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ABSTRACT 
 
 

Internet of Things (IoT) is attempting to transform modern buildings into energy 

efficient, smart, and connected buildings, by imparting capabilities such as real-time 

monitoring, situational awareness and intelligence, and intelligent control. Digitizing the 

modern day building environment using IoT improves asset visibility and generates 

energy savings. This dissertation provides a survey of the role, impact, and challenges 

and recommended solutions of IoT for smart buildings. It also presents an IoT-based 

solution to overcome the challenge of inefficient energy management in a smart building 

environment. The proposed solution consists of developing an Intelligent Computational 

Engine (ICE), composed of various IoT devices and technologies for efficient energy 

management in an IoT driven building environment.  

ICE’s capabilities viz. energy consumption prediction and optimized control of 

electric loads have been developed, deployed, and dispatched in the Real-Time Power 

and Intelligent Systems (RTPIS) laboratory, which serves as the IoT-driven building case 

study environment. Two energy consumption prediction models viz. exponential model 

and Elman recurrent neural network (RNN) model were developed and compared to 

determine the most accurate model for use in the development of ICE’s energy 

consumption prediction capability. ICE’s prediction model was developed in MATLAB 

using cellular computational network (CCN) technique, whereas the optimized control 

model was developed jointly in MATLAB and Metasys Building Automation System 

(BAS) using particle swarm optimization (PSO) algorithm and logic connector tool 

(LCT), respectively. It was demonstrated that the developed CCN-based energy 
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consumption prediction model was highly accurate with low error % by comparing the 

predicted and the measured energy consumption data over a period of one week. The 

predicted energy consumption values generated from the CCN model served as a 

reference for the PSO algorithm to generate control parameters for the optimized control 

of the electric loads. The LCT model used these control parameters to regulate the 

electric loads to save energy (increase energy efficiency) without violating any 

operational constraints.  

Having ICE’s energy consumption prediction and optimized control of electric 

loads capabilities is extremely useful for efficient energy management as they ensure that 

sufficient energy is generated to meet the demands of the electric loads optimally at any 

time thereby reducing wasted energy due to excess generation. This, in turn, reduces 

carbon emissions and generates energy and cost savings. While the ICE was tested in a 

small case-study environment, it could be scaled to any smart building environment. 
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CHAPTER ONE 
 

INTRODUCTION 
 

Overview 
 

In 1999, Cherry Murray of Bell Labs stated: “In the next century, planet earth will 

don an electronic skin. It will use the Internet as a scaffold to support and transmit its 

sensations” [1]. The next major advancement with the Internet and the web that would 

impact our lives significantly is the Internet of Things (IoT). IoT is the connection of 

everyday objects in the physical world to the Internet. It imparts intelligence to the 

current devices and equipment using sensors and software that are networked together 

through the Internet. Literally every physical entity on earth, like appliances, goods, 

objects, machines, buildings, vehicles, plants, animals and even us humans, can be the 

“things” in IoT [2]. 

IoT is attempting to transform modern buildings into energy efficient, smart, and 

connected buildings. IoT imparts capabilities, such as real-time monitoring, situational 

awareness and intelligence, and control to transform the modern buildings into smart 

buildings, which are more energy efficient. Additionally, digitizing the modern day 

building environment using IoT improves asset visibility, eliminates energy wastage, 

reduces carbon emissions, and creates cost savings [3]. 

 IoT has a significant impact on smart building environments and offers several 

opportunities for growth and development. The advancements in computational 

intelligence capabilities can evolve an intelligent IoT system by emulating biological 
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nervous systems with cognitive computation, streaming and distributed analytics 

including at the edge and device levels [3]. 

 

Energy Efficient Buildings 

There are a number of energy efficient buildings around the world. Each of these 

buildings have incorporated certain innovative technologies for improving energy 

efficiency. The following are the examples of some of the top energy efficient buildings 

and their respective technological innovations (Fig. 1.1) [4]: 

• Glumac (Fig 1.1(a)) in Shanghai, China features an indoor air monitoring system, five 

air purification systems, and a planted green wall. It is the first building in Asia to 

apply for a Living Building Challenge Certification.  

• The Edge (Deloitte HQ) (Fig 1.1(b)) in Amsterdam, Netherlands features world's 

most efficient aquifer thermal energy storage system, water-efficient trickle-down 

rainwater toilet water system, human powered gym, and smart LED light panels 

across a floor reporting temperature and humidity measurements. With the BREEAM 

sustainability score of 98.4%, Edge is the greenest building in the world. 

• Legion House (Fig 1.1(c)) at Liberty Place in Sydney, Australia features chilled beam 

technology-based air conditioning, which uses 100% fresh outside air for maintaining 

a very high level of indoor environment quality for the building occupants. The Green 

Building Council of Australia has certified the Legion House with a 6-Star Green 

Star-Office v3 Design rating. 
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• DPR Construction (Fig 1.1(d)) in San Francisco, CA features photovoltaics (PV) 

panels, ultra-energy efficient ceiling fans, rooftop solar thermal water heating system, 

living horticulture wine bar, intelligent electrochromic windows, and the first-ever-

deployed LEED dynamic plaque in Northern California. It is the first commercial 

office space to receive NZEB certification in the city of San Francisco. 

 

Fig. 1.1. Examples of energy efficient buildings around the world: (a) Glumac in China, 
(b) The Edge in Netherlands, (c) Legion House in Australia, and (d) DPR Construction in 
USA [4] 
 

IoT for Energy Efficient Buildings 

With IoT, modern buildings can be transformed into energy efficient, smart, and 

connected buildings. A smart building environment is comprised of IoT sensors and 

actuators for communication, control, and visualizations. IoT imparts real-time feedback 
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capabilities to the smart building administrators, which function to better serve building 

occupants through enhanced monitoring and control functionalities [2]. The IoT 

framework provides a technology-driven architecture for integration of building 

infrastructure and resources, and thus provide mechanisms to optimize their use and 

provide an efficient, informed, and equitable distribution of services, which benefits the 

building occupants in multiple ways. Three of the major benefits include improved 

energy efficiency of a smart building environment, active monitoring of the building 

environment, and enhanced social well-being of the occupants [5, 6]. IoT presents 

numerous opportunities in smart buildings having a significant economic, environmental, 

and societal impact. 

 
IoT Sensors 

IoT sensors play an important role in improving the energy efficiency of smart 

buildings. With IoT sensors, the building administrators can actively optimize energy 

supplies as needed to avoid energy waste. IoT sensors also contribute to building 

environment monitoring by actively detecting the presence of pollutants or other harmful 

gases in the building environment and alerting the building occupants to take corrective 

measures in a timely manner. Additionally, IoT sensors enhance the social well-being of 

smart building occupants by bringing more comfort and convenience in their lives [6]. 

The different types of IoT sensors are listed below [3, 6]. 
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IoT Smart Building Occupancy Sensors 

With IoT smart building occupancy sensors, the building administrators can 

monitor all movements in and around the building, thereby helping to protect the building 

from criminals and vandals. These sensors also reduce energy waste by controlling 

lighting in an area dependent on its occupancy. The different types of IoT smart building 

occupancy sensors include motion sensors, open/close sensors, and perimeter sensors [7-

9]. 

Motion sensors monitor movements inside the building. With motion sensors, the 

building administrators can detect unexpected movements in the building and detect the 

presence or absence of people in a particular area and control the lights to turn on/off 

accordingly [7, 9]. Examples of motion sensors include passive infrared sensors, 

microwave sensors, ultrasonic sensors, area reflective sensors, dual sensors, video 

sensors, wireless sensors, vibration sensors, and pet immune sensors [10].  

Open/close sensors monitor the opening or closing of cabinets, doors, and 

windows. Open/close sensors can also automatically turn on the lights when a door is 

opened [7, 9]. Examples of open/close sensors include glassbreak sensors, passive 

infrared sensors, and door and window sensors [10, 11].  

Perimeter sensors provide the extra layer of security by detecting any vehicles or 

persons approaching the building [14, 16]. Examples of perimeter sensors include active 

infrared sensors, capacitance sensors, vibration sensors, radar sensors, fence sensors, 

driveway sensors, and electric field sensors [18].  
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IoT Smart Building Environmental Sensors 

The building administrators can create a comfortable living environment for the 

occupants inside the building with IoT smart building environment sensors [7]. IoT smart 

building environmental sensors include temperature and humidity sensors, leak and water 

sensors, smoke and air sensors, and light sensors [9].  

Temperature and humidity sensors monitor unexpected changes in heating, 

cooling, and the amount of water vapor inside the building. Temperature and humidity 

sensors also reduce energy waste by turning off the cooling or heating in an area where 

there is no person present [7]. Examples of temperature sensors include resistive 

temperature devices, thermometers, thermocouples, infrared sensors, bimetallic devices, 

silicon diode, and change-of-state sensors [12]. Examples of humidity sensors include 

resistive sensors and capacitive sensors [13].   

Leak and water sensors alert the building occupants as soon as a leak is detected, 

thereby helping to prevent damaging floods that can be costly to repair [7]. Examples of 

leak and water sensors include under carpet leak detectors, rope-style sensors, spot leak 

detectors, and hydroscopic tape-based sensors [14].  

Smoke and air sensors monitor the air quality inside the building. With smoke and 

air sensors, the building occupants can detect the presence of smoke, carbon monoxide or 

any other harmful gas in the building [7]. This would in turn help the building occupants 

to take corrective measures before any serious harm happens to anyone inside the 

building. Examples of smoke and air sensors include photoelectric sensors, ionization 
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sensors, dual sensors, aspirating sensors, projected beam sensors, video sensors, and heat 

sensors [15].  

Light sensors monitor the lighting levels inside the building. These sensors 

automatically adjust the lighting inside the building depending on the ambient natural 

lighting from the sun [7]. This helps enhance the lifetime of the light bulbs and reduce 

energy wastage. Examples of light sensors include photo-junction sensors, 

photoconductive sensors, and photovoltaic sensors [16]. 

 
IoT Smart Building Power Monitors 

IoT smart building power monitors keep track of the amount of energy used by 

each appliance or any other device inside the building [7]. Using these power monitors, 

the building occupants can be more conscious of their energy usage, adjust their energy 

usage behaviors to reduce energy wastage, and ensure that all appliances and other 

devices operate efficiently and not consume too much power. There are four types of 

power monitors including readout and history monitors (e.g., Wattvision power monitor), 

instant readout monitors (e.g., Blue Line PowerCost monitor), plug in monitors (e.g., Kill 

a Watt EZ electricity monitor), and circuit by circuit measurement monitors with both 

history tracking and instant readout capabilities (e.g., eMonitor) [17].  

 
Other IoT Smart Building Sensors 

Some of the other IoT smart building sensors that are currently on market and 

have not been listed above include dry contact sensors to detect contact between two 

wired contact points; smart plugs to enable building administrators to turn on/off the 
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appliances or other electronic devices remotely using their smartphones; current 

transformers to monitor the electricity flow inside the building; AC/DC voltage sensors to 

determine the powered state of equipment and alert the building administrators if voltage 

levels exceed the device ratings; power synching sensors to create customized triggers in 

response to changing state of the plugged-in device (e.g., the building administrator can 

have the conference room projector set the lighting level in the room when turned on); 

and smart home monitoring kits, which are made by incorporating some of the above-

mentioned IoT sensors in a single package, to provide the homeowners with a more 

advanced and affordable way to monitor and stay connected to their house from 

anywhere and at all times [7, 8]. 

Fig 1.2 shows different types of IoT sensors with their leading suppliers, which 

are currently on the market for smart building applications. 

 

Fig. 1.2. IoT sensors on the market with their leading suppliers for smart building 
applications [3]. 
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Economic Impact 

McKinsey Global Institute has estimated that by 2025, the per year global 

economic impact of IoT for the different smart building environments will be as follows 

[18]: 

• Smart homes: $200 billion - $350 billion 

• Smart retail: $410 billion - $1.2 trillion 

• Smart offices: $70 billion - $150 billion 

• Smart factories: $1.2 trillion - $3.7 trillion 

• Smart worksites: $160 billion - $930 billion  

The market for IoT sensors for smart buildings is undergoing a favorable progression as 

well and offers numerous opportunities for growth and development. Driven by reduction 

in cost and energy per sensor, IoT sensors are now becoming more popular for industrial 

and consumer applications [19]. Transparency Market Research has estimated the 

increase in global market for IoT sensors from $9 billion in 2012 up to $21.60 billion by 

2019, growing at a CAGR of 12.2 percent (Fig. 1.3) [20]. ABI Research has estimated an 

increase in the market value of enterprise IoT analytics from $4.2 billion in 2014 to $23 

billion by 2020, indicating the increasing investment in IoT analytics [21]. 

While there are considerable opportunities for increased revenue in smart 

buildings, these impressive statistics must be balanced with the costly investments 

companies must make upfront when employing novel IoT devices and technologies. 

Nevertheless, the surplus generated will outweigh the initial expenses. Additionally, IoT 
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technologies can be deployed in existing devices and infrastructures, further minimizing 

expenses [3]. 

 

Fig. 1.3. Global IoT sensor market forecast ($ billion) (adapted from [20]). 

 
Environmental Impact 

With IoT deployed in smart buildings, energy is utilized more efficiently. Also, 

control systems are optimized for maximum power absorption from renewable sources 

(solar and wind) [22]. This has a positive impact on the environment in terms of less 

energy waste and reduced carbon dioxide (CO2) emissions. By 2020, 2 Gigatons annual 

decrease in CO2 emissions is expected [23]. 

 
Societal Impact 

As world’s population continues to grow, it becomes increasingly necessary for 

its inhabitants to care for the available resources. With rising living standards globally, 

health, convenience, and comfort have become personal priorities. IoT can meet all of 
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these needs and desires through its abilities to sense, collect, transmit, analyze, and 

distribute big data [3].  

To meet these demands, organizations and institutions will deploy IoT in building 

environments, leading to increased energy efficiency and greater control and auditing 

capabilities. However, with greater amounts of personal data collected from smart meters 

to decrease energy waste (e.g., energy usage data and user movements and activities 

tracking data), personal security could be jeopardized if the meter is hacked. For instance, 

a hacker could determine if a user is in the building or not or if a child at home alone [3].  

While there are cyber-security and privacy risks associated with IoT deployment in smart 

buildings, there are overwhelming societal benefits including lifestyle convenience, 

public safety, energy conservation, expense reduction, and a healthy living environment 

[24]. Individuals and corporations must decide the optimal use of the technology for their 

needs based on these tradeoffs [25].  

IoT deployment cannot be pushed onto the society and expected to be readily 

accepted. People like to take responsibility for their well-being. Considering the 

numerous benefits of the deployment of IoT technology, a lot of people might be willing 

to try it out. But there will be some people who will resist this technology, even after 

being aware of its benefits. For them, IoT technology might not be the need of the hour, 

or they might just fear the unknown. Additionally, the competition between nations to 

excel at IoT device manufacturing and technology development makes it difficult for a 

company to establish a base in a foreign country and utilize its resources [3]. An instance 

of this was reported recently in [26] where GE launched its digital foundry in Shanghai 
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and is facing tough competition from the Chinese local firms. In any case, people's 

choices must be respected, and they should not be forced down a path that makes them 

uncomfortable. 

 

Intelligence for IoT and Energy Management 

Modern building owners are enamored by the possibility of being able to reduce 

monthly energy bills and resource usage by monitoring and having control over their 

building at all times without having to be physically present. IoT is making this concept a 

reality and transforming simple building energy management into smart building energy 

management. With IoT, every physical object present inside the building will be 

networked over the internet through sensors and software enabling these objects to 

communicate with one another and with the user over the internet. Some of the 

applications of a smart building energy management include improved energy efficiency, 

access control, lighting control, fire/leak detection, heating, ventilation, and air 

conditioning (HVAC) monitoring and temperature control, and improved building 

security [6].  

Some of the leading building energy management system (BEMS) developers 

include Schneider Electric, Honeywell, Siemens, and Johnson Controls [27]. The BEMS 

developed by these companies are computational systems with capabilities including 

automated and real-time energy consumption monitoring and control and advanced 

building analytics using historic and real-time data. Situational intelligence (SI) must be 

incorporated into these computational systems to transform them into computational 
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systems thinking machines [28] to overcome current energy challenges. SI imparts 

capabilities including security and stability limit prediction with contingency analysis, 

load and generation forecasting, cyber security, and real-time/predictive visualizations 

[28]. SI can be implemented by integrating historical IoT sensor data with real-time IoT 

sensor data (equation 1.1). 

Intelligence (near-future) = (history, current status, some predictions)      (1.1) 

Fig. 1.4 shows a block diagram of a smart building computational systems thinking 

machine that imparts intelligence for IoT and energy management in a building 

environment by providing communication (sense-making), computation (decision-

making), and control (adaptation) capabilities [28].  

 

Fig. 1.4. Computational systems thinking machine for smart building environment 
(extended from [28]) 
 
A wide variety of IoT sensors (e.g., motion sensor, lighting sensor, and temperature and 

humidity sensor) impart monitoring capabilities to the existing building appliances and 

make them better aware of their surroundings. The wireless communication technologies 

(e.g., Bluetooth, Zigbee, IPv6, and Wi-Fi) impart connectivity capabilities to the building 
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appliances to transfer sensor data to the cloud, the control system, and other building 

appliances. Additionally, these wireless communication technologies enable remote 

monitoring and control of the building appliances in smart building electric energy 

management. The control system includes devices such as remote control, tablet, and 

smartphone, which utilize the sensor data to generate the appropriate control signal and 

transmit it to the building appliance (actuator) using the wireless communication 

technology. The building appliance uses this control signal to adjust its current state of 

operation to account for any deviations in the operating parameters. One such 

computational systems thinking machine [28] called the Intelligent Computational 

Engine (ICE) is developed in this dissertation and is described in Chapter 3.  

 

Contributions of This Dissertation 

The contributions of this dissertation are as follows: 

• Detailed review of the role, impact, and challenges and recommended solutions for 

implementing IoT in building environments (Chapters 1 and 2) [2, 3, 6, 29] 

• Development of a general framework of a control architecture for the Intelligent 

Computational Engine (ICE) to overcome current energy challenges in an IoT driven 

building environment (Chapter 3) [30] 

• Development of building case study environment (i.e., Real-Time Power and 

Intelligent Systems (RTPIS) Laboratory) with integration of IoT devices and 

technologies) (Chapter 4) [31, 164] 
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• Development of energy consumption prediction models viz. exponential model and 

Elman recurrent neural network (RNN) model and their comparison to determine the 

most accurate model for use in the development of ICE’s energy consumption 

prediction capability (Chapter 5) [31, 164] 

• Development of ICE’s cellular computational network (CCN)-based energy 

consumption prediction capability (Chapter 6) [30] 

• Development of ICE’s optimized control of electric loads capability using particle 

swarm optimization (PSO) algorithm and logic connector tool (LCT) (Chapter 7) [30] 

• Deployment and dispatch of ICE’s energy consumption prediction and optimized 

control of electric loads capabilities in the RTPIS laboratory to demonstrate energy 

savings (increased energy efficiency) (Chapter 7) [30] 

 

Summary 

IoT for smart buildings presents an exciting area of innovative growth and 

development. The important role of IoT in transforming modern day buildings into 

energy efficient, smart, and connected buildings was presented in this chapter. Digitizing 

the building environment using IoT reduces wasted energy and improves the energy 

efficiency of the building environment. The economic, environmental, and societal 

impact of IoT for smart buildings was also presented in this chapter. Furthermore, IoT 

sensors for smart building environment were discussed in this chapter. The contributions 

of this dissertation were enumerated in the last section. 
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CHAPTER TWO 

CHALLENGES AND RECOMMENDED SOLUTIONS FOR IMPLEMENTING  

IOT IN SMART BUILDINGS 

 
Introduction 

As discussed in Chapter 1, deploying IoT in smart buildings has several 

advantages including improved system efficiency, reduced energy cost, increased energy 

savings, enhanced user comfort, increased return on investment, and reduced carbon 

emissions. However, some associated technical and non-technical challenges exist. 

Technical challenges include sensing, connectivity, power management, big data, 

computation, complexity, and security [3]. Technological innovations are necessary to 

overcome these challenges to ensure continued growth of IoT for smart buildings (Fig. 

2.1). 

 
Fig. 2.1. Technological innovations for intelligent & cyber-secured building environment 
(adapted from [2]). 
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 Non-technical challenges include need for behavior change and influence of 

social attitudes for uptake of the technologies and buy-in regarding smart buildings from 

consumers in order to realize the benefits of deploying IoT technologies in smart 

buildings [29]. Thus, it is important to employ science to consider not only the actual 

benefits of the technologies under laboratory conditions but also how the technologies 

will affect the real lives and communities of human users. Human behavior change and 

social attitudes will prove to be a driving factor of the penetration of IoT technologies in 

smart buildings [29]. 

Therefore, studying the implementation of IoT in smart buildings is complex 

because it involves not only measuring quantitative success but also consumer 

perceptions and satisfaction. To gain a rich, multi-dimensional, synergetic understanding, 

quantitative and qualitative data should be integrated [32]. Mixed method research 

designs have the capacity to capture the experiences, emotions and motivations of 

individuals as well as the objective measures of the successful deployment of IoT 

technology in the smart building.  

Fig. 2.2 shows the recommendations for successful implementation of IoT devices 

and technologies in smart buildings. As presented in the figure, the key entities including 

people, IoT devices, and environment overlap or interact with one another and therefore, 

should not be treated as distinct entities. Each overlapping region has its associated 

impact and innovation needs. In order to realize this transformation goal, the innovation 

needs must be fulfilled [29]. 
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Fig. 2.2. Recommendations for successful implementation of IoT in smart buildings [29]  

The different challenges (technical and non-technical) and some of the 

recommended solutions to overcome these challenges are described below. Also 

described below are some of the recommendations for mixed-methods research design 

for successful implementation of IoT in smart buildings. 

 

Sensing 

 Advancements in sensor technology have resulted in IoT sensors becoming more 

powerful, cheaper and smaller in size. This, in turn, has led to their large scale 

deployment in building environments. Current IoT sensors lack some critical features viz. 
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situational intelligence, efficient power management, and enhanced cyber security, which 

must be incorporated into future IoT sensors to enhance their functionalities [33].  

 As discussed in Chapter 1, near-future situational intelligence can be implemented 

by integrating historical IoT sensor data with real-time IoT sensor data. Benefits of 

implementing near-future situational intelligence in IoT sensors include security and 

stability limit prediction with contingency analysis, load and generation forecasting, 

cyber security, and real-time/predictive visualizations [28]. For efficient power 

management, solutions include using arrays of low-accuracy sensor modules with 

subsequent data fusion to generate high-accuracy information, employing energy 

harvesting solutions (e.g., light, heat, RF, and vibration) to prolong battery life, and using 

digital circuits to design low power sensor nodes [34]. Cyber security solutions include 

embedding hardware security features and adding more layers of security [35-37].  

 

Connectivity 

Need for Comprehensive Connectivity Standards for IoT 

 There are many connectivity standards for IoT applications that can broadly be 

classified into three categories: service-related, communications-related, and data-related 

[38]. The service-related connectivity standards provide definitions for common services 

to support IoT applications. They provide definitions for common capabilities, their 

respective access interfaces, and the protocols employed over these interfaces in a 

manner that enables different IoT applications to gain access to these capabilities across 

protocol stacks developed by different standard organizations (e.g., International 
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Telecommunication Union [39], European Telecommunication Standards Institute [40], 

oneM2M [41]). Additionally, the service-related connectivity standards develop access-

independent interface standards (e.g., [42] by Telecommunications Industry Association), 

addresses carrier portability matters (e.g., [43] by ATIS), and network security concerns 

(e.g., [43] by ATIS) for IoT applications. The communications-related connectivity 

standards provide definitions for efficient communication mechanisms for supporting IoT 

applications. They provide application guidelines to fit the operation of particular 

standards, like Transport Layer Security, in an IoT setting (e.g., [44, 45] by Internet 

Engineering Task Force (IETF)). They also define additional protocols, like RPL 

(pronounced “ripple”) routing protocol for 6LowPAN, to fill gaps in the protocol solution 

set for IoT (e.g., [46] by IETF). They also provide support for multiple vertical 

application domains (e.g., [47] by IEEE). The data-related connectivity standards provide 

definitions for generic mechanisms for supporting versatile data usage and interoperable 

data exchange in IoT applications. They provide technology-independent interfaces for 

generic data definition and access (e.g., [48] by Open Geospatial Consortium, and [49] by 

Object Management Group). Additionally, they provide flexible mechanisms for defining 

object identity information and exchanging this information with other administrative 

domains (e.g., [50, 51] by OASIS, [38]). 

 Interoperability between all the different standards available for IoT applications 

is critical to support the integration of different types of data generated from a variety of 

sources. Interoperability enables the IoT devices to support the curation, provenance and 

exposure of data to third party applications enabling rapid innovations in the application 
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and service ecosystems [38, 52]. Without interoperability, there will be challenges with 

data representation formats, data dissemination mechanisms, and data management 

platforms. The diverse physical and virtual assets can no longer remain disparate entities 

in a smart building environment. They must be interoperable entities across IoT 

applications. These challenges along with the continuously increasing number of IoT 

devices demand the development and implementation of comprehensive connectivity 

standards that will be critical in achieving interoperability and seamless transitions 

between the physical and virtual domains of IoT [38, 52].  

 With the emerging 5G cellular communication standard, low-cost and efficient 

communication with increased network coverage and bandwidths are expected to support 

a sheer scale of IoT devices, the continuously increasing multimedia applications, and an 

exponential increase in wireless data [53]. 

 
Coexistence Challenge 

IoT application in a smart building environment utilizes several connectivity 

protocols (e.g., Wi-Fi, Bluetooth, ZigBee, and BLE) for data transmission [54, 55]. Such 

heterogeneous connectivity scenarios are faced with the coexistence challenge i.e., 

interferences resulting from interaction between wireless connectivity protocols that 

share the same (2.4 GHz) frequency band. These interferences significantly degrade the 

network’s quality of service [54].  

A solution for overcoming the coexistence challenge is with a wireless 

convergence module since it can handle multiple connectivity protocols simultaneously 

using advanced coexistence algorithms. Fig. 2.3(a) shows a smart building scenario 
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where the wireless convergence module handles different connectivity protocols, 

enabling data transfer between IoT sensors and the cloud. An example of a wireless 

convergence module is Redpine RS9113, which supports the heterogeneous connectivity 

scenarios of IoT and addresses coexistence challenges through its innovative coexistence 

algorithms (Fig. 2.3(b) and Fig. 2.3(c)) [54]. Other solutions for overcoming the 

coexistence challenge include fair channel assignment [56] and dynamic licensed 

spectrum sharing [57]. The fair channel assignment approaches ensure fair allocation of 

radio resources to links or flows to achieve seamless transmission [56]. The dynamic 

licensed spectrum sharing approaches allow mobile operators to make use of 

underutilized licensed spectrum bands based on service level agreements [57]. 

  
Fig. 2.3.(a) Application of wireless convergence module in a smart building scenario [6], 
(b) Redpine RS9113 module with built-in antenna [54], and (c) Redpine RS9113 module 
without built-in antenna [54]. 
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Power Management 

Incorporating power management is critical for an IoT device to perform its 

designated functions. Based on the position and functionality of IoT devices in a smart 

building environment, their power collection methods vary. This makes it challenging to 

incorporate power management in IoT devices [3]. The recommended solutions to 

overcome the power management challenge in IoT devices are discussed below. 

 
Energy Harvesting System 

IoT devices in a smart building may be installed in locations that are not easily 

accessible (hazardous, toxic, or hard-to-reach areas) making grid connection or battery 

replacement a complex and expensive approach to power these devices. In such 

scenarios, an energy harvesting system can be a promising alternative to prolong the 

lifetime of the IoT device and reduce their dependency on the grid or battery [58].  

The energy harvesting system comprises of three components: energy source, 

harvesting architecture, and load (sink for the harvested energy) [59]. An energy source is 

the source of energy to be harvested. The energy sources that are present in the 

surrounding environment are called ambient energy sources, for example solar, wind and 

vibrations. Energy may also be harvested using body movements of humans and is called 

human power. Human power can be active or passive depending on whether the body 

movements are controllable by the user or not. Examples of active human power include 

finger motions and footfalls; and examples of passive human power include exhalation, 

breathing, and blood pressure. In general, energy sources can either be controllable or 

non-controllable. Controllable energy sources can be harvested as needed. There is no 
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need to predict energy availability before harvesting them. Examples of controllable 

energy sources include finger motions and footfalls. Non-controllable energy sources 

must be harvested whenever they are available. Prediction models are needed for non-

controllable energy sources to forecast their availability to plan the next recharge cycle. 

Examples of non-controllable energy sources include (solar, wind, and vibrations) [59]. 

Out of all the different energy sources, solar energy emerges as the most promising 

harvestable energy source due to the following reasons [58]:  

• Solar energy is freely available and easily accessible energy source  

• The amount of energy harvested from solar is 24mW/cm2  

• It is uncontrollable but predictable 

• Solar panels can be made small enough to fit the form factor of wireless IoT sensor 

nodes 

A harvesting architecture is a mechanism to collect and convert ambient energy to 

electrical energy. It either harvests the source energy for just-in-time use (harvest-use 

architecture) or stores the harvested source energy for future use (harvest-store-use 

architecture). The energy conversion mechanism in the energy harvesting architecture 

depends on the energy source being harvested. For example, solar panels are used to 

convert solar energy into electrical energy; piezoelectric elements are used to convert 

mechanical energy sources such as walking, paddling, pushing buttons/keys, into 

electrical energy; and rotors and turbines are used to convert wind energy into electrical 

energy [59]. 
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Employing energy harvesting systems exclusively to power IoT devices that have 

low-energy requirements can make these devices truly portable and self-sustaining in 

addition to helping reduce the carbon footprint [58, 59]. Studies have shown that an 

energy harvesting system has the potential to prolong the lifetime of low-power IoT 

sensor nodes when deployed in randomly distributed multi-hop topology and uniformly 

distributed ring topology [60]. Although energy harvesting systems offer promising 

benefits, they also have the following associated drawbacks [58]:  

• The random and intermittent nature of the renewable sources of energy (e.g., solar 

and wind) for energy harvesting systems makes it challenging to provide a stable 

power source to the IoT devices.  

• RF Energy harvesting systems have very low efficiencies (around 16.3 percent [61]).  

Therefore, there is a need to overcome these drawbacks for successful deployment 

of ambient energy harvesting solutions to power the IoT devices. A solution to account 

for the intermittent nature of renewable sources of energy is to employ storage 

technologies (e.g. NiMH batteries, Li-ion batteries, and supercapacitors) to store the 

harvested energy [59]. 

 
Energy-Efficient Communication Networks 

Energy consumption in communication networks is increasing at a tremendous 

rate, which is attributed to the rapid rise in the number of IoT devices with networking 

capabilities and the progressive growth of information and communication technology. 

Therefore, effective power management solutions need to be developed to overcome this 

issue. Energy-efficient communication networks for a smart building environment can be 
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achieved by incorporating power management in both peripheral (e.g., IoT sensor nodes 

and smartphones) and access (e.g., base stations, switches, and routers) network 

equipment of the communication network.  This section discusses the energy-efficient 

communication techniques for wireless, wired, optical, and optical-wireless 

communication networks [62]. 

 
Energy-Efficient Wireless Communication Networks 

Cellular networks including 3G, 4G, 5G (yet to be launched), WiMAX, ZigBee, 

and Wi-Fi are utilized in wireless communication. The metric for energy efficiency in 

wireless networks is “bits-per-joule” and is a measure of throughput with regards to unit 

energy consumption [62]. The following power management solutions can be 

incorporated in wireless communication networks to make them energy-efficient: 

• Employing the relaying technique using mobile relays between IoT entities that are 

geographically spread, resulting in shorter transmission range requiring low 

transmission power [63, 64] 

• Using the cooperative communication technique for IoT entities that have different 

channel conditions (channel diversity) [63] 

• Placing the base station (BS) in sleep mode during low traffic volume since they 

account for 60–80% of the whole power consumption in a wireless network [65, 66] 

• Using the coordinated multi-point technology, where the function of the base station 

is separated into baseband unit and remote radio unit parts. By doing so, the distance 

between the user and antennas decreases, resulting in reduced system transmission 

power consumption [67]. 
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• Adoption of the power saving mode by IEEE 802.11 standards that allow the wireless 

nodes to go into sleep mode when they are neither receiving nor transmitting [68] 

• Employing networks like ZigBee [69] and ultra-low power Wi-Fi [70], which are 

inherently energy efficient, for home area network  

• Connecting IoT devices in mesh topology to improve power efficiency and 

communication capability [71] 

• Using radio frequency energy harvesting to power the wireless communication 

networks [72] 

• Deploying turbo codes in energy-constrained wireless communication applications 

can help decrease RF bandwidth requirements and/or increase information bit rates 

significantly, without having to increase the transmission energy consumption [73]. 

 
Energy-Efficient Wired Communication Networks 

Power line communication (PLC) and Energy Efficient Ethernet (EEE) are 

utilized in wired communication [62]. The following power management solutions can be 

incorporated in wired communication networks to make them energy-efficient: 

• Incorporating spectrum sensing scheme in PLC to reduce its power consumption [74, 

75] 

• Incorporating green resource allocation scheme in PLC that optimizes data allocation 

to the available channels [76] 

• Adoption of the power saving mode by HomePlug Alliance (PLC standard for Smart 

Grid applications) within its Green PHY 1.1 definition [77] 
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• Employing low-power cycles in EEE with periodic refresh intervals to maintain the 

transmitter-receiver alignment and save energy [78] 

 
Energy-Efficient Optical Communication Networks 

Fiber optical communication networks offer several advantages including high 

speed, large bandwidth, and a high degree of reliability. These networks follow a 

hierarchical organization consisting of core (providing coverage ranging from a few 

hundred to a few thousand kilometers), metro (providing coverage ranging from a few 

tens to a few hundred kilometers) and access (providing coverage ranging over a few 

kilometers) domains [62]. The following power management solutions can be 

incorporated in optical communication networks to make them energy-efficient: 

• Turning off the network equipment (e.g. switches, line cards or the links) that is in its 

idle state during low traffic volume [79, 80] 

• Employing lightpath bypass technique over lightpath non-bypass technique to 

provision survivable demands with minimized power consumption in IP-over-WDM 

networks [81, 82] 

• Incorporating techniques like multi-path selection [83], multi-granular switching [84], 

and energy-aware routing [85] to save energy  

• Employing energy-efficient access technologies such as passive optical networks 

[86], Ethernet passive optical networks [87, 88], long-reach passive optical networks 

[89], and point to point optical networks [90] 
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Energy-Efficient Optical-Wireless Communication Networks 

Optical-wireless communication networks, commonly known as fiber-wireless 

(Fi-Wi) communication networks, combine the ubiquity, coverage and flexibility of 

wireless communication networks with the speed and the reliability of optical 

communication networks. To make the optical-wireless communication networks energy-

efficient, the optical network unit (ONU) module of a joint ONU-BS node can be placed 

in sleep mode during low traffic volumes. In this case only the BS module from the joint 

ONU-BS node handles data forwarding to the peers [62, 90]. 

 

Big Data 

Hundreds of IoT devices connected across a smart building environment generate 

large amounts of data (or big data), making it challenging to store, track, analyze, 

capture, cure, search, share, transfer, secure, visualize, and interpret the generated data 

[91]. It is challenging to process big data using traditional data processing applications 

due to the following unique characteristics that are associated with big data [92]: 

• Large volume/quantity of generated data 

• Variety in the type of generated data 

• Different velocity/speed of data generation 

• Variation in the veracity/quality of source data 

• Data inconsistency/variability 

Big data must be transformed to actionable/intelligent information, knowledge, 

and understanding to extract value from it. Understanding is a process by which 
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individuals attach meaning to an experience. Understanding of what matters must be a 

priority, especially for critical operations. Additionally, understanding must be gained 

from a shared view due to the interconnected (spatial and temporal) nature of the electric 

power grid dynamics [28]. 

A recommended solution to overcome big data storage and processing challenge 

is Apache Hadoop – an open-source software framework. Hadoop utilizes large clusters 

of commodity servers to enable distributed processing of big data. Hadoop has a number 

of advantages including hardware infrastructure scalability, cost efficiency, data type 

flexibility, and fault tolerance, which makes it a leading candidate for storing, managing, 

and processing big data [92]. It is important to note that Apache Hadoop works well for 

smart grid markets days or weeks ahead, but does not work well for real-time application 

scenarios like smart buildings. Hence there is a need for real-time big data solutions for 

smart building like application scenarios. A prospective solution to overcome the real-

time big data handling and storage challenge involves a collaborative effort from all 

leading cloud providers to develop a new IoT cloud ecosystem [91]. 

 

IoT Computational Requirements and Capabilities 

As compared to human brain, IoT infrastructure is not that complicated. In a 

human brain, there are 100 billion neurons with each neuron connected to 10,000 other 

neurons [93]. Imparting computational capabilities to the IoT devices and the network-

edge devices (e.g. gateways and routers) have resulted in a paradigm shift from 

connected/networked IoT devices to intelligent IoT devices.  
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The advancements in computational intelligence capabilities can evolve an 

intelligent IoT system by emulating biological nervous systems with cognitive 

computation, streaming and distributed analytics including at the edge and device levels. 

Cognitive computation emulates biological thinking, analysis, and strategy, serving as a 

learning mechanism for the entire IoT ecosystem. It can identify patterns from large and 

diverse data sequences in real-time by weighing the incoming data against the long-term 

information and making strong decisions. Several companies such as Intel and 

CognitiveScale are exploring intelligent interactions by combining sensors, contextual 

data, and cognitive computing to drive new strategies for various industries including 

home automation, healthcare, and traffic management. Streaming analytics mimics the 

biological spinal cord by controlling the reflex actions that do not need extensive 

computations to make decisions in real time. It weighs the incoming analytical data with 

historical information in real time to make quick decisions (very low latency). The 

decision making with streaming analytics is much faster than batch processing large 

amounts of data. There are several cloud solutions (e.g. Amazon Kineses and Azure 

Streaming Analytics) and cloud-based, open source or on-premise applications (e.g. 

Apache Spark and Apache Storm) that support streaming analytics. Edge and device 

computation mimics biological nerves and neurons that filter the incoming data, retain 

the data that can be processed locally in the edge devices (impacting only a small part of 

the IoT ecosystem), and forward the remaining data to be processed in the cloud 

(impacting a larger part of the IoT ecosystem). An example of a small and inexpensive 

edge computing device is Raspberry Pi [94, 95].  
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The number of IoT devices and applications are continuously growing leading to 

a significant increase in IoT data volume. ABI Research has estimated the IoT data 

volume to grow from 233 exabytes in 2014 to 1.6 zettabytes in 2020 [96]. The different 

IoT devices and applications generating real-time data are dispersed over large 

geographical areas and support a variety of use cases and domains. A centralized 

computation and storage solution (e.g. cloud) for real-time heterogeneous IoT data is not 

ideal. IoT applications have strict requirements like high throughput during short time 

periods, very low latency, and prompt decision making based on real-time data analytics, 

which cloud computation cannot satisfy. With all the IoT devices and applications 

sending service requests to the cloud, it would be challenging to serve these requests in 

real-time resulting in inefficient service-provisioning and increased latency. Additionally, 

IoT ecosystems are constrained in terms of low power communications, scarce energy, 

and lossy communications, which necessitates localized computation and storage 

solutions for processing, analyzing, and storing IoT data [97-101].  

Two approaches for overcoming the IoT data computation challenge are discussed 

below viz. fog computing and IoT data footprint reduction methods. Deploying these 

solutions in the IoT ecosystem will drive the smart building operations using hard 

evidence and statistical probabilities rather than relying on soft opinions and intuitions. 

 
Fog Computing 

The term fog computing was coined by Cisco Systems, Inc. in 2012 [102]. Fog 

computing is a distributed computing infrastructure that provides computational and 
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storage capabilities to the network devices located at different levels in the IoT hierarchy 

viz. endpoint level, gateway/server level, and cloud level [97].  

Fog computing is based on the principle of edge computing where IoT application 

service requests, requiring low latency, support for mobility, and real-time data analysis 

with decision making abilities (e.g. smart grid, smart traffic monitoring, and smart 

parking), are processed locally within the fog computing devices (e.g. gateways, routers, 

and access points). Alternatively, the requests that demand extensive analysis involving 

historical data-sets, or semi-permanent and permanent storage (e.g. social media data, 

photos, videos, medical history, and data backups), are forwarded to the cloud by the fog 

computing devices [97]. 

Therefore, fog computing and cloud computing are not competing computational 

technologies, but are instead complementary. Together they support the IoT applications' 

real-time and low latency service requests at the network edge, as well as applications 

requiring complex analysis and long-term data storage in the cloud [97, 100, 101].  

The following are the advantages of employing fog computing in the IoT 

ecosystem. Many of these advantages are a result of the proximity of fog computing 

devices to consumers, their dense geographical distribution, and mobility support [98, 

103]: 

• Refining the generated IoT data by distributing it among the edge devices [96] 

• Lowering latency and saving bandwidth by processing IoT applications' service 

requests at the network edge [96, 98] 

• Improving availability through local storage and analytics [96] 
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• Providing location awareness, improved quality of service, heterogeneity support, 

fault tolerance, scalability, and reliability [103] 

• Reducing network traffic by increasing the operational size of the network [104] 

• Maximizing security and compliance by encrypting critical data packets at the source 

[96] 

• Saving both time and cost of transmitting the locally generated IoT data to the cloud 

over the Internet (high latency network) [105] 

• Optimizing the total cost of ownership by reducing the connectivity costs and 

increasing the lifetime of battery-operated IoT devices [96] 

Although there are several advantages, associated challenges with fog computing 

also exist: 

• Handling data generated from dissimilar sources because of different protocols and 

data formats [104] 

• Cyber attacks (e.g. node-compromised attack and man-in-the-middle attack) and 

privacy concerns (e.g. data protection and data management issues) [105] 

• The unpredictability of the computational availability of the edge devices [106] 

• Increased costs and energy consumption at a Fog node due to additional resource 

requirement by migrating Fog applications [107]. 

Several fog computing techniques have been proposed to overcome these 

challenges including software defined network and network functions virtualization 

[103], schema-less database record [104], task execution by idle edge resources [106], 

and smart shadow technique [108]. 
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IoT Data Footprint Reduction Methods 

As mentioned before, centralized computation and storage are not ideal for IoT 

applications. The increased IoT data velocity and volume from the growing scale of IoT 

devices can elevate the stress on the communication network resources to a point where 

resource starvation occurs. Therefore, it is critical to minimize the traffic inserted into the 

communication network. One way to reduce the data traffic is by appropriately 

distributing the data between the network elements based on their computation 

capabilities and available resources. Another way to reduce the IoT data footprint is 

dimensionality reduction method. This method relies on the global awareness and 

knowledge of the IoT ecosystem for eliminating redundancy and filtering out the noise 

from IoT data packets. The drawback with the dimensionality reduction method is that it 

does not address the impact of IoT data exchanges on the communication network. Data 

filtering methods are used to address the impact of IoT data exchanges at an operational 

level. These methods are distributed throughout the communication infrastructure, 

monitoring the IoT data in transit for significant events. Once a significant event is 

detected, data filtering methods label them with critical local information (e.g. network 

load) resulting in a more efficient treatment for these events at the operational level. The 

IoT data footprint on the communication networks can be further reduced by employing 

both data filtering and data processing methods within the same IoT node [104]. Neural 

Networks can also be employed to reduce data size during transmission over the 

communication network (Fig. 2.4) [109].  



 36 

 

Fig. 2.4. Neural Networks used for reducing data size 

 

Complexity 

The expansion of network infrastructure due to the wide penetration of IoT 

devices has resulted in increased network size, heterogeneity (different vendors providing 

services, equipment, and applications), and complexity [110, 111]. For a lot of these 

devices, networked connectivity is a brand new feature. To continue this trend of adding 

more IoT devices with networked connectivity that seamlessly integrate with a smart 

building environment, IoT device design and development must be simplified [91, 55]. 

Further, the wireless capabilities must be encapsulated and instead easier to understand 

reference designs, modules, and on-chip connectivity stack and development 

environment must be provided [91]. 

The traditional approaches for network optimization, configuration, and 

troubleshooting are cumbersome, error-prone, and have proved to be inefficient in 

resolving the complexity issue [110]. For example, autonomous system based approaches 

have resulted in suboptimal performance, local optimization methods have resulted in 

conflicting operations, and the lack of inbuilt programmability, flexibility, and support 
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has resulted in service interruptions while implementing new ideas [112-114]. 

Additionally, the development, implementation, and testing of new methods for network 

optimization, configuration, and troubleshooting takes several years before they can be 

deployed, which may render them useless [115, 116]. A promising solution to manage the 

growing network complexity is software-defined networking (SDN) [110, 111]. 

The Open Networking Foundation defines SDN as “an emerging network 

architecture where network control is decoupled from forwarding and is directly 

programmable [117].” SDN decouples the control plane from the data plane. The data 

plane includes devices such as routers and switches that follow the controller rules to 

perform packet forwarding. The control plane includes controllers that oversee the 

network operations and provide a platform for the implementation of different network 

services and applications. The main advantage of SDN is that it offers the rapid 

implementation and deployment of innovative solutions (e.g., network security, network 

virtualization, and green networking) in the form of software. Additionally, SDN uses the 

cross-layer information and global network view in the logical centralization of feedback 

control to make better decisions. Therefore, SDN provides enhanced network 

configuration, improved network performance, and higher network flexibility to 

accommodate innovative architectures and operations [110]. 

Although SDN provides many benefits to overcome the complexity issue, it also 

has some associated challenges including SDN interoperability issues with legacy 

network devices, performance and privacy concerns with centralized control, and lack of 
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experts for technical support. Additionally, the shift from traditional networking to SDN 

can be disruptive [110]. 

 
Security 

“A cyber security vulnerability is a weakness in a computing system that can 

result in harm to the system or its operation, especially when this weakness is exploited 

by a hostile actor or is present in conjunction with particular events or circumstances 

[118].” Cyber security is a potential issue for a smart building environment. Recent cyber 

attacks on IoT devices include the distributed denial of service (DDoS) attack on Dyn’s 

managed domain name system infrastructure using Mirai botnet affecting over 100,000 

endpoints [119],  ransomware for smart thermostats that lock the user out and demand 

bitcoins to release the thermostat [120], Bluetooth smart locks that are easily hacked 

[121], DoS attacks by a lightbulb that froze the controls of the entire smart home [122], 

and the ease by which a neighbor was able to unlock the resident’s front door smart lock, 

connected over Apple HomeKit, and gained entry into the house by simply issuing the 

unlock voice command to Siri [123]. 

Security solutions developed for IT computer systems will typically be 

inappropriate for a smart building environment. The attack incident taxonomy used by 

Computer Emergency Response Team (CERT) to describe security incidents is shown in 

Fig. 2.5 [124]. This taxonomy provides uniform terminology and useful framework to the 

security research community. Incidents consist of a set of attacks that are executed to 

achieve the desired objectives. Attacks produce unauthorized results by using tools to 

exploit system/network vulnerabilities. An attack consists of a sequence of events. Fig. 
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2.6 shows a modified attack taxonomy that adapts this approach to the smart building 

environment. As before, attackers use tools to exploit the vulnerabilities of the IoT 

devices in the smart building and launch attacks against targets to obtain unauthorized 

results. 

 
 
Fig. 2.5. Attack taxonomy by CERT [124]. 
 
 

 
Fig. 2.6. Modified attack taxonomy for a smart building environment [3]. 
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There are four general classes of attacks for the integrity, availability, 

confidentiality, access control, authentication, and nonrepudiation security aspects [125, 

126]: 

• Interruption: Asset availability is disrupted 

• Interception: Unauthorized asset access 

• Modification: Unauthorized asset tampering 

• Fabrication: Fictitious asset creation 

Security solutions are needed to overcome these risks and protect the IoT devices, 

networks, and sensitive data from security breaches and unauthorized access. Discussed 

below are some of the security challenges and recommended solutions for IoT devices in 

smart buildings [127]. 

 
Interruption Attacks 

An interruption attack includes both hardware-based DoS attack or sabotage and 

software-based DoS attack [128]. 

 
Sabotage and Countermeasures 

IoT device hardware or infrastructure sabotage (e.g. cutting a cable or inflicting 

damage to a physical IoT device) results in the disconnection of the device from the 

network. An example of sabotage in a smart building environment includes inflicting 

physical damage to smart meters [129-132]. These attacks can be reduced by limiting 

access to critical IoT infrastructure. 
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DoS Attacks and Countermeasures 

In DoS attacks, the attacker compromises several machines (or zombies) and 

consumes network resources, which overloads the bandwidth of the target and results in 

slowed or dropped legitimate traffic (also known as distributed DoS (DDoS)). For 

instance, DoS attacks on smart building devices (e.g. smart meters) relying on the real-

time measurement data cause delayed or lost measurements from these devices. This 

results in inaccurate demand predictions or complete failure of network measurement 

devices. Other examples of DoS attacks include network layer attacks, transport layer 

attacks, Local Area Network Denial attacks, and teardrop attacks [133]. In teardrop 

attacks, the attackers transmit fragmented packets to a target. Due to a bug in TCP/IP 

fragmentation reassembly, the target is not able to reassemble the received packets 

resulting in overlapping packets, which crash the target network device [134]. DoS 

attacks have the capability to inflict serious damage to the smart building environment 

and therefore, must be reduced by using network security techniques such as air gapped 

network, anomaly detection approaches, big pipes, and traffic filtering. 

An air gapped network is a network security technique that physically isolates a 

secure computer network from other insecure networks (e.g. public Internet or an 

insecure local area network). It eliminates any communication with the machines not 

connected to the local segment. However, there is a drawback to this technique in terms 

of the high costs associated with building separate network infrastructures for the smart 

building environment.  
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Anomaly detection approaches are used to detect DoS attacks on a smart building 

environment. Experimental results have shown that the detection performance is 

inversely proportional to the network utilization. Also, the optimal detection parameters 

have a strong dependence on the network utilization [135].  

Big pipes are large bandwidth network connections that can absorb attack traffic 

to mitigate the DoS attack on a smart building environment. However, there is a 

drawback to this technique in terms of the high costs associated with it.  

A less expensive approach to mitigate DoS attacks on a smart building 

environment is traffic filtering. This approach utilizes distributed or redundant 

infrastructure to redirect attack traffic [136]. However, there are a couple of drawbacks 

with this technique including the lack of documentation to support the claim of filtering 

DoS traffic from normal traffic and the difficulty of employing this technique, especially 

with large traffic volume [128-130, 136-142]. 

 
Interception Attacks 

An interception attack gains access to the information that is traversing the 

network between the smart building devices (e.g. between IoT sensors and actuators). 

These attacks can either be passive or active. Two types of interception attacks, packet 

sniffing and side channel attacks, are discussed below [135]. 

 
Packet Sniffing and Countermeasures 

Attackers can gain access to the contents of the smart meter Transmission Control 

Protocol (TCP)/Internet Protocol (IP) packets that are sent across the smart building 
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network using software programs such as Wireshark [128]. This is known as packet 

analysis or packet sniffing. In the absence of encryption, the attacker can see and harvest 

all the sensitive information in the data packet.  

Packet sniffing can be mitigated by using a security gateway that sends packets 

through a virtual private network (VPN) tunnel, which is created by embedding an IP 

tunnel (with encryption) within the normal IP network payload. The encryption hides the 

data from the attackers, making the network private, in addition to being virtual [141]. 

The communications between VPNs are secured using the Transport Layer Security 

(TLS) protocol. The connections between different parties on the smart building network 

are secured using the X.509 certificates, which first authenticate users and subsequently 

exchange symmetric keys. However, there is a possibility that the X.509 certificates are 

compromised or are issued in error [130]. An instance of compromised certificates was 

reported in [143], where an imposter tricked VeriSign into issuing two certificates for 

Microsoft. Although using VPN tunnels provide smart building network security, they 

have associated implementation and design errors. For example, an attack on a VPN 

tunnel was reported in [130], where the Heartbleed bug was discovered in the OpenSSL 

cryptography library leaving around half a million supposedly secure web servers 

vulnerable to cyber attacks. Therefore, it is essential to verify the security of VPN tunnels 

during their implementation [130, 137, 141, 144]. Using pre-shared keys is usually 

effective. Also, Secure Sockets Layer certificates or TLS certificates, which are generated 

by a common root of trust controlled by a trusted entity, can be used. 
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Side Channel Attacks and Countermeasures 

From the above discussion, even though VPN encryption provides security for 

network connections, side-channel attacks are still possible. In side-channel attacks, 

sensitive information can be extracted by observing implementation artifacts [127, 145]. 

An example side-channel attack is in [134], where the protocol information was extracted 

by using a timing side-channel vulnerability for secure shell – a cryptographic network 

protocol [146]. This could severely degrade the monitoring of the smart building 

environment as the attacker can stop parts of the system’s feedback control and hide 

inefficiencies or instabilities in the smart building environment.  

To counter side channel attacks on a smart building environment, the 

communication channel bandwidth could be saturated to disallow any new patterns to 

emerge. However, this approach has an extreme resource requirement and can only be 

used in extreme cases [147]. Additionally, the detection of saturated channels, which can 

potentially be side channels, helps mitigate side channel attacks in a smart building 

environment. Also, building a separate infrastructure for smart building device 

communications can help resolve side channel attacks, but it is an expensive approach 

[148]. 

Modification Attacks 

Modification attacks exploit security vulnerabilities in a smart building 

environment for corrupting, highjacking, or altering a legitimate process. Examples of 

modification attacks include man-in-the-middle (MITM) attack, Structured Query 

Language (SQL) injection, and malicious code injection [127]. 
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MITM Attacks and Countermeasures 

In MITM attacks, the attacker poses as the legitimate target to both the legitimate 

client and server during the protocol session. In other words, if A and B are 

communicating with each other, the intruder I disguises itself as B in front of A and as A 

in front of B, thereby replacing the AB link with two links AI and IB [127]. Some of the 

MITM attack methods include route table poisoning, modified packet source and 

destinations, and compromised certificates [127]. An instance of compromised certificate 

of Hypertext Transfer Protocol (HTTP) over TLS (HTTPS) connection was reported in 

[149], where the authors used fake certificates to initiate a MITM attack.  

To counter the MITM attacks, the network traffic should be encrypted using 

security gateways [145]. The security gateway creates a VPN tunnel (unsecure network) 

connecting two secure networks. To ensure that the sensitive data is protected when 

passing through the VPN tunnel, the security gateway encrypts the data at the source and 

decrypts the data at the target. This encryption is typically done in hardware and can be 

efficient. Security gateways support smart building communications and interoperability 

by employing the Internet Protocol Security (IPsec) protocol. IPsec secures the 

communication link by ensuring that the data stays authentic, unaltered, and confidential 

throughout the communication process [145]. Additionally, to mitigate MITM attacks, 

both the system client and server need to be authenticated [144]. TLS protocols have in-

built public key cryptography mechanisms that can promptly detect and correct any errors 

to avoid the occurrence of MITM attacks [128-130, 137, 139, 144, 150]. 
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SQL Injection and Countermeasures 

In SQL injection, the attacker alters the database by inserting new script 

commands [127]. Smart meters continuously send energy usage data to the utilities and 

the users, which is stored in a database. The SQL injection occurs if the queries 

formulated by the user are not properly validated before inclusion in the SQL query 

[151]. This attack can send malicious queries to the database management system to add, 

delete, or modify the database contents and take control of the system. This can disrupt 

the smart building operations as the attacker can indicate a normal operation state even 

when it’s not, which might eventually result in an outage. 

SQL injection on smart building networks can be mitigated by using measures 

including input type checking, positive pattern matching, penetration testing, static code 

checking, limiting database access to remote users, and avoiding dynamic SQL use [152, 

153]. In input type checking, the characters that can be abused, like “;”, are filtered out by 

the programmer to avoid any malformed input. This is not simple; authors in [154] have 

shown that most existing tools for sanitizing inputs have errors. In positive pattern 

matching, the user input is matched with the format of a good input. In penetration 

testing, SQL injection is attempted on the interface to ensure that these attacks are 

properly detected. In static code checking, the program is checked for correctness using 

code checking tools. Limiting database access to remote users means that the remote 

users should have limited rights on the database and all their inputs should go through an 

application program interface (API). Dynamic SQL use should be avoided and user 

inputs should be forced to use static templates and existing tables [130, 152, 153]. 
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Fabrication Attacks 

In fabrication attacks, the attacker creates a fictitious asset on the smart building 

network that transmits fabricated data across the network, which may be accepted by 

other network assets if not properly authenticated. Data spoofing – a type of fabrication 

attack is discussed below [127]. 

 
Data Spoofing and Countermeasures 

The accuracy of data in the smart building network is critical for its efficient and 

reliable operation. In data spoofing, fabricated (inaccurate) data is injected into the 

control centers. Data spoofing severely degrades the smart building operation, stability, 

security, and reliability, which may result in an outage. 

To counter data spoofing, the authors in [129] advise using a single data feed. 

Additionally, multiple/redundant smart building devices (smart meters) can be used to 

monitor the same electrical transmission bus to reduce data spoofing [83]. Other 

approaches to mitigate data spoofing include collaboration among GPS receivers to 

efficiently detect any spoofing [155] and synchronizing measurements using the network 

time protocol (NTP) across different locations in real time [156]. A combination of NTP 

and GPS is recommended to limit the modification of timestamps through GPS spoofing 

[124, 129-131, 137, 139, 141, 157]. 

 

Need for Behavior Change 

Behavioral change is critical for realizing the impact of IoT in smart buildings. 

For behavior change to occur, it is necessary to understand the factors that influence a 
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person’s decision-making process, lifestyles, and intensions. One way of motivating 

people to desire the behavior change necessary to adapt to smart buildings is through 

interventions where the people are educated about the benefits of smart buildings (e.g. 

reduced greenhouse gas emissions, revenue generation, and improved quality of life 

(QoL)). Because human beings are complex creatures, behavioral change usually occurs 

as part of a process [158].  

This section discusses five stages of behavior change as described by the 

Transtheoretical Model (TTM) of Behavior Change (Fig. 2.7). TTM is a biopsychosocial, 

integrative model that conceptualizes the intentional behavior change process. It was 

originally developed by Prochaska and DiClemente in 1983. TTM uses stages of change 

to integrate processes and principles of change across major theories of intervention 

development, behavior change, and counseling [159]. It has been widely applied in 

problem behaviors (e.g. smoking cessation, alcohol abuse, drug abuse, weight control, 

medical compliance, and stress management) and has been considered in the context of 

IoT technology as well [158, 160]. 

 

Fig. 2.7. Transtheoretical Model of Behavior Change [29] 
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Pre-Contemplation 

In the pre-contemplation stage, the person is not aware that he/she needs a change 

in behavior. As applied to smart buildings this group includes people who are not aware 

of IoT technologies nor of their benefits for smart buildings [29]. 

To make this group of people interested in and excited about being part of a smart 

building, it is necessary to focus on improving communication and raising awareness that 

highlights the benefits of IoT technology and its impact on smart buildings. The 

information that is shared with this group should be clear, easy to understand, and 

tailored to their needs [161]. This information can be disseminated through social media 

outlets (e.g. Facebook and Twitter), testimonials from locals they know and trust, and 

news stories. By doing so, this group of people will hopefully progress to the 

contemplation stage [29]. 

 
Contemplation 

In general, when people have reached the contemplation stage they realize they 

need a behavior change. In the context of smart buildings, these people acknowledge the 

existence and benefits of IoT technologies for smart buildings and desire to be a part of 

one such building [29]. 

At this stage it is necessary to foster “self efficacy” in the people by helping them 

move from a desire or goal to believing their desire or goal can actually become a reality. 

This could be accomplished by empowering people with practical tangible knowledge for 

helping them realize how IoT technology can make them energy efficient and save 

money in the long run as well as with the idea that they themselves can indeed learn to 
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use the new technological devices. It is important to provide enough information to the 

people but not to overwhelm them with too much information at this stage in order to 

hopefully move into the preparation stage [29]. 

 
Preparation 

When reaching the preparation stage, people prepare for action. These people 

have the desire and are preparing to be a part of a smart building. These preparations can 

include understanding the different resources and IoT technologies available to them, 

budgeting these resources to meet their needs, and motivating their neighbors or finding a 

group of people that is interested in building or converting to a smart building. With a 

myriad of IoT devices available from various vendors, it would be helpful for the people 

in this stage to be able to consult with experts to determine the IoT devices and 

technologies that best fits their constraints [29]. 

 
Action 

The action stage is when people actually begin changing behavior. They become a 

part of a smart building and start availing IoT devices and technologies. There is much 

enthusiasm associated with the novelty of this stage as well as a learning curve for 

operating the IoT devices. For instance, IoT technologies are implemented and people 

begin to see their effects in their day to day lives in terms of saving time, energy, and 

money; and improving their QoL. To engender a community of practice where 

participants share information and knowledge, users must be given important feedback 

that connects their individual home use with the community as a whole. Giving 



 51 

community members the power to enact change through data-driven choices will provide 

a fertile context for exploring their relationships with energy resilience and smart systems 

[29].  

Maintenance 

The maintenance phase is about maintaining the behavior change. People in this 

phase are already availing IoT devices and technologies and are living in a smart 

building. The goal of this phase is to maintain the “smart nature” of their building on a 

daily basis so as not to terminate the behavior and to revert the smart building back to its 

“non-smart” state. Once people are reaping the benefits of IoT devices and technologies 

in smart buildings, they should feel good about their decision to avail these technologies. 

These feelings will motivate the people to continue using IoT technologies and remain 

excited to be a part of a smart building. It is vital that the IoT technologies are updated 

periodically (software and hardware) to ensure the best user experience. Additionally, the 

community has to work together as a society and help its residents stay motivated and 

keep up the spirit [29].  

The success of the implementation of IoT technologies in smart buildings will be 

largely determined by their use by consumers. Thus, understanding the stages of behavior 

change can be insightful for industries and researchers in developing solutions to 

motivate and sustain behavior change. An important influence that could motivate 

personal behavior change related to deploying IoT technologies in smart buildings is 

social attitudes toward IoT [29]. 
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Influence of Social Attitudes 

Social attitudes will greatly influence the health and penetration of IoT in smart 

buildings. Members of smart buildings work toward energy resilience using system 

information, which involves issues of self-sufficiency, responses to and recovering from 

emergencies, and adapting to changing conditions. Achieving energy resilience is crucial 

for the vitality of the smart building [29].  

One aspect that may greatly influence the development of energy resilience in 

smart buildings is the perception of Quality of Life (QoL) among its occupants. As smart 

systems change the built environment, the built environment affects the well-being of its 

residents. The introduction of smart buildings has the potential to affect the well-being of 

its residents, which will be evidenced by their attitudes and behaviors in their interactions 

with the smart system and with one another, especially around the topic of energy use. 

The social attitude of the building must be supportive of individual and community 

behaviors that collectively enhance QoL [29].  

According to authors in [162] who conducted expert interviews and public 

deliberative workshops in two locations in the United Kingdom regarding smart home 

adoption, the public saw many social benefits, including better QoL due to aspects such 

as the potential to increase leisure time, save money, make life easier, and provide 

support for assisted living as people age. Concerns were also raised, however, regarding 

social barriers such as loss of control and apathy; reliability issues; perceiving smart 

technology as divisive, exclusive, or irrelevant; privacy and data security; cost; and trust. 
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These benefits and issues are relevant to the development of smart buildings since smart 

homes are a subset of smart buildings and directly impact the daily life of their occupants. 

With the growth in the development of IoT devices and technologies, there is a 

burgeoning need for research and development focused on how people learn to use these 

new capabilities to change their minds and improve their knowledge. In order to increase 

the penetration and health of smart buildings, it is necessary to determine the motivators 

and initial attitudes that impact the willingness of users to engage with their smart 

environment [29]. 

 

Recommendations for Mixed-Methods Research Design Study for  

Implementing IoT in Smart Buildings 

 
Researching the Implementation of IoT 

The availability of IoT technology will not necessarily guarantee its uptake and 

use in achieving its benefit to society. People often do not progress through the steps 

outlined in the TTM of Behavior Change, and it is possible that persons may also regress. 

For researchers interested in studying the implementation of IoT in smart buildings, it is 

paramount that qualitative data be collected to determine the technological success, but it 

is also necessary to garner qualitative data that takes into account the complexity of the 

initiative due to many social and behavioral considerations. Therefore, employing mixed 

methods research designs can be beneficial. Currently, IoT technology developers rely 

primarily on quantitative data to ensure the IoT devices they develop help reduce 

electricity waste and generate savings for people using them. As these devices penetrate 
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deeper into society, studying the objective outcome measures alone is not sufficient for 

understanding factors that will majorly influence the widespread adoption of IoT 

technology. The integration of qualitative methods of data collection and analysis into 

this research will involve exploration and understanding of individual and group 

behavior, organizational dynamics, and cultural influences [32]. 

 
Methods for Collecting and Analyzing Data 

Data is collected similarly in the quantitative and qualitative arms of a mixed 

methods study in that a sampling criteria and variables or constructs of interest must be 

carefully considered. There are three major types of mixed methods study designs 

(convergent parallel, exploratory sequential, and explanatory sequential) [32, 163]. The 

type of design chosen informs whether the quantitative or qualitative data is collected 

first or both datasets are collected simultaneously.  

The qualitative research arm of the mixed methods study would likely utilize 

focus groups, key informant interviews, and surveys to identify barriers and facilitators 

related to the IoT deployment in smart buildings. Structured interviews can be used to 

generate a wide range of ideas and topics, whereas focus groups can be used to observe 

issues around which there seems to be consensus as well as topics that generate 

disagreement [32]. Surveys are often used to generate a large representative sample of 

data in order to generalize to the population [163]. Regardless of the chosen data 

collection method, a primary goal of the qualitative research would be to use the 

information learned to develop interventions that address the priorities and concerns of 

the residents.  
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Considerations for Mixed Methods Research Designs 

Before employing a mixed methods design, it is important that researchers 

carefully consider the purpose of their research and the intended use of their findings in 

order to limit external validity issues. For example, it is especially important to consider 

the difference in focusing on representativeness versus seeking out information rich cases 

[32]. Before pursuing mixed methods research, researchers should also consider their 

budget to ensure that there are sufficient resources for this type of design since it is 

generally costlier in terms of time, labor, and resources. Mixed methods research also 

requires a flexible, dynamic, and often multi-disciplinary team that is willing to learn 

from one another and from the data they are collecting. Team members must value the 

mixed methods approach, share a common goal, and effectively communicate with one 

another in order for the collaboration to be successful [32]. 

 

Summary 

The technical and non-technical challenges associated with implementing IoT in 

smart buildings were described in this chapter. The technical challenges included sensing, 

connectivity, power management, big data, computation, complexity, and security. The 

non-technical challenges included the need for behavior change and influence of social 

attitudes. Some of the viable solutions to overcome these challenges were recommended. 

Additionally, recommendations for mixed-methods research design to realize the 

potential of IoT for transforming modern buildings into smart buildings were presented in 

this chapter. 
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CHAPTER THREE 

INTELLIGENT COMPUTATIONAL ENGINE 

 
Introduction 

With the growing world population, the demand for access to affordable, clean 

and sustainable energy is increasing. Currently, we are faced with problems including 

inefficient energy management, wasted energy resources, and expensive energy costs that 

make it very difficult to meet the growing energy demands [164]. As discussed in 

Chapter 1, the existing building energy management systems need to be transformed into 

computational systems thinking (CSTMs) by incorporating situational intelligence [205] 

to overcome current energy challenges. One such CSTM has been developed in this 

dissertation and is called the Intelligent Computational Engine (ICE). A general 

framework of a control architecture for ICE in an IoT driven building environment is 

described in this chapter. Also described in this chapter are the features and impact of 

ICE.   

 

Features and Impact of ICE 

The purpose of developing ICE is not only to overcome the above-stated 

problems, but also to make life more convenient, safe, and comfortable. Fig. 3.1 shows a 

block diagram of ICE with IoT technologies integration. ICE is a computation, 

information and action engine, which receives operational data from IoT sensors, 

processes it, and generates actionable information for IoT actuators. This data can be 

accessed using smartphone, tablet, or personal computer. Additionally, ICE controls the 
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switching of the electric power from the electric grid to optimally supply energy to the 

electric loads in a smart building environment. This, in turn, saves energy, reduces carbon 

emissions, generates cost savings, improves system efficiency, and enhances user 

comfort [31]. 

 

Fig. 3.1. ICE with IoT technologies integration [29] 

 

General Control Framework for Smart Buildings 

Fig. 3.2 shows the general control framework of ICE for efficient energy 

management in an IoT driven building environment. It comprises of sensing, 

communication, computation, control, and visualization blocks. The sensing block 

includes IoT sensors that record operational data (e.g. energy consumption, temperature, 

occupancy, etc.) and communicate it to the computation block. The computation block 

uses historic operational data to develop a prediction model/algorithm, which is used for 

analyzing the forecasted/real-time operational data to generate energy consumption 
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prediction values. The prediction values are communicated to the control block, which 

includes a control model/algorithm that uses the predicted energy value as a reference to 

compare the measured energy value (obtained from IoT sensors) to generate optimized 

control parameters. These parameters are communicated to the IoT actuators, which 

optimally regulate the operation of the electric loads to reduce energy waste (improve 

energy efficiency). The IoT sensor data and the energy consumption prediction values 

can be visualized, both in-house and remote, using the visualization block. The 

communication block facilitates data exchange between all the blocks [30].  

 

Fig. 3.2. General control framework of ICE for efficient energy management in an IoT 
driven building environment [30] 
 

The general objective function for generating control parameters for optimized 

control of the electric loads in a smart building environment is given by (3.1) [165] 

subject to constraint (3.2).  
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max	%∑ '(. *(+
(,- .               (3.1) 

where !"    is the electric load priority weighting and !"    is the electric load magnitude 

(kWh) for a particular electric load !  . !   represents the total number of electric loads. 

!"# ≤ %&×()*                (3.2) 

where MEC is the measured/actual energy consumption, SF is the safety factor, and Ref is 

the reference to guide the optimization procedure 

In the subsequent chapters, the proposed ICE framework is deployed and 

dispatched in an IoT driven building case study environment to test for its effectiveness 

in terms of reduction in the amount of energy wasted (or improved energy efficiency).  

 
Summary 

A solution to overcome the inefficient energy management problem in a building 

environment was proposed in this chapter. The solution involves the development, 

deployment, and dispatch of ICE for efficient energy management in an IoT driven 

building environment. A general control framework providing an overview of ICE’s 

capabilities along with its features and impact were discussed. ICE is scalable and 

flexible, providing the capability to adapt it for use with any IoT driven building 

environment.  
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CHAPTER FOUR 

IOT DRIVEN BUILDING CASE STUDY ENVIRONMENT 

 
Introduction 

The building case study environment for implementing ICE is the Real-Time 

Power and Intelligent Systems (RTPIS) laboratory integrated with intelligent monitoring 

and control capabilities using IoT devices and technologies. The electric loads under 

consideration include heating, ventilation, and air conditioning (HVAC) units and light 

panels. The different IoT devices and technologies and their deployment in RTPIS 

laboratory are described in this chapter. Also described in this chapter is the methodology 

for data measurement.  

 
Real-Time Power and Intelligent Systems Laboratory 

The Real Time Power and Intelligent Systems laboratory is a premier world class 

research, education and innovation-ecosystem laboratory for smart grid technologies. It is 

housed in the sub-basement of Riggs Hall at Clemson University, Clemson, South 

Carolina, USA. The RTPIS laboratory comprises of the following three specialized 

laboratories each housed in a separate zone [166]:  

• Zone 1 (SB002): Real-Time Grid Simulation Laboratory 

• Zone 2 (SB003): Situational Intelligence Laboratory 

• Zone 3 (SB007B): Digital Laboratory 

The layout of the RTPIS laboratory is shown in Fig. 4.1. 
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Fig. 4.1. RTPIS laboratory layout [31] 

 

Deployment of IoT Devices and Technologies in RTPIS Laboratory 

 
IoT Devices and Technologies 

The IoT devices and technologies deployed in the RTPIS laboratory include smart 

power meters, occupancy sensors, smart thermostats, smart luminaire controllers, smart 

switches, gateways, and a network control engine (NCE) (Fig. 4.2) for monitoring and 

optimized control of the electric loads viz. HVAC units and light panels (Fig. 4.2). Each 

HVAC unit and light panel has a dedicated thermostat and luminaire controller, 

respectively. A brief description of each installed IoT device is provided below. 

Energy consumption data from the electric loads in the RTPIS laboratory was 

measured using the Setra Power Patrol power meters [167]. These are three-phase power 
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meters that work with Rogowski Coils and communicate either through Ethernet 

(Building Automation and Control Network (BACnet) IP/ Modbus TCP) or through RS-

485 serial connection (BACnet MS/TP / Modbus). The Power Patrol BACnet/Modbus 

Power Meters offer the following benefits: 

• Small form factor that makes it easy to mount inside or outside the panel 

• Rogowski and CT compatible, providing added flexibility 

• Easy to configure through computer’s USB port 

• Supports both BACnet and Modbus-based communication 

• No external power required since power meter is line powered from 80-600V 

Johnson Controls thermostats [168] measured zone temperatures and controlled 

switching off and on of the HVAC units based on user-specified temperature setpoint. 

These thermostats offer the following benefits: 

• Remote monitoring and temperature setpoint management 

• Remote wireless occupancy scheduling  

• Programmable temperature and control schedule 

• BACnet compatible 

• Maintenance-free operation 

• Reliable zone comfort 

• Enhanced energy economy 

• Maximized energy savings without sacrificing user comfort 

Each light panel in the RTPIS laboratory had an Audacy luminaire controller 

[169] installed in it, which controlled the switching on and off as well as 0-10V dimming 
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of lights. The luminaire controllers are AC-powered, BACnet compatible, operate in 

highly reliable 915 MHz spectrum, and easy to install. 

Audacy scene switches [170] were wall-mounted in each zone of the RTPIS 

laboratory. These switches were pre-configured with four custom scene settings/light 

levels (0, 30%, 60%, and 100%) for each room, which allowed on-site occupants to 

instantly adjust the light levels according to their preference. The scene switches operate 

in highly reliable 915 MHz spectrum, easy to install, and wireless. 

RTPIS laboratory’s occupancy state was measured using the Audacy ceiling-

mount occupancy sensors [171]. Additionally, the occupancy sensors controlled the light 

panels switching on and off by communicating the occupancy state of the rooms in the 

RTPIS laboratory with the luminaire controllers over BACnet protocol. These sensors 

offer the following benefits: 

• Infrared devices capable of detecting occupancy and/or vacancy 

• BACnet compatible 

• Easy to mount  

The central processing hub included the Audacy gateway [172], the ProtoConvert 

gateway [173], and the Johnson Controls Network Control Engine (NCE) [174]. 

Operational data from occupancy sensors, weather station, thermostats, and power meters 

is wirelessly transmitted to the workstation using the central processing hub, where the 

data is processed to generate actionable information. This actionable information is 

wirelessly transmitted to thermostats and smart luminaire controllers using the central 

processing hub. All communications take place over the BACnet protocol. 
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Fig. 4.2. Integration of all the IoT devices and technologies and software platforms using 
BACnet protocol for data measurement in RTPIS laboratory [30] 
 

Software Platforms 

The software platforms used to manage and drive the IoT devices deployed in the 

RTPIS laboratory include Metasys Building Automation System software, online Audacy 

Interface, and MATLAB (Fig. 4.2). A brief description of each software platform is 

provided below. 

Metasys Building Automation System software [175] by Johnson Controls is the 

state-of-the-art software platform for modern building energy management. It is a world-

class, intelligent technology system that connects the electric loads and IoT devices in the 

RTPIS laboratory, enabling them to communicate the desired information that makes 

their optimized control possible. This results in increased energy efficiency and enhanced 

occupant’s comfort, safety, and productivity. The following are some of the features and 

benefits of Metasys Building Automation software: 
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• Web accessible with full capabilities from laptops, tablets, and smart phones 

• Easy space-based navigation 

• Intuitive design that reduces learning time 

• Shows space-by-space status info that makes troubleshooting relatively easy 

• Easy to compare equipment performances though single-view equipment summary 

• Increased interoperability through support for BACnet protocol 

• Follows government and industry best practices for continuous security 

improvements 

Online Audacy Interface [176] provides a convenient access, monitoring, and 

control platform for wireless lighting control using Audacy IoT devices. It comprises of 

three primary sections viz. IoT device upload, IoT device scheduling and control, and 

electric energy consumption profile. Audacy IoT devices can be uploaded to the online 

interface during installation from the IoT device upload section via the mobile app or 

desktop computer. Once the IoT devices are uploaded and activated, their preferred 

control and scheduling settings can be instantly configured from the IoT device control 

section to achieve the desired light intensity levels across the building environment. 

Sliders are available in the user interface of the IoT device scheduling and control section 

to set dim levels and decide timeout delays for the light panels. The lighting load energy 

consumption profiles can be visualized from the electric energy consumption section. 

Energy consumption profiles can be broken down by date, room, range, or time period 

and can be easily exported for performing further analytics. The following are some of 

the features and benefits of Online Audacy Interface:  
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• Easy to program and customize 

• Flexible scheduling  

• Accessible from Apple devices through the mobile app 

• Supports BACnet protocol 

MATLAB or matrix laboratory [177] is a proprietary programming language that 

was developed by MathWorks. It is the state-of-the-art multi-paradigm numerical 

computing environment with professional mathematical, graphical, and programming 

toolboxes and interactive apps that are scalable to run on clusters, GPUs, and clouds. In 

this research, MATLAB was used to analyze operational data from the IoT devices and 

develop optimization algorithms to create optimized control models for the IoT actuators 

controlling the electric loads in the RTPIS laboratory. 

 
BACnet Protocol 

BACnet protocol [178] is an internationally recognized and accepted protocol. It 

is an American national standard, European standard, national standard in more than 30 

countries, and ISO global standard. BACnet protocol was developed by the American 

Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Its 

increasing use is attributed to the following benefits: 

• Single operator workstation for all systems 

• Competitive System expansion 

• Eliminates fear of being “locked in” 

• Possibility of integrating all building automation and control functions 
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• Interoperability to facilitate efficient data sharing, alarm and event management, 

scheduling, and remote device and network management  

 

Data Measurement 

Fig. 4.2 shows a circuit diagram with the different data sources (IoT devices) used 

for this research and their integration with software platforms using the BACnet protocol 

for recording measurement data for different parameters. Energy consumption data from 

the HVAC units and light panels is measured using the power monitors, which transmit 

this data to the network control engine (NCE). The zone temperature (ZT) and ambient 

temperature (AT) data is measured using the thermostats and the weather station 

temperature sensor, respectively, which transmit this data to the NCE. The occupancy 

state (OS) data is measured using the occupancy sensors, which transmit this data to the 

NCE via the Audacy gateway. The NCE transmits all the received data (operational data) 

to the Metasys BAS software, where it can be visualized. The operational data is 

subsequently transmitted to MATLAB via a BACnet to Modbus TCP/IP gateway where 

it is analyzed to obtain actionable information [30]. 

 

Summary 

This chapter provided a description of the development of the building case study 

environment (i.e. RTPIS laboratory) for implementing ICE. Also described in this chapter 

were the various IoT devices and technologies and software platforms that were deployed 
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in the RTPIS laboratory over the BACnet protocol. Finally, the measured data for the 

research experiment was presented in this chapter.  
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CHAPTER FIVE 

ENERGY CONSUMPTION PREDICTION – I 

 
Introduction 

Current energy challenges including inefficient energy management, wasted 

energy resources, and expensive energy costs need to be addressed to meet the growing 

demand for clean, affordable, and sustainable energy [179-182]. Energy generation is 

currently controlled based on energy demands of electric loads in near real-time. In this 

case, maintaining reserve energy resources operational at all times for generating and 

supplying excess energy to account for sporadic increases in energy demands is an 

inefficient and unsustainable approach. Electric energy consumption prediction 

capabilities are needed to reduce the amount of energy wasted from maintaining reserve 

resources operational at all times. With prediction capabilities, the electric energy 

consumption can be estimated for the near future and thus, the required amount of energy 

can be generated and supplied as needed to meet the demands of the electric loads, which 

minimizes wasted energy, reduces carbon emissions, and generates energy and cost 

savings [164]. 

The development of two energy consumption prediction models viz. exponential 

model and Elman recurrent neural network (RNN) model have been described in this 

chapter. The developed prediction models were compared with each other to determine 

the most accurate model for use in the development of ICE’s energy consumption 

prediction capability, which is described in chapter 6. 
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Problem Definition 

The problem definition (Fig. 5.1) for this study involves measuring historic data 

for ambient temperature, occupancy state, and energy consumption over a period of seven 

weeks (October 18 – December 5, 2017) and utilizing this data to build both Elman RNN 

and exponential prediction models that recognize a relationship between the net energy 

consumption by the electric loads (HVAC units and light panels) in the RTPIS laboratory 

and the laboratory’s ambient temperature and occupancy state. These models can be used 

for real-time and near future electric energy consumption estimation and prediction based 

on the forecasted ambient temperature data and scheduled building occupancy state data. 

For validating the models, the electric energy consumption was predicted for the period 

December 6 – 12, 2017 and compared with the measured (actual) electric energy 

consumption data for the specified period [31]. 

 

Fig. 5.1. Problem definition. (a) Electric energy consumption prediction model under 
development and (b) developed model used in prediction mode [31] 
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Measurement Data 

The ambient temperature, occupancy state, and electric energy consumption data 

was measured over a period of eight weeks (October 18 – December 12, 2017) and had a 

resolution of 10 minutes, which makes it a total of 8064 data points (Fig. 5.2). This 

measured data was divided into two categories: (1) data used to develop the electric 

energy prediction models and (2) data used to test the prediction accuracy of the 

developed models. Seven weeks of data (October 18 – December 5, 2017) (7056 data 

points) was used to develop both Elman RNN and exponential models for energy 

consumption prediction. This data was further separated based on weekday data (thirty-

five weekdays = 5040 data points) and weekend data (fourteen weekend days = 2016 data 

points) for improving the accuracy of electric energy consumption predictions as trying to 

predict electric energy consumption for the weekend using weekday data or vice versa is 

not ideal. The remaining one week of data (December 6 – December 12, 2017) (1008 

data points) was used to test the developed models’ energy consumption prediction 

accuracies [31]. 
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Fig. 5.2. (a) Temperature and (b) occupancy data vs. net energy consumption data for 
October 18 – December 12, 2017 [31] 
 

Elman RNN Model 

Elman RNN was conceived and first used by Jeff Elman in 1990 [183]. It is 

usually a two-layer backpropagation network where the output of the hidden layer in the 

previous time step (k-1) is fed back as an input to the hidden layer in the current time step 

(k). This feedback is the recurrent connection in the Elman RNN that gives the neural 

network a short term memory that allows it to generate and recognize spatial and 

temporal patterns [184, 185]. The hidden/recurrent layer in an Elman RNN has a 

hyperbolic tangent sigmoid (tansig) or log-sigmoid (logsig) transfer function whereas the 

output layer has a linear (purelin) transfer function [184].  

The Matlab function used to create an Elman RNN is newelm [184, 186]. The 

default parameter settings when using newelm include Nguyen-Widrow layer 



 73 

initialization (initnw) function for initializing the weights and biases of each layer, tansig 

and purelin transfer functions for hidden and output layers respectively, BFGS quasi-

Newton backpropagation (trainbfg) function for backpropagation training, gradient 

descent with momentum weight and bias learning (learngdm) function for 

backpropagation weight/bias learning, and mean squared normalized error performance 

(mse) function for performance. The mathematical equations for tansig (5.1), purelin 

(5.2), and mse (5.3) functions are as follows [177]: 

!"#$%& # = (
)*+--. − 1                  (5.1) 

!"#$%&' ' = '                      (5.2) 

!"# = %
& (#(()(*),&

*-%                      (5.3) 

There are two Matlab functions that can be used for training Elman RNN viz. 

train or adapt [184]. The following happens at each epoch when using the train function: 

The network is presented with the input sequence for which the outputs are calculated. 

Next, an error sequence is generated by comparing the outputs with the target sequence. 

Once the error is known, error gradients for each bias and weight are determined by 

backpropagating this error sequence. It is important to note here that the value of the 

gradients is an approximation since in Elman RNN the biases and weights contributions 

to error through the delayed feedback or recurrent connection are ignored. Finally, the 

weights are updated using the approximate gradient with a backpropagation training 

function. The gradient descent with momentum and adaptive learning rate 

backpropagation (traingdx) function is recommended and generally used. In the case of 

the adapt function, the following happens at each time step: The network is presented 
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with the input vectors and an error is generated. Next, error gradients for each bias and 

weight are determined by backpropagating this error. As with the train function, the value 

of the gradients in this case is an approximation. Finally, the weights are updated using 

the approximate gradient with a learning function. The gradient descent with momentum 

weight and bias learning (learngdm) function is recommended and generally used. Since 

the training and adaption in an Elman RNN occurs using the error gradient 

approximation, this network is not as reliable as some other kinds of networks. A solution 

to overcome this drawback and give an Elman RNN the best chance at learning and 

solving a problem is to have more neurons in the hidden layer than is typical for any 

other network to solve a similar problem [177, 184]. 

A two-layer Elman RNN model was developed and used for electric energy 

predictions. It comprised of two input neurons, ten hidden layer neurons, and a single 

output layer neuron (Fig. 5.3). For training the Elman RNN model, the measured 

weekday and weekend training data (described above) was divided into three datasets viz. 

the input, target, and sample dataset. The input dataset included the ambient temperature 

and occupancy state data, the target dataset included the measured electric energy 

consumption data, and the sample dataset included the forecasted temperature and 

scheduled occupancy state data for electric energy consumption prediction. To avoid 

overfitting, the data in each dataset was randomly divided into three subsets: 70% of the 

data was used for training, 15% for validation, and 15% for testing [31]. 
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Fig. 5.3. Elman RNN model for electric energy consumption prediction [31] 

 
TABLE 5.1. ELMAN RNN TRAINING PARAMETERS [31] 

 
Parameter MATLAB Implementation Value 

Maximum number of epochs to 
train 

net.trainParam.epochs 1000 

Performance goal net.trainParam.goal 0 

Learning rate net.trainParam.lr 0.01 
Ratio to increase learning rate net.trainParam.lr_inc 1.05 
Ratio to decrease learning rate net.trainParam.lr_dec 0.7 
Maximum validation failures net.trainParam.max_fail 1000 
Maximum performance 
increase 

net.trainParam.max_perf_inc 1.04 

Momentum constant net.trainParam.mc 0.9 
Minimum performance 
gradient 

net.trainParam.min_grad 10-5 

Maximum time to train in 
seconds 

net.trainParam.time infinite 

 

Table 5.1 shows the parameters used for training the Elman RNN. Initially, the 

specified parameters were set to the standard, default values, which were then further 

refined by trial-and-error until the desired network performance was achieved. The 
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network was trained separately for weekday and weekend data to obtain the 

corresponding weights and biases. The performance (perf) derivatives with respect to the 

bias and weight variables X were calculated using backpropagation. The gradient descent 

with momentum is used to adjust each variable (5.4) [177]. 

!" = $%*!"'()* + ,-*$%* .')(/.0               (5.4) 

where, 

!"#$%&   = previous change to bias or weight 

!"   = momentum constant 

!"   = learning rate 

After each epoch, the network perf is evaluated and the learning rate (lr) is 

updated accordingly. If the perf decreases towards the goal, lr is increased by lr_inc. If 

the perf increases beyond the max_perf_inc value, lr is decreased by lr_dec. The Elman 

RNN training stops when any of the following conditions hold true [184]: 

• Maximum number of epochs is reached 

• Maximum time to train is exceeded 

• Performance goal is achieved 

• Performance gradient falls below min_grad value 

• Validation performance increases more than max_fail times since the last time it 

decreased 

The developed Elman RNN model was used to generate the RTPIS laboratory’s 

electric energy consumption predictions for the period December 6 – 12, 2017 using the 

forecasted temperature and scheduled occupancy state data. The electric energy 
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consumption for the specified period was predicted for weekdays and weekends, 

separately using their respective weights and biases. The predicted values were then 

compared with the measured net electric energy consumption values for these days and 

the %	#$$%$   was calculated using (5.5). The results are shown and discussed in the 

Experiment Results and Discussions section below. 

%	#$$%$ = '()*+,-)*	./)(01	23/4567-+3/-9):45()*	./)(01	23/4567-+3/
9):45()*	./)(01	23/4567-+3/ ;100         (5.5) 

 

Exponential Model 

 
Particle Swarm Optimization 

In summary, PSO utilizes a particle population where each particle is given a 

velocity with which it flies through the problem hyperspace. After each iteration, the 

velocity for each individual particle is adjusted stochastically depending on its historic 

best position and the best position of the swarm. PSO algorithm is referred to as the global 

(gbest) PSO or local (lbest) PSO depending on whether the neighborhood of a particle is 

the entire swarm or whether a smaller neighborhood is used. The best positions of both 

particle and neighborhood are obtained from a user defined fitness function [187-189]. 

Therefore, movement of each particle evolves towards an optimal solution.  

A particle !   in a swarm is represented by its current position (!"  ), current velocity 

(!"  ), and personal best position (!"  ). If !   denotes the objective function, then the personal 

best position of a particle !   at time !   is updated according to (5.6) [190]. 

!" # + 1 = !" # 									()	)(+"(# + 1)) ≥ )(!"(#))
+" # + 1 		()	)(+"(# + 1)) < )(!"(#))           (5.6) 
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The global best particle’s position vector (")   is given by (5.7) [190].  

! " ∈ !$, !&, … , !( = min	{/ !$ " , / !& " , … , / !( " }          (5.7) 

where !  = size of swarm.  

For the lbest model, the neighborhood best particle’s position vector ("#)   is given by (5.8) 

[190]. 

!" # + 1 ∈ '(|* !" # + 1 = ,-. * !/ # , ∀!/ ∈ '(             (5.8) 

where each neighborhood, !" = $%-' ( , $%-'*+ ( , … , $% ( , $%*+ ( , … , $%*'-+ ( , $%*' (         (5.9)  

These neighborhoods can either be determined using particle indices [191] or topological 

neighborhoods can be employed [192]. 

The velocity !"   of a particle !   is updated according to (5.10) [190]:  

!",$ % + 1 = )!",$ % + *+,+,$ % -",$ % -/",$ % + *0,0,$ % -$ % -/",$ %        (5.10) 

where, 

! ∈ 1,… ,&'	    

!"  = dimension of the problem 

!",$  = !  -th element of the velocity vector of the !  -th particle 

!  = inertia weight [192] 

!"   and !"  = acceleration constants 

!",$, !%,$~'(0, 1)    

It is possible to clamp velocity updates at a user defined value of maximum velocity 

(!"#$  ). This is done to prevent their explosion, which in turn avoids premature 

convergence [193]. 

The position !"   of a particle !   is updated according to (5.11) [190]: 
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!" # + 1 = !" # + '"(# + 1)            (5.11) 

The equations listed above are updated with each iteration of the PSO algorithm until a 

stop condition is reached. This stop condition may either be that the algorithm has reached 

its specified number of iterations or that the velocity updates are nearly zero. The 

optimality of the achieved solution is measured using a fitness function. Fig. 5.4 shows the 

general pseudo code for PSO algorithm. 

 

Fig. 5.4. Pseudo-code for PSO [165] 

There are several advantages of PSO that make it very effective for a variety of 

optimization problems [194-197] that are similar to the one considered in this paper. 

Some of the advantages of PSO include [189, 198, 199]: (1) PSO is relatively simple and 

easy to implement with fewer parameters to adjust; (2) it has effective memory capability 

to store individual particle’s and neighborhood’s best values; (3) PSO is less sensitive to 
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the objective and the parameters; (4) it is efficient to maintain swarm diversity; and (5) 

PSO produces high-quality stable solution with low computational cost. Therefore, PSO 

is the chosen candidate for the proposed methodology. The authors in [189] have 

performed a detailed review of the basic concepts, different structures, and variants of the 

PSO computational intelligence technique. 

 
Objective Function Formulation 

To solve the above-mentioned pattern recognition problem using PSO-based 

algorithm, it is essential to formulate its objective function. For this study, the objective 

function does the following: (1) gathers the RTPIS lab’s ambient temperature and 

occupancy state historic data over a period of one week (December 6 – December 12, 

2017), (2) calculates the net energy consumption of the RTPIS laboratory based on this 

data, and (3) compares the calculated net energy with the measured net energy and 

calculates the error [31].  

The mathematical formulation of the objective function is shown below 

(equations 5.12-5.14) [31]. 

!"#$ = &. ()*+ + -. ()*+ . + /. )- 1#23 + 4. 5667+8 + 9. 5667+8 . +
:. )- ;<<=3> + ?  
              (5.12) 

where, 

!"#$   = instantaneous net RTPIS lab power consumption (kW)  

!"#$   = ambient temperature (°C) 

!""#$%  = occupancy state of the RTPIS lab 
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!, #, $%&	(  = decision variables for ambient temperature data having units of kW/ºC, 

kW/ºC2, and kW, respectively  

!, #, $%&	(  =decision variables for occupancy state data, all having units of kW 

!  =constant (kW) 

All decision variables and the constant are determined using the proposed PSO algorithm 

and are shown in the Results and Discussions section below. The net energy consumption 

of the RTPIS lab over time !   can be calculated using equation (5.13) [31]. 

!"#$% = '"#$(
$)* +,             (5.13) 

where, 

!"#$%   = calculated net energy consumption (kWh)  

Using (5.12) and (5.13), electric energy consumption was predicted for the period 

December 6 – 12, 2017 using the same forecasted temperature and scheduled occupancy 

state data as used in the Elman RNN model. The electric energy consumption for the 

specified period was predicted for weekdays and weekends, separately using their 

respective parameters. The predicted values were compared with the measured net energy 

consumption values for the period, and the %	#$$%$   was calculated using (5.14) [31]. The 

results are shown and discussed in the Experiment Results and Discussions section below 

(Table 5.2). 

%	#$$%$ = '()*+-'()*-
'()*-

.100            (5.14) 

where, 

!"#$%  = measured net energy consumption (kWh) 
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PSO Algorithm to Determine Decision Variables 

PSO algorithm was used to generate values of the decision variables 

!, #, $, %, &, ', ()*	,   while minimizing %!""#".   A flowchart representing the proposed PSO 

algorithm is shown in Fig. 5.5. The parameters specified in the proposed PSO algorithm 

are as follows [31]: 

• Number of particles = 20 

• Number of iterations = 500 

• Number of dimensions = 7 

• Particle velocity (vi) and position (xi) range = [-100, 100]   

• Inertia weight (w) = 0.729 

• Acceleration constants c1 = c2 = 1.49 

Initially, the specified PSO parameters were set to the standard, tested values, which were 

then further refined by trial-and-error until the convergence was achieved. For example, 

the inertia weight of PSO was initially set at 0.9 and reduced to 0.729 with iterations.  
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Fig. 5.5. Flowchart of the proposed PSO algorithm to generate values of the decision 
variables [31]. 
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Experiment Results and Discussions 

 
Decision Variables for Exponential Model 

 
TABLE 5.2. VALUE OF THE DECISION VARIABLES, CONSTANT, AND 
MINIMUM ERROR FOR WEEKDAY AND WEEKEND DATA [31] 
 

Parameter Value for Weekday Data Value for Weekend Data 
A (kW/°C) 0.0022 0.0382 
B (kW/°C2) -0.0002 -0.0027 

C (kW) 0.3244 -0.0806 
D (kW) 0.2291 0.1350 
E (kW) 0.1407 0.1275 
F (kW) 0.2342 0.1200 
G (kW) 0.2459 0.2764 

Minimum Error (gbest) 98.1959 74.4046 
 

Prediction Results 

The comparison of the predicted and the measured net electric energy 

consumption values using Elman RNN and exponential models, along with the % Error 

values are tabulated in Table 5.3 and shown in Fig. 5.6. From the small % Error values, it 

can be inferred that the predicted and measured net electric energy consumption values 

are very similar for all the days. This validates the developed Elman RNN and 

exponential models and shows they work well for electric energy consumption prediction 

in a smart building environment.  

From the comparison between the Elman RNN model and the exponential model, 

it is clear that the Elman RNN model outperforms the exponential model on six out of 

seven days of electric energy consumption predictions, thereby making it a more efficient 

approach for use in the development of ICE’s energy consumption prediction capability. 
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TABLE 5.3. PREDICTED ENERGY CONSUMPTION AND MEASURED NET 
ENERGY CONSUMPTION USING ELMAN RNN AND EXPONENTIAL MODELS 
[31] 
 

Date Measured Net 
Energy 

Consumption 
(kWh) 

Predicted 
Energy 

Consumption 
with Elman 
RNN Model 

(kWh) 

Predicted 
Energy 

Consumption 
with 

Exponential 
Model (kWh) 

%Error with 
Elman RNN 

Model 

% Error with 
Exponential 

Model 

December 6, 
2017 

16.7333 16.2696 15.0489 2.7709 10.0656 

December 7, 
2017 

15.4564 15.4205 14.6196 0.2323 5.4135 

December 8, 
2017 

13.1197 12.4325 14.1332 5.2381 7.7244 

December 9, 
2017 

12.1032 11.8417 11.2118 2.1609 7.3650 

December 10, 
2017 

12.8876 12.6478 11.1339 1.8606 13.6083 

December 11, 
2017 

14.0726 13.5625 13.5831 3.6246 3.4781 

December 12, 
2017 

16.2459 15.9942 15.0152 1.5496 7.5755 
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Fig. 5.6. Predicted and the measured net energy consumption values using Elman RNN 
and exponential models [31] 
 

Summary 

An Elman recurrent neural network model and exponential model were developed 

and applied to the RTPIS laboratory for real-time and near future electric energy 

consumption estimation and prediction. The developed prediction models were compared 
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with each other to determine the most accurate model for use in the development of 

ICE’s CCN-based energy consumption prediction capability. From the comparison 

between the Elman RNN model and the exponential model, the Elman RNN model 

emerged as the more accurate model. Although developed for the RTPIS laboratory at 

Clemson University, the Elman RNN and exponential models are scalable and flexible, 

providing the capability to adapt these models for usage with any IoT driven building 

environment. 
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CHAPTER SIX 

ENERGY CONSUMPTION PREDICTION – II 

 
Introduction 

The cellular computational network was used to develop ICE’s energy 

consumption prediction capability. CCN is a distributed and scalable architecture, which 

can be used for implementing large networked systems with faster learning [200]. It is a 

dynamic recurrent network (DRN) consisting of interconnected cells that have the 

capacity to communicate with one another [201, 202]. The cell connections are modeled, 

or mapped, after the complex network topology [203]. Each cell in a CCN has a 

computational, learning, and communication unit (Fig. 6.1). While the type of 

computational unit varies for different applications, it is usually some form of the many 

computational intelligence (CI) and non-CI paradigms. The computational unit in a cell 

performs the following task: It receives information either directly or from its neighbors, 

processes it, and generates an output to enhance its performance over time. In other words, 

each cell gains experience over time. This task is facilitated by the learning unit, which 

provides the cell’s performance evaluation measure through supervised, unsupervised, or 

reinforcement-based learning. The communication unit facilitates CCN’s collaborative 

learning system where each cell interacts with its neighbors by transmitting and receiving 

information through an input/output interface according to a predefined rule [200, 204, 

205]. 
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Fig. 6.1. CCN cell internal unit [204] 

 The major benefits of using CCN for prediction applications over other traditional 

approaches include distributed framework and dynamic communication capabilities. The 

distributed framework allows the computational load to be distributed amongst the 

individual cells in the CCN. With the dynamic communication capability, each cell can 

update its state and exchange this information with neighboring cells, thereby making the 

cells better aware of their surroundings [206]. These capabilities enable cooperative or 

synchronous operations amongst neighboring cells resulting in better prediction accuracy. 

 

Problem Definition 

The problem definition (Fig. 6.2) for the energy consumption prediction 

experiment involves the following: (1) measuring historic data for various parameters 
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including ambient temperature, zone temperature, occupancy, and energy consumption 

data, (2) using the measured data to develop a CCN-based prediction model that 

recognizes a relationship between the measured energy consumption by the electric loads 

and the rest of the parameters, and (3) using the developed model for real-time and near 

future energy consumption estimation and prediction based on the forecasted data of the 

various parameters. For validating the model, the energy consumption was predicted for 

the period March 4 – 10, 2018 and compared with the measured (actual) energy 

consumption data for the specified period [30]. 

 

(a) 

 
(b) 

Fig. 6.2. Energy consumption prediction problem definition: (a) Model in development 
mode; (b) developed model operating in prediction mode [30] 
 

Measurement Data 

A total of 15,475 data samples were measured for each parameter over a period of 

six months (October 2017 – March 2018). The data samples have a resolution of 10 

minutes. Out of these data samples, 14,468 data samples were used for developing (or 
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training) the CCN prediction model, and the remaining 1007 data samples were used to 

test the prediction accuracy of the developed model. Fig. 6.3 shows an example of the 

data samples for the different parameters measured over a period of one week (1007 data 

samples) [30]. 

 

Fig. 6.3. Example of the data samples for (a) ambient and zone temperatures, (b) energy 
consumption, and (c) occupancy state over a period of one week [30]. 
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CCN-Based Energy Prediction Model 

The CCN-based model (Fig. 6.4) was developed, deployed, and dispatched for 

energy consumption prediction in the RTPIS laboratory. In this model, each laboratory 

zone is represented as an individual cell. Each cell receives two kinds of input parameters: 

(1) direct input parameters viz. AT, ZT, OS, and measured energy consumption (MEC) 

from the temperature sensors, thermostats, occupancy sensors, and power meters, 

respectively in each room (or cell), and (2) shared input parameters viz. ZT and predicted 

energy consumption (PEC) from the neighboring cells. k represents the current time step 

and k+1 represents the next (future) time step. Sharing input parameters between the 

neighboring cells make them better aware of their surroundings, which in turn, results in 

high accuracy energy consumption predictions [30]. 

 
Fig. 6.4. CCN-based energy consumption prediction model [30] 

Each cell of the CCN-based energy consumption prediction model is a two-layer 

Elman Recurrent Neural Network (RNN) with six, eight, and six input neurons for cells 
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1, 2, and 3, respectively; ten hidden layer neurons; and one output layer neuron. The 

hidden layer output in k-1 time step is fed back as hidden layer input in k time step 

providing a short-term memory to the Elman RNN (Fig. 6.5) [184, 185]. Tangent sigmoid 

(tansig) and linear (purelin) transfer functions are used for the hidden and output layers, 

respectively. Mathematically, tansig and purelin transfer functions are represented using 

equations (6.1) and (6.2) [204].  

!"#$%& # = (
)*+--. − 1              (6.1) 

!"#$%&' ' = '               (6.2) 

 
Fig. 6.5. Elman RNN for each CCN cell [30] 

Elman RNN is created using the newelm Matlab function [184, 186]. By default, 

Nguyen-Widrow layer initialization (initnw) function is used for weights and biases 

initialization of each layer, BFGS quasi-Newton backpropagation (trainbfg) function is 
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used for backpropagation training, gradient descent with momentum weight and bias 

learning (learngdm) function is used for backpropagation weight/bias learning, and mean 

squared normalized error performance (mse) function is used as network performance 

metric (equation (3)). 

!"# = %
& (#(()(*),-

*.%               (6.3)  

Elman RNN is trained using the train function [184]. The measurement data was 

divided into three datasets viz. the input, target, and sample dataset. The input dataset 

included AT(k), ZT(k), OS(k), and MEC(k) data; the target dataset included the 

MEC(k+1) data; and the sample dataset included the real-time/forecasted input data at 

time step (k+d-1) for generating PEC at time step (k+d). To avoid overfitting, the data in 

each dataset was randomly divided into three subsets: 70% of the data was used for 

training, 15% for validation, and 15% for testing. At each epoch, an input sequence is 

presented to the neural network and the corresponding output sequence is calculated. The 

output sequence is then compared with a target sequence to generate the error sequence. 

This error sequence is then backpropagated to determine performance (perf) derivatives 

with respect to the bias and weight variables X, which are subsequently used to update 

weights and biases in accordance with equation (4) using the gradient descent with 

momentum and adaptive learning rate backpropagation (traingdx) function [184, 177]. 

!" = $%*!"'()* + ,-*$%* .')(/.0               (6.4) 

where, 

!"#$%&   = previous change to bias or weight 
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!"   = momentum constant 

!"   = learning rate 

After each epoch, the network perf is evaluated and the lr is increased or decreased 

depending on if the perf decreases towards or increases beyond the goal, respectively. 

The developed CCN-based model was used to generate the RTPIS laboratory’s 

PEC for the period March 4 – 10, 2018 using the real-time/forecasted AT, ZT, OS, and 

MEC data. The predicted values were then compared with the measured energy 

consumption values for these days and the %	#$$%$   was calculated using (5) [30]. The 

results are shown and discussed in the Experiment Results and Discussions section 

below. 

%	#$$%$ = '()-+()
+() ,100              (6.5) 

 

Experiment Results and Discussions 

The comparison of PEC and MEC values obtained from the CCN model, along 

with the % Error values for all three cells from March 4 – 10, 2018 are tabulated in Table 

6.1 and plotted in Fig. 6.6. Fig. 6.7 shows both the PEC and MEC waveforms for all three 

cells for the week under consideration. From the small % Error values, it can be inferred 

that the PEC and MEC values are very similar for all the days. This validates the 

developed CCN model and shows that it works really well for the real-time and near 

future energy consumption estimation and prediction in an IoT driven building 

environment [30]. 
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TABLE 6.1. PEC AND MEC VALUES FOR ALL THREE CELLS USING CCN-
BASED ENERGY CONSUMPTION PREDICTION MODEL [30] 
 
 Cell 1 (Zone 1) Cell 2 (Zone 2) Cell 3 (Zone 3) 

Date MEC 
(kWh) 

PEC 
(kWh) 

%Error MEC 
(kWh) 

PEC 
(kWh) 

%Error MEC 
(kWh) 

PEC 
(kWh) 

%Error 

3/4/18 4.096 4.182 2.097 2.243 2.395 6.762 5.632 5.663 0.538 
3/5/18 8.578 8.297 3.272 3.911 3.727 4.708 5.733 5.752 0.338 
3/6/18 4.627 4.602 0.540 3.504 3.301 5.809 5.850 5.832 0.318 
3/7/18 6.766 6.719 0.694 3.888 3.820 1.764 6.146 6.063 1.360 
3/8/18 5.972 6.053 1.358 4.545 4.414 2.879 6.580 6.469 1.691 
3/9/18 7.598 7.404 2.556 4.415 4.142 6.183 5.965 5.930 0.593 

3/10/18 4.312 4.286 0.609 3.152 3.077 2.374 6.229 6.080 2.390 
 

 
 

(a) 
 

 
(b) 
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(c) 

Fig. 6.6. PEC and MEC values for (a) cell 1, (b) cell 2, and (c) cell 3 using CCN-based 
energy consumption prediction model [30] 
 

Cell 1: Zone 1 
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Cell 2: Zone 2 
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Cell 3: Zone 3 
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Fig 6.7. PEC and MEC waveforms for all three cells (or zones) for the period March 4 – 
10, 2018 [30] 
 

Summary 

ICE’s CCN-based energy consumption prediction capability was developed in 

this chapter. The CCN model was built in MATLAB, where it received certain input 

parameters (AT, ZT, MEC, and OS) from the IoT sensors (temperature sensor, 

thermostat, power meter, and occupancy sensor) and generated PEC values.  The 

developed CCN prediction model was tested for accuracy by comparing PEC and MEC 

data over a period of one week. Low error % were obtained from this comparison, which 

indicates the developed CCN-based energy prediction model was highly accurate. 

Although developed for the RTPIS laboratory, ICE’s CCN model is scalable and flexible, 



 100 

providing the capability to adapt this model for usage with any IoT driven building 

environment. 
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CHAPTER SEVEN 

OPTIMIZED CONTROL OF ELECTRIC LOADS 

 
Introduction 

This chapter presents an Internet of Things (IoT)-based solution to overcome the 

challenge of inefficient energy management. The solution involves development, 

deployment, and dispatch of Intelligent Computational Engine (ICE) capabilities viz. 

energy consumption prediction and optimized control of electric loads. The development 

CCN-based energy consumption prediction capability was described in chapter 6. The 

particle swarm optimization (PSO) algorithm along with Metasys Building Automation 

System (BAS) logic connector tool (LCT) were used to develop ICE’s optimized control 

of electric loads capability. The general PSO algorithm has been described in Chapter 5.  

LCT is used to create a control system logic using graphical presentation. The 

control system logic comprises of three components: system blocks, logic blocks, and 

math category. The system blocks reference other control system logics. They support 

drag and drop functionality and allow configuration of control system logics. System 

blocks are useful with developing a complex control system logic by supporting nested 

control system logics. The logic blocks represent various functions that are performed on 

objects. Similar to system blocks, logic blocks also support drag and drop functionality. 

The logic block functions include mathematics, boolean, statistics, multiplexer, control, 

psychrometrics, attributes, constant, calculation, and timing. The math category performs 

calculations on input. The math category functions include multiply, divide, add, subtract, 
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negative, absolute, square root, cosine, sine, tangent, arc tangent, arc cosine, arc sine, 

exponent, natural log, log, and X^Y [207]. 

 
(a) 

 
(b) 

Fig. 7.1. Metasys BAS LCT graphical user interface in (a) edit mode and (b) view mode 
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LCT runs either in edit mode or view mode, which allows editing or viewing a 

control system logic through Metasys BAS. In edit mode (Fig. 7.1a), access to all toolbar 

items, system blocks, and logic blocks are made available. Control system logic is created 

or edited in this mode. In view mode (Fig. 7.1b), access to a limited number of toolbar 

items is made available. The system and logic blocks do not appear in this mode. 

Dynamic values are displayed on the connection line between two logic blocks in view 

mode. Also, commands to input reference blocks can be sent in this mode [207]. 

Having ICE’s energy consumption prediction and optimized control of electric 

loads capabilities is extremely useful for efficient energy management as they ensure that 

sufficient energy is generated to meet the demands of the electric loads optimally at any 

time thereby reducing wasted energy due to excess generation. This, in turn, reduces 

carbon emissions and generates energy and cost savings [30]. 

 

Problem Definition 

The problem definition (Fig. 7.2) for optimized control of electric loads 

experiment involves the following: (1) using the real-time IoT sensor data with the 

developed CCN-based energy consumption prediction model to generate the PEC value 

for the next time step, (2) using the PEC value as a reference for the PSO algorithm to 

generate optimized control parameters, (3) using the generated control parameters in the 

LCT model for regulating the electric loads operation (i.e. load shedding/reduction) to 

save energy. For validating the model, the energy consumption data was recorded for a 

period of one week (April 16 – April 22, 2018) with the optimized control model and 
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compared with the energy consumption data for the week of April 2 – 8, 2018 without the 

optimized control model to demonstrate energy savings [30]. 

 
Fig. 7.2. Optimized control of electric loads problem definition [30] 

 

PSO-Based Optimized Control Parameters 

 
Objective Function 

The general objective function in (3.1) and constraint in (3.2) were adapted for 

use in the RTPIS laboratory for generating control parameters for optimized control of 

the HVAC units and light panels. The RTPIS laboratory specific objective function and 

constraint are given by (7.1) and (7.2):  

	  	  !"#[% &1×)1 + + &2×)2 + - &3×)3 + / &4×)4 + 1 &5×)5 + 3(&6×)6)]      (7.1) 

where A, B, …, F = [0 or 1] are the control parameters to be determined using PSO. 

Electric loads energy consumption magnitudes L1, L2, …, L6 correspond to zone 1 light 

panels, zone 1 HVAC1, zone 1 HVAC2, zone 2 light panels, zone 2 HVAC, and zone 3 

light panels. The electric load energy consumption values are obtained from Metasys 

(BAS) LCT model via the BACnet to Modbus TCP/IP gateway (Fig. 7.3). The logic 

diagram for the generation of the electric load energy consumption values is shown in 
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Fig. 7.4. Each load is assigned a specific priority (P1, P2, …, P6) as described in the next 

section (see Table 7.1). 

!"#$ ≤ &'$×)"#$                 (7.2) 

where !"#$    is the measured energy consumption, !"#$    is the predicted energy 

consumption, and !"#    is the safety factor for room !  . !   is 1, 2, and 3 for zone 1, zone 2, 

and zone 3, respectively. The energy consumption prediction error percent (%"##$#)   for 

each zone is calculated as described in Chapter 6 (6.5), and its values for each zone 

during each day of the study period are tabulated in Table 6.1. The safety factor for this 

model is calculated as shown in (7.3). 

!"# = %&&%()*+	(%.//0/1)
%&&               (7.3) 

 

 
Fig. 7.3. Communication link between the Metasys BAS LCT model and PSO algorithm 
developed in MATLAB [30]  
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(a)         (b) 

    
(c)         (d) 

 

    
(e)         (f) 

 
Fig. 7.4. LCT model for electric load energy consumption magnitude (in kWh) inputs to PSO algorithm from (a) zone 1 light 
panels, (b) zone 1 HVAC 1, (c) zone 1 HVAC 2, (d) zone 2 light panels, (e) zone 2 HVAC, and (f) zone 3 light panels
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Electric Loads and Priority Weighting 

The priority weighting for load shedding/reduction was set manually and is shown 

in Table 7.1. The electric load zone 1 HVAC1 was given highest priority (priority 

weighting = 4) because this area contains large equipment, including real-time digital 

simulators and phasor measurement units. It is important to keep this area cool to 

maintain the equipment, but it is not a required to keep the load on constantly. The 

electric loads zone 1 lights and zone 2 lights were assigned the second highest priority 

(priority weighting = 3), and the electric loads zone 1 HVAC 2 and zone 2 HVAC units 

were given third highest priority (priority weighting = 2). Since they are the main work 

areas and are often occupied, lighting was given the higher priority since it is difficult to 

work if there is poor lighting. It is still possible to continue working comfortably if the 

HVAC units are temporarily suspended. The electric load zone 3 lights were given lowest 

priority (priority weighting = 1) because this area contains a high performance computing 

cluster and is not a common work area. It requires constant cooling, but lighting is not a 

critical need for this area. Note that the zone 3 HVAC unit is a critical/must load and was 

kept on constantly. 

TABLE 7.1.�ELECTRIC LOAD MAGNITUDE AND PRIORITIES [30] 
Electric 

Load 
Zone 1 
Lights 

Zone 1  
HVAC 1 

Zone 1 
HVAC 2 

Zone 2 
Lights 

Zone 2 
HVAC 

Zone 3 
Lights 

Zone 3 
HVAC 

Case 1: 
Magnitude 

(kWh) 

0.0497 0.0118 0.0149 0.0324 
 

0.0132 0.0226 0.0388 

Case 2: 
Magnitude 

(kWh) 

0.0345 0.0118 0.0153 0.0278 0.0132 0.0161 0.0390 

Case 3: 
Magnitude 

(kWh) 

0.0345 0.0118 0.0149 0.0068 0.0132 0.0131 0.0387 

Priority 
Weighting 

3 4 2 3 2 1 Critical/Must 
Load 
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Cases 1, 2, and 3 represent three different operational scenarios varying by light intensity 

(Case 1: High intensity, Case 2: Medium intensity, and Case 3: Low intensity) for which 

the optimized control parameters of the electric loads were generated using the PSO 

algorithm. The results are shown in Tables 7.2 and 7.3 in the Experiment Results and 

Discussions section. 

 

LCT Model 

The LCT model for regulating the electric loads (i.e. load shedding) based on the 

optimized control parameters is shown in Fig. 7.5. The optimized control parameter values 

obtained using the developed PSO algorithm in MATLAB are transmitted to Metasys 

BAS via the Modbus TCP/IP to BACnet gateway (Fig. 7.3). The LCT model uses these 

optimized control parameter values as inputs to the IoT actuators (thermostats and 

luminaire controllers) to regulate necessary electric loads to reduce the energy 

consumption under the set reference (7.2) without violating any operational constraints 

(Fig. 7.5). The different control parameters for the thermostats and luminaire controllers 

are shown in Fig. 7.3. This saves energy and improves energy efficiency of the RTPIS 

laboratory [30]. 
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Fig. 7.5. Metasys BAS LCT logic diagram for optimized load shedding/reduction. A, B, C, D, E, and F are the optimized control 
parameters from the PSO algorithm
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An experiment was conducted in the RTPIS laboratory for a period of two weeks 

(April  2 – 8, 2018 and April 16 –22, 2018) to test the optimized control of electric loads 

for managing energy efficiently. The selection of the time period for testing the optimized 

control model was done such that the input parameters (viz. ambient temperature, zone 

temperature, and occupancy state) of the three zones were comparable during the test 

period (Fig. 7.6). 

 
(a) 

 

 
(b) 
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(c) 

Fig. 7.6. Comparison between (a) zone temperature, (b) ambient temperature, and (c) 
occupancy state for all three zones for week 1 (April 2-8) and week 2 (April 16-22) [30] 
 
For zone 1, all the conditions for weeks 1 and 2 are almost identical. For zone 2, the zone 

temperature and ambient temperature comparisons are almost identical, but there is a 

slight variation in the occupancy comparison for weeks 1 and 2. Zone 3 comparisons are 

almost like zone 2 comparisons, but there is a major variation in the occupancy 

comparison for weeks 1 and 2. This is a real-world experiment with an actual building, 

loads, people, and environment. Therefore, slight variations are likely and expected from 

one week to the other. Furthermore, the low occupancy % for zone 3 during week 2 is 

normal as it houses a high performance computing cluster, which requires constant low 

temperature environment to be maintained (HVAC always ‘ON’), and is therefore not a 

conducive working environment. The occupancy % for zone 3 was higher during week 1 

as it was necessary for the author to work in that zone to develop the optimization 

algorithms on the workstation (also housed in zone 3). The occupancy, therefore, only 

included the author and its variation didn’t have much effect on the experiment outcome.   
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The developed CCN prediction model, PSO algorithm, and LCT model was 

dispatched during the week of April 16 – 22. The net energy consumption data was 

recorded during this period (energyOC) and compared to the week of April 2 – 8 

(energyN), a period during which the laboratory operated under similar conditions but 

without the integration of the optimized control model. %	#$%&'()   obtained with the 

integration of the optimized control model was calculated using (7.3) [30]. The results are 

shown and discussed in the Experiment Results and Discussions section below. 

%"#$%&'( = *+*,-./0-*+*,-.2
*+*,-.2 ×100            (7.3) 

 

Experiment Results and Discussions 

 
PSO Generated Control Parameters 

The control parameters (A, B, …, F) given in (7.1) were generated using the PSO 

algorithm. Table 7.2 presents the control parameters that were generated based on the total 

predicted and measured energy consumption of the RTPIS laboratory using PSO to solve 

equation (7.1) and satisfy constraint (7.2). Table 7.2 also presents the loads that were 

shed/reduced based on the generated control parameters. Table 7.3 supplements Table 7.2 

in that it presents the predicted energy consumption, safety factor, and measured energy 

consumption for individual rooms in the RTPIS laboratory. 
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TABLE 7.2.� CONTROL PARAMETERS GENERATED USING PSO [30] 
 
Case Total 

!"#   
(kWh) 

Total 
!"×$%&   

(kWh) 

Total 
!"#   

(kWh) 

*Min. 
Load 

to 
Shed  

(kWh) 

PSO 
Control 

Parameters 

Loads 
Shed/Reduced 

Comments/Justification 

1 0.1381 0.1325 0.1834 0.0509 [1 1 0 1 0 0] 

Zone 1 
HVAC2, Zone 

2 HVAC, 
Zone 3 Lights 

The optimal loads to shed 
were of the lowest two 
levels of priority and 
their magnitude was 

equivalent to the amount 
needed to be shed 
without any excess 

2 0.1482 0.1423 0.1577 0.0154 [1 1 0 1 1 1] Zone 1 
HVAC2 

If based on priority 
alone, zone 3 lights 

would have been reduced 
since that is the lowest 

priority. But, that would 
only maximize priority 
weighting and not the 

objective function. 
Therefore, zone 1 

HVAC2 was shed since it 
maximized the objective 
function and was of the 

second to lowest priority 
level. 

3 0.1305 0.1254 0.1330 0.0076 [1 1 1 0 1 1] Zone 2 Lights 

Similar to Case 2, 
reducing zone 2 lights 

maximized the objective 
function and of was third 

in terms of lowest 
priority 

*Values have been rounded to the fourth decimal place, although the devices and software are more precise.  

TABLE 7.3.� MEASURED VS. PREDICTED ENERGY CONSUMPTION ALONG 
WITH THE SAFETY FACTORS FOR EACH ROOM [30] 
 

Case Zone !"#   (kWh) !"   !"×$%&  !"#   (kWh) 

1 
1 0.0418 0.97 0.0405 0.0764 
2 0.0367 0.93 0.0341 0.0456 
3 0.0596 0.97 0.0578 0.0614 

2 
1 0.0605 0.97 0.0587 0.0616 
2 0.0355 0.93 0.0330 0.0410 
3 0.0522 0.97 0.0522 0.0551 

3 
1 0.0516 0.97 0.0500 0.0612 
2 0.0289 0.93 0.0269 0.0200 
3 0.0500 0.97 0.0485 0.0518 
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Parameter Waveforms With and Without Dispatch of Optimized Control Model 

The waveforms of the various parameters viz. energy consumption by the electric 

loads (light panels and HVAC units), zone temperature, occupancy state, and ambient 

temperature for all three zones with and without the dispatch of optimized control model 

are shown in Fig. 7.7 – Fig. 7.9. The ambient temperature waveform is shown once (Fig. 

7.7(f)) since it has the same values for all three zones. 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

 

 
(e) 
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(f) 

Fig. 7.7. Waveforms of (a) light panels energy consumption, (b) HVAC 1 energy 
consumption, (c) HVAC 2 energy consumption, (d) zone temperature, (e) occupancy state, 
and (f) ambient temperature  for zone 1 with and without the dispatch of optimized control 
model [30] 
 

 
(a) 

 

 
(b) 



 117 

 
(c) 

 

 
(d) 

Fig. 7.8. Waveforms of (a) light panels energy consumption, (b) HVAC energy 
consumption, (c) zone temperature, and (d) occupancy state for zone 2 with and without 
the dispatch of optimized control model [30] 
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(a) 

 

 
(b) 

 

 
(c) 
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(d) 

Fig. 7.9. Waveforms of (a) light panels energy consumption, (b) HVAC energy 
consumption, (c) zone temperature, and (d) occupancy state for zone 3 with and without 
the dispatch of optimized control model [30] 

 

Energy Savings With Dispatch of Optimized Control Model 

The comparison of energyOC and energyN values obtained from the optimized 

control model, along with the % Savings values for all three zones are tabulated in Table 

7.4. Fig. 7.10 shows the net energyOC values for the period April 16 –22, 2018 and the 

net energyN values for the period April 2 – 8, 2018 for all three cells (or zones). The 

waveforms for the energyOC and energyN values are shown in Fig. 7.11. From the 

significant % Savings values obtained from the integration of ICE’s capabilities, it is 

successfully demonstrated that the developed optimized control of electric load model and 

CCN-based energy consumption prediction model can reduce energy waste and enhance 

energy efficiency when dispatched in the RTPIS laboratory. Therefore, the CCN and 

optimized control models working together constitute an efficient energy management 

system for an IoT driven building environment [30]. 
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TABLE 7.4. energyOC, energyN, AND %Savings VALUES FOR ALL THREE CELLS 
USING OPTIMIZED CONTROL OF ELECTRIC LOADS MODEL [30] 
 

 Cell 1 (Zone 1) Cell 2 (Zone 2) Cell 3 (Zone 3) 
Date energyN 

(kWh) 
energyOC 

(kWh) 
%Savings energyN 

(kWh) 
energyOC 

(kWh) 
%Savings energyN 

(kWh) 
energyOC 

(kWh) 
%Savings 

4/2/18 7.763 - 

19.33% 

5.645 - 

15.65% 

6.404 - 

11.24% 

4/3/18 7.953 - 5.158 - 5.880 - 
4/4/18 6.763 - 5.089 - 6.228 - 
4/5/18 5.918 - 4.293 - 6.983 - 
4/6/18 6.878 - 5.173 - 6.194 - 
4/7/18 5.902 - 4.934 - 6.347 - 
4/8/18 6.371 - 4.189 - 6.805 - 

4/16/18 - 6.022 - 4.664 - 5.798 
4/17/18 - 5.163 - 4.177 - 5.618 
4/18/18 - 6.583 - 4.678 - 5.561 
4/19/18 - 5.890 - 4.268 - 5.574 
4/20/18 - 5.721 - 4.186 - 5.914 
4/21/18 - 5.365 - 3.909 - 5.710 
4/22/18 - 3.613 - 3.203 - 5.628 
Total 47.548 38.357 34.481 29.085 44.841 39.803 

RTPIS 
Lab Net 
Energy 

%Savings 

15.47% 

 
 

 

 
(a) 
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(b) 

 

 
(c) 

Fig. 7.10. Net energyOC and energyN values for (a) zone 1, (b) zone 2, and (c) zone 3 for 
the period April 2 – 8, 2018 and April 16 – 22, 2018, respectively [30] 
 

 
(a) 
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(b) 

 

 
(c) 

Fig. 7.11. Net energyOC and energyN waveforms for (a) zone 1, (b) zone 2, and (c) zone 
3 for the period April 2 – 8, 2018 and April 16 – 22, 2018, respectively [30] 

 

Summary 

ICE’s optimized control of electric loads capability was developed in this chapter. 

The PSO algorithm was developed in MATLAB where it used the PEC value generated 

from the CCN model as a reference to generate the optimized control parameters. The 

LCT model was built in Metasys BAS, where it used these control parameters to perform 
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optimized load shedding of the electric loads without violating any operational 

constraints. It was successfully demonstrated that ICE’s CCN prediction and optimized 

control models together served as an efficient energy management system that enhanced 

the energy efficiency by saving energy in the RTPIS laboratory. Just like ICE’s CCN 

model, the optimized control model, although developed for the RTPIS laboratory, is 

scalable and flexible, providing the capability to adapt this model for usage with any IoT 

driven building environment.  
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CHAPTER EIGHT 

CONCLUSIONS 

 
Introduction 

This chapter serves as the summary of the entire dissertation. The dissertation 

comprises of seven chapters (not including this chapter) that present a detailed review of 

IoT for building environments; the development of ICE, an efficient energy management 

system for smart buildings; the development of an IoT driven case study environment for 

the implementation of ICE; and the development, deployment, and dispatch of ICE’s 

energy consumption prediction and optimized control capabilities for reducing energy 

waste (improving energy efficiency) when applied to the IoT driven building 

environment.  

 
Research Summary 

The summary of research work presented in each chapter is enumerated below. 

Chapter 1 presented a detailed review of the role of IoT in transforming modern 

buildings into energy efficient, smart, and connected buildings. Also presented in this 

chapter, were the economic, environmental, and societal impacts of IoT for smart 

buildings. Finally, the main objectives and contributions of this dissertation were 

enumerated in chapter 1.  

Chapter 2 presented a detailed review of the challenges (both technical and non-

technical) and recommended solutions for overcoming these challenges for successfully 

implementing IoT in smart buildings. Additionally, recommendations for mixed-methods 
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research design to realize the potential of IoT for transforming modern buildings into 

smart buildings were presented in this chapter. 

Chapter 3 presented Intelligent Computational Engine (ICE), an efficient energy 

management system for IoT driven building environment. The features and impact of 

ICE along with a general control framework providing an overview of ICE’s capabilities 

were discussed in this chapter. 

Chapter 4 provided a description of the development of the building case study 

environment (i.e. RTPIS laboratory) for implementing ICE. The various IoT devices and 

technologies and software platforms that were deployed in the RTPIS laboratory over the 

BACnet protocol were also described in this chapter. Finally, the methodology for 

recording measurement data for the research experiment was presented in chapter 4. 

Chapter 5 described the development and application of two prediction models 

viz. Elman Recurrent Neural Network (RNN) model and exponential model for 

predicting energy consumption in the RTPIS lab. The objective of this chapter was to 

determine which of the two models was superior in terms of better prediction accuracy 

for use in the development of ICE’s Cellular Computational Network (CCN)-based 

energy consumption prediction capability. Elman RNN model emerged as the more 

accurate energy consumption prediction model of the two. 

Chapter 6 described the development, deployment, and dispatch of ICE’s CCN-

based energy consumption prediction capability in the RTPIS laboratory, which resulted 

in high accuracy energy consumption predictions.  
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Chapter 7 described the development, deployment, and dispatch of ICE’s 

optimized control of electric loads capability in the RTPIS laboratory. It was successfully 

demonstrated that ICE’s CCN prediction and optimized control models together served as 

an efficient energy management system that enhanced the energy efficiency by reducing 

energy waste in the RTPIS laboratory. 

The conclusions of this dissertation including the chapterwise research 

summaries, recommendations, and future work was presented in Chapter 8.  

 
Main Conclusions 

IoT for smart buildings presents an exciting area of innovative growth and 

development. This dissertation presented a detailed review of the role, impact, and 

challenges and recommended solutions for implementing IoT in building environments.  

A solution to overcome the inefficient energy management problem in a building 

environment was proposed in this dissertation. The solution involved the development, 

deployment, and dispatch of ICE for efficient energy management in an IoT driven 

building environment. Several IoT devices and technologies were integrated with the 

RTPIS laboratory to transform it into an IoT driven building environment, which served 

as the building case study environment for this research. The proposed ICE framework 

was deployed and dispatched in the RTPIS laboratory to test for ICE’s effectiveness in 

terms of reduction in the amount of energy wasted (or improved energy efficiency). 

Energy consumption prediction models viz. exponential model and Elman RNN 

model were developed and compared to determine the most accurate model for use in the 

development of ICE’s energy consumption prediction capability.  
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The capabilities of ICE that were developed included a CCN-based energy 

consumption prediction model and an optimized control of electric loads model using 

PSO algorithm and LCT. The CCN model was built in MATLAB, where it received 

certain input parameters (AT, ZT, MEC, and OS) from the IoT sensors (temperature 

sensor, thermostat, power meter, and occupancy sensor) and generated PEC values.  The 

developed CCN prediction model was tested for accuracy by comparing PEC and MEC 

data over a period of one week. Low error % were obtained from this comparison, which 

indicates the developed CCN-based energy prediction model was highly accurate. The 

optimized control model was built partly in MATLAB (PSO algorithm) and partly in 

Metasys BAS (LCT), where it used the PEC value generated from the CCN model as a 

reference. The MEC was compared with the PEC and optimized control parameters were 

generated to regulate the electric loads (HVAC units and light panels) without violating 

any operational constraints. It was successfully demonstrated that ICE’s CCN and 

optimized models together served as an efficient energy management system that 

enhanced the energy efficiency by reducing energy waste in the RTPIS laboratory. 

Although developed for the RTPIS laboratory, ICE’s CCN and optimized control models 

are scalable and flexible, providing the capability to adapt these models for usage with 

any IoT driven building environment. 

 
Suggestions for Future Research 

The detailed review of the role, impact, and challenges of IoT for smart buildings 

presented in this dissertation work will be beneficial for both academic and industrial 
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researchers and engineers getting started in the smart building energy management 

domain.  

The ICE developed in this dissertation has unique capabilities that can overcome 

challenges including inefficient energy management, wasted energy resources, and 

potentially expensive energy costs to meet the growing energy demands. The ICE is a 

computational systems thinking machine that is flexible, scalable, adaptable, and self-

learning, which makes it convenient to deploy and easy to use in any smart building 

scenario.  

Recommendations for future work include scaling the developed ICE for use in a 

larger building environment and testing the efficiency of its energy management 

operation; incorporating privacy and security solutions in ICE to make it more resilient to 

attacks; and integrating qualitative methods of data collection and analysis into this 

research to explore and understand individual and group behavior, organizational 

dynamics, and cultural influences that are necessary to guarantee its uptake and use in 

achieving its benefit to society.  

 
Summary 

The entire dissertation is summarized in this chapter. Chapterwise summaries, 

main conclusions, and recommendations for future research have been highlighted. 
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