5,6),(6,6) }
Max. Bandwidth (Bsc) 20 MHz

Spectral Efficiency (SEDsc,SE
C
sc) see Table 3.4

Backhaul Capacity (CBH) [100,1000] Mbps

Cost shaping factor (asc) 0.072 e /Mbps [91]

Cost shaping constant (dsc) 8.9 Mbps [91]

Profit factor (z) 1.2

Table 3.4: Average spectral efficiency for different SC deployments

Spectral Efficiency (Mbps/MHz)

Nsc
Dedicated channel Co-channel

Macrocell SC clusters Macrocell SC clusters

(4,4) 3.0703 (4.8946,4.8946) 2.8041 (2.0601,2.0601)

(4,5) 3.0703 (4.8616,4.1812) 2.7869 (2.0381,1.9889)

(5,5) 3.0703 (4.181,4.181) 2.7668 (1.9868,1.9868)

(5,6) 3.0703 (4.1676,4.1449) 2.7435 (1.9843,1.9736)

(6,6) 3.0703 (4.1327,4.1327) 2.7121 (1.972,1.972)

3.5 Performance Evaluation

3.5.1 Scenario description and parameters

The scenario used for the numerical analysis in this section consists of N = 2 MNOs

and an SCO with two SC clusters of co-channel small cells in the MNOs’ overlapping

macrocell coverage areas. In order to increase their profits and throughput, the MNOs

participate in the auctions conducted by the SCO, and decide on the bid prices according

to the bandwidth requirements (i.e. xi), and the auction competition. According to its

business strategy, the SCO selects offline the value of z, which remains static for periods

significantly longer than the auction timeframes. The values of the main parameters

used in our simulations are obtained from Small Cell Forum’s reports [84] and listed

in Tables 3.2 and 3.3. In the baseline scenario, 60% of the offered load is generated
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in the hotspots, and the remaining 40% outside the hotspots (i.e. Lhi = 0.6Li and

Lni = 0.4Li). In general, an SC cluster is comprised of a set of street-level small cells

connected to a Network Termination Point (NTP) through a multi-hop millimetre-wave

wireless network [84]. A custom-made MATLAB R©-based simulator has been developed

to calculate the spectral efficiency values shown in Table 3.4. The simulator is compliant

with the guidelines provided by 3GPP in [92–94].

3.5.2 Network Throughput

The impact of the competition among MNOs and the differences arisen with dedicated

spectrum and co-channel deployments are analysed in the described scenario with two

clusters of Nsc1 = Nsc2 = 4 small cells and a backhaul capacity CBH1 = CBH2 = 200

Mbps. Moreover, in order to shed light on the impact of spatial traffic variations, we

consider two hotspot traffic allocations: in the first allocation, Lhil = 0.3 · Li, ∀i ∈
N , ∀l ∈ NC (Fig. 3.2), and in the second one (Lh11 , Lh12) = (0.4, 0.2) ·L1, (Lh21 , Lh22) =

(0.2, 0.4) · L2 (Fig. 3.3). In this scenario, we assume that the MNOs have no a priori

knowledge on their load nor their opponents’ bids. Hence, we conduct simulations with

the use of the proposed learning mechanism to acquire the following results.

Fig. 3.2a and Fig. 3.2b depict the offloaded traffic (Lsc1 ) and the total served load of

MNO1 (LT1 ) as a function of the MNO1 offered load (L1) for different MNO2 offered

load levels (L2), and for load distribution Lhil = 0.3 · Li, ∀i ∈ N , l ∈ NC . The same

experiments have been carried out for the dedicated spectrum and co-channel deploy-

ments. As both MNOs have the same cost functions (i.e. the values of all parameters

in (3.7) are equal), results for MNO1 and MNO2 are symmetrical, and only MNO1

figures are included. Furthermore, since both MNOs’ hotspot traffic is equally divided

between the SC clusters (i.e. Lhil = 0.3 · Li, ∀i ∈ N , l ∈ NC), during the auctions none

of the clusters is prioritized and therefore Lsci1 = Lsci2 , ∀i ∈ N .

It can be observed in Fig. 3.2a that Lh1 is completely served by the SCO until it reaches

a maximum level, after which the SCO is unable to serve more traffic. This maximum

Lsc1 differs depending on the competition among MNOs (or, in other words, the offered

load of MNO2) and the spectrum deployment use case. Focusing on the results of

MNO1 in a scenario without competition (i.e. L2 = 0Mbps), Fig. 3.2a shows that the

maximum offloaded traffic (Lsc1 ) is higher for the dedicated spectrum option than for the

co-channel use case. This is explained by the access link capacity of the SCO in each case.

In that sense, if no cost or backhaul capacity restrictions were considered, the maximum

offloaded traffic could be found from its definition as Lsci =
∑

l∈NC NsclxilBiSEscl . Based

on this assumption, the maximum offloaded traffic is calculated in the hypothetical case
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Figure 3.2: Traffic served by (a) the SC clusters and (b) MNO1’s throughput versus
the total offered load for MNO1, with Lhil

= 0.3 · Li,∀i ∈ N , l ∈ NC

where all bandwidth is transferred from MNO1 to the SCO (i.e. Xi = 1). Specifically,

if Xi = 1, the maximum offloaded traffic is LDsc1 = 783Mbps and LCsc1 = 329Mbps.

Accordingly, Fig. 3.2a shows that, for L2 = 0Mbps, Lsc1 is limited by the backhaul

capacity (
∑

l∈NC CBHl
= 400Mbps) in the dedicated spectrum case, and by the access

link capacity (namely the spectral efficiency of the small cells) in the co-channel case.

As expected, Lsc1 falls as L2 increases, since the backhaul capacity is shared out among

the two MNOs.

As for L2 = 400Mbps in Fig. 3.2a, it can be seen that Lsc1
∼=
∑

l∈NC CBHl
/2 for

L1 ≥ 350Mbps. The same occurs to MNO2 due to symmetry, and so an important

outcome can be stated. In general, for a set of N MNOs with equal cost functions, and

Lhil ∈ (CBHl
/N,NsclSEsclBi], ∀i ∈ N , l ∈ NC (Lscil is not limited by the access link

capacity, but by CBHl
), the SC capacity is equally divided among the set of MNOs,

Lsci
∼=
∑

l∈NC CBHl
/N , whether or not Lhil and Lhjl are equal ∀i, j ∈ N , l ∈ NC and
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i 6= j. In other words, under high competition scenarios, CBHl
is equally shared among

MNOs. This is due to the fact that the cost incurred by an MNO to offload a unit of

load increases with the competition, but it is upper bounded. In particular, the bid will

never be higher than the value that makes the cost of offloading be above the cost of

not offloading. If all MNOs have the same cost functions, they all bid the same amount,

when Lhi is high, and therefore they offload the same amount of traffic (according to

Definition 3.5).

Fig. 3.2b depicts MNO1’s throughput (LT1 ). Although the trend of LT1 is similar to the

trend of Lsc1 , we point out two important results. First, the MNO always prioritizes the

traffic in the hotspot since it is more profitable. This can be observed in the decrease of

the gradient of LT1 for an offered load L1 higher than 150 Mbps (see Fig. 3.2b). Second,

Fig. 3.2b shows that LCT1 > LDT1 as long as the hotspot traffic is completely served (this

fact is proved in Proposition 3.3). Conversely, when the hotspot load is not completely

served, the spectrum deployment that provides the best results in terms of total served

load will depend on the spectral efficiency in each case.

As in Fig. 3.2, Fig 3.3a, 3.3b, and 3.3c depict MNO1’s offloaded traffic at the SC

clusters (Lsc11 and Lsc12), and the total served load (LT1 ), respectively, as a function of

the offered load (L1). The only difference in this use case is the uneven hotspot traffic

allocation, that is, (Lh11 , Lh12) = (0.4, 0.2)·L1 and (Lh21 , Lh22) = (0.2, 0.4)·L2. The main

difference observed between the two use cases is in the way traffic is offloaded at the SC

clusters. As mentioned above, it is Lsc11 = Lsc12 for any (L1, L2), when the traffic is evenly

distributed among the SC clusters. Conversely, this does not occur for uneven traffic

allocations. We observe that given an MNO2 level of competition, MNO1’s offloading

traffic can be the same (i.e. LDsc11 = LDsc12 ) only for high L1 values (e.g. Lsc12 = 200 Mbps

for L1 = 1000 Mbps). This can be explained by the fact that the MNOs may prioritize

the traffic among hotspots. This is especially observed for the co-channel deployment,

where MNO1 prefers to offload at SC cluster 1. This prioritization occurs because it

is cheaper for MNO1 to offload Lh11 , due to the lower competition in SC cluster 1

(Lh21 = 0.2 · L2), and its lower offloading demand at SC cluster 2 (Lh11 > Lh12).

Despite this prioritization, the maximum Lsci of each MNOi is the same as in the even

traffic distribution case, for both spectrum deployments. Consequently, each MNOi

achieves the same maximum LTi in both cases, for both spectrum deployments. The

difference lies in the fact that this maximum LTi is achieved for different (L1, L2) values

in each use case. For instance, given L2 = 0 the maximum LDT1
∼= 425 Mbps is achieved

for L1 = 700 Mbps when Lh11 = Lh12 , whereas for L1 = 1000 Mbps when Lh11 6= Lh12 .

Similarly, when CBH is equally divided between the two MNOs, the maximum LDTi of

each MNOi is the same in both use cases, however it is achieved for different levels
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Figure 3.3: Traffic served by (a-b) the SC clusters and (c) MNO1’s throughput versus
the total offered load for MNO1, with (Lh11 , Lh12) = (0.4, 0.2) · L1, (Lh21 , Lh22) =

(0.2, 0.4) · L2
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Figure 3.4: Served load difference of the dedicated spectrum and co-channel deploy-
ments, Θ1

of competition (i.e. for (L1, L2) = (400, 400) Mbps when Lh11 = Lh12 , whereas for

(L1, L2) = (600, 600) Mbps when Lh11 6= Lh12). As mentioned above, this occurs due

to the prioritization of traffic in the SC clusters. Each MNOi will prioritize the traffic

at the SC cluster with the highest load distribution and the least competition, since it

is cheaper and generates higher revenue. As the offered load increases in the cluster

with the lower load distribution, the revenue from offloading this traffic justifies the

corresponding increase in bid by MNOi.

Impact of Backhaul Capacity: According to the results obtained previously, Lsc1

can be limited either by CBHl
or by the SCO access link capacity (NsclB1x1SEscl).

It was also noted that the dedicated spectrum deployment presents higher access link

capacity than the co-channel deployment, and therefore it is more likely to be limited

by CBHl
. We consider the same scenario as previously, but the backhaul capacity values

vary within the range CBHl
∈ [100, 1000] Mbps. In order to analyse the impact of CBHl

,
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the metric defined in (3.5) as Θi = LCTi − LDTi is plotted in Fig. 3.4 when L1 = 1700

Mbps, L2 = 0 Mbps or L2 = 1600 Mbps, and Lhil = 0.3 · Li,∀i ∈ N , l ∈ NC .

Fig. 3.4a shows that, regardless Nsc, both use cases (dedicated spectrum and co-channel)

provide similar results when CBHl
is small, thereby obtaining Θi

∼= 0. As observed in

Fig. 3.2, when Lsci is not constrained by CBHl
, the maximum LDsc1 is higher than

the maximum LCsc1 . However, if CBHl
is smaller than these maximum offloaded traffic

values, both use cases perform in similar terms. This is what can be seen in Fig. 3.4a for

small CBHl
values, where Θi

∼=0 Mbps. However, as CBHl
is increased, the co-channel

deployment offloading gets limited by the access link capacity (due to the lower spectral

efficiency of the co-channel use case) while the dedicated deployment remains constrained

by the backhaul capacity. Therefore, whereas LCTi remains constant despite the increase

of CBHl
, LDTi grows with CBHl

. Consequently, Θi falls. Finally, Θi stabilizes when the

dedicated spectrum deployment also becomes limited by the access link capacity.

In Fig. 3.4a, Θ1 falls slower for (Nsc1 , Nsc2) = (6, 6) than for (Nsc1 , Nsc2) = (4, 4) (e.g.

Θ1 is -224Mbps and -92Mbps respectively for CBHl
= 300Mbps). Hence, the maximum

access link capacity depends not only on the spectral efficiency, but also on the SC

density. Based on this, it is clear in Fig. 3.4a that the increase of the access link

capacity achieved in a denser SC cluster (i.e. high Nsc) is translated into a slower fall

of Θi. Fig. 3.4b plots the same results when L2 is high and, therefore, CBHl
is shared

between MNO1 and MNO2. The explanation is exactly the same as for Fig. 3.4a,

though in this case, and according to the outcome discussed previously for Fig. 3.2a,

MNO1 can lease SC capacity equal to CBHl
/2 instead of CBHl

(MNO2 leases the rest

of CBHl
). This is the reason why we can observe the same trend for Θ1 in Fig. 3.4b,

however for a wider range of CBHl
values.

3.5.3 Stakeholders’ Profits

There is a tight relation between the auction results depicted in Fig. 3.2 and the profit

obtained by the MNO and the SCO. In order to highlight it, Fig. 3.5a and 3.5b show

MNO1’s and SCO’s profit respectively, for the same scenario and use case as in Fig.

3.2. Regarding P1, we observe that it follows the same trend as LT1 . This behaviour

is explained with (3.6). Particularly, by offloading volumes of traffic significantly larger

than what its own eNB can serve, MNO1 generates a large revenue that covers both its

own OPEX (i.e. CL1) and the offloading cost (i.e. the bids).

Regarding the SCO’s profit, we observe in Fig. 3.5b that Psc is convex. This is explained

by the fact that the MNOs can place bids close to the reserve price for low to medium

total demand with the assistance of the learning mechanism (as will be explained in
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Figure 3.5: Profit gained by (a) MNO1 and (b) SCO versus the total offered load for
MNO1, with Lhil

= 0.3 · Li,∀i ∈ N , l ∈ NC

Section 3.5.5). Hence, Pscl is slightly higher than Pminscl
= (z− 1)CLscl , which is convex.

We further observe the impact of the MNO competition on the SCO profit. Particularly,

we see that as the competition increases (i.e. L2 = {200, 400}Mbps), Psc becomes satu-

rated for lower L1 values. This is explained by the fact that the higher the competition,

the higher the need for SC capacity. Thus, Psc will be high when all of the contending

MNOs have high offloading demands. Finally, it can be seen that Psc is higher with

the dedicated spectrum deployment. This occurs because with the dedicated spectrum

deployment the MNOs offload slightly more traffic than with the co-channel deployment,

as observed in Fig. 3.2a.
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3.5.4 Auction Scheme Comparison

In this section, we conduct a comparison between our proposed Proportional Fair Auc-

tion scheme (PF) and the well-known First-Price sealed bid auction scheme (FPA) [37].

Particularly, we solve the SWM problem in (3.12), and compare the performance of each

auction in terms of offloaded traffic (Lsci ), and total system throughput (
∑

i∈N L
T
i ).

In FPA, the highest bidder wins the auction, and pays the bid it had submitted. In

order to adjust FPA in our system model, we consider the following. We assume that

two MNOs place their bids b1l and b2l in order to lease Lsc1l and Lsc2l , respectively, from

a single SC cluster l. Since we solve the SWM problem, the MNOs will bid at least the

reserve price (i.e. bil ≥ bminil , i ∈ N , l ∈ NC), so that the MNOs can maximize their profit.

If the submitted bids b1l + b2l produce the minimum profit Pminscl
for Lscl ∈ (0, CBHl

]

(i.e. b1l + b2l = zCLscl(Lscl)), Lscl will be allocated among the MNOs according to the

following rule:

The winning bid of MNOi bil, i ∈ {1, 2}, l ∈ NC is the one that maximizes the SC cluster

l’s profit, that is, the winning bid is given by bil = arg max
bjl,j∈N

(Pscl = bjl − CLscl(L
sc
jl )).

Hence, MNOi will lease the requested SC capacity Lscil by paying bil. Then, MNOj will

lease the remaining SC capacity Lscjl = Lscl − Lscil by paying its placed bid, bjl.

For the comparison of the two auction schemes we use the same scenario and use case

as in subsection 3.5.2 (i.e. Nsc1 = Nsc2 = 4, CBH1 = CBH2 = 200Mbps, and Lhil = 0.3 ·
Li, ∀i ∈ N , ∀l ∈ NC) for 2 MNOs. Fig. 3.6a and 3.6b depict LDsc1 and LCsc1 , respectively,

as a function of L1 for different L2 values. The same experiments have been carried out

for the proposed PF scheme and the compared FPA scheme. As expected, when there is

no competition (i.e. L2 = 0) MNO1 will bid the reserve price in either case, and offload

as much traffic as possible (as explained in Section 3.5.2), hence achieving the same Lsc1 .

MNO1’s strategy changes when the competition increases (i.e. L2 > 0). As described

in Section 3.5.2, with the PF scheme the SC cluster capacity is divided proportionally

among the MNOs according to their offered load, which shapes their offloading demands.

Furthermore, for offered loads beyond a particular value (in this case Li > 350 Mbps,

i ∈ N ), each MNOi offloads traffic approximately equal to
∑

l∈NC CBHl
/2.

Conversely, we observe for both spectrum deployments that with the FPA scheme most

of the SC capacity is allocated to the MNO with the highest offered load. Moreover,

the opponent MNO does not offload the remaining SC capacity. This occurs because

the allocation rule overcharges the loser of the auction. We notice that for L2=400

Mbps and L1≤400 Mbps, where MNO2 wins the auctions, MNO1 does not lease the

remaining CBHl
. Conversely, MNO1 wins the auctions for L1>400 Mbps and offloads

as much traffic as possible (Lsc1 =
∑

l∈NC Lhil or Lsc1
∼=
∑

l∈NC CBHl
).



Chapter 3. Network and Financial aspects of traffic offloading 62

 L
1
  (Mbps)

0 100 200 300 400 500 600 700

 L
1D

sc
  (

M
bp

s)

0

50

100

150

200

250

300

350

400
PF:  L

2
=0

PF: L
2
= 200Mbps

PF:  L
2
=400Mbps

FPA:  L
2
=0

FPA:  L
2
=200Mbps

FPA:  L
2
=400Mbps

(a)

 L
1
  (Mbps)

0 100 200 300 400 500 600 700

 L
1C

sc
  (

M
bp

s)

0

50

100

150

200

250

300

350

400
PF:  L

2
=0

PF: L
2
= 200Mbps

PF:  L
2
=400Mbps

FPA:  L
2
=0

FPA:  L
2
=200Mbps

FPA:  L
2
=400Mbps

(b)

Figure 3.6: Leased SC capacity for the PF and FPA schemes for (a) dedicated spec-
trum and (b) co-channel deployment versus L1 for MNO1, with Lhil

= 0.3 · Li,∀i ∈
N , l ∈ NC

The results of the above allocation rules are shown in Fig. 3.7a and 3.7b. These figures

depict
∑

i∈N L
DT
i and

∑
i∈N L

CT
i respectively, as a function of L1 for different L2 values.

It can be observed in both figures that the proposed PF scheme either outperforms or

performs equally with the compared FPA scheme. The sum throughput is the same for

both auctions schemes when there is no competition (i.e. L2 = 0), since the bidding

behaviour is the same as explained previously. When the competition is higher (i.e.

L2>0), PF achieves higher throughput than FPA. This occurs due to the allocation

rule of FPA, which favours the winner, but disincentivizes the loser with expensive SC

capacity. Thus, we observe that when the competition is high (i.e. L2 = [200, 400]

Mbps), the sum throughput’s gradient decreases for medium loads (i.e. L1 ∈ [150, 350]

Mbps). When L1 increases beyond the value where Lh1l
= CBHl

, l ∈ NC (i.e. Li > 333

Mbps), the gradient increases up to the point that the maximum sum throughput is

achieved.
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Figure 3.7: System sum throughput
∑

i∈N LT
i of the PF and FPA schemes for (a)

dedicated spectrum and (b) co-channel deployment versus L1 for MNO1, with Lhil
=

0.3 · Li,∀i ∈ N , l ∈ NC

Fig. 3.8a and 3.8b depict the Social Welfare (P =
∑

i∈N Pi + Psc) for the dedicated

spectrum and co-channel deployments as a function of MNO1’s offered load (L1) for

different MNO2 offered load levels (L2). Due to the tight relation between the MNO

throughput and profit (the high MNO revenues cover their costs as also observed in

Fig. 3.5a), we notice that the SW shows a trend similar to that of the sum throughput.

Hence, it can be observed in Fig. 3.8a and 3.8b that PF either outperforms or performs

equally with FPA.

From the above we conclude that the PF scheme results in a more balanced allocation

of the SC capacity, which then leads to higher throughput, and higher profits for the

auction stakeholders.
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Figure 3.8: Social Welfare P of the PF and FPA schemes for (a) dedicated spectrum
and (b) co-channel deployment versus L1 for MNO1, with Lhil

= 0.3·Li,∀i ∈ N , l ∈ NC

3.5.5 Learning Mechanism Performance

The performance of the learning mechanism described in Section 3.4.2.2 is evaluated in a

scenario where future loads and opponents’ bids are unknown. We use the same scenario

and use case as in subsection 3.5.2 (i.e. Nsc1 = Nsc2=4, CBH1 = CBH2 = 200Mbps, and

Lhil = 0.3 · Li, ∀i ∈ N ,∀l ∈ NC) for 2 MNOs. Regarding Li, the day is divided into

T = 24 timeframes, and the traffic pattern for both MNOs is modelled as a bimodal

distribution with two peaks, the first one at timeframe t = 12 and the second one at

t = 16. In the simulation, each Li instance is randomly generated according to this

pattern. Table 3.5 shows the values of the parameters for the three algorithms that

compose the learning mechanism, which have been obtained through simulations.

Since Lhi is distributed evenly and Lsci1 = Lsci2 , we provide results on the convergence
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Table 3.5: Learning Mechanism parameters

Traffic forecasting Adaptive Search range

α 0.2 Expansion coefficient (εc) 1

β 0.1 Reduction coefficient (ρc) 17

γ 0.1 Expansion rate (εr) 0.3

Average threshold (µHW ) 0.15 Reduction rate (ρr) 0.5

Deviation threshold (σHW ) 0.2 Average threshold (µSR) 0.2

Learning Algorithm Estimated-Real difference
threshold (∆LSR)

0.15
Size of A′bj 6=i

(K) 3

Learning speed (η) 0.3

speed and the performance of the learning mechanism only for SC cluster 1. The er-

ror in the estimation of Lsc11 and b21 (in this case, as only two MNOs are considered,

bj16=1 = b21) are hereafter denoted by ∆Lsc11, defined in (3.15), and ∆b21 = b21−b21
b21

, where

b21 is the estimate of b21. Fig. 3.9a and 3.9b show the convergence of the estimation

errors ∆b21 and ∆Lsc11, respectively, within a range of 31 days (note that the estimation

of each timeframe is carried out once per day, and thus 31 days are equivalent to 31 iter-

ations). It can be observed that despite the initial poor estimates of b21, the mechanism

accomplishes estimation errors of the order [-10,10]% within the first 8-14 iterations in

all timeframes, and small errors upon convergence (e.g. |∆Lsc11|<6% and |∆b21|<7.5%).

It is observed that the highest absolute estimation errors of b21 occur at t={7,19,21,24},
far from the two peak hours defined at t=12 and t=16. In fact, the absolute error

|b21 − b21| is higher for high loaded timeframes, but the significant differences between

b21 in high and low loaded timeframes makes ∆b21 be higher for low loaded timeframes.

In order to see the impact of these errors, Fig. 3.10 shows the throughput, the profit

and the bid of MNO1 when all the information is available to all stakeholders (i.e. the

SWM problem defined in (3.12) is solved and ∆Lsc11 = ∆b21 = 0), and when information

is not available and the learning mechanism is used (i.e. with ∆Lsc11 and ∆b21 shown

in Fig. 3.9). It can be observed in Fig. 3.10a that the served load (or throughput)

achieved with the learning mechanism matches almost perfectly the results obtained

when all information is known. This good performance is owing to: i) good estimations

plotted in Fig. 3.9, and ii) less accurate estimations occur when capacity needs are less

stringent.

Similar results are obtained in Fig. 3.10b for the profit of MNO1, P1. However, it is

worth noting that the profit decreases with the learning mechanism at timeframe t=12

(the peak hour). This reduction of the profit is the result of a high bid at t=12 (depicted

in Fig. 3.10c). If the offered bid b1 is higher than the reserve price (the bid when all

information is available), the profit drops. Generally, the high bid is a consequence of

the overestimation of b2l and/or Lsc1l . In this particular case, Fig. 3.9 shows at t=12 that
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Figure 3.9: Convergence of error of the estimated (a) b21 and (b) Lsc
11 made by MNO1

∆Lsc11 >0 and ∆b21 <0; the former overestimates Lsc11 and the latter underestimates b21.

Therefore, the overestimation of Lsc11 causes the decrease of the profit.

Yet, despite the slight decrease in the profit experienced during the peak hour, the

learning mechanism presents a very good performance in the simulated scenario.

Summary of Results

The main key findings of Section 3.5 can be summarized in the following:

• MNOs achieve higher throughput when the competition is low with the dedicated

spectrum allocation, whereas when the competition is high the co-channel spec-

trum allocation achieves higher performance. This occurs independent of the traffic

distribution in the SC clusters.
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Figure 3.10: Comparison between (a) throughput, LT
1 ; (b) profit, P1; and (c) bid, b1,

of MNO1
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• The MNO throughput can be limited either by the backhaul capacity or the access

link capacity. Due to its higher spectral efficiency, the dedicated spectrum alloca-

tion throughput is limited by the access link capacity for lower backhaul capacity

values than the co-channel allocation throughput.

• The MNO profit follows the same trend as the MNO throughput. Regarding the

SCO profit, it follows the same trend as the SCO cost and it increases with MNO

offered load, according to the definition of the minimum profit Pminsc in Proposition

3.4.

• The proportional fair auction scheme results in a more balanced allocation of

the SC capacity compared to the first price auction, which also results in higher

throughput, and higher profits for the auction stakeholders.

• Our proposed learning mechanism converges to its solution in a short number of

iterations.

• Our proposed learning mechanism provides results similar to the optimal solution

of the social welfare problem in (3.12).

3.6 Applicability

Regarding the applicability of our model (and generally the models found in the liter-

ature) in real-world scenarios, we have encountered companies in the mobile network

infrastructure market, which have adopted similar market frameworks in their business

models. In the past few years, we have observed that the continuous growth of the

telecommunication industry has brought forth the need for expansion of the existing

4G and the deployment of new 5G networks. To that end, MNOs intend to expand

their network, and are looking for new cell sites. This demand has created a market

of valuable telecommunication assets, which already counts billions of dollars only in

the United States. These assets include cellular and telecommunication towers, anten-

nas, license agreements, which are either leased or sold to MNOs or other third-party

investors.

Various companies have taken advantage of this situation by offering a marketplace,

mediating the transactions between sellers and buyers, and some of them even offer-

ing network management services. Two examples of companies that offer this kind of

brokering services are Cell At Auction, LLC [95] and SteepSteel, LLC [96]. Both these

companies have created their own marketplace, where owners of cellular towers or cell

sites can either lease or sell their property. Moreover, each item to be sold or leased
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is auctioned, in an effort to maximize the seller’s profit. Depending on the availabil-

ity of cell towers in a geographical area, there can be either a monopoly (i.e. a single

owner-lessor/seller as the SCO in our scenario) or a competition among owners.

Discovering a multitude of such companies, we notice an expanding trend in the market

of mobile network infrastructure, which will play an important role in the deployment

of 5G networks, as it facilitates the process of infrastructure acquirement and capacity

augmentation for MNOs. Moreover, we have seen that the corresponding marketplaces

are not based on a single model, and hence we also encounter brokers that offer mar-

ketplaces based on auction schemes. Such practices prove that auction schemes can be

used in realistic scenarios as frameworks for the transaction and resource allocation of

mobile network infrastructure.

Autonomous bidding or trading software enables the adoption of such schemes thanks to

their capacity of functioning in the high frequencies that auctions or bargaining actions

are conducted, as described in [97]. These software agents are designed with machine

learning or other artificial intelligence tools in order to act in the interest of their owner

and improve their decisions based to previous outcomes, similar to our approach in this

contribution.

3.7 Concluding Remarks

In this chapter, we have presented our contribution on traffic offloading under the SCaaS

approach, where a small cell operator owns the SC infrastructure, and the mobile net-

work operators transfer spectrum resources to serve their users. The problem of the

efficient capacity distribution, both from a network and a financial perspective, has

been modelled with a proportionally fair auction scheme. We further show that the

uncertainty about future traffic load poses the necessity to develop learning mechanisms

to assist the auction. Modified versions of the Holt-Winters method and the Exp3 rein-

forcement learning algorithm have been proposed to deal with the load forecasting and

the opponents’ bid estimation, respectively. Extensive simulations with the proposed

mechanism were used to study the MNOs’ auction strategies, for two spectrum deploy-

ments, and different SC densities. The results show how the competition level among

the MNOs impacts their profit and capacity, and analyse their trade-off. Moreover,

they reveal that the capacity is limited by either technical (i.e. backhaul or spectral

efficiency) or economic causes, and explain how they are connected to the MNOs’ com-

petition. Finally, we show that the proposed forecasting, learning and auction scheme

copes with the uncertainty efficiently, and provides results comparable with scenarios

without uncertainty.
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Network and Financial aspects in

RAN

4.1 Introduction

The exponential growth of mobile data traffic experienced over the last years is expected

to continue in the future. This traffic growth is mainly the result of the surge in demand

of multimedia and video content (usually offered by independent content providers) and

the explosion in the number of devices and broadband connections. Therefore, mobile

traffic will be heterogeneous from a dual perspective, since there will be a wide range

of possible QoS requirements (e.g. video on-demand, online gaming and messaging are

very different in terms of QoS) and it will be originated/received by diverse devices (e.g.

tablets, laptops or smartphones) [11]. In this context, it has been shown that the quality

perceived by the users can not be fully captured with QoS metrics, thus making QoE

one of the most important Key Performance Indicators (KPI) [12]. Therefore, in the

future MNOs will have to be able to meet not only the envisioned boost of the traffic

demand, but also its heterogeneity in terms of QoS/QoE requirements.

As mentioned in the previous chapters, RAN densification is one of the main strategies

to catch up with the future intense and diverse demand [98]. Mobile industry must

invest large amounts of capital in the deployment of dense HetNets or the leasing of

small cell infrastructure (as described in our first contribution) to be able to provide

seamless connectivity and high QoS/QoE. Therefore, the densification strategy to cope

with the increase of the demand has a significant impact on the balance sheet of the

different stakeholders, and particularly for MNOs (e.g. increase of the deployment or

infrastructure leasing cost). These financial aspects/constraints are exacerbated by the

so-called traffic and revenue paradox/challenge [15]; specifically, although it may seem

70
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Figure 4.1: Forecast of monthly internet traffic by Cisco

contradictory, the described traffic boost shown in Fig. 4.1 has increased the content

providers’ profits while, simultaneously, has diminished the MNOs’ revenues. This occurs

because the MNO’s basic services (voice and messaging) have been gradually replaced

by their third-party counterparts. Moreover, the MNO’s data service prices have been

decreasing over the years, due to the market competition.

Therefore, MNOs face a two-fold challenge: meet the QoE requirements and maximize

the profit. It has been proven that the relation between QoS and QoE has a non-linear

nature [17]. This means that small degradations in the received QoS can significantly

impact on the perceived QoE level. Yet, QoE is influenced by other factors such as

pricing or device characteristics [19]. In this context, it is necessary to design network

and economic functionalities adapted to the new requirements, such as QoE-aware Ra-

dio Resource Management strategies and smart dynamic pricing, and always trying to

maximize the profit (to compensate the diminished MNOs’ revenues and the increasing

deployment investment).

As we have shown in Section 2.3.2, the majority of works on User Association, Resource

Allocation (RA) and scheduling in the context of 4G and 5G networks focus mainly on

the provision of high QoS/QoE and other network aspects (e.g. power allocation, fairness

etc.), however without taking into account the impact of their proposals on the financial

aspects of the MNOs (e.g. profit). Regarding smart dynamic pricing, we have shown

in Section 2.3.3 that the majority of the works in the literature use dynamic pricing

in order to steer the traffic demand and direct it from peak to off-peak traffic hours
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and locations, in an effort to minimize congestion periods. That is, dynamic pricing is

used as a tool to motivate the users change their data consumption habits, thus avoiding

network congestion. However, such approaches fail to provide high customer satisfaction

during inevitable congestion periods.

In this chapter, we study the user association, resource allocation and dynamic pricing

problems aiming to maximize the MNO profit, while offering high QoE to the users,

under fairness and overall user satisfaction (OS) constraints. We consider HetNets com-

posed of macrocell and SC base stations (BSs), with dynamic traffic described by nu-

merous QoS/QoE demands. In contrast to the literature, we further consider diverse

pricing, that is, various service prices and different pricing schemes. In order to address

the challenges of traffic heterogeneity and high network profitability, our solutions ex-

ploit the QoE-awareness and the network’s economic aspects (i.e. the MNO profit). The

main contributions of the chapter are summarized in the following:

• In Section 4.5.1, we propose a greedy QoE-aware user association, heuristic algo-

rithm to maximize the MNO profit under fairness constraints in HetNets composed

of macrocell BSs operating in the sub-6GHz microwave (µWave) band and small

cells operating in the millimetre-wave (mmWave) band.

• In Section 4.5.2, we propose a QoE-aware resource allocation algorithm for profit

maximization under overall user satisfaction and fairness constraints, analyse the

connection among the individual and overall user satisfaction, fairness, pricing and

profit, as well as how they impact each other. Particularly:

– We propose a heuristic, greedy, low-complexity, QoE-aware resource alloca-

tion algorithm that maximizes the MNO profit while imposing constraints

on the minimum overall users satisfaction and on the fairness among users.

Our simulation results show that the proposed algorithm outperforms state-

of-the-art algorithms.

– We shed light on the trade-off between users’ satisfaction, fairness and MNO

profit. We show that, given the non-linear relation between QoS and QoE,

there is room for profit maximization resources allocation solutions without

penalizing the quality perceived by the users.

– We show that the use of diverse pricing schemes (e.g. data-based and time-

based pricing) can lead to the prioritization of some services over the others

in pure profit maximizing algorithms. Moreover, as the QoE is affected by

the price level, the adjustment of the service prices by the MNO can affect

both the profit and overall satisfaction. In line with this, we provide an
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accurate set of simulation results that shows the sensitivity of profit and

overall satisfaction with respect to pricing schemes and price level.

• Going beyond the proposal of a dedicated resource allocation scheme included in

Section 4.5.2, in Section 4.5.3 we propose a greedy joint resource allocation and

dynamic pricing algorithm for MNO profit maximization under overall satisfaction

constraints. Particularly:

– Instead of impacting the MNO profit and system performance by changing

equally the price of all users (as we did in Section 4.5.2), in Section 4.5.3 we

propose a heuristic algorithm that maximizes the MNO profit in a real-time

scale, during congestion, by changing the charging for specific users.

– Our proposal on dynamic pricing provides real-time results and can be applied

on the resource allocation scheme and pricing type an MNO already uses.

The rest of the chapter is organized as follows. Section 4.2 describes the system model,

and Section 4.3 states the MNO’s objectives. In Section 4.4, we formulate the profit

optimization problems, and in Section 4.5 we propose the QoE-aware profit maximizing

algorithms. We validate our algorithms in Section 4.6, and conclude the chapter in

Section 4.7.

4.2 System Model

The considered network is composed of a set of macrocells and a set of small cells, all

of them deployed by a single MNO. We denote this set of BSs, both macrocells and

small cells, as B = {1, 2, . . . , NB}, where NB is the total number of BSs. The bandwidth

allocated to each BS i ∈ B is hereafter referred to as bi (in Hz). The notation used

henceforth is summarized in Table 4.1.

It should be noted that in Section 4.5.1 we addressed the user association problem for a

5G HetNet setup. To that end, the considered network is composed of a set of macrocells

operating in the µWave band and a set of small cells operating in the mmWave band, all

of them deployed by a single MNO as in Section 4.5.3 and Section 4.5.2. The mmWave

small cell deployment has been extensively addressed in the literature and proposed

as a pivotal solution in 5G for two main reasons. First, the bandwidth availability in

mmWave bands is higher than in the µWave bands, thereby alleviating the spectrum

scarcity problem; second, thanks to the limited interference realized by the use of highly

directional antennas, very dense deployments are feasible, thus enhancing the network

spectral efficiency [99].



Chapter 4. Network and Financial aspects in RAN 74

Table 4.1: Notation

Notation Description

B Set of BSs
U Set of users
Ui Set of users in BS i
U ti Set of time-based charged users in BS i
UBi Set of data-based charged users in BS i
S Set of services
Q Set of QoE levels
D Set of devices
bi BS i’s available bandwidth
πk Service Profile (SP) k

sk, qk, pk Service, QoE class, service price of SP k
θBk Per data unit charging of service k
θtk Per time unit charging of service k
rj User j’s data rate
rkd Target data rate for SP k, device d
wij Resources allocated to user j by BS i
wi

∑
j∈Ui wij

εij Spectral efficiency between user j and BS i
Qkdj QoE level of user j with SP k, device d

Qtgk Target QoE level for SP k

Qdropk Service dropping QoE level for SP k

Q̂kdj QoS-based component for QoE mapping

Qp Price-based component for QoE mapping

αkd, γkd, βkd SP-dependent constants for Q̂kdj
vk User-dependent constant for Qp
σij Satisfaction of user j ∈ Ui
Ji Jain’s fairness index in BS i
OSi Overall User Satisfaction (OS) in BS i

OSmaxi Maximum possible OS in BS i
φi Relative OS in BS i, OSi/OS

max
i

φmin Relative OS threshold
Pi BS i profit
Ri BS i revenue
CBi BS i bandwidth utilization cost
ci, hi Cost adjusting factors
λij Price percentage a user j pays

The MNO serves a set of users U = {1, 2, . . . , NU}, where NU is the total number of

users. It is assumed that users are not served by more than a single BS simultaneously,

and therefore we define the set of users served by BS i ∈ B as Ui, where U = ∪i∈BUi
and ∩i∈BUi = ∅. MNOs have put the focus on the QoS and QoE as the target KPI in

the design of networks [12]. Accordingly, in our model each user has a contract with

the MNO that specifies a desired QoE for each service, denoted in the sequel as Service

Profile (SP). If we define the set of services as S = {s : s = 1 . . . S} and the set of QoE
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classes as Q = {q : q = 1 . . . Q} (Q is assumed to be a discrete and finite set), a generic

SP can be defined as πk = (sk, qk, pk), where pk is the price of the service (in e ), sk ∈ S
and qk ∈ Q. Focusing on pk, it is worth noting that its definition depends on the service

sk. Thus, some services are charged based on the amount of transmitted/received data

and some others are based on the connection time. Let us define the price for a data-

based charged service as θBk (in e /MB) and for a time-based charged service as θtk (in

e /sec). Moreover, we denote by UBi ,U ti ⊆ Ui the sets of data-based and time-based

charged users served by BS i, respectively (i.e. UBi ∪U ti = Ui and UBi ∩U ti = ∅). For the

cases that our proposal on real-time dynamic pricing is applied, the users’ service price

must be reduced during short time periods T , as will be explained in detail in Section

4.5.3. To that end, a BS i determines the percentage of the price pk a user j ∈ Ui will

pay at a time period T , which we denote by λij ∈ [0, 1]. The general expression of pk

for a time period T can be expressed as

pk =

{
Tλijθ

t
k If user j ∈ U ti

T ·r
8 λijθ

B
k If user j ∈ UBi ,

(4.1)

where r (in Mbps) is the user transmission rate1. As for the perceived QoE, in general

any user with a service profile πk has a target QoE level, Qtgk , and a minimum QoE

level below which the session is dropped, Qdropk (in the Mean Opinion Score (MOS) scale

[17]). We assume that both values are established in the contract between the user (as

a customer) and the MNO. Regarding the price percentage λij , it will be henceforth

considered to be equal to 1 with the exception of the sections dedicated to dynamic

pricing.

Although the perceived QoE is influenced by multiple factors, as it will be detailed in

Section 4.3, we now focus on the impact of the user device. Nowadays, a single user

can get connected to the network with different devices (tablet, laptop, smartphone,

etc), each one with specific characteristics. These characteristics of the device, such as

the screen quality or screen size, are relevant since they may improve or worsen the

perceived QoE. For instance, to perceive similar QoE levels, lower image resolution and

hence lower transmission bit rate (i.e. lower QoS) is required for a user using a video

service in a small-sized screen smartphone than for the same user with a large screen

tablet [18]. Therefore, the characteristics of the device must be also taken into account

to design efficient radio resources management algorithms. We define the set of devices

as D = {d : d = 1 . . . D}, and the mapping function that links the device-SP pair with

the required transmission rate, rkd, as f : (πk, d) → rkd. According to the definitions,

the QoE perceived by a user j ∈ U with an SP πk and using a device d ∈ D, namely

1The user rate in (4.1) is divided by 8, so that it is expressed in MB/sec, and hence the price pk in
monetary units (i.e. e ).
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Qkdj , will be higher than the target QoE Qtgk if the transmission rate from the serving BS

to the user j is higher than rkd. In other words, the target QoE is met at time period

t if rj(t) = wij(t)εij(t)bi ≥ rkd = f(πk, d), where rj(t) is the actual transmission rate of

user j ∈ Ui (in Mbps), wij(t) ∈ [0, 1] is the portion of BS i ∈ B radio resources allocated

to user j, and εij(t) is the spectral efficiency of the link between user j and BS i (in

bps/Hz), which can be approximated as εij(t) = log2(1 + SINRij), where SINRij is

the Signal to Interference and Noise Ratio received by user j, when served by BS i.

Note that, for a given device d and service sk, each QoE class is translated into an

equivalent QoS level (e.g. different rkd values are required for streaming SD and HD

video). This means that the user can choose among Q QoE classes on a contract basis for

each service, depending on the personal preferences (e.g. preference for high browsing

speed but SD video), and this choice impacts on the minimum QoS requirements. In

turn, for a given service sk and a QoE class qk, the user can receive the service through

a diversity of devices. For each device, the required transmission rate can also differ.

Based on the definitions stated above, it is clear that the satisfaction of users is tightly

coupled with the perceived QoE. Specifically, if the satisfaction of user j served by BS

i, namely σij(t), is defined within the interval [0,1], when Qkdj (t) ≤ Qdropk , the session

is dropped and the satisfaction is equal to 0. Conversely, when Qkdj (t) ≥ Qtgk , the

satisfaction is equal to 1. Thus, according to [19], the satisfaction is defined as

σij(t) =


0 if Qkdj (t) ≤ Qdropk
Qkd

j (t)−Qdrop
k

Qtg
k −Q

drop
k

if Qkdj (t) ∈ (Qdropk , Qtgk )

1 otherwise.

(4.2)

4.3 MNO’s objectives

In order to propose RRM and pricing schemes based on network and economic functions,

we first need to identify and analyse the two MNO’s objectives. First, they must offer to

the users the QoE agreed in the SP, and guarantee fairness when the system is congested.

Second, the network must be managed so as to maximize their economic profit. In the

following, the analyses of the QoE, fairness, overall user satisfaction and the profit are

detailed.

4.3.1 Network Performance Metrics

Based on the analysis described in [19], the perceived QoE Qkdj (t) can be divided into

two components: the QoS-based component (Q̂kdj (t)) and the price-based component
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(Qp(pk)).

Qkdj (t) = Q̂kdj (t) ·Qp(pk). (4.3)

The QoS-based component, Q̂kdj (t) ∈ [1, 5] (in the MOS scale), shows the effect of QoS

level on QoE. In the literature, the QoE is usually modelled to have an exponential

interdependency with the QoS, also known as the IQX hypothesis [17]. Using the trans-

mission rate rj(t) as the reference QoS metric, and according to the IQX hypothesis, we

can express Q̂kdj (t) as

Q̂kdj (t) = αkjdje
−βkjdj ∆rj(t)

+ γkjdj , (4.4)

where ∆rj(t) = rkd − rj(t) , αkjdj , γkjdj > 0 (both in the MOS scale) and βkjdj > 0 (in

sec/bit) are SP-device dependent constants. Regarding the price-based component, it

captures how the perception of the quality improves (worsens) as the price falls (rises).

As in [19], Qp(pk) is modelled as

Qp(pk) = 1− vkpk, (4.5)

where vk > 0 is an adjusting factor measured in e−1. Particularly, vk is the factor

that determines the sensitivity of the perceived QoE to price variations for a user j and

a service sk. We assume that the value of vk and hence Qp(pk) can be different for

each user j, in order to capture the effect of pk on each user individually. As it can be

observed in (4.5), if the user does not pay for the service (i.e. pk = 0), the price-based

component reaches the maximum value, Qp(0) = 1, thereby increasing the perceived

QoE in (4.3). That is, the more a user pays for a service, the higher the expectations

on the received quality are.

It should be pointed out that Qtgkj corresponds to the QoE level a user j wants to perceive,

it is constant, and does not depend on the service price. Hence, the MNO’s objective is

to offer user j a service with Qkdj = Qtgkj by providing the required QoS and corresponding

price combination.

Fairness

MNOs aim to offer fairness among users both when the available resources suffice to

provide them all with the target QoE (i.e. Qkdj = Qtgk , ∀j ∈ U) and when not all of them

can be appropriately served (i.e. Qkdj < Qtgk for some users). In this contribution, we

adopt the well-known Jain’s fairness index [100] of the users’ satisfaction level σij(t) as

the QoE-fairness metric. Hence, at a specific time period t a BS i’s Jain’s index can be
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expressed as

Ji(t) =

(∑
j∈Ui σij(t)

)2

|Ui|
∑

j∈Ui σ
2
ij(t)

∈ [0, 1], (4.6)

where |Ui| denotes the cardinality of Ui (i.e. the number of users served by BS i).

It should be noted that in Section 4.5.1 we imposed a fairness constraint that demands

equal satisfaction for all the served users (i.e. Ji(t) = 1). In detail, we considered that

for the set of users served by BS i, QoE fairness is achieved if σij(t) = σin(t) for any

j, n ∈ Ui with service profiles πkj = (skj , qkj , pkj ) and πkn = (skn , qkn , pkn), and devices

dj , dn ∈ D, respectively. When bi is not enough to offer σij(t) = 1, ∀j ∈ Ui, all σij(t)

are decreased (by reducing wij(t)) until σij(t) = σin(t) ∀j, n ∈ Ui. If σij(t) = σin(t) is

only true for the trivial solution (i.e. σij(t) = 0), users with σij(t) = 0 are dropped (i.e.

wij(t) = 0).

Overall User Satisfaction

We observe in (4.6) that Ji(t) depends on the standard deviation of the users’ satisfaction

in BS i; the lower the standard deviation, the higher the Ji(t). Hence, a high Ji(t)

can be achieved even when both the average and the standard deviation of the users’

satisfactions (σij(t)) are low. This means that high fairness does not guarantee high

QoE for the users. To this end, we define the Overall User Satisfaction (OS) in a BS i

as the sum of of the satisfaction of all the users connected to i, OSi(t) =
∑

j∈Ui σij(t).

Similarly, the total OS in the system is defined as the aggregate satisfaction of all the

users, OS(t) =
∑

i∈B OSi(t). Thus, the objective of the MNO is to achieve high overall

satisfaction (OSi) and high Jain’s index (Ji) values ∀i ∈ B.

Since the number of users connected to a BS and the satisfaction of each user depends

on their spectral efficiency and on the allocation of resources, the maximum overall user

satisfaction varies along time. Let us define, for a given time interval t, the maximum

achievable Overall User Satisfaction at BS i as OSmaxi (t) = max
wij(t)

{OSi(t)}. Based on

the definition, the Overall User Satisfaction achieved with a specific resource allocation

can be expressed as a fraction of the maximum value. Therefore, we define the relative

overall user satisfaction φi(t) = OSi(t)/OS
max
i (t) ∈ [0, 1] as a QoE-aware performance

metric. The objective of the MNO is then given by

φi(t) ≥ φmin, ∀i ∈ B, (4.7)

where φmin is a minimum threshold defined by the MNO.
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4.3.2 MNO Economic Profit

The objective of the MNO is the maximization of the profit while satisfying the QoE

required by the users. Specifically, the total profit P (t) of the MNO is the sum of the

individual profits of each BS Pi(t), i.e. P (t) =
∑

i∈B Pi(t). In [28], Pi(t) is expressed

as the revenue obtained from the traffic served at time t, Ri(t), minus the cost incurred

when serving the traffic, which depicts the bandwidth utilization cost, CBi(t). Therefore,

P (t) =
∑
i∈B

Pi(t) =
∑
i∈B

(Ri(t)− CBi(t)), [e ]. (4.8)

The revenue of BS i, Ri(t), is usually the price of the services paid by the users in Ui.
That is, Ri(t) =

∑
j∈Ui Rij(t), where Rij(t) = pkj is the revenue paid by user j with

an SP πkj , when connected to BS i at time period t for a duration of T seconds. With

regard to CBi(t), it is a convex and increasing exponential function of the total resources

used by BS i, wi(t) =
∑

j∈Ui wij(t) [28], and for a duration of T seconds it can be written

as

CBi(t) = cie
hiwi(t)biT, (4.9)

where ci (in e /sec) and hi (in MHz-1) are adjusting factors that capture the differences

in the operational cost of the different BSs (e.g. macrocells and small cells have different

transmit power, maintenance cost, site rent, etc). Substituting (4.1) and (4.9) into (4.8),

and denoting the SP of a generic user j as πkj , the profit of BS i at time period t with

a duration of T seconds when Q
kjdj
j (t) ∈ (Qdropkj

, Qtgkj ] is given by

Pi(t) =
∑
j∈Ui

pkj − cie
hi
∑

j∈Ui
wij(t)biT (4.10)

= T

∑
j∈UB

i

εij(t)wij(t)bi
8

θBkj1(σij(t) > 0)

+
∑
j∈Ut

i

θtkj1(σij(t) > 0)− ciehi
∑

j∈Ui
wij(t)bi

 ,

where 1(·) is the binary indicator function, which is equal to 1 if the condition is true

and 0 otherwise. We use the binary indicator function in order to emphasize that a BS

i will not receive revenue if the allocated resources to user j, wij(t), do not suffice for a

satisfactory service with σij(t) > 0.

It can be seen in (4.10) that the profit is influenced by multifarious factors, such as the

perceived QoE (which in turn depends on multiple factors), the cost, the radio resources

usage, etc. The maximization of the profit involves all these factors.
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4.4 Problem Formulation

As explained in the previous section, the MNO aims to maximize its profit, while satis-

fying the required QoE of all users. However, when not all users can be served with the

required QoE due to network congestion, the MNO must ensure fairness among them

and the highest possible QoE level. In the following, we present the formulation of the

profit maximization problem for our contributions.

4.4.1 QoE-Aware User Association

It should be noted that for our contribution in user association we adopted a QoE-based

charging policy where the price (and revenue) is reduced when satisfaction is below 1,

as proposed in [19]. In other words, the service price is reduced when σij(t) < 1. Thus,

based on [19], for a user j served by BS i and with a SP πkj , the BS i revenue is given

by

Rij(t) = σij(t) · pkj (4.11)

Let us define the association of user j to BS i at time period t as xij(t), where xij(t) = 1

if user j is served by BS i and xij(t) = 0 otherwise. In order to capture the impact of

dynamic traffic demand and channel conditions, we assume that the users are mobile

within the area under study and maximize the profit for a period of NS subframes of T

seconds duration. Taking the above into consideration, the user association problem for

profit maximization is formulated based on (4.10) and (4.11) as

max
xij ,wij ,i∈B,j∈U

NS∑
t=1

P (t) =

NS∑
t=1

∑
i∈B

∑
j∈U

xij(t)σij(t)pkjT (4.12)

−
NS∑
t=1

∑
i∈B

cie
hibi

∑
j∈U xij(t)wij(t)T,

s.t.
∑
i∈B

xij ≤ 1, ∀i ∈ B, ∀j ∈ U , (4.12a)

wi ∈ [0, 1], ∀i ∈ B, (4.12b)

σij = σin, ∀i ∈ B, ∀j, n ∈ Ui, (4.12c)

In the optimization problem, users cannot be connected to more than a single BS (4.12a),

the maximum bandwidth allocated by BS i is bi, that is
∑

j∈Ui wij(t) = wi(t) ≤ 1

(4.12b), and QoE fairness must be guaranteed (4.12c). Due to the binary nature of the

association variable xij(t), this maximization problem is a Mixed Integer Non-Linear

Problem (MINLP) and cannot be solved in polynomial time (i.e. it is NP-hard).
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4.4.2 QoE-Aware Resource Allocation and Dynamic Pricing

Given a particular association of users in the system’s BSs, the maximization of the total

MNO profit is equivalent to the maximization of each BS i’s profit individually through

resource allocation (and dynamic pricing when applied). Hence, the BS i’s resource

allocation and dynamic pricing problem for profit maximization at time t is formulated

based on (4.10) as

max
wij ,λij ,j∈Ui

Pi(t) = T

∑
j∈UB

i

εij(t)wij(t)bi
8

λijθ
B
kj
1(σij(t) > 0) (4.13)

+
∑
j∈Ut

i

λijθ
t
kj
1(σij(t) > 0)− ciehi

∑
j∈Ui

wij(t)bi

 ,

s.t. wi ∈ [0, 1], ∀i ∈ B, (4.13a)

Ji(t) ≥ Jmin, ∀i ∈ B, (4.13b)

φi(t) ≥ φmin. (4.13c)

In the optimization problem, the maximum bandwidth allocated by BS i is bi, that is∑
∀j∈Ui wij(t) = wi(t) ≤ 1 (4.13a), and QoE fairness must be guaranteed for a minimum

Jain’s index value, Jmin (4.13b). Finally, the relative overall user satisfaction must

be higher than the minimum threshold φmin (4.13c). Since we use the binary indica-

tor function in Pi(t), the optimization problem in (4.13) is a MINLP problem, whose

computational complexity is NP-hard [101].

It should be noted that for our contribution dedicated solely to the resource allocation

problem wE do not consider dynamic pricing. Hence, for the solution of this problem the

pricing factor λij is stable and always equal to 1. Regarding the formulation of the joint

resource allocation and dynamic pricing problem we did not impose a fairness condition.

Thus, the constraint in (4.13b) is not considered for the solution of the problem in (4.13).

4.5 QoE-Aware Algorithms

As it was shown in the previous section, the formulated problems are described by NP-

hardness. In order to address the high complexity of their solution, in this section we

present low-complexity, greedy, heuristic algorithms, which we proposed in our contri-

butions.
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Algorithm 2: QoE-Aware user Association Algorithm

1 Create A(t) as the set of users with σij(t− 1) < 1 or a NLOS channel with serving
BS.

2 if A(t) 6= ∅ then
3 for j ∈ U \ A(t) do
4 xij(t) = xij(t− 1), ∀i ∈ B
5 end

6 Initialize wi(t) = wi(t− 1); Pi(t) = Pi(t− 1); Rij(t) = Rij(t− 1); ∀i ∈ B, ∀j ∈ Ui
7 while A(t) 6= ∅ do
8 Select user j randomly from A(t)
9 m = arg max

i∈B
xij(t− 1)

10 Pm(t) = Pm(t)−Rmj(t) + +cme
hmwm(t)bm

(
1− e−hmwmj(t−1)bm

)
11 wm(t) = wm(t)− wmj(t− 1)
12 for i ∈ B do

13 ŵij(t) = min
(

rkd
εij(t)bi

, 1− wi(t)
)

14 Calculate σ̂ij(t), R̂ij(t) according to (4.2),(4.11) for ŵij(t)

15 P̂i(t) = Pi(t) + R̂ij(t)− −ciehiwi(t)bi(ehiŵij(t)bi − 1)
16 ŵi(t) = wi(t) + ŵij(t)

17 end
18 if ∃i ∈ B such that σ̂ij(t) = 1 then

19 m = arg max
i∈B:σ̂ij(t)=1

{P̂i(t) +
∑

v∈B\{i}

Pv(t)}

20 xmj(t) = 1; xvj(t) = 0, ∀v ∈ B \m
21 wm(t) = ŵi(t); Rmj(t) = R̂mj(t); Pm(t) = P̂m(t)

22 else if ∃i ∈ B such that σ̂ij(t) ∈ (0, 1) then

23 m = arg max
i∈B:σ̂ij(t)∈(0,1)

{P̂i(t) +
∑

v∈B\{i}

Pv(t)}

24 xmj(t) = 1; xvj(t) = 0, ∀v ∈ B \m
25 wm(t) = ŵi(t); Rmj(t) = R̂mj(t); Pm(t) = P̂m(t)

26 else
27 xvj(t) = 0, ∀v ∈ B
28 end
29 A(t) = A(t) \ {j}
30 end

31 end

4.5.1 QoE-Aware User Association

For the solution of the profit maximization problem in (4.12), we proposed a greedy, low

complexity algorithm, O(n2), which is presented in Algorithm 2. This algorithm takes

as input the user’s SP-device pair (πkj , dj), as well as the BSs’ state in the previous

subframe (i.e. wij(t − 1), Rij(t − 1), ∀j ∈ Ui,∀i ∈ B), to maximize the MNO profit

through the user association. At the beginning of the subframe t, the algorithm creates

the set A(t) with all the users that, being served by a BS, had a satisfaction below 1 at
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time t − 1, i.e. σij(t − 1) < 1, and the users that consumed a lot of resources due to a

Non-Line-Of-Sight (NLOS) connection2 (line 1). If the set is not empty, all users with

σij(t−1) = 1 are associated to the same BS they were associated with at time t−1 (line

4). For the association of the rest of the users, the algorithm makes use of the estimates

of wi(t), Pi(t) and Rij(t), denoted as wi(t), Pi(t) and Rij(t).

Users in A(t) are selected randomly, one by one, in order to avoid the prioritization

of users during the association procedure, and hence guarantee fairness . Each user’s

contribution to the estimated BS profit, where the user was connected to at time t− 1

is subtracted (lines 8-11). The algorithm estimates the resources needed/available in

each BS, ŵij(t), the expected revenue, R̂ij(t), and the expected satisfaction, σ̂ij(t) (line

13). Then, for all BSs, if there are BSs that provide satisfaction equal to 1, the user

will be associated -in a greedy manner- to the BS that maximizes the MNO profit while

σ̂ij(t) = 1 (lines 18-21). If there are not BSs that could provide σ̂ij(t) = 1, but σ̂ij(t) > 0,

the user will be associated with the BS that maximizes the MNO profit with σ̂ij(t) > 0

(lines 22-25). The rest of users are not associated to any BS, since there are not enough

resources in the neighbouring BSs or the channels between the user and the BSs are in

outage (line 27). The procedure is repeated for all users in A(t).

4.5.2 QoE-Aware Resource Allocation

As it can be observed in (4.13), the resource allocation for profit optimization is con-

strained by minimum fairness and overall user satisfaction values. In this section we

analyse the interaction between satisfaction, fairness and profit, and propose a greedy,

heuristic, QoE-aware resource allocation algorithm for profit maximization.

Based on (4.13), the MNO profit can be maximized by reducing the cost and/or increas-

ing the revenue. However, it is noteworthy that for a given association of users to BS i,

Ui, the bandwidth utilization cost depends on the total amount of resources allocated to

users, regardless of how they are distributed among the users. Therefore, the utilization

cost (CBi(t)) is fixed for a given number of total resources (wi(t)).

In turn, (4.1) shows that the revenue presents a differentiated behaviour for time-based

charged services and data-based charged services. Whereas the revenue generated by

a user with a time-based charged service remains constant as long as the connection is

not dropped, the revenue generated by users with a data-based charged service increases

with the amount of transferred data. In other words, after providing time-based charged

2In a mmWave link, an NLOS connection demands significantly more spectrum resources than an
LOS connection in order to achieve the same QoS/QoE [99]. Hence, it is reasonable to re-associate a
user with an NLOS connection to a different BS an LOS links in order to achieve more efficient spectrum
resource usage.
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users with the minimum amount of resources required to guarantee that the perceived

QoE is above the minimum QoE level, the revenue can be increased by allocating the rest

of resources to data-based charged users. Note that in terms of QoE the aforementioned

resources allocation strategy is translated into low satisfaction of time-based charged

users (their σij(t) is low but above 0) and higher satisfaction of data-based charged

users. These differences between the two types of services lead to resources allocation

unfairness (i.e. low Jain’s index values, Ji(t)) and could result in low relative overall

user satisfaction (φi(t)). This is the reason why (4.13b) and (4.13c) impose minimum

fairness and minimum relative overall user satisfaction levels, respectively, and this is

also the reason why the heuristic algorithm presented in the sequel takes both aspects

into account. This analysis shows that there is a trade-off between the MNO profit and

the network performance, as the optimization of one of the two objectives comes at the

expense of the other.

In order to overcome the complexity of the maximization problem stated in (4.13), we

propose a low-complexity resource allocation algorithm, O(n2), presented in Algorithm

3, that maximizes the MNO profit for a minimum fairness and OS level (i.e. Jmin and

φmin). This greedy, Profit Maximizing resource allocation algorithm (referred to as PM)

takes as input the users associated to a BS at period t, and each user’s SP-device pair

(pk, d).

PM is divided into three parts. In the first part, PM determines the resource allocation

that maximizes BS i’s Overall Satisfaction OSi(t) (steps 1-15). Subsequently, using as

input the resource allocation obtained from the first part of the algorithm, PM deter-

mines the resource allocation that maximizes Pi(t), while satisfying φi(t) ≥ φmin (steps

16-29). Finally, the profit maximizing resources allocation determined in the previous

step is iteratively modified until the minimum overall user satisfaction and the minimum

fairness constraints are satisfied (steps 30-32).

The first part of Algorithm 3 (steps 1-15) is a greedy algorithm that aims to determine

the resources allocation (i.e. the value of wij(t) ∀j ∈ Ui) that maximizes the OSi.

The algorithm initially computes the resources required to meet the maximum user

satisfaction for each user. By substituting (4.2) in (4.3), wij(t) can be expressed as

wij(t) =
1

εij(t)biβkjdj

[
rkdβkjdj (4.14)

+ log

σij(t)(Qtgkj −Qdropkj
) +Qdropkj

αkjdjQp(pkj )
−
γkjdj
αkjdj


Subsequently, the algorithm assigns resources iteratively to the user j ∈ Ui with the

least resource requirements. Particularly, each user is allocated the resources calculated
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Algorithm 3: Profit Maximizing RA Algorithm (PM)

1 Set U ′i = Ui
2 Compute wij(t) ≤ 1 to maximize σij(t) for each j ∈ Ui using (4.14)
3 wi(t) = 0
4 while U ′i 6= ∅ do
5 Find user j ∈ U ′i with min(wij(t))
6 if wij(t) ≤ 1− wi(t) then
7 wi(t) = wi(t) + wij(t)
8 else if σij(t) ≥ σminij for wij(t) = 1− wi(t) then

9 wij(t) = 1− wi(t) and wi(t) = 1

10 else
11 wij(t) = 0
12 end
13 U ′i ← U ′i − {j}
14 end
15 Set OSmaxi (t) = OSi(t), φi(t) = 1 and σstep = σmaxstep

16 while φi(t) ≥ φmin and σstep ≥ σminstep do

17 forall j ∈ Ui do
18 σ−ij(t) = max (σij(t)− σstep, 0)

19 σ+
ij(t) = min (σij(t) + σstep, 1)

20 Calculate the total profit Pi(t) and φi(t) with σij(t) = σ−ij(t) and

σij(t) = σ+
ij(t)

21 Store the maximum profit Pi(t) s.t. φi(t) ≥ φmin and wi(t) ≤ 1 in P ′ij(t) and
the corresponding φi(t) and σij(t) in φ′ij(t) and σ′ij(t)

22 end

23 j∗ = arg max
j

(
P ′ij(t)

)
24 if P ′ij∗(t) > Pi(t) then

25 Pi(t) = P ′ij∗(t), φi(t) = φ′ij∗(t), σij∗(t) = σ′ij∗(t) and the corresponding wij(t)
values are updated

26 else
27 Reduce σstep
28 end

29 end
30 Calculate Jain’s index Ji(t) and set σstep = σmaxstep

31 Repeat steps 16-29 while Ji(t) < Jmin

32 Select the maximum P ′ij(t) in 23 that reduces |Ji(t)− Jmin|

previously until the total available resources are depleted. In case of resources depletion,

the resources allocated to the remaining users are reduced as long as the user satisfaction

is above the minimum acceptable satisfaction value σminij or are set to 0 otherwise. With

this, the overall user satisfaction is maximized, but fairness is not taken into account.

The second part of PM (steps 16-29) is a greedy, profit maximization algorithm on the

basis of the resources allocation resulted from the first part of the algorithm (steps 1-

15). Specifically, for each user the user satisfaction is decreased (step 18) and increased
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(step 19) with σstep (the resources allocation wij(t) is calculated from (4.14)), and then

the profit is calculated for both satisfaction values. Only σij(t) values that increase the

profit are considered as feasible results. This procedure is repeated iteratively for each

user and for different values of σstep as long as the relative overall user satisfaction is

above the minimum threshold. The resources allocation is updated with the distribution

of resources that provides the maximum profit for a relative user satisfaction level above

φmin, that is, the optimal solution in a single iteration. Therefore, the resulting resources

allocation of the second part of the PM algorithm converges to a local optimal solution

of the profit maximization problem for a given minimum satisfaction, which at times

can be a global maximum [102].

The last part of the PM algorithm (steps 30-32) introduces the fairness. Thus, starting

from the resources allocation obtained in the second part of the algorithm, PM executes

the same greedy process run in the second part (steps 16-29) but this time only solutions

that converge to Jmin are selected (i.e. with declining |Ji(t) − Jmin| values). This last

part, and hence PM, is terminated when there are no alternative resource allocations

that satisfy the relative overall satisfaction threshold and the convergence of Ji(t) to

Jmin.

It should be noted that PM consists of three greedy iterative algorithms, which in each

of their iterations make the optimal decision for a subproblem (e.g. maximize the OSi

or Pi by allocating resources to a single user at a time). However, it is probable that it

converges to locally optimal solutions instead of the global optimum [102]. Thus, PM

may not always perform optimally, which we will examine in Section 4.6.2.

4.5.3 Dynamic Pricing

As explained in Section 4.3.1, the service price is one of the key factors that affects

the users’ QoE perception. Particularly, by observing expressions (4.3), (4.4) and

(4.5), we notice that when pk is lowered (increased), the QoE’s price-based component

(Qp(pk)) increases (decreases). For instance, when the charging is lowered to p′k < pk,

Qp increases (i.e. Qp(p
′
k) > Qp(pk)). Thus, a particular target QoE level Qtgk can

be achieved by offering the same service with lower price and rate r′j < rkd, that is,

Qtgk = Q̂kdj (rkd)Qp(pk) = Q̂kdj (r′j)Qp(p
′
k). Conversely, when pk is raised, it is not possible

to achieve the highest QoE levels, even when the QoS reaches its peak (i.e. rj = rkd).

Therefore, reducing pk (i.e. λij ∈ [0, 1)) allows for the reduction of a user’s rate rj(t)

without lowering her satisfaction, which in turn reduces her resource utilization wij(t).

Thus, our proposal on dynamic pricing is the use of price reduction in order to release

spectrum resources from specific users. These released resources can be then used on
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other users to improve the OS during congestion. Moreover, our proposal on dynamic

pricing can be used to increase Pi(t). Particularly, when this scheme is used, we decrease

both Rij(t) and CBi(t). Hence, when the cost reduction is higher than the revenue loss,

Pi(t) becomes higher. Finally, this form of dynamic pricing can be applied on the existing

pricing schemes an MNO uses along with the employed resource allocation scheme.

In order to apply our proposal on dynamic pricing while solving the profit maximization

problem in (4.13), we propose a greedy, low complexity algorithm O(n3), presented in

Algorithm 4. This algorithm takes as input the BS i’s users’ SP-device pair (pkj , dj),

to maximize the MNO profit for a minimum relative OS level φmin through resource

allocation and dynamic pricing.

Similar to Algorithm 3, the rationale behind Algorithm 4 is to initially determine the

resource allocation that maximizes BS i’s OSi(t). Subsequently, using as input this

allocation, the algorithm determines the resource allocation and pricing (i.e. λij) that

maximize Pi(t) for the required OS constraint (i.e. φi(t) ≥ φmin).

Initially, Algorithm 4 calculates the wij(t) needed to serve each user with the maximum

σij(t) (step 1). Subsequently, it allocates resources starting from the user with the least

resource requirements towards the user with the highest (steps 3-11). Finally, either all

users are satisfied (i.e. OSi = NU ) or the resources are depleted. Next, the algorithm

sets OSmaxi (t) = OSi(t), φi(t) = 1, and the discrete set Λ = {0, 0.1, . . . , 1} of λij values

that BS i can use for pricing.

In the following iterative procedure (steps 13-28), each user’s satisfaction is decreased

(step 15) and increased (step 16) with σstep (the resource allocation wij(t) is calculated

from (4.14)). For both satisfaction values, we reduce pk for the λij values in Λ, and

calculate the corresponding profit (steps 14-21). Only σij(t) values that increase the

profit are considered as feasible results. This procedure is repeated iteratively for each

user and for different values of σstep as long as the relative overall user satisfaction is

above the minimum threshold. The resource allocation and pricing are updated with

the distribution of resources and the λij values that provide the maximum profit for a

relative user satisfaction level above φmin.

It should be noted that for our contribution in dynamic pricing we did not consider a

fairness constraint. As in Algorithm 3, when Algorithm 4 is applied for φmin = 1, the

corresponding Jain’s fairness index for the served users is always the maximum possible

(as it will be shown in Section 4.6.2). This occurs due to the fact that when φmin = 1

both algorithms skip their second (and third) part, since the overall user satisfaction

achieved in the first part cannot be reduced. Thus, all of the served users receive a

satisfaction σij(t) = 1, with the possible exception of a single user receiving σij(t) ∈ (0, 1)
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Algorithm 4: Profit Maximizing joint RA-DP Algorithm

1 Calculate wij(t) ≤ 1 for maximum σij(t), ∀j ∈ Ui
2 wi(t) = 0
3 forall j ∈ Ui in ascending order of wij(t) do
4 if wij(t) ≤ 1− wi(t) then
5 wi(t) = wi(t) + wij(t)
6 else if σij(t) ≥ σmin for wij(t) = 1− wi(t) then
7 wij(t) = 1− wi(t) and wi(t) = 1

8 else
9 wij(t) = 0

10 end

11 end
12 Set OSmaxi (t) = OSi(t), φi(t) = 1, σstep = σmaxstep and Λ = {0, 0.1, . . . , 1}
13 while φi(t) ≥ φmin and σstep ≥ σminstep do

14 for j ∈ Ui do
15 σ−ij(t) = max (σij(t)− σstep, 0)

16 σ+
ij(t) = min (σij(t) + σstep, 1)

17 for λij ∈ Λ do
18 Calculate the total profit Pi(t) and φi(t) with σij(t) = σ−ij(t) and

σij(t) = σ+
ij(t)

19 Store the maximum profit Pi(t) s.t. φi(t) ≥ φmin and wi(t) ≤ 1 in
P ′ij(t, λij) and the corresponding φi(t) and σij(t) in φ′ij(t, λij) and
σ′ij(t, λij)

20 end

21 end

22 (j∗, λ∗ij) = arg max
j,λij

(
P ′ij(t, λij)

)
23 if P ′ij∗(t, λ

∗
ij) > Pi(t) then

24 Pi(t) = P ′ij∗(t, λ
∗
ij), φi(t) = φ′ij∗(t, λ

∗
ij), σij∗(t) = σ′ij∗(t, λ

∗
ij) and the

corresponding wij(t), λij(t) values are updated

25 else
26 Reduce σstep
27 end

28 end

(hence Ji(t) = 1 or Ji(t) ∼= 1). Therefore, the use of a fairness algorithm component

as in Algorithm 3 was deemed unnecessary, since this contribution’s objective is the

dynamic pricing and not the fairness-OS-profit trade-off, which we analyse thoroughly

in our contribution dedicated solely to resource allocation.

4.5.4 Feasibility

The feasibility of the above algorithms depends on the availability of wij(t−1), Rij(t−1)

and the information needed to calculate σ̂ij(t) and R̂ij(t) (for Algorithm 2), the users’

SINR (for the calculation of their spectral efficiency εij(t)), as well as monitoring the
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actual user rate rj(t). In LTE-A, the SINR is calculated by the device and sent to the

BS over the Physical Uplink Control Channel (PUCCH) or the Physical Uplink Shared

Channel (PUSCH) [93]. In LTE-A, real-time monitoring of the User Equipment (UE)

application layer data throughput performance is used for measuring the provided QoS

[103]. The necessary information for σ̂ij(t) and R̂ij(t) can be obtained in real time with a

module such as the Policy and Charging Control (PCC) in LTE-A, which can control the

QoS on a per service data flow, apply different charging models, as well as control usage

monitoring to make dynamic policy decisions [104]. Moreover, such a module would

be responsible and able to apply our diverse pricing scheme as well as our proposal on

dynamic pricing.

4.6 Performance Evaluation

In this section, we evaluate the performance of each algorithm (in dedicated subsections)

presented in Section 4.5, which we proposed for the solution of the profit maximization

problems in Section 4.4.

4.6.1 QoE-Aware User Association

4.6.1.1 Scenario description and parameters

The scenario used for the performance evaluation consists of a cluster with 4 mmWave

small cells deployed in the coverage area of a macrocell eNB sector. The cluster is

square shaped and centred at location c = (xc, 0), as shown in the layout depicted in

Fig. 4.2. Along simulations, xc is randomly selected according to a uniform distribution

with xc ∈ [100, 190]m. The mmWave channel is modelled as a three-states channel[99],

with LOS, NLOS and outage states. Although high directivity of antennas compensates

partially the path loss, the probability of LOS communications falls rapidly as the dis-

tance between transmitter and receiver increases. In the scenario we define Rsc as the

distance at which the probability of having a LOS communication is 0.55. According

to [99], PLOS(Rsc) = 0.55 holds for Rsc=40m in the 28GHz band. In the sequel the

Inter-Site Distance (ISD) between small cells, RISD, is expressed as a multiple of Rsc,

that is, RISD = nRsc, with n ∈ N, as we aim to shed light on the impact of a varying

small cell ISD.

Users are uniformly distributed within the cluster and move with a speed of 5 km/h. The

SP of each user is selected with equal probability among the SPs defined in Table 4.2.

As it can be observed in Table 4.2, three services are considered, each one with two QoE
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Figure 4.2: Simulation scenario topology

Table 4.2: Service Profiles’ parameters

Service QoE class {rk1, rk2, rk3} (Mbps) θtk or θBk
Service 1 Basic 80 3 · 10−4e /MB

(Data Based) Premium 100 4 · 10−4e /MB

Service 2 Basic {50, 65, 80} 3.5e /h
(Time Based) Premium {60, 75, 90} 5e /h

Service 3 Basic {70, 85, 90} 3.5e /h
(Time Based) Premium {80, 100, 120} 5e /h

classes Q = {Basic, Premium}: Service 1 is a data-based charged service, and Services

2 and 3 are time-based charged services. Likewise, 3 different devices are considered,

and the corresponding transmission rates associated to each SP, rkd, are also included

in Table 4.2. Note that for each SP, rkd is the transmission rate required to perceive a

QoE equal to Qtgk . In the simulations, the transmission rate that results in a perceived

QoE equal to Qdropk is set to rdropkd = 0.7rkd for all SPs. Moreover, vk is selected so as to

have Qp(pk) = 0.9 in (4.5), and


αkd =

Qtg
k

Qp(pk) − γkd (4.15a)

βkd = − 1

∆rdropj

ln

(
Qdrop

k −γkdQp(pk)

Qtg
k −γkdQp(pk)

)
, (4.15b)

where ∆rdropj = rkd − rdropkd , and γkd = 1, for all πk, d ∈ D and (Qtgk , Q
drop
k ) = (3.5, 2.5)

for the Basic QoE class of all services and (Qtgk , Q
drop
k ) = (4.5, 3.5) for the Premium QoE

class of all services .

Parameters used for the BSs, both eNBs and small cells, are listed in Table 4.3. For

the bandwidth allocation in the two tiers, we adopted the 5G configuration proposed by
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Table 4.3: BS parameters

Parameter Macrocell Small cell

ci (e ) 5 · 10−6 5 · 10−6

hi (MHz-1) 39 · 10−3 16 · 10−3

bi (MHz) 200 500

Transmission Power (dBm) 43 37

a leading telecommunications vendor [105]. The 3GPP LTE-A channel model used for

macrocells is described in [93] and for small cells (in the 28GHz band) in [99]. Antenna

gains are set to 0 dB and, due to high antenna directivity in the mmWave band, small

cells communications are assumed to be noise-limited. In conventional cellular networks,

the cell selection is based on schemes that connect the users to the BS with the strongest

signal [106]. Hence, in the following we compare the proposed QoE-aware Association

Algorithm (denoted as Q-AAA) with a SINR-based cell selection algorithm (referred to

as SINR-Alg). This means that when we apply the SINR-Alg the users are served by

the BS with the highest SINR. It should be noted that the resource allocation in both

algorithms satisfies the condition for QoE fairness (i.e. σij(t) = σin(t) for any j, n ∈ Ui).

4.6.1.2 Comparison with SINR Algorithm

Fig. 4.3 shows the expected total utilization of the spectrum, which is defined as

W = E
[
W (t) =

∑
i∈B wi(t)bi∑

i∈B bi

]
. As it can be observed, the proposed algorithm (Q-AAA)

presents higher bandwidth utilization than the cell association algorithm based on the

SINR (SINR-Alg) for both RISD = 2Rsc and RISD = 3Rsc. As expected, SINR-Alg

should always present the best spectrum efficiency, and consequently, the lowest band-

width utilization, since users tend to use the most efficient Modulation and Coding

Scheme (MCS). Interesting enough, a different behaviour can be noticed between the

two algorithms regarding NU and RISD. As it can be seen, for Q-AAA utilization in-

creases with NU , and is comparable regarding RISD. As RISD rises, the average distance

between BSs and users grows as well. Thus, the probability of serving users with NLOS

links raises, increasing W . The broad difference in W between the two RISD values

observed for SINR-Alg can be explained with the help of Fig. 4.4.

Fig. 4.4 shows the percentage of time during which the users had a satisfaction above

0, i.e. σij>0. For both algorithms, the users perceive σij>0 for less time as NU and

RISD increase. As the system’s bandwidth demands increase with both NU and RISD,

the system can accommodate a lower percentage of users. We further observe that

Q-AAA achieves gains up to 25% and 81% for RISD={2,3}Rsc respectively. This can

be explained by the fact that Q-AAA prioritizes users that can obtain an appropriate
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QoE over users that cannot, whereas SINR-Alg connects users without considering the

available BS resources. Thus, SINR-Alg congests the BSs more frequently, dropping

users to satisfy the QoE fairness condition.

Fig. 4.5 presents the empirical CDFs of σij , for NU = {40, 70} and RISD = {2, 3}Rsc.
As it can be observed, σij diminishes as NU and RISD increase and the system gets

congested more frequently. Hence, the QoE is degraded more regularly, while the service

time with σij > 0 decreases as well (see Fig. 4.4). It can be deduced from Fig. 4.3-4.5

that Q-AAA results in less frequent congestion of the BSs, and provides higher QoE

for longer time periods. The above explains why P increases with Q-AAA, whereas it

decreases for the SINR-Alg not only with RISD, but also with NU , as shown in Fig. 4.6.
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Figure 4.5: CDF of the user satisfaction
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This happens because as Q-AAA offers higher user satisfaction for longer time period,

the MNO generates larger revenue, compensating the higher bandwidth utilization.

Our proposed algorithm, Q-AAA, manages to offer higher QoE to the users and profit

to the MNO compared to the reference algorithm, because it bases its decisions on both

the technological (i.e. QoS/QoE requirements) and economic (i.e. pricing and profit)

context of the network. This scheme can guarantee the sustainability of a network,

providing the incentives for adoption in future 5G deployments.
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Figure 4.7: Simulation scenario topology

Summary of results

• Q-AAA requires a higher system bandwidth utilization than SINR-Alg, which

however leads to lower congestion of BSs along with users served with higher

satisfaction and for more time.

• Q-AAA gains substantially higher profit than SINR-Alg, thanks to the better

network performance.

• The increase in inter-site distance among the small cells deteriorates the network

performance and profit gains in both algorithms, however this loss is significantly

lower for Q-AAA than SINR-Alg.

4.6.2 Resource Allocation

4.6.2.1 Scenario description and parameters

The scenario used for the performance evaluation consists of a cluster with 6 small cells

deployed in the coverage area of a macrocell sector. The cluster is circular shaped and

centred at location c = (xc, 0), as shown in the layout depicted in Fig. 4.7. Along

simulations, xc is randomly selected according to a uniform distribution with xc ∈
[100, 190]m. The ISD between two small cells equals RISD = 50m.

Users are uniformly distributed within a radius of RSIM = 75m from c, and the SP

of each user is selected with equal probability among the SPs defined in Table 4.4. As

it can be observed in Table 4.4, three services are considered, each one with two QoE
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Table 4.4: Service Profiles’ parameters

Service QoE class {rk1, rk2, rk3} (Mbps) θtk or θBk
Service 1 Basic 5.5 1.5e /GB

(Data Based) Premium 7 2e /GB

Service 2 Basic {3.5, 4, 5} 4e /h
(Time Based) Premium {4, 4.5, 5.5} 7e /h

Service 3 Basic {4.5, 5.5, 6} 4e /h
(Time Based) Premium {5, 6, 7} 7e /h

Table 4.5: BS parameters

Parameter Macrocell Small cell

ci (e /sec) 5 · 10−5 5 · 10−5

hi (MHz-1) 0.28 0.275

bi (MHz) 20 20

Transmission Power (dBm) 43 30

classes Q = {Basic, Premium}: Service 1 is a data-based charged service, and Services

2 and 3 are time-based charged services. Likewise, 3 different devices are considered,

and the corresponding transmission rates associated to each SP, rkd, are also included

in Table 4.4. Note that for each SP, rkd is the transmission rate required to perceive the

service’s target QoE level, Qtgk . In the simulations, the transmission rate that results in a

perceived QoE equal to Qdropk is set to rdropkd = 0.7rkd for all SPs. Therefore, when a user

is served with a data rate below or equal to 0.7rkd, the connection is dropped. Moreover,

vk is selected randomly so as to have a price-based QoE component Qp(pk) ∈ [0.8, 0.9]

in (4.5), αkd and βkd are calculated according to (4.15a) and (4.15b), and γkd = 1, for

all SPs πk, devices d ∈ D and target and drop QoE levels (Qtgk , Q
drop
k ) = (3.5, 2.5) for

Basic QoE class and (Qtgk ,Qdropk ) = (4.5, 3.5) for Premium QoE class of all services.

Parameters used for the BSs, both eNBs and small cells, are listed in Table 4.5. For

the carrier bandwidth allocated to each tier, we adopted 3GPP LTE-A’s channel models

described in [93], and the antenna gains are set to 0 dB. For the cell selection, we

associate the users to the BS with the highest SINR, as it is common practice in mobile

networks [106]. For PM, the values for the change in user satisfaction are σstep =

{0.01, 0.05}. Moreover, the minimum acceptable satisfaction level for all algorithms

is σminij = 0.01 (note that with null user satisfaction, i.e. σij(t) = 0, the session is

dropped). The results shown in the following subsections were acquired through Monte-

Carlo simulations, where each simulation iteration examines a single network instance

of a T = 1 sec duration. It should be noted that we assume perfect channel estimation,

and hence we do not inspect the network and economic impact of imperfect channel

estimations or rate fluctuations during consecutive instances.
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minimum Jain’s index (Jmin) for NU = 80 users
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4.6.2.2 Impact of fairness and Satisfaction constraints

Initially, we present how the fairness and relative overall satisfaction objectives (i.e.

Jmin and φmin) affect the user satisfaction, the network performance and the MNO

profit, when we apply PM on a system with NU = 80 users. We also present the results

generated by the optimal solution of the problem in (4.13) (henceforth labelled as Opt).

In Fig. 4.8 and 4.9 we show the expected user satisfaction of the data-based and time-

based charged users, denoted by E[σBij ] and E[σtij ], respectively. Unserved users are not

considered in the calculation of E[σtij ] and E[σBij ], since when users are not served the

satisfaction of the user is σij(t) = 0. We observe that for low to medium relative overall

user satisfaction levels φmin and no fairness constraint (Jmin = 0) there is a substantial
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difference between the user satisfaction of data-based and time-based charged users (i.e.

521% and 69% higher mean satisfaction of data-based charged users (E[σBij ]) than of

time-based charged users (E[σtij ]), when relative overall satisfaction is φmin = 0 and

φmin = 0.6 respectively). As explained in section 4.5.2, a BS i can maximize its profit

by serving time-based charged users with the minimum acceptable satisfaction (thus

with the minimum allocation of resources wij(t)). At the same time, the data-based

charged users require to be served with high rates (and satisfaction) in order for BS

i to gain high revenue. However, as the fairness requirement increases (Jmin ↑), the

difference between the mean satisfaction of data-based and time-based charged users

(E[σBij ] and E[σtij ]) decreases. In order to increase fairness (Ji(t)), the standard deviation

of the satisfaction among the users in BS i must be decreased (as explained in Section

4.5.2). This can only be achieved by increasing the resources allocated to time-based

charged users at the expense of reducing the resources allocated to data-based charged

users. Finally, we observe that for high relative overall satisfaction constraints (i.e.

φmin = 1, or in other words, the overall user satisfaction must be always the maximum

one, OSmaxi ), the PM algorithm skips the second and the third parts of Algorithm 3,

since the overall user satisfaction achieved in the first part of PM (step 15) can not be

reduced. Therefore, users are either served with maximum satisfaction (σij(t) = 1) or

dropped3. Regarding the optimal results, we observe that they show the same trend as

PM, and small differences for medium to high Jmin values.

Table 4.6: Percentage of Served Users for NU = 80

PM Data-Charged Users Time-Charged Users

φmin / Jmin 0 1 0 1

0 52.69% 54.13% 67.12% 68.74%

1 52.68% 52.68% 65.05% 65.05%

Table 4.6 shows the percentage of users served according to their service’s pricing scheme,

for target minimum Jain’s index and relative overall users satisfaction (Jmin and φmin)

equal to 0 and 1 (i.e. minimum and maximum levels) for NU = 80 users, according

to the PM results4. Note that Jmin is the objective, but the actual value of the Jain’s

index Ji(t) could not reach Jmin if there are users with very low SINR levels. We observe

that for a given number of users NU , fairness and relative overall satisfaction objectives

(Jmin and φmin) have little or no effect on the percentage of served users. However, we

observe that more time-based than data-based charged users are served in all cases (i.e.

[23, 27]% more time-based charged users). This occurs because in general time-based

charged services have lower requirements in terms of transmission rate than data-based

3As resources are allocated until their depletion, the last user served could receive resources that
result in 0 < σij(t) < 1 (steps 8-9).

4The corresponding optimal results are approximately the same with absolute differences below 1%,
and hence they are omitted.
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charged services. Therefore, although more time-based charged users are served (see

Table 4.6), they are served with lower satisfaction, for low and medium relative overall

satisfaction objectives (see Fig. 4.8 and 4.9).

Fig. 4.10 and Fig. 4.11 depict the MNO profit P and the total overall satisfaction

OS for NU = 80 users, respectively. In these two figures, we can observe the trade-off

among the MNO profit P , the Overall Satisfaction (OS), and the objective minimum

fairness (Jmin). Particularly, profit is maximized when there are no satisfaction and

fairness constraints, which also leads to the lowest Overall Satisfaction. This occurs

because the lack of fairness and satisfaction objectives turns the PM algorithm into

a pure profit maximization solution. Conversely, when the objective relative overall

satisfaction (φmin) is high, the profit is substantially lower than the maximum (i.e.

[65, 87]% profit gain for φmin = 0 over φmin = 1). This decrease of the profit is caused



Chapter 4. Network and Financial aspects in RAN 99

by the fact that the proposed algorithm initially maximizes the satisfaction; then, it

modifies the solution to increase the profit as long as the minimum relative satisfaction

objective (φmin) is satisfied. Therefore, the higher the value of φmin, the closer to a pure

satisfaction maximization algorithm PM is. Similar to Fig. 4.8 and 4.9, the optimal

results follow the same trend as the PM results, with differences appearing for medium

to high Jmin values. Regarding the MNO profit, we see that PM performs close to the

optimum in most cases. The highest differences are observed for the low and medium

OS requirements (i.e. 3.3% and 8% difference for φmin = 0 and φmin = 0.6 respectively),

whereas there are minuscule differences when the OS must be maximized (i.e. φmin = 1).

From the results in Fig. 4.8-4.11, it can be concluded that when there are two pricing

schemes (data-based and time-based charging), the profit can be maximized only when

data-based charged users are prioritized over the time-based charged users in terms of

average user satisfaction (which leads to low fairness). At the same time, serving more

time-based charged users allows the MNO to gain revenue with a low cost. Finally, the

trade-off between Profit and Overall Satisfaction shows that the increase of one of them

implies the decrease of the other, as specified in the analysis in Section 4.5.2.

4.6.2.3 Comparison with SoA algorithms and impact of pricing

In the following (i.e. Fig. 4.12-4.16 and Table 4.7), we compare PM with two algorithms

referred to as Alg-5 [58] and Alg-6 [70], and the optimal solution of (4.13) (i.e. Opt).

Alg-5[58] is an iterative resources allocation algorithm that maximizes the user QoE. In

each iteration, Alg-5 allocates enough resources to satisfy a single user, starting from

the user with the highest spectral efficiency towards the user with the lowest spectral

efficiency.

Alg-6 is an iterative resources allocation algorithm proposed in [70]. In the scenario pro-

posed in [70], an MNO offers wireless video broadcasting services, and aims to maximize

its profit. Particularly, the MNO broadcasts a set of video contents (e.g. tv channels)

to different users groups. Each user has her own utility function, which is defined as

the perceived QoE minus the charge for the service. In order to maximize the profit,

Alg-6 increases the rate of a single content until either all contents are served with their

“ideal rate”5 or the available bandwidth is fully utilized. The content whose rate will

be increased is the one that maximizes the marginal MNO profit, provided that it is

non-zero.

5In [70], “ideal rate” is defined as the rate that satisfies perfectly all the users that share a particular
content.



Chapter 4. Network and Financial aspects in RAN 100

Number of Users  N
U

50 60 70 80 90 100 110 120

Se
rv

ed
 d

at
a-

ch
ar

ge
d 

us
er

s 
(%

)

30

40

50

60

70

80
PM: p

k

PM: p
k
*

PM: p
k
**

Alg-5: p
k

Alg-6: p
k

Opt: p
k

Figure 4.12: Percentage of served Data-based charged users

In order to compare Alg-6 with PM, we assume that each user demands a content,

which is unique to herself. The “ideal rate” of a broadcast content described in Alg-6

corresponds to the user’s SP-device pair required transmission rate rkd, in our system

model. Therefore, Alg-6 has to broadcast NU unique contents, whose rate requirements

are defined by each user’s SP-device pair. Hence, the broadcasting resources allocation

problem is transformed into the typical resources allocation problem, where each user’s

rate (i.e. QoE) is decided separately.

It should be noted that we do not concur with pure profit maximizing policies that result

in low quality service provision, as presented previously. To that end, the results pro-

vided in the following for PM and Opt are obtained with strict fairness and satisfaction

objectives, that is (Jmin, φmin) = (1, 1), which maximize the OS. In order to study the

variations of the price on PM, two additional price values have been defined with respect

to the price stated in Table 4.4: p∗k = 0.75pk and p∗∗k = 1.5pk. However, initially we only

compare PM, Alg-5, Alg-6 and the optimal results with price equal to pk.

Comparison of PM, Alg-5, Alg-6 and Opt : Fig. 4.12 and 4.13 show the percentage

of served data-based and time-based charged users respectively, whereas Fig. 4.14 and

Table 4.7 show the expected satisfaction for data-based and time-based charged users

(E[σBij ] and E[σtij ] respectively6). Initially, only the price pk is considered. As expected,

we observe in Fig. 4.12 and 4.13 that the percentage of served users decreases as the

total number of users NU is increased, for both data-based and time-based users. This

fact is caused by the network congestion and, consequently, by the lack of resources to

serve all the users.

6The results in Table 4.7 are included as a table because they are constant for NU ∈ [50, 120] users.
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Figure 4.13: Percentage of served Time-based charged users
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Figure 4.14: Expected satisfaction for data-based charged users

With Alg-5, both the percentage of served users (Fig. 4.12 and 4.13) and the expected

user satisfaction for data-based charged users (E[σBij ] in Fig. 4.14) and time-based

charged users (first row of Table 4.7) is almost the same. This occurs because resources

allocation algorithms that are exclusively aimed to QoE maximization (like Alg-5) do not

prioritize services based on their pricing scheme. Conversely, with Alg-6 substantially

more time-based charged users are served ([45, 81]% more time-based than data-based

charged users are served when comparing Fig. 4.12 and Fig. 4.13), but with significantly

lower expected user satisfaction (in line with PM results when φmin = 0 - see Fig. 4.8

and 4.9). This is explained by the fact that Alg-6 is aimed to maximize the profit. If

the BS allocates to time-based users the minimum amount of resources to avoid their

connection being dropped: i) resources are better distributed among users; ii) dropping

is reduced; and iii) the number of served time-based users and the profit are increased.

Similarly to Alg-6, it can be observed in Fig. 4.12 and Fig. 4.13 that PM always
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Figure 4.15: Overall Satisfaction (OS)

serves a larger percentage of time-based charged users, and this difference increases with

the total number of users NU ([17, 29]% more time than data-based charged users are

served). This can be explained by the fact that the time-based charged users have

lower rate requirements on average than the data-based charged users due to the use

of different devices, as it can be seen in Table 4.4. Therefore, time-based charged users

with low rate requirements are prioritized over data-based charged users in order to

achieve the high user satisfaction performance observed in Table 4.7.

Table 4.7: Expected satisfaction for time-based charged users (E[σt
ij ])

Time-Charged Users

Price level PM Alg-5 Alg-6 Opt

pk 0.9909 0.9901 0.01 0.9929

p∗k 0.9903 - - -

p∗∗k 0.6427 - - -

Summing up, given a particular relative overall satisfaction constraint (φmin) and two

charging schemes (i.e. data and time-based charging), the profit will be maximized by

serving as many time-based charged users as possible. Additionally, if the objective of the

MNO is the maximization of the profit without any fairness and satisfaction constraints

(i.e. PM with (Jmin, φmin) = (0, 0) and Alg-6), the data-based charged users will have

higher expected satisfaction than the time-based charged users.

Fig. 4.15 shows the comparison of the system’s overall user satisfaction OS. As ex-

pected, Alg-5 and PM offer the highest OS, whereas for Alg-6 OS is kept low and

slightly increasing with the number of users NU . As mentioned earlier, Alg-5 sorts the

users according to their spectral efficiency, and then allocates the resources until they

are exhausted. This means that Alg-5 will first serve the users with the highest spectral

efficiency regardless of their service’s requirements. Conversely, PM finds iteratively the
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Figure 4.16: MNO Profit P

user with least resource requirements wij(t) and serves her with the maximum satisfac-

tion. In Fig. 4.15, the difference between PM and Alg-5 in terms of Overall Satisfaction

(OS) is within the range [1.14, 2.36]%. Alg-5 performs well when there is a single service

with a single rate requirement. However, in a scenario with heterogeneous traffic as well

as diverse pricing, a more elaborate algorithm such as PM is required in order to serve

the users with even higher satisfaction, while gaining large MNO profit.

Fig. 4.16 presents the comparison of the MNO profit for the PM, Alg-5, Alg-6 and Opt.

As expected, we observe that Alg-6 gains the highest profit, which increases with the

number of users NU . Due to the use of strict OS and fairness constraints, PM achieves

lower profit than Alg-6. Nevertheless, it outperforms notably Alg-5 (i.e. [10.92, 15.96]%),

even though they share an almost equal OS performance. Regarding the results from

the optimal solution of (4.13), we observe that in all of the Fig. 4.12-4.16 and Table

4.7 PM and Opt have the same performance. A small difference is visible only in Fig.

4.16, where we can see that Opt generates more profit than PM by a small margin (i.e.

[1.18, 1.73]% profit gain for Opt over PM). This gain in profit corresponds to an even

smaller loss in OS performance (i.e. < 1% smaller OS than PM).

In light of the results presented above, PM is a profit maximizing resource allocation

algorithm, which guarantees similar QoE performance results to the ones achieved with

Alg-5 (a QoE maximizing algorithm), thanks to the satisfaction and fairness constraints

(in Fig. 4.12-4.16 Jmin = φmin = 1). However, the good performance in terms of QoE

is not translated in a decrease of the profit. Specifically, PM achieves higher profit

than Alg-5 for all scenarios. Finally, when strict satisfaction and fairness constraints are

applied, PM provides approximately optimal results for the solution of problem (4.13).
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Impact of price level : Results of Fig. 4.12-4.16 have been so far analysed with the

price level pk stated in Table 4.4. Now, we examine in the same figures how the price

levels affect the PM algorithm in terms of users satisfaction, the percentage of served

users, the MNO profit and the Overall Satisfaction. In order to do this, the price values

pk, p
∗
k = 0.75pk and p∗∗k = 1.5pk are considered. Particularly, in order to examine the

price change on the users, we generate the users’ parameters for the original prices pk,

and then execute our algorithm for the decreased and increased values.

Taking the above into consideration as well as the corresponding results, it can be

observed that the decrease of the price (pk → p∗k) results in an increase of the percentage

of served users (see Fig. 4.12 and 4.13) and the mean users’ satisfaction (see Fig. 4.14

and Table 4.7). Note that the reduction of the price improves the perception of the user

thanks to the price-based component of the QoE (as shown in expression (4.5)). The

opposite behaviour is observed when the price is increased (pk → p∗∗k ). Consequently, as

we observe in Fig. 4.15 and 4.16 the higher MNO profit gained by the higher price p∗∗k (a

gain in the range of 105-121%), comes at the expense of lower expected user satisfaction

E[σBij ], E[σtij ] (with a decrease around 35%), and lower Overall Satisfaction OS (around

35%). Conversely, when pk is decreased to p∗k = 0.75pk, there is a slight increase in the

percentage of served data-based and time-based charged users (in the range of 1.1-2%

for data-based charged users and 1.4-2.1% for time-based charged users), and in the

Overall Satisfaction (1.4− 2.2% gain). However, the improvement in the percentage of

served users and in the overall satisfaction is achieved at the cost of a significant profit

loss (around 45 − 53% drop of the profit). Thus, a decrease of the price improves the

perception of the users (i.e. higher satisfaction) while it reduces the MNO profit, and

vice versa.

Summary of results

• The trade-off between Profit and Overall Satisfaction shows that the increase of

one of them implies the decrease of the other.

• Given a particular minimum relative overall satisfaction (φmin) and two charging

schemes (i.e. data and time-based charging), profit (P ) will be maximized by

serving as many time-based charged users as possible. Additionally, if the MNO

maximizes the profit without any fairness and satisfaction constraints, the data-

based charged users will have higher expected satisfaction than the time-based

charged users.
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• PM guarantees similar QoE performance results to the ones achieved with Alg-2

(a QoE maximizing algorithm), thanks to the satisfaction and fairness constraints,

while achieving higher profit than Alg-2 for all scenarios.

• When fairness and relative overall satisfaction are forced to be maximum (Jmin =

φmin = 1), PM provides approximately optimal results for the solution of problem

(4.13).

• Decreasing the price improves the users’ perception while it reduces the MNO

profit, and vice versa.

4.6.3 Dynamic Pricing

As it was shown in Sections 4.5.2 and 4.5.3, the proposed algorithms for the solution of

the particular profit maximization problems share common parts. As we presented in

the previous section, our contribution in pure resource allocation revealed the impact

that price changes can have on the system performance and MNO profit. To that end,

we researched ways to apply a price adjustment scheme in a real-time manner, which

lead to our proposal on dynamic pricing presented in Section 4.5.3. Therefore, the

main objective in this section is to demonstrate the performance of our dynamic pricing

scheme, and its applicability to different types of resource allocation algorithms.

4.6.3.1 Scenario description and parameters

The scenario used for the performance evaluation of our proposal on joint resource

allocation and dynamic pricing is the same as the scenario we use for the evaluation of

our contribution in Section 4.6.2. The only differences between the two setups are found

in some of the SP and BS parameter values, which we present in Tables 4.8 and 4.9

respectively. Furthermore, we assume dedicated spectrum allocation per tier, adopted

3GPP LTE-A’s channel models described in [93], and set the Antenna gains to 0 dB.

For the cell selection, we associate the users to the BS with the highest SINR, as it is

common practice in mobile networks [106].

4.6.3.2 Comparison with SoA algorithm and impact of dynamic pricing

The following results were acquired through Monte-Carlo simulations. We compare our

proposed algorithm (referred to as PM) with a QoE maximizing algorithm, referred to

as Overall user Satisfaction Maximization (OSM) [58] (also used for the performance
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Table 4.8: Service Profiles’ parameters

Service QoE class {rk1, rk2, rk3} (Mbps) θtk or θBk
Service 1 Basic 7 1.5e /GB

(Data Based) Premium 9 2e /GB

Service 2 Basic {4.5, 5, 6.5} 4e /h
(Time Based) Premium {5, 6, 7} 7e /h

Service 3 Basic {6, 7, 7.5} 4e /h
(Time Based) Premium {6.5, 7.5, 8.5} 7e /h

Table 4.9: BS parameters

Parameter Macrocell Small cell

ci (e ) 5 · 10−5 5 · 10−5

hi (MHz-1) 0.3 0.295

bi (MHz) 20 20

Transmission Power (dBm) 43 30

Number of Users  N
U

50 60 70 80 90 100 110 120

 W

0.6

0.7

0.8
PM
PM*

OSM
OSM*

Figure 4.17: System bandwidth utilization (W )

evaluation in the previous section). We remind that OSM is a resource allocation al-

gorithm that maximizes the user QoE through an iterative procedure, which in each

iteration allocates enough resources to satisfy a single user, starting from the user with

the highest spectral efficiency towards the user with the lowest. In order to show the

benefits of our dynamic pricing scheme, we provide results for both algorithms with and

without applying dynamic pricing (the symbol ∗ refers to the algorithms with dynamic

pricing applied). For PM, when dynamic pricing is not applied, it is Λ = {1}. For PM,

the values for the change in user satisfaction are σstep = {0.01, 0.05}. Moreover, the

minimum acceptable satisfaction level for all algorithms is σminij = 0.01. It should be

noted that we provide results for PM with φmin = 1, aiming to offer the users the service

agreed in their SPs.
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Figure 4.18: BS bandwidth utilization reduction (wred
i )

Fig. 4.17 shows the expected total utilization of the spectrum, which is defined as

W = E
[
W (t) =

∑
i∈B wi(t)bi∑

i∈B bi

]
versus the number of users NU . We observe that PM and

OSM consume the same portion of the bandwidth whether dynamic pricing is applied

or not. Regarding the gain from dynamic pricing, we see that both PM∗ and OSM∗ use

[4.46, 4.92]% less of their total resources compared to PM and OSM respectively.

Fig. 4.18 depicts the bandwidth utilization reduction of each BS i (wredi ), when dynamic

pricing is used, where i = 1 denotes the macrocell BS. In order to produce the presented

results, we averaged wredi of each BS i for all simulated NU values. We observe that

both algorithms share similar W and wredi gains, when dynamic pricing is applied. This

occurs because the reduction in wij(t) depends on the users’ individual parameters, that

is, her current spectral efficiency εij(t), her rate requirement rkd, and the impact that

the service price has on her QoE perception Qp. We further notice that there is a high

deviation in wredi among the BSs. Particularly, wredi at BSs 5 and 6 is almost zero.

This is a result of low load in these two BSs. Due to the use of the SINR-based cell

selection scheme, the small cells closer to the eNB are associated with a small number of

users. Hence, they have low spectrum requirements, and if dynamic pricing is applied,

the revenue loss will be higher than the cost reduction.

Fig. 4.19 and Fig. 4.20 shows the algorithms’ performance on the MNO profit P and

the overall user performance OS, respectively. We see that our proposal outperforms

OSM in terms of profit, and shows a slight gain over OS as well ([1.65, 2.83]% gain).

As mentioned earlier, OSM sorts the users according to their spectral efficiency εij(t),

and then allocates the resources until they are exhausted. This means that OSM will

first serve the users with the highest εij(t) regardless of their service’s requirements.

Conversely, PM sorts the users according to their resource requirements wij(t) for serv-

ing them with their maximum σij(t). OSM performs well when there is a single rate
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Figure 4.19: MNO Profit (P )
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Figure 4.20: Overall User Satisfaction (OS)

requirement. However, in a scenario with heterogeneous traffic as well as diverse pricing,

a more elaborate algorithm such as PM is required in order to serve the users with even

higher satisfaction, while gaining large MNO profit.

Regarding the effect of dynamic pricing, we observe that both PM∗ and OSM∗ per-

form the same as PM and OSM respectively, in terms of OS. Conversely, PM∗ and

OSM∗ provide substantial gains in the MNO profit P ([9.7, 26.6]% gain for PM∗ and

[325, 1835]% gain for OSM∗7). For PM, this is explained by the fact that the decisions

on resource allocation and dynamic pricing are made in order to maximize the BS profit

while achieving a minimum OS performance (refer to Alg. 4’s steps 23-27). Therefore,

PM∗ provides the same OS as PM, however for lower W and cost. As for OSM, we

7The high gains observed for OSM∗ are explained by the fact that OSM’s profit is significantly low
and close to 0.
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applied our dynamic pricing scheme on the resource allocation determined by the origi-

nal algorithm. Hence, we obtain the same OS, but for a higher profit owing to the cost

reduction. If dynamic pricing was applied within the original OSM algorithm, the BS

revenue would be significantly low (even zero), as the algorithm would always reduce

the service price (i.e. low λij) in order to maximize OS.

Our proposed algorithm manages to offer significantly higher profit for a similar net-

work performance compared to the reference algorithm, because it bases its decisions on

both technological (i.e. QoS/QoE requirements) and economic (i.e. pricing and profit)

context of the network. Moreover, our proposal on dynamic pricing has been proven

to complement resource allocation schemes in order to increase substantially the MNO

profit. Additionally, in a different application of dynamic pricing the released resources

can be used to increase the QoE of the users, while maintaining high MNO profits.

Summary of results

• PM outperforms slightly OSM in terms of overall user satisfaction (independent

of the use of dynamic pricing), for the same system bandwidth utilization.

• PM gains substantially higher profit than OSM, while guaranteeing higher QoE

performance.

• Dynamic pricing should be used at BS with high resource requirements and band-

width utilization cost, so that the cost reduction (over)compensates the revenue

loss.

• The use of dynamic pricing increases significantly the profit gained for both PM

and OSM, while maintaining the same network performance.

4.7 Concluding Remarks

In this chapter, we presented our contributions on user association, resource allocation

and joint resource allocation and dynamic pricing in a single MNO’s HetNet described by

traffic heterogeneity and diverse pricing. The objective of these works was the maximiza-

tion of the MNO’s profit while providing high QoE to the users. With this objective, we

proposed low-complexity heuristic algorithms, each of them with particular constraints

that guarantee fairness and high overall users satisfaction (a QoE performance metric).

Particularly:
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• We proposed a greedy, heuristic user association algorithm, which bases its deci-

sions on the capability of the BSs to offer an acceptable QoE level to the user,

while at the same time maximizing the MNO profit. We evaluated the perfor-

mance of the proposed algorithm by comparing it with a SINR-based algorithm.

The simulation results show the adaptability of the proposed algorithm to traffic

heterogeneity by achieving substantially higher profit and QoE, in contrast to the

SINR-based one. This proposal has led to the publication of [107].

• We proposed a low complexity, greedy, heuristic resource allocation algorithm,

namely PM, which maximizes the profit of the MNO as long as fairness and over-

all users satisfaction (a QoE performance metric) levels are kept above specific

thresholds. We highlighted the overall satisfaction-fairness-profit trade-off and

showed that the proposed resources allocation algorithm achieves similar results

in terms of users’ satisfaction when compared to QoE maximization algorithms

(e.g. Alg-5), while outperforming them in terms of profit gains. Moreover, we

demonstrated that our algorithm approximates the optimal solution of the profit

maximizing problem. With the analysis of two pricing schemes (one for data-based

charged users and another for time-based charged users), we further showed that

pure profit maximizing algorithms prioritize the satisfaction of data-based charged

users over time-based charged users, and we proved that PM with strict fairness

and satisfaction constraints smooths this effect. Finally, we shed light on how the

changes in price levels can improve or worsen the user experience, and the corre-

sponding effects of these changes on the network performance and the MNO profit.

Our contribution on resource allocation resulted in the publication of [108].

• We proposed a greedy, heuristic, joint resource allocation and dynamic pricing

algorithm, which bases its decisions on profit maximization, while satisfying a

constraint on overall user satisfaction. We evaluated the performance of the pro-

posed algorithm with and without applying dynamic pricing by comparing it with

a state of the art resource allocation algorithm. Our results verify the adaptability

of the proposed algorithm to traffic heterogeneity, by providing higher OS and

profit than the algorithm in comparison. Finally, we show that our proposal on

dynamic pricing can be applied on different algorithms, allowing them to improve

either the MNO profit or the OS performance. Our proposal on dynamic pricing

produced our work in [109].



Chapter 5

Conclusions and Future Work

This chapter concludes the dissertation with the summary of the main contributions, and

the presentation of potential subjects for future research. Specifically, Section 5.1 out-

lines the conclusions derived from each contribution part, and Section 5.2 lists research

lines towards the extension of our contributions.

5.1 Conclusions

The ever increasing data traffic demand in mobile networks since the introduction of

the data-oriented 3G has been driving the telecommunications research for faster, more

reliable and high-capacity networks, which has resulted in various proposals for their

enhancement. One of the most promising solutions for increasing the network capacity

is the dense deployment of small cells, and their use for mobile data offloading. However,

even though a ubiquitous small cell deployment can solve the traffic demand challenge,

it poses high financial risks due to the corresponding high capital requirements. To that

end, Mobile Network Operators (MNOs) started outsourcing mobile data offloading to

independent third parties also known as Small Cell Operators (SCOs), owners of small

cell infrastructure.

One approach that can enable the access of third parties in the telecommunication

infrastructure market and therefore in outsourced traffic offloading is the business model

of the Multiple Operator Radio Access Network (MORAN) sharing, also known as Small

Cell as a Service (SCaaS). In SCaaS, the SCO acts solely as an infrastructure provider,

and hence the MNOs need to provide their own licensed spectrum resources for the RAN

operation. Moreover, with MORAN the MNOs are the ones that determine how their

spectrum will be used by the small cell infrastructure, applying their own service policies

as in their own network.

111
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As the deployment of small cell infrastructure in high traffic areas creates a market

of small cell capacity, it attracts the interest of multiple MNOs, creating a competition

among them for the leasing of the limited small cell resources. As a result, there is a need

for frameworks that determine the transactions and the small cell resource allocation in

this market, and provide fair participation opportunities for all the interested MNOs.

Taking the above into consideration, our first contribution (presented in Chapter 3) was

focused on outsourced traffic offloading, where we examined the case where a monopolis-

tic SCO offers SCaaS to multiple MNOs, addressing the scenarios with a single SCO in

the area under study (e.g. stadiums, airports etc.) [82, 83]. Particularly, we investigated

the interaction of the capacity needs and the economic constraints of the stakeholders,

and gained insight into techno-economic implications of the SCaaS paradigm. We anal-

ysed the MNOs’ auction strategies, and their impact on the system, and then proposed

a novel learning mechanism for improving the MNOs’ bidding strategies. The main

contributions of this work are summarized in the following:

• We proposed a realistic analytical model for traffic offloading under the SCaaS ap-

proach, considering multiple small cell clusters, while including both the technolog-

ical constraints (e.g. bandwidth availability, backhaul capacity) and the financial

goals of each stakeholder.

• The SCaaS model can be implemented under two spectrum deployment use cases:

i) the dedicated spectrum deployment, and ii) the co-channel deployment. This

work showed the profit-capacity trade-off for each use case and proposed the math-

ematical framework to define the capacity limits of SCaaS in each use case.

• As the stakeholders’ profit and the total system capacity depend highly on i)

the deployment density (i.e. density of deployed eNBs and small cells), ii) the

competition level among MNOs (i.e. the capacity needs of each MNO), iii) the SCO

backhaul capacity, iv) the reuse or not of the spectrum bands, and v) each actor’s

cost function, the presented results offer useful insights to select the adequate

values of the parameters involved in the SCaaS approach.

• The proposed auction scheme relies on the perfect knowledge of the MNOs’ fu-

ture loads. As each MNO is not aware of its future load and the future load of

the contending MNOs (due to future uncertainty, as well as privacy of sensitive

information), we provided a mathematical framework based on a novel learning

mechanism to overcome the lack of reliable information.

The aforementioned raise in mobile data demand has been the result of content dis-

semination by third-party content providers and the plethora of applications for mobile
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devices. These applications are described by various Quality of Service (QoS) and Qual-

ity of Experience (QoE) requirements, which along with their use on multiple devices

per user increase the heterogeneity of the traffic demand. This ever-increasing, hetero-

geneous traffic demand has created not only technical challenges for the MNOs, but

also financial. Even though the MNOs accommodate this plethora of services and appli-

cations with their networks, they do not receive any monetary compensation from the

content providers. Moreover, the service prices have been declining over the years due

to the MNO competition.

Under these circumstances, the MNOs need to guarantee the provision of seamless con-

nectivity and high satisfaction to their subscribers, while generating high revenues to

recoup their HetNet investments and make a profit. Hence, after solving the traffic of-

floading problem, an MNO has at its disposal additional small cell infrastructure, which

can be used to provide better service to its subscribers and improve its own economic

gains. Consequently, the solution of the traffic offloading problem led us to a new area

of study, which examines how an MNO can use efficiently and profitably its HetNet.

After solving the traffic offloading problem, an MNO has at its disposal additional small

cell infrastructure, which can be used to provide better service to its subscribers and

improve its own economic gains. Consequently, the solution of the traffic offloading

problem led us to a new area of study, which examines how an MNO can use efficiently

and profitably its HetNet. The MNO network’s performance and financial gains depend

highly on how network and economic functionalities are designed and applied. Therefore,

in order to identify the appropriate network and economic functions, and design them

so that they guarantee subscriber satisfaction and raise the MNO profit, we first need

to identify the challenges that need to be addressed. Therefore, in this thesis’ second

contribution part we presented our proposals on network and economic functionalities

in order to address these challenges.

Specifically, we presented our proposals on user association, resource allocation and joint

resource allocation and dynamic pricing in a single MNO’s HetNet described by traffic

heterogeneity and diverse pricing. The objective of these works was the maximization

of the MNO’s profit while providing high QoE to the users. With this objective, we

proposed low-complexity heuristic algorithms, each of them with particular constraints

that guarantee fairness and high overall users satisfaction (a QoE performance metric).

Particularly:

• We proposed a greedy, heuristic user association algorithm, which bases its deci-

sions on the capability of the BSs to offer an acceptable QoE level to the user,
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while at the same time maximizing the MNO profit. We evaluated the perfor-

mance of the proposed algorithm by comparing it with a SINR-based algorithm.

The simulation results show the adaptability of the proposed algorithm to traffic

heterogeneity by achieving substantially higher profit and QoE, in contrast to the

SINR-based one. This proposal has led to the publication of [107].

• We proposed a greedy, heuristic resource allocation algorithm, namely PM, which

maximizes the profit of the MNO as long as fairness and overall users satisfac-

tion (a QoE performance metric) levels are kept above specific thresholds. We

highlighted the overall satisfaction-fairness-profit trade-off and showed that the

proposed resources allocation algorithm achieves similar results in terms of users’

satisfaction when compared to QoE maximization algorithms (e.g. Alg-5), while

outperforming them in terms of profit gains. Moreover, we demonstrated that

our algorithm approximates the optimal solution of the profit maximizing prob-

lem. With the analysis of two pricing schemes (one for data-based charged users

and another for time-based charged users), we further showed that pure profit

maximizing algorithms prioritize the satisfaction of data-based charged users over

time-based charged users, and we proved that PM with strict fairness and satis-

faction constraints smooths this effect. Finally, we shed light on how the changes

in price levels can improve or worsen the user experience, and the corresponding

effects of these changes on the network performance and the MNO profit. Our

contribution on resource allocation resulted in the publication of [108].

• We proposed a greedy, heuristic, joint resource allocation and dynamic pricing

algorithm, which bases its decisions on profit maximization, while satisfying a

constraint on overall user satisfaction. We evaluated the performance of the pro-

posed algorithm with and without applying dynamic pricing by comparing it with

a state of the art resource allocation algorithm. Our results verify the adaptability

of the proposed algorithm to traffic heterogeneity, by providing higher OS and

profit than the algorithm in comparison. Finally, we show that our proposal on

dynamic pricing can be applied on different algorithms, allowing them to improve

either the MNO profit or the OS performance. Our proposal on dynamic pricing

produced our work in [109].

5.2 Future Work

The profitable provision of satisfactory service in Heterogeneous Networks was the main

objective of the contributions in this dissertation. Nevertheless, there are still open
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issues and interesting research subjects that neither this dissertation nor the state-of-

the-art has addressed. To that end, in this section we provide a list of new lines for

future investigation with respect to the contributions in this dissertation.

The open issues regarding the first contribution part of the thesis on the outsourcing

of traffic offloading and generally leasing of telecommunications infrastructure can be

outlined as follows:

• In this work, we consider the case of a single SCO offering SCaaS to multiple

MNOs. Hence, as the SCO is the sole SCaaS provider in the system, it can act as

a monopoly. This case is more suited to scenarios where there can be a single SCO

in the area under study (e.g. the owner of a stadium or an airport etc.). A future

direction and interesting case study considers multiple SCOs in the same area.

In this case, not only the MNOs, but also the SCOs compete among them. The

SCOs need to set their prices properly in order to lease their capacity and maximize

their profit. On the other hand, the MNOs need to adapt their strategies not only

according to the competition among them, but also according to the available

choices in small cell capacity and the varying prices.

• Taking into consideration that outsourced traffic offloading belongs to the gen-

eral case of telecommunication infrastructure sharing, this contribution could be

extended in order to be applied to different telecommunication infrastructure and

applications. As we are approaching the launch of the first commercial 5G network,

various new technologies such as the Internet of Things (IoT), Machine to Machine

communications, vehicular or even drone networks will generate an abundance of

new data, and introduce new services in the market. Such networks will consist

of numerous devices, which will not be deployed by a small number of actors (e.g.

MNOs) as in the case of small cell densification. Therefore, infrastructure sharing

will be the only solution, when an MNO needs a particular type of infrastruc-

ture in an area for providing a specific service. Moreover, as such demands will

be generating ubiquitously and continuously, intelligent autonomous schemes such

our proposal will be essential for the automatic and profitable undertaking of the

necessary actions.

With respect to the second contribution part of the thesis, which is dedicated to radio

resource management (RRM) and dynamic pricing schemes, there are open issues that

can be summarized in the following:

• Another interesting research subject is the design of a price adjustment scheme

either for profit maximization or network performance improvement, based on our
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contributions in Chapter 4. The idea for this extension of the proposed schemes

is to propose strategies on the degree (i.e. how much should the service prices

be decreased and for how many users in the area under study) an MNO should

apply dynamic pricing, according to a 24-hour traffic pattern. The MNO would

set particular objectives regarding the overall user satisfaction, fairness and profit,

and then adjust the charging based on a learning mechanism in order to achieve

these objectives, in a manner similar to our first contribution in [82] and [83].

• During the last few years, a number of schemes have emerged, aiming to enhance

the network performance such as Device to Device communications, clustering

and caching. However, similar to the network functions addressed in our contribu-

tions (i.e. user association and resource allocation), these schemes have not been

thoroughly examined for their economic impact on the applying MNO, and how

the balance between profit maximization and user satisfaction can be achieved.

Thus, it would be interesting to conduct research on these schemes, following our

techno-economic approach.

• Due to the exponential increase in data traffic and the devices generating and

handling it (e.g. new users, network densification, IoT etc.) there is a challenge

regarding the abundance of information that needs to be processed in order to

provide high levels of satisfactory service provision. In such conditions, the ex-

ploitation of machine learning and other artificial intelligence tools pose among

the most promising solutions for the aforementioned challenges. As they can han-

dle enormous volumes of data, it is interesting to research schemes that enable

dynamic, near-optimal network management, while taking taking into considera-

tion the cost structure and the economic objectives of the MNO.

Concluding, this dissertation has contributed to the state-of-the-art by proposing ini-

tially a novel online learning mechanism for the profitable leasing of third-party small cell

infrastructure by MNOs, and finally, by presenting QoE-aware user association, resource

allocation and dynamic pricing profit maximization algorithms in HetNets with traffic

heterogeneity and diverse pricing. These two contributions have provided insight on the

sustainable MNO network enhancement with leased small cell infrastructure, and the

profitable operation of such HetNets with RRM and smart pricing schemes. Finally, the

outlined ideas on future research lines shows that there is still room to further advance

the presented subjects, and even apply our techno-economic investigation approach on

other telecommunication research areas.
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