1,154 research outputs found

    Service embedding in IoT networks

    Get PDF
    The Internet of Things (IoT) is the cornerstone of smart applications such as smart buildings, smart factories, home automation, and healthcare automation. These smart applications express their demands in terms of high-level requests. Application requests in service-oriented IoT architectures are translated into a business process (BP) workflow. In this paper, we model such a BP as a virtual network containing a set of virtual nodes and links connected in a specific topology. These virtual nodes represent the requested processing and locations where sensing and/or actuation are needed. The virtual links capture the requested communication requirements between nodes. We introduce a framework, optimized using mixed integer linear programming (MILP), that embeds the BPs from the virtual layer into a lower-level implementation at the IoT physical layer. We formulate the problem of finding the optimal set of IoT nodes and links to embed BPs into the IoT layer considering three objective functions: i) minimizing network and processing power consumption only, ii) minimizing mean traffic latency only, iii) minimizing a weighted combination of power consumption and traffic latency to study the trade-off between minimizing the power consumption and minimizing the traffic latency. We have established, as reference, a scenario where service embedding is performed to meet all the demands with no consideration to power consumption or latency. Compared to this reference scenario, our results indicate that the power savings achieved by our energy efficient embedding scenario is 42% compared with the energy-latency unaware service embedding (ELUSE) reference scenario, while our low latency embedding reduced the traffic latency by an average of 47% compared to the ELUSE scenario. Our combined energy efficient low latency service embedding approach achieved high optimality by jointly realizing 91% of the power and latency reductions obtained under the single objective of minimizing power consumption or latency

    Energy-Efficient Distributed Machine Learning in Cloud Fog Networks

    Get PDF
    Massive amounts of data are expected to be generated by the billions of objects that form the Internet of Things (IoT). A variety of automated services such as monitoring will largely depend on the use of different Machine Learning (ML) algorithms. Traditionally, ML models are processed by centralized cloud data centers, where IoT readings are offloaded to the cloud via multiple networking hops in the access, metro, and core layers. This approach will inevitably lead to excessive networking power consumptions as well as Quality-of-Service (QoS) degradation such as increased latency. Instead, in this paper, we propose a distributed ML approach where the processing can take place in intermediary devices such as IoT nodes and fog servers in addition to the cloud. We abstract the ML models into Virtual Service Requests (VSRs) to represent multiple interconnected layers of a Deep Neural Network (DNN). Using Mixed Integer Linear Programming (MILP), we design an optimization model that allocates the layers of a DNN in a Cloud/Fog Network (CFN) in an energy efficient way. We evaluate the impact of DNN input distribution on the performance of the CFN and compare the energy efficiency of this approach to the baseline where all layers of DNNs are processed in the centralized Cloud Data Center (CDC)

    Internet of Things and Intelligent Technologies for Efficient Energy Management in a Smart Building Environment

    Get PDF
    Internet of Things (IoT) is attempting to transform modern buildings into energy efficient, smart, and connected buildings, by imparting capabilities such as real-time monitoring, situational awareness and intelligence, and intelligent control. Digitizing the modern day building environment using IoT improves asset visibility and generates energy savings. This dissertation provides a survey of the role, impact, and challenges and recommended solutions of IoT for smart buildings. It also presents an IoT-based solution to overcome the challenge of inefficient energy management in a smart building environment. The proposed solution consists of developing an Intelligent Computational Engine (ICE), composed of various IoT devices and technologies for efficient energy management in an IoT driven building environment. ICE’s capabilities viz. energy consumption prediction and optimized control of electric loads have been developed, deployed, and dispatched in the Real-Time Power and Intelligent Systems (RTPIS) laboratory, which serves as the IoT-driven building case study environment. Two energy consumption prediction models viz. exponential model and Elman recurrent neural network (RNN) model were developed and compared to determine the most accurate model for use in the development of ICE’s energy consumption prediction capability. ICE’s prediction model was developed in MATLAB using cellular computational network (CCN) technique, whereas the optimized control model was developed jointly in MATLAB and Metasys Building Automation System (BAS) using particle swarm optimization (PSO) algorithm and logic connector tool (LCT), respectively. It was demonstrated that the developed CCN-based energy consumption prediction model was highly accurate with low error % by comparing the predicted and the measured energy consumption data over a period of one week. The predicted energy consumption values generated from the CCN model served as a reference for the PSO algorithm to generate control parameters for the optimized control of the electric loads. The LCT model used these control parameters to regulate the electric loads to save energy (increase energy efficiency) without violating any operational constraints. Having ICE’s energy consumption prediction and optimized control of electric loads capabilities is extremely useful for efficient energy management as they ensure that sufficient energy is generated to meet the demands of the electric loads optimally at any time thereby reducing wasted energy due to excess generation. This, in turn, reduces carbon emissions and generates energy and cost savings. While the ICE was tested in a small case-study environment, it could be scaled to any smart building environment

    Enabling Technology in Optical Fiber Communications: From Device, System to Networking

    Get PDF
    This book explores the enabling technology in optical fiber communications. It focuses on the state-of-the-art advances from fundamental theories, devices, and subsystems to networking applications as well as future perspectives of optical fiber communications. The topics cover include integrated photonics, fiber optics, fiber and free-space optical communications, and optical networking

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap

    Get PDF
    The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communicatio
    • …
    corecore